

MOS INTEGRATED CIRCUIT μ PD16364

160-BIT HIGH-VOLTAGE CMOS DRIVER

DESCRIPTION

The μ PD16364 is a high-voltage CMOS driver for EL display. It consists of 4 × 40/8 × 20-bit data latch, 160-bits data latch, 160-bit level shifter, and a high-voltage CMOS driver. The logic circuit operates on 5-V power supply (CMOS level input), so that it can be connected to a micro-controller. The driver block is comprised of 60 V, 25 mA MAX. high-voltage output buffer, and both the logic block and driver block employ a CMOS, allowing operation with low power consumption.

FEATURES

- High-voltage Full CMOS process
- High-voltage output (60 V, 25 mA MAX.)
- $4 \times 40/8 \times 20$ -bit data latch (4/8-bit data input)
- High-speed data transfer (fcLK = 16 MHz: in cascade connection)

Package

Wide operating temperature range (T_A = -40 to +85°C)

ORDERING INFORMATION

Part Number

 μ PD16364N -××× TCP (TAB package)

Remark The TCP's external shape is customized. To order the required shape, please contact one of our sales representatives.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

1. BLOCK DIAGRAM

Remark /xxx indicates active low signal.

Remark This figure does not specify the TCP package.

Caution Be sure to use all the VDD1, VDD2, VSS1, and VSS2 pins. Keep the VSS1 and VSS2 pins at the same voltage level.

3. PIN FUNCTIONS

Pin Symbol	Pin Name	I/O	Description
EIO1	Enable I/O1	I/O	L,/R pin = "L" level: Input
			L,/R pin = "H" level: Output
EIO2	Enable I/O2	I/O	L,/R pin = "H" level: Input
			L,/R pin = "L" level: Output
SCK	Shift Clock Input	Input	Fall edge operation. Input shift clock for 4 x 40/8 x 20-bit data latch.
DST	Data Strobe Input	Input	Fall edge operation. Data are latched to 160-bits data latch and also set
			outputs of OUT1 to OUT160.
Do to D7	Data Input	Input	Data input. When BS is low level, D_4 to D_7 pins should be connected to V_{SS1}
			or Vdd1.
L,/R	Select Left or Right	Input	Refer to 4.TRUTH TABLE
	Shift		
OC	Output Control	Input	When OC pin is low level, output is normal operation.
			When OC pin is high level, output become low level.
REV	Invert Input Data	Input	When REV pin is low level, input data D_0 to D_7 are latched without inversion.
			When REV pin is high level, input data D_0 to D_7 are inverted before latching.
BS	Bus Select	Input	When BS pin is low level, data bus is4 bits.
			When BS pin is high level, data bus is 8 bits.
OUT1 to	High-voltage output	Output	Output level is V_{SS2} or $V_{\text{DD2}}.$ These outputs are changed by falling edge of
OUT160			DST pin.
VDD1	Logic power supply	-	Logic power supply
Vdd2	Driver power supply	-	Driver power supply
Vss1	Logic ground	_	Grounding
Vss2	Driver ground		Grounding

★

4. TRUTH TABLE

Shift Register Block (4 x 40 data latch, BS = L)

		,			
L,/R	SCK	1	2	3	 40
L level	D3	1	5	9	 157
	D ₂	2	6	10	 158
	D1	3	7	11	 159
	Do	4	8	12	 160
H level	D3	160	156	152	 4
	D ₂	159	155	151	 3
	D1	158	154	150	 2
	Do	157	153	149	 1

Shift Register Block (8 x 20 data latch, BS = H)

		·	•,		
L,/R	SCK	1	2	3	 20
L level	D7	1	9	17	 153
	D ₆	2	10	18	 154
	D5	3	11	19	 155
	D4	4	12	20	 156
	D3	5	13	21	 157
	D ₂	6	14	22	 158
	D1	7	15	23	 159
	Do	8	16	24	 160
H level	D7	160	152	144	 8
	D ₆	159	151	143	 7
	D₅	158	150	142	 6
	D4	157	149	141	 5
	D₃	156	148	140	 4
	D2	155	147	139	 3
	D1	154	146	138	 2
	Do	153	145	137	 1

Control Block

L,/R	EIO1	EIO2	
H level	Out	In	
L level	In	Out	

Driver Block

OC	REV	Dn	Driver Output
L	L	L	L
L	L	Н	Н
L	Н	L	н
L	Н	Н	L
Н	х	х	L (All driver outputs are L.)

5. ELECTRICAL SPECIFICATIONS

Parameter	Symbol	Rating	Unit
Logic Part Supply Voltage	Vdd1	-0.5 to +6.0	V
Driver Part Supply Voltage	Vdd2	-0.5 to +60	V
Logic Part Input Voltage VI1		-0.5 to V _{DD1} + 0.5	V
Logic Part Output Voltage	Part Output Voltage Vo1 -0.5 to VpD1 + 0.5		V
Driver Part Output Voltage	V ₀₂	-0.5 to V _{DD2} + 0.5	V
Logic Part Output Current	lo1	±10	mA
Driver Part Output Current	102	±25	mA
Operating Ambient Temperature	ТА	-40 to +85	°C
Storage Temperature T _{stg}		-55 to +125	°C

Absolute Maximum Ratings (T_A = 25°C, V_{SS1} = V_{SS2} = 0 V)

Cautions 1. $T_A \ge 25^{\circ}C$, load should be alleviated at a rate of -4.5 mW/°C.

2. Product qualify may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Range ($T_A = -40$ to $+85^{\circ}C$, $V_{SS1} = V_{SS2} = 0$ V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Logic Part Supply Voltage	Vdd1		4.5	5.0	5.5	V
Driver Part Supply Voltage	Vdd2		20		55	V
High-Level Input Voltage	VIH		0.8 VDD1		Vdd1	V
Low-Level Input Voltage	VIL		0		0.2 Vdd1	V
Driver Part Output Current	IOL2				+20	mA
	Іон2				-20	mA

Caution Turn of and off power sequence must be as follows:

Turn-on sequence: $V_{DD1} \rightarrow Input \rightarrow V_{DD2}$

Turn-off sequence: $V_{DD2} \rightarrow Input \rightarrow V_{DD1}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-Level Output Voltage VOH1		Logic, Іон1 = -0.4 mA,	$V_{\text{DD1}} - 0.4$			V
	Vон2	OUT1 to OUT160, IoH2 = -1.0 mA	V _{DD2} - 0.4			V
Low-Level Output Voltage VoL1		Logic, IoL1 = 0.4 mA			0.4	V
	Vol2	OUT1 to OUT160, loL2 = 1.0 mA			0.4	V
High-Level Input Current	Ін	$V_I = V_{DD1}$			5.0	μA
Low-Level Input Current	lı∟	V1 = 0 V			-5.0	μA
High-Level Input Voltage	VIH	Logic	0.8 VDD1			V
Low-Level Input Voltage	VIL	Logic			0.2 VDD1	V
Ron Variance	Rvar	OUT1 to OUT160 (in one chip under constant T _i ^{Note1})			±30	%
Logic Part Dynamic Current Consumption	Idd1	Note2			10	mA
Driver Part Dynamic Current Consumption	Idd2	Note2			10	mA
Standby Current	Istandby	Note3			500	μA

Electrical Characteristics (TA = -40 to +85°C, VDD1 = 4.5 to 5.5 V, VDD2 = 55 V, VSS1 = VSS2 = 0 V,)

Notes 1. $R_{var} = (1 - Xn/X_{avg}) \times 100$

Xn = Impedance of OUTn, Xavg = Impedance of average

 $I_{OH2} = -1.0 \text{ mA}, I_{OL2} = 1.0 \text{ mA}$

- 2. fsck = 16 MHz, fbst = 36 kHz, VIN = Vbb1 or Vss1, no load
- 3. VIN = VDD1 or VSS1, no load

Switching Characteristics ($T_A = -40$ to $+85^{\circ}C$, $V_{DD1} = 4.5$ to 5.5 V, $V_{DD2} = 55$ V, $V_{SS1} = V_{SS2} = 0$ V)
--

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Enable Pulse Delay Time	t PLH1	DST↓ → EIOn↑, CL = 30 pF			70	ns
	tPHL2	Last SCK↓ → EIOn↓, C∟ = 30 pF			40	ns
Driver Output Delay Time	tphl3	DST $\downarrow \rightarrow$ OUT1 to OUT160,			7	μS
	t PLH3	CL = 2000 pF			7	μS
Input Capacitance	Cı				20	pF

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK Cycle Time	tсsск		62			ns
SCK Pulse Width	PWclk		20			ns
DST Cycle Time	tcdst		1000			ns
DST High-Level Pulse Width	PWDST		30			ns
DST-SCK Time	tdst-sck	$DST{\downarrow} \to 1st\;SCK\;{\downarrow}$	100			ns
SCK-DST Time	tsck-dst	Last SCK $\downarrow \rightarrow$ DST \downarrow	30			ns
Data Setup Time	t SETUP		20			ns
Data Hold Time	t HOLD		20			ns
REV Setup Time	t RSETUP		40			ns
REV Hold Time	t RHOLD		30			ns
EIO-SCK Time1	teio-sck1	$EIOn \!$	22			ns
EIO-SCK Time2	teio-sck2	$EIOn^{\uparrow} \to 1st \ SCK \ \uparrow$	25			ns

Timing Requirement ($T_A = -40$ to $+85^{\circ}$ C, $V_{DD1} = 4.5$ to 5.5 V, $V_{DD2} = 55$ V, $V_{SS1} = V_{SS2} = 0$ V, $t_r = t_f = 13.0$ ns)

Switching Characteristics and Timing Requirements Waveform

Timing requirement waveform

Switching characteristics waveform

2 20 ო IC12 data reading 2 **2**0 ო IC3 data reading 2 20 ო IC2 data reading 2 ג ר IC1 data reading ო 2 SCK D₀ to D₇ DST IC1 EIO2 IC2 EI01 / IC3 EI02 IC11 EI01 / IC12 EI02 IC1 EI01 / IC1 EI02 OUT1-OUT160

Timing Example (640 dots x 3/line, BS = H, L,/R = H)

6. RECOMMENDED SOLDERING CONDITIONS

The following conditions must be met for soldering conditions of the μ PD16364.

For more details, refer to the Semiconductor Device Mounting Technology Manual (C10535E).

Please consult with our sales offices in case other soldering process is used, or in case the soldering is done under different conditions.

 μ PD16364N-×××: TCP (TAB package)

Mounting Condition	Mounting Method	Condition
Thermocompression	Soldering	Heating tool 300 to 350°C: heating for 2 to 3 seconds: pressure 100g (per solder)
	ACF (Adhesive Conductive Film)	Temporary bonding 70 to 100°C: pressure 3 to 8 kg/cm ² : time 3 to 5 seconds. Real bonding 165 to 180°C: pressure 25 to 45 kg/cm ² : time 30 to 40 seconds. (When using the anisotropy conductive film SUMIZAC1003 of Sumitomo Bakelite, Ltd.)

Caution To find out the detailed conditions for packaging the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more packaging methods at a time.

[MEMO]

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES -

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Reference Documents

NFC

NEC Semiconductor Device Reliability/Quality Control System (C10983E) Semiconductor Device Mounting Technology (C10535E)

- The information in this document is current as of November, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).