eKT5201/05

8-Bit Microcontroller

Product Specification

Doc. Version 1.3

ELAN MICROELECTRONICS CORP.

March 2016

Trademark Acknowledgments:

IBM is a registered trademark and PS/2 is a trademark of IBM. Windows is a trademark of Microsoft Corporation.

ELAN and ELAN logo are trademarks of ELAN Microelectronics Corporation.

Copyright © 2011 ~ 2016 by ELAN Microelectronics Corporation All Rights Reserved

Printed in Taiwan

The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited.

NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

ELAN MICROELECTRONICS CORPORATION

Headquarters:

No. 12, Innovation 1st Road Hsinchu Science Park Hsinchu, TAIWAN 30076 Tel: +886 3 563-9977 Fax: +886 3 563-9966 webmaster@emc.com.tw http://www.emc.com.tw

Hong Kong:

ELAN (HK) Microelectronics Corporation, Ltd.

Flat A, 19F., World Tech Centre 95 How Ming Street, Kwun Tong Kowloon, HONG KONG Tel: +852 2723-3376 Fax: +852 2723-7780

Shenzhen:

ELAN Microelectronics Shenzhen, Ltd.

8A Floor, Microprofit Building Gaoxin South Road 6 Shenzhen Hi-Tech Industrial Park South Area, Shenzhen CHINA 518057 Tel: +86 755 2601-0565

Fax: +86 755 2601-0500 elan-sz@elanic.com.cn

USA:

ELAN Information Technology Group (U.S.A.)

PO Box 601 Cupertino, CA 95015 U.S.A.

Tel: +1 408 366-8225 Fax: +1 408 366-8225

Shanghai:

ELAN Microelectronics Shanghai, Ltd.

6F, Ke Yuan Building No. 5 Bibo Road Zhangjiang Hi-Tech Park Shanghai, CHINA 201203 Tel: +86 21 5080-3866 Fax: +86 21 5080-0273 clan-sh@elanic.com.cn

1	Gen	eral De	eral Description						
2	Feat	tures		1					
3	Pin /	Assignment2							
	3.1	Packag	ge QFN-24	2					
	3.2	Packag	ge SOP-24	3					
4	Pin l	Descrip	otion	4					
	4.1	-	xx Kernel Pin						
	4.2		ound Pin Functions Priority						
5		•	Block Diagram						
6			escription						
	6.1	•	tional Registers						
		6.1.1	R0: IAR (Indirect Addressing Register)						
		6.1.2	R1: BSR (Bank Selection Control Register)	11					
		6.1.3	R2: PCL (Program Counter Low)	12					
		6.1.4	R3: SR (Status Register)	16					
		6.1.5	R4: RSR (RAM Select Register)	17					
		6.1.6	Bank 0 R5 ~ R8: (Port 5 ~ Port 8)	17					
		6.1.7	Bank 0 R9 ~ RA: (Reserved)	17					
		6.1.8	Bank 0 RB~RD: (IOCR5 ~ IOCR7)	17					
		6.1.9	Bank 0 RE: OMCR (Operating Mode Control Register)	17					
		6.1.10	Bank 0 RF: EIESCR (External Interrupt Edge Select Control Register)	19					
		6.1.11	Bank 0 R10: WUCR1 (Wake-up Control Register 1)	19					
		6.1.12	Bank 0 R11: WUCR2 (Wake-up Control Register 2)	20					
		6.1.13	Bank 0 R12: WUCR3 (Wake-up Control Register 3)	20					
		6.1.14	Bank 0 R13: (Reserved)	21					
		6.1.15	Bank 0 R14: SFR1 (Status Flag Register 1)	21					
		6.1.16	Bank 0 R15: (Reserved)	21					
		6.1.17	Bank 0 R16: SFR3 (Status Flag Register 3)	21					
		6.1.18	Bank 0 R17: SFR4 (Status Flag Register 4)	22					
		6.1.19	Bank 0 R18~R1A: (Reserved)	22					
		6.1.20	Bank 0 R1B: IMR1 (Interrupt Mask Register 1)	22					
		6.1.21	Bank 0 R1C: (Reserved)	23					
		6.1.22	Bank 0 R1D: IMR3 (Interrupt Mask Register 3)	23					

6.1.23	Bank 0 R1E: IMR4 (Interrupt Mask Register 4)	23
6.1.24	Bank 0 R1F~R20: (Reserved)	24
6.1.25	Bank 0 R21: WDTCR (Watchdog Timer Control Register)	24
6.1.26	Bank 0 R22: TCCCR (TCC Control Register)	25
6.1.27	Bank 0 R23: TCCD (TCC Data Register)	25
6.1.28	Bank 0 R24 ~ R2F: (Reserved)	26
6.1.29	Bank 0 R30: I2CCR1 (I2C Status and Control Register 1)	26
6.1.30	Bank 0 R31: I2CCR2 (I2C Status and Control Register 2)	27
6.1.31	Bank 0 R32: I2CSA (I2C Slave Address Register)	28
6.1.32	Bank 0 R33: I2CDB (I2C Data Buffer Register)	28
6.1.33	Bank 0 R34: I2CDAL (I2C Device Address Register)	28
6.1.34	Bank 0 R35: I2CDAH (I2C Device Address Register)	28
6.1.35	Bank 0 R36 ~ R4F: (Reserved)	29
6.1.36	Bank 1 R5: IOCR8	29
6.1.37	Bank 1 R6 ~ R7: (Reserved)	29
6.1.38	Bank 1 R8: P5PHCR (Port 5 Pull-high Control Register)	29
6.1.39	Bank 1 R9: P6PHCR (Port 6 Pull-high Control Register)	29
6.1.40	Bank 1 RA: P7PHCR (Port 7 Pull-high Control Register)	30
6.1.41	Bank 1 RB: P5PLCR (Port 5 Pull-low Control Register)	30
6.1.42	Bank 1 RC: P6PLCR (Port 6 Pull-low Control Register)	31
6.1.43	Bank 1 RD: P78PLCR (Ports 7~8 Pull-low Control Register)	31
6.1.44	Bank 1 RE: P5HDSCR (Port 5 High Drive/Sink Control Register)	31
6.1.45	Bank 1 RF: P6HDSCR (Port 6 High Drive/Sink Control Register)	32
6.1.46	Bank 1 R10: P78HDSCR (Ports 7~8 High Drive/Sink Control Register)	32
6.1.47	Bank 1 R11: P5ODCR (Port 5 Open-Drain Control Register)	32
6.1.48	Bank 1 R12: P6ODCR (Port 6 Open-Drain Control Register)	32
6.1.49	Bank 1 R13: P7ODCR (Port 7 Open-Drain Control Register)	33
6.1.50	Bank 1 R14 ~ R15: (Reserved)	33
6.1.51	Bank 1 R16: PWMSCR (PWM Source Clock Control Register)	33
6.1.52	Bank 1 R17: PWM1CR (PWM1 Control Register)	33
6.1.53	Bank 1 R18: PRD1L (Low Byte of PWM1 Period)	34
6.1.54	Bank 1 R19: PRD1H (High Byte of PWM1 Period)	34
6.1.55	Bank 1 R1A: DT1L (Low Byte of PMW1 Duty)	35
6.1.56	Bank 1 R1B: DT1H (High Byte of PMW1 Duty)	35
6.1.57	Bank 1 R1C: TMR1L (Low Byte of Timer 1)	35
6.1.58	Bank 1 R1D: TMR1H (High Byte of Timer 1)	35

	6.1.59	Bank 1 R1E ~ R44: (Reserved)	35
	6.1.60	Bank 1 R45: TBPTL (Table Point Low Register)	35
	6.1.61	Bank 1 R46: TBPTH (Table Point High Register)	36
	6.1.62	Bank 1 R47: STKMON (Stack Pointer)	36
	6.1.63	Bank 1 R48: PCH (Program Counter High)	36
	6.1.64	Bank 1 R49: (Reserved)	36
	6.1.65	Bank 1 R4A: COBS1 (Code Option Bit Select Register 1)	37
	6.1.66	Bank 1 R4B: COBS2 (Code Option Bit Selection Register 2)	38
	6.1.67	Bank 1 R4C: COBS3 (Code Option Bit Selection Register 3)	38
	6.1.68	Bank 1 R4D ~ R4F: (Reserved)	38
	6.1.69	Bank 2 R21: DACR (DAC Control Register)	38
	6.1.70	Bank 2 R22: DACD0 (Digital to Analog Converter Data Buffer 0)	39
	6.1.71	Bank 2 R23: DACD1 (Digital to Analog Converter Data Buffer 1)	39
	6.1.72	Bank 2 R25 ~ R4F: (Reserved)	39
	6.1.73	R50~R7F, Banks 0~2 R80~RFF	39
6.2	TCC/V	VDT and Prescaler	40
6.3	I/O Po	rts	41
	6.3.1	Usage of Ports 5~8 Input Change Wake-up/Interrupt Function	43
6.4	Reset	and Wake-up	44
	6.4.1	Summary of Wake-up and Interrupt Mode Operation	45
	6.4.2	The Status of RST, T, and P of Status Register	47
	6.4.3	Summary of Register Initial Values after Reset	48
6.5	Interru	pt	57
6.6	Dual S	Set of PWM (Pulse Width Modulation)	58
	6.6.1	Overview	58
	6.6.2	Control Register	59
	6.6.3	Increment Timer Counter (TMRX: TMR1H/TMR1L)	59
	6.6.4	PWM Time Period (PRDX: PRD1H/PRD1L)	60
	6.6.5	PWM Duty Cycle (DTX: DT1H/DT1L)	60
	6.6.6	PWM Programming Process/Steps	61
6.7	I ² C Fu	nction	61
	6.7.1	7-Bit Slave Address	63
	6.7.2	10-Bit Slave Address	64
	6.7.3	Master Mode	67
	6.7.4	Slave Mode I2C Transmit	67

	6.8	Oscilla	ator	68
		6.8.1	Oscillator Modes	68
		6.8.2	Internal RC Oscillator Mode	68
	6.9	Power	r-on Considerations	69
	6.10	Extern	nal Power-on Reset Circuit	69
	6.11	Resid	ue-Voltage Protection	70
	6.12	Code	Option	71
		6.12.1	Code Option Register (Word 0)	71
		6.12.2	Code Option Register (Word 1)	72
		6.12.3	Code Option Register (Word 2)	73
		6.12.4	Code Option Register (Word 3)	74
	6.13	Instruc	ction Set	74
7	Abso	olute M	laximum Ratings	77
8	DC E	Electric	cal Characteristics	77
	8.1	DAC E	Electrical Characteristics	79
9	AC E	Electric	cal Characteristics	79
			APPENDIX	
Α	Orde	ering a	nd Manufacturing Information	80
В	Pack	cage Ty	ype	82
С	Pack	kage In	formation	83
	C.1	eKT52	2xxQN24	83
	C.2	eKT52	2xxSO24	84
D	Qua	lity Ass	surance and Reliability	85
	D.1	Addre	ess Trap Detect	85

Specification Revision History

Version	Revision Description	Date				
1.0	Official Initial Release Version	2012/01/12				
1.1	 Revised Port 8 features to indicate it can only support pulled-down/high-sink modes by software control. Released Code Option Register Word 2 Bit14 TAE bit 	2012/06/26				
1.2	Modified the address and frequency data in Sections 6.4 and 6.8 respectively.					
1.3	 Added User Application Note Modified the Package Type in the Features section Modified Appendix A "Ordering and Manufacturing Information" 	2016/03/31				

User Application Note

(Before using this chip, take a look at the following description note, it includes important messages.)

We strongly recommend that you have to place external pull-down or pull-high resistor on P70 no matter what the pin function is. The purpose of this is to prevent P70 from floating.

1 General Description

The eKT52xx is an 8-bit microprocessor designed and developed with low-power and high-speed CMOS technology. The device has as an on-chip 4K×15-bit Electrical One Time Programmable Read Only Memory (OTP-ROM) and is equipped with 1-line or 2-line type touch sensors. The capacitive touchpad sensor uses plastic or glass substrate as cover.

The system controller converts fingertips position on touchpad into data in accordance with finger positions and human interface context. The ELAN JTAG5200 Simulator is used to develop the user program for this microcontroller and several other ELAN OTP type ICs.

2 Features

■ CPU Configuration:

- 4K×15 bits on-chip ROM
- 432×8 bits on-chip registers (SRAM)
- · 8-level stacks for subroutine nesting
- Typical 1.5 μA during Sleep mode
- 3 programmable Level Voltage Reset LVR: 4.0V, 3.5V, and 2.7V
- Four CPU operating modes: Normal, Green, Idle and Sleep

■ I/O Port Configuration:

- 4 bi-directional I/O ports
- 22 I/O pins
- 4 programmable pin change wake-up ports: P5, P6, P7, and P8
- 3 programmable pull-down/pull-high/ open-drain I/O ports: P5, P6, & P7
- 1 programmable pull-down I/O port: P8
- 4 programmable high-sink/drive I/O ports: P5, P6, P7, & P8

Operating Voltage Range:

- 2.5V~5.5V at -40°C ~85°C (Industrial)
- 2.5V~5.5V at 0°C ~70°C (Commercial)

Operating Frequency Range (base on 2 clocks):

Main Oscillator - IRC mode:
 16MHz @ DC 4.5V, 8MHz @ DC 3.0V
 4MHz @ DC 2.5V

Internal RC	Drift Rate						
Frequency	Temperature (-40°C~85°C)	Voltage (2.5~5.5V)	Process	Total			
4 MHz	± 2%	± 1%	± 1%	± 4%			
8 MHz	± 2%	± 1%	± 1%	± 4%			
16 MHz	± 2%	± 1%	± 1%	± 4%			

Sub Oscillator
 IRC mode: 16K/64kHz @ DC 2.5V

■ Peripheral Configuration:

- 8-bit real time clock/counter (TCC) with selective signal sources (Fm/Fs)
- 2-channel Digital-to-Analog Converter for 256 steps
- One 16-bit timer (TMR1) with PWM function
- I²C function with 7/10-bit address and 8-bit data transmit/receive mode
- Power down (Sleep) mode

■ 10 Available Interrupts:

- TCC overflow interrupt
- Input-port status changed interrupt
- External interrupt
- One Timer(with PWM function) interrupt
- I²C transfer/receive interrupt

■ Single Instruction Cycle Commands

■ Package Type:

24 QFN 4×4×0.8mm : eKT5201QN24
 24 SOP 300mil : eKT5201SO24
 24 SOP 300mil : eKT5205SO24

NOTE

These are all Green products which do not contain hazardous substances.

3 Pin Assignment

3.1 Package QFN-24

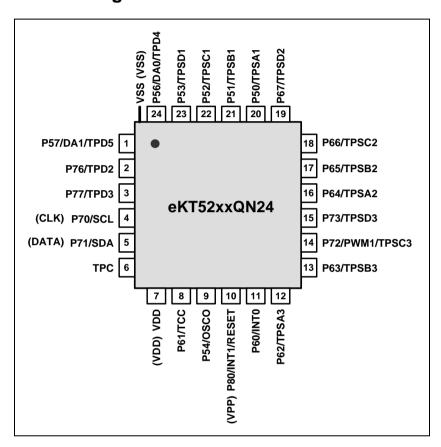


Figure 3-1 eKT52xx QFN-24 Pin Assignment

3.2 Package SOP-24

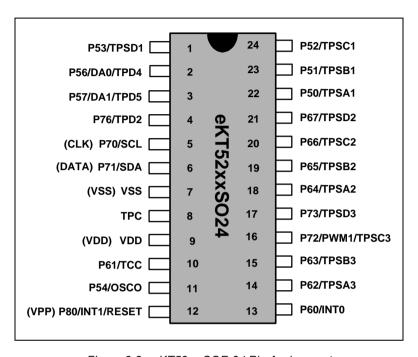


Figure 3-2 eKT52xx SOP-24 Pin Assignment

4 Pin Description

4.1 eKT52xx Kernel Pin

Name	Function	Input Type	Output Type	Description
P50/ TPSA1	P50	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software. They can also be set to open-drain and enable high sink/drive modes by software.
	TPSA1	AN	AN	Touchpad 2-line and 1-line type sensor pins
P51/ TPSB1	P51	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
	TPSB1	AN	AN	Touchpad 2-line and 1-line type sensor pins
P52/ TPSC1	P52	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
	TPSC1	AN	AN	Touchpad 2-line and 1-line type sensor pins
P53/ TPSD1	P53	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
	TPSD1	AN	AN	Touchpad 2-line and 1-line type sensor pins
P54/ OSCO	P54	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
	osco	-	CMOS	Clock output of internal RC oscillaor.
P56/	P56	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
DA0/ TPD4	DA0	-	AN	Digital-to-Analog Converter (DAC)
	TPD4	-	AN CMOS	Touchpad 2-line type driver pin.

Name	Function	Input	Output	Description
P57/	P57	Type ST	Type	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
DA1/ TPD5	DA1	-	AN	Digital-to-Analog Converter (DAC)
	TPD5	1	AN CMOS	Touchpad 2-line type driver pin.
P60/	P60	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
	INT0	ST	-	External interrupt pin triggered by falling or rising edge (set by EIESCR).
P61/ TCC	P61	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
	TCC	ST	-	Real time clock/counter input pin.
P62/ TPSA3	P62	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
	TPSA3	AN	AN	Touchpad 2-line and 1-line type sensor pins
P63/ TPSB3	P63	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
	TPSB3	AN	AN	Touchpad 2-line and 1-line type sensor pins
P64/ TPSA2	P64	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
	TPSA2	AN	AN	Touchpad 2-line and 1-line type sensor pins
P65/ TPSB2	P65	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
	TPSB2	AN	AN	Touchpad 2-line type Sensor pins and 1-line type pin.

(Continuation)						
Name	Function	Input Type	Output Type	Description		
P66/ TPSC2	P66	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.		
	TPSC2	AN	AN	Touchpad 2-line and 1-line type Sensor pins		
P67/ TPSD2	P67	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.		
	TPSD2	AN	AN	Touchpad 2-line and 1-line type Sensor pins		
P70/ SCL/	P70	ST	CMOS	Bi-directional I/O ports. All can be pulled-down and pulled-high internally by software control. They also can be open drain and enable high sink/drive mode by software control.		
(CLK)	SCL	ST	CMOS	I ² C Serial Clock Input/Output (SCL)		
	(CLK)	ST	CMOS	CLOCK pin for Writer programming.		
P71/ SDA/	P71	ST	CMOS	Bi-directional I/O ports. All can be pulled-down and pulled-high internally by software control. They also can be open drain and enable high sink/drive mode by software control.		
(DATA)	SDA	ST	CMOS	I ² C Serial Data Input/Output (SDA)		
	(DATA)	ST	CMOS	DATA pin for Writer programming.		
P72/ PWM1/	P72	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.		
TPSC3	PWM1	-	CMOS	Pulse Width Modulation 1 outputs.		
	TPSC3	AN	AN	Touchpad 2-line and 1-line type sensor pins		
P73/ TPSD3	P73	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.		
	TPSD3	AN	AN	Touchpad 2-line and 1-line type sensor pins		
P76/ TPD2	P76	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.		
	TPD2	-	AN CMOS	Touchpad 2-line type driver pin.		

(Continuation)							
Name	Function	Input Type	Output Type	Description			
P77/ TPD3	P77	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.			
11 50	TPD3	-	AN CMOS	Touchpad 2-line type driver pin.			
P80/	P80	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down internally by software control. They can also be set as enable high sink/drive mode by software.			
RESET/	RESET	ST		Schmitt trigger input pin. If this pin remains at logic low, the controller is reset.			
(VPP)	INT1	ST	-	External interrupt pin triggered by falling or rising edge (set by EIESCR).			
	(VPP)	AN	-	High voltage input pin for Writer programming.			
VDD	VDD	Power	-	Power supply pin.			
VSS	VSS	Power	-	Ground.			
TPC	TPC	AN	-	Touchpad capacitor.*			

^{*}TPC external capacitor is 1 μf, stable time is 300 μs

4.2 Compound Pin Functions Priority

■ Priority of Pin P50/TPSA1:

Pin Priority					
1 st	2 nd				
TPSA1	P50				

■ Priority of Pin P51/TPSB1:

Pin Priority						
1 st	2 nd					
TPSB1	P51					

■ Priority of Pin P52/TPSC1:

Pin Priority	
1 st	2 nd
TPSC1	P52

■ Priority of Pin P53/TPSD1:

Pin Priority	
1 st	2 nd
TPSD1	P53

■ Priority of Pin P54/OSCO:

Pin Priority	
1 st	2 nd
OSCO	P54

■ Priority of Pin P56/DA0/TPD4:

Pin Priority	
1 st	2 nd
TPD4 & DA0	P56

■ Priority of Pin P57/DA1/TPD5:

Pin Priority	
1 st	2 nd
TPD5 & DA1	P57

■ Priority of Pin P60/INT0:

Pin Priority	
1 st	2 nd
INT0	P60

■ Priority of Pin P61/TCC:

Pin Priority	
1 st	2 nd
TCC	P61

■ Priority of Pin P62/TPSA3:

Pin Priority	
1 st	2 nd
TPSA3	P62

■ Priority of Pin P63/TPSB3:

Pin Priority	
1 st	2 nd
TPSB3	P63

■ Priority of Pin P64/TPSA2:

Pin Priority	
1 st	2 nd
TPSA2	P64

■ Priority of Pin P65/TPSB2:

Pin Priority	
1 st	2 nd
TPSB2	P65

■ Priority of Pin P66/TPSC2:

Pin Priority	
1 st	2 nd
TPSC2	P66

■ Priority of Pin P67/TPSD2:

Pin Priority					
1 st 2 nd					
TPSD2	P67				

■ Priority of Pin P70/SCL:

Pin Priority					
1 st 2 nd					
SCL	P70				

■ Priority of Pin P71/SDA:

Pin Priority					
1 st 2 nd					
SDA	P71				

■ Priority of Pin P72/PWM1/TPSC3:

Pin Priority				
1 st	2 nd	3 rd		
TPSC3	PWM1	P72		

■ Priority of Pin P73/TPSD3:

Pin Priority				
1 st 2 nd				
TPSD3	P73			

■ Priority of Pin P76/TPD2:

Pin Priority				
1 st 2 nd				
TPD2	P76			

■ Priority of Pin P77/TPD3:

Pin Priority				
1 st 2 nd				
TPD3	P77			

■ Priority of Pin P80/INT1/RESET:

Pin Priority			
1 st	3 rd		
RESET	INT1	P80	

5 Functional Block Diagram

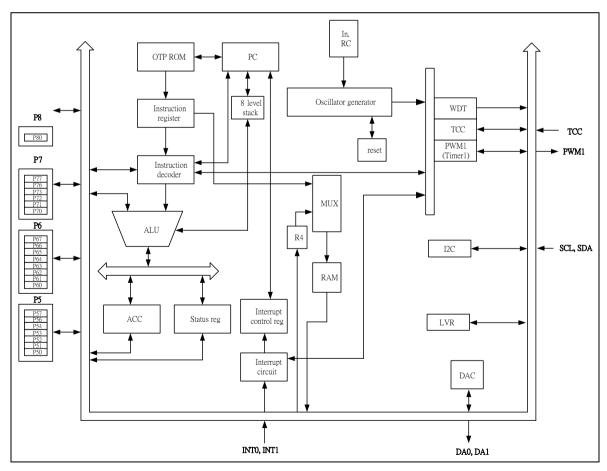


Figure 5-1 eKT52xx Functional Block Diagram

6 Function Description

6.1 Operational Registers

6.1.1 R0: IAR (Indirect Addressing Register)

R0 is not a physically implemented register. Its major function is to perform as an indirect addressing pointer. Any instruction using R0 as a pointer actually accesses data pointed by the RAM Select Register (R4).

6.1.2 R1: BSR (Bank Selection Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	SBS1	SBS0	-	-	GBS1	GBS0
-	-	R/W	R/W	-	-	R/W	R/W

Bits 7~6: Not used. Set to "0" all the time.

Bits 5~4 (SBS1~SBS0): Special register bank select bit. It is used to select Banks 0/1/2 of Special Registers **R5~R4F**.

SBS1	SBS0	Special Register Bank			
0	0	0			
0	1	1			
1	0	2			
1	1	X			

Bits 3~2: Not used. Set to "0" all the time.

Bits 1~0 (GBS1~GBS0): General register bank select bit. It is used to select Banks 0/1/2 of General Registers R80~RFF.

GBS1	GBS0	RAM Bank
0	0	0
0	1	1
1	0	2
1	1	Χ

6.1.3 R2: PCL (Program Counter Low)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
R/W							

Bits 7~0 (PC7~PC0): The low byte of program counter.

- Depending on the device type, R2 and hardware stack are 15-bit wide. The structure is depicted in Figure 6-1 below.
- Generating 4K×15 bits on-chip Flash ROM addresses to the relative programming instruction codes. One program page is 4096 words long.
- R2 is set as all "0's" when under RESET condition.
- "JMP" instruction allows direct loading of the lower 12 program counter bits. Thus, "JMP" allows PC to go to any location within a page.
- "CALL" instruction loads the lower 12 bits of the PC, and the present PC value will add 1 and is pushed into the stack. Thus, the subroutine entry address can be located anywhere within a page.
- "LJMP" instruction allows direct loading of the lower 13 program counter bits. Therefore, "LJMP" allows PC to jump to any location within 8K (2¹³).
- "LCALL" instruction loads the lower 13 bits of the PC, and then PC+1 is pushed into the stack. Thus, the subroutine entry address can be located anywhere within 8K (2¹³).
- "RET" ("RETL k", "RETI") instruction loads the program counter with the contents of the top-level stack.
- "ADD R2, A" allows a relative address to be added to the current PC, and the ninth and above bits of the PC will increase progressively.
- "MOV R2, A" allows to load an address from the "A" register to the lower 8 bits of the PC, and the ninth and above bits of the PC won't be changed.
- Any instruction, except "ADD R2,A" that is written to R2 (e.g., "MOV R2, A", "BC R2, 6", "INC R2", etc.) will cause the ninth bit and the above bits (A8~A12) of the PC to remain unchanged.
- All instructions are single instruction cycle (Fsys/2) except for "LCALL", "CALL", "LJMP", and "JMP" instructions. The "LCALL" and "LJMP" instructions need two instructions cycle.

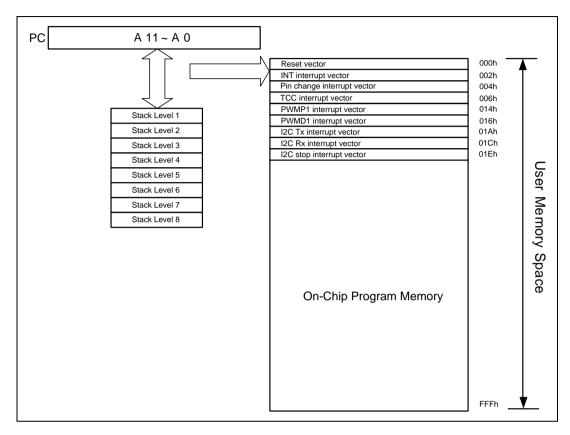


Figure 6-1 eKT52xx Program Counter Organization

■ Data Memory Configuration

Address	Bank 0	Bank 2	
0X00	IAF	R (Indirect Addressing Regis	ter)
0X01	BSR	(Bank Selection Control Reg	gister)
0X02		PCL (Program Counter Low)	
0X03		SR (Status Register)	
0X04		RSR (RAM Select Register)	
0X05	Port 5	IOCR8	Unused
0X06	Port 6	Unused	Unused
0X07	Port 7	Unused	Unused
0X08	Port 8	P5PHCR	Unused
0X09	Unused	P6PHCR	Unused
0X0A	Unused	P7PHCR	Unused
0x0B	IOCR5	P5PLCR	Unused
0X0C	IOCR6	P6PLCR	Unused
0X0D	IOCR7	P78PLCR	Unused

8-Bit Microcontroller

(Continuation)

Address	Bank 0	Bank 1	Bank 2
0X0E	OMCR (Operating Mode Control Register)	P5HDSCR	Unused
0X0F	EIESCR (External Interrupt Edge Selection Control Register)	P6HDSCR	Unused
0X10	WUCR1	P78HDSCR	Unused
0X11	WUCR2	P5ODCR	Unused
0X12	WUCR3	P6ODCR	Unused
0X13	Unused	P7ODCR	Unused
0X14	SFR1 (Status Flag Register 1)	Unused	Unused
0X15	Unused	Unused	Unused
0X16	SFR3 (Status Flag Register 3)	PWMSCR	Unused
0X17	SFR4 (Status Flag Register 4)	PWM1CR	Unused
0X18	Unused	PRD1L	Unused
0X19	Unused	PRD1H	Unused
0X1A	Unused	DT1L	Unused
0X1B	IMR1 (Interrupt Mask Register 1)	DT1H	Unused
0X1C	Unused	TMR1L	Unused
0X1D	IMR3 (Interrupt Mask Register 3)	TMR1H	Unused
0X1E	IMR4 (Interrupt Mask Register 4)	Unused	Unused
0X1F	Unused	Unused	Unused
0X20	Unused	Unused	Unused
0X21	WDTCR	Unused	DACR
0X22	TCCCR	Unused	DACD0
0X23	TCCD	Unused	DACD1
0X24	Unused	Unused	Unused
0X25	Unused	Unused	Unused
0X26	Unused	Unused	Unused
0X27	Unused	Unused	Unused
0X28	Unused	Unused	Unused
0X29	Unused	Unused	Unused
0X2A	Unused	Unused	Unused
0x2B	Unused	Unused	Unused
0X2C	Unused	Unused	Unused
0X2D	Unused	Unused	Unused
0X2E	Unused	Unused	Unused
0X2F	Unused	Unused	Unused

Address	Bank 0	Bank 1	Bank 2
0X30	I2CCR1	Unused	Unused
0X31	I2CCR2	Unused	Unused
0X32	I2CSA	Unused	Unused
0X33	I2CDB	Unused	Unused
0X34	I2CDAL	Unused	Unused
0X35	I2CDAH	Unused	Unused
0X36	Unused	Unused	Unused
0X37	Unused	Unused	Unused
0X38	Unused	Unused	Unused
0X39	Unused	Unused	Unused
0X3A	Unused	Unused	Unused
0x3B	Unused	Unused	Unused
0X3C	Unused	Unused	Unused
0X3D	Unused	Unused	Unused
0X3E	Unused	Unused	Unused
0X3F	Unused	Unused	Unused
0X40	Unused	Unused	Unused
0X41	Unused	Unused	Unused
0X42	Unused	Unused	Unused
0X43	Unused	Unused	Unused
0X44	Unused	Unused	Unused
0X45	Unused	TBPTL	Unused
0X46	Unused	TBPTH	Unused
0X47	Unused	STKMON	Unused
0X48	Unused	PCH	Unused
0X49	Unused	Unused	Unused
0X4A	Unused	COBS1	Unused
0x4B	Unused	COBS2	Unused
0X4C	Unused	COBS3	Unused
0X4D	Unused	Unused	Unused
0X4E	Unused	Unused	Unused

Address	Bank 0	Bank 1	Bank 2
0X4F	Unused	Unused	Unused
0X50		•	
0X51			
:		General Purpose Register	
:			
0X7F			
0X80			
0X81			
:	0	-	2
:	Bank 0	Bank 1	Bank 2
:	Δ	Ω	Δ
0XFE			
0XFF			

6.1.4 R3: SR (Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INT	-	-	Т	Р	Z	DC	С
F	-	-	R/W	R/W	R/W	R/W	R/W

Bit 7 (INT): Interrupt Enable flag

0: Interrupt masked by DISI or hardware interrupt

1: Interrupt enabled by ENI/RETI instructions

NOTE

INT bit cannot be saved by hardware when interrupt occurs.

Bits 6~5: Not used. Set to "0" all the time.

Bit 4 (T): Time-out bit

Set to "1" with "SLEP" and "WDTC" commands, or during power up.

Reset to "0" by WDT time-out.

Bit 3 (P): Power down bit.

Set to "1" during power on or by a "WDTC" command.

Reset to "0" by a "SLEP" command.

Bit 2 (Z): Zero flag.

Set to "1" if the result of an arithmetic or logic operation is zero.

Bit 1 (DC): Auxiliary carry flag

Bit 0 (C): Carry flag

6.1.5 R4: RSR (RAM Select Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RSR7	RSR6	RSR5	RSR4	RSR3	RSR2	RSR1	RSR0
R/W							

Bits 7~0 (RSR7~RSR0): These bits are used to select registers (Address 00 ~ FF) in indirect addressing mode. For more details, refer to the table on Data Memory Configuration in Section 6.1.3, *R2: PCL (Program Counter Low)*.

6.1.6 Bank 0 R5 ~ R8: (Port 5 ~ Port 8)

R5, R6, R7, and R8 are I/O data registers.

6.1.7 Bank 0 R9 ~ RA: (Reserved)

6.1.8 Bank 0 RB~RD: (IOCR5 ~ IOCR7)

These registers are used to control I/O port direction. They are both readable and writable.

0: Set the relative I/O pin as output

1: Set the relative I/O pin into high impedance

6.1.9 Bank 0 RE: OMCR (Operating Mode Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CPUS	IDLE	-	-	-	-	RCM1	RCM0
R/W	R/W	-	-	-	-	R/W	R/W

Bit 7 (CPUS): CPU Oscillator Source Select

0: Fs: sub-oscillator

1: Fm: main-oscillator (default)

When $CPUS = \mathbf{0}$, the CPU oscillator selects the sub-oscillator while the main oscillator is stopped.

Bit 6 (IDLE): Idle Mode Enable Bit. This bit decides which mode (see figure below) to use with the SLEP instruction.

0: "IDLE = **0**" + SLEP instruction \rightarrow Sleep mode

1: "IDLE = 1" + SLEP instruction → Idle mode (default)

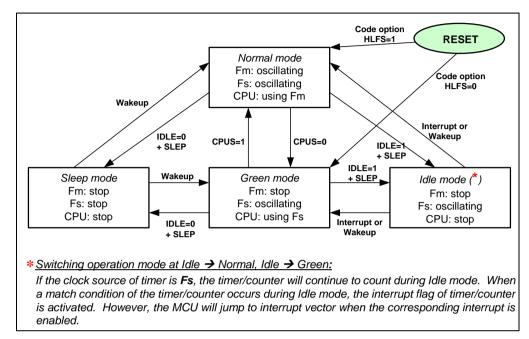


Figure 6-2 CPU Operation Mode

■ Oscillation Characteristics

CPU Mode Switch	Waiting Time before CPU Resumes Working
Sleep → Normal	WSTO + 8 clocks (main frequency)
Idle → Normal	WSTO + 8 clocks (main frequency)
Green → Normal	WSTO + 8 clocks (main frequency)
Sleep → Green	WSTO + 8 clocks (sub frequency)
Idle → Green	WSTO + 8 clocks (sub frequency)

WSTO: Waiting time for Start-to-Oscillation

Bits 5~2: Not used. Set to "0" all the time.

Bits 1~0 (RCM1~RCM0): Internal RC mode selection bits

RCM1	RCM0	Frequency (MHz)
0	0	X
0	1	8
1	0	16
1	1	4

6.1.10 Bank 0 RF: EIESCR (External Interrupt Edge Select Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	EI1ES	EI0ES	-	-
-	-	-	-	R/W	R/W	-	-

Bits 7~4: Not used. Set to "0" all the time.

Bit 3 (EI1ES): External Interrupt 1 edge select bit

0: Falling edge interrupt**1:** Rising edge interrupt

Bit 2 (EI0ES): External Interrupt 0 edge select bit

0: Falling edge interrupt1: Rising edge interrupt

Bits 1~0: Not used. Set to "0" all the time.

6.1.11 Bank 0 R10: WUCR1 (Wake-up Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	INTWK1	INTWK0	-	-
-	-	-	-	R/W	R/W	-	-

Bits 7~4: Not used. Set to "0" all the time.

Bit 3 (INTWK1): External Interrupt 1(INT1 pin) Wake-up Function Enable Bit

0: Disable External Interrupt 1 wake-up

1: Enable External Interrupt 1 wake-up

When the External Interrupt 1 status change is used to enter interrupt vector or to wake-up IC from Sleep/Idle mode, the INTWK1 bit must be set to "Enable".

Bit 2 (INTWK0): External Interrupt 0 (INT0 pin) Wake-up Function Enable Bit

0: Disable External Interrupt 0 wake-up

1: Enable External Interrupt 0 wake-up

When the External Interrupt 0 status change is used to enter interrupt vector or to wake-up IC from Sleep/Idle mode, the INTWK0 bit must be set to "Enable".

Bits 1~0: Not used. Set to "0" all the time.

6.1.12 Bank 0 R11: WUCR2 (Wake-up Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	I2CWK	-	-
-	-	-	-	-	R/W	-	-

Bits 7~3: Not used. Set to "0" all the time.

Bit 2 (I2CWK): 1²C wake-up enable bit. Applicable when 1²C works in Slave mode.

0: Disable I²C wake-up

1: Enable I²C wake-up

NOTE

When I²C is in Slave mode, it cannot communicate with the MCU in Green mode. At the same time the SCL in on hold and kept at low level when the MCU is in Green mode. SCL is released when the MCU switches to Normal mode.

Bits 1~0: Not used. Set to "0" all the time.

6.1.13 Bank 0 R12: WUCR3 (Wake-up Control Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ICWKP8	ICWKP7	ICWKP6	ICWKP5	-	-	-	-
R/W	R/W	R/W	R/W	-	-	-	-

Bits 7~4 (ICWKP8~ICWKP5): Pin change Wake-up enable for Ports 8/7/6/5.

0: Disable wake-up function

1: Enable wake-up function

Bits 3~0: Not used. Set to "0" all the time.

Wake-up		Sleep Mode		ldle l	Idle Mode		Mode	Normal	Mode		
Signal	Signal	DISI	ENI	DISI	ENI	DISI	ENI	DISI	ENI		
	ICWKPx = 0, PxICIE = 0		Wake-up is invalid				Interrupt is invalid				
Pin	ICWKPx = 0, PxICIE = 1		Wake-up is invalid				Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector		
Change INT	ICWKPx = 1, PxICIE = 0		Wake-up + Next Instruction				Interrupt is invalid				
	ICWKPx = 1, PxICIE = 1	Wake-up + Next Instruction	Wake-up + Interrupt Vector	Wake-up + Next Instruction	Wake-up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector		

NOTE

When MCU wakes up from Sleep or Idle mode, the ICSF must be equal to 1. If ICSF equals 0, it means the pin status does not change or the pin change ICIE is disabled. Hence the MCU cannot wake-up.

6.1.14 Bank 0 R13: (Reserved)

6.1.15 Bank 0 R14: SFR1 (Status Flag Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	EX1SF	EX0SF	-	TCSF
-	-	-	-	F	F	-	F

Each corresponding status flag is set to "1" when interrupt condition is triggered.

Bits 7~4, 1: Not used. Set to "0" all the time.

Bit 3 (EX1SF): External Interrupt 1 status flag

Bit 2 (EXOSF): External Interrupt 0 status flag

Bit 0 (TCSF): TCC overflow status flag. Set when TCC overflows. Reset by

software.

NOTE

If a function is enabled, the corresponding status flag would be active regardless whether the interrupt mask is enabled or not.

6.1.16 Bank 0 R15: (Reserved)

6.1.17 Bank 0 R16: SFR3 (Status Flag Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	PWM1PSF	PWM1DSF
-	-	-	-	-	-	F	F

Bits 7~2: Not used. Set to "0" all the time.

Bit 1 (PWM1PSF): Status flag of period-matching for PWM1 (Pulse Width Modulation). Set when a selected period is reached. Reset by software.

Bit 0 (PWM1DSF): Status flag of duty-matching for PWM1 (Pulse Width Modulation). Set when a selected duty is reached. Reset by software.

NOTE

If a function is enabled, the corresponding status flag would be active whether the interrupt mask is enabled or not.

6.1.18 Bank 0 R17: SFR4 (Status Flag Register 4)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P8ICSF	P7ICSF	P6ICSF	P5ICSF	-	I2CSTPSF	I2CRSF	I2CTSF
F	F	F	F	-	F	F	F

Bits 7~4 (P8ICSF~P5ICSF): Ports 5~8 input status change status flag. Set when Ports 5~8 input changes. Reset by software.

Bit 3: Not used. Set to "0" all the time.

Bit 2 (I2CSTPSF): I²C stop status flag. Set when I²C stop signal occurs.

Bit 1 (I2CRSF): I²C receive status flag. Set when I²C receives 1 byte data and

responds ACK signal. Reset by firmware or I²C disable.

Bit 0 (I2CTSF): 1²C transmit status flag. Set when 1²C transmits 1 byte data and

receive handshake signal (ACK or NACK). Reset by firmware or

I²C disable.

NOTE

If a function is enabled, the corresponding status flag will be active regardless of whether the interrupt mask is enabled or not.

6.1.19 Bank 0 R18~R1A: (Reserved)

6.1.20 Bank 0 R1B: IMR1 (Interrupt Mask Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	EX1IE	EX0IE	-	TCIE
-	-	-	-	R/W	R/W	-	R/W

Bits 7~4, 1: Not used. Set to "0" all the time.

Bit 3 (EX1IE): EX1SF interrupt enable and INT1 function enable bit

0: P80/INT1/RESET is P80 pin. EX1SF is always equal 0.

1: Enable EX1SF Interrupt and P80/INT1/RESET is INT1 pin

Bit 2 (EX0IE): EX0SF interrupt enable and INT0 function enable bit

0: P60/INT0 is P60 pin. EX0SF is always equal **0**.

1: Enable EXOSF Interrupt and P60/INT0 is INT0 pin

Bit 0 (TCIE): TCSF interrupt enable bit.

0: Disable TCSF interrupt1: Enable TCSF interrupt

NOTE

If the interrupt mask and instruction "ENI" are enabled, the program counter will jump into corresponding interrupt vector when the corresponding status flag is set.

6.1.21 Bank 0 R1C: (Reserved)

6.1.22 Bank 0 R1D: IMR3 (Interrupt Mask Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	PWM1PIE	PWM1DIE
-	-	-	-	-	-	R/W	R/W

Bits 7~2: Not used. Set to "0" all the time.

Bit 1 (PWM1PIE): PWM1PSF interrupt enable bit

0: Disable period-matching of PWM1 interrupt1: Enable period-matching of PWM1 interrupt

Bit 0 (PWM1DIE): PWM1DSF interrupt enable bit

0: Disable duty-matching of PWM1 interrupt

1: Enable duty-matching of PWM1 interrupt

NOTE

If the interrupt mask and instruction "ENI" are enabled, the program counter will jump into corresponding interrupt vector when the corresponding status flag is set.

6.1.23 Bank 0 R1E: IMR4 (Interrupt Mask Register 4)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P8ICIE	P7ICIE	P6ICIE	P5ICIE	-	12CSTPIE	I2CRIE	I2CTIE
R/W	R/W	R/W	R/W	-	R/W	R/W	R/W

Bits 7~4 (P8ICIE~P5ICIE): PxICSF interrupt enable bit

0: Disable PxICSF interrupt

1: Enable PxICSF interrupt

Bit 3: Not used. Set to "0" all the time.

Bit 2 (I2CSTPIE): 1²C stop interrupt enable bit.

0: Disable interrupt

1: Enable interrupt

Bit 1 (I2CRIE): I²C Interface Rx interrupt enable bit

0: Disable interrupt1: Enable interrupt

Bit 0 (I2CTIE): I²C Interface Tx interrupt enable bit

0: Disable interrupt1: Enable interrupt

NOTE

If the interrupt mask and instruction "ENI" are enabled, the program counter will jump into corresponding interrupt vector when the corresponding status flag is set.

6.1.24 Bank 0 R1F~R20: (Reserved)

6.1.25 Bank 0 R21: WDTCR (Watchdog Timer Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTE	-	-	-	PSWE	WPSR2	WPSR1	WPSR0
R/W	-	-	-	R/W	R/W	R/W	R/W

Bit 7 (WDTE): Watchdog Timer enable bit. WDTE is both readable and writable.

0: Disable WDT1: Enable WDT

Bits 6~4: Not used. Set to "0" all the time.

Bit 3 (PSWE): Prescaler enable bit for WDT

0: Prescaler disable bit. WDT rate is 1:1.

1: Prescaler enable bit. WDT rate is set at bits 2~0.

Bits 2~0 (WPSR2~WPSR0): WDT Prescaler bits

WPSR2	WPSR1	WPSR0	WDT Rate
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

6.1.26 Bank 0 R22: TCCCR (TCC Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	TCCS	TS	TE	PSTE	TPSR2	TPSR1	TPSR0
-	R/W						

Bit 7: Not used. Set to "0" all the time.

Bit 6 (TCCS): TCC Clock Source select bit

0: Fs (sub clock)**1:** Fm (main clock)

Bit 5 (TS): TCC signal source

0: Internal clock

1: Transition on the TCC pin, TCC period must be larger than internal clock period.

Bit 4 (TE): TCC Signal Edge

0: Increment if the transition from low to high takes place on the TCC pin

1: Increment if the transition from high to low takes place on the TCC pin

Bit 3 (PSTE): Prescaler enable bit for TCC

0: Prescaler disable bit. TCC rate is 1:1.

1: Prescaler enable bit. TCC rate is set at Bit 2 ~ Bit 0.

Bits 2~0 (TPSR2~TPSR0): TCC Prescaler Bits

TPSR2	TPSR1	TPSR0	TCC Rate
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

6.1.27 Bank 0 R23: TCCD (TCC Data Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TCC7	TCC6	TCC5	TCC4	TCC3	TCC2	TCC1	TCC0
R/W							

Bits 7~0 (TCC7~TCC0): TCC data

Counter is increased by the internal/external clock. Writable and readable as any other registers.

6.1.28 Bank 0 R24 ~ R2F: (Reserved)

6.1.29 Bank 0 R30: I2CCR1 (I C Status and Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Strobe/Pend	IMS	ISS	STOP	SAR_EMPTY	ACK	FULL	EMPTY
R/W	R/W	R/W	R/W	R	R	R	R

Bit 7 (Strobe/Pend): In Master mode, it is used as strobe signal to control I²C circuit in

sending SCL clock. It automatically resets after receiving or

transmitting handshake signal (ACK or NACK).

In Slave mode, it is used as pending signal. You should clear it after writing data into Tx buffer or taking data from Rx buffer to

inform Slave I²C circuit to release the SCL signal.

Bit 6 (IMS): I²C Master/Slave mode select bit

0: Slave (Default)

1: Master

Bit 5 (ISS): I²C Fast/Standard mode select bit (if Fm is 4MHz and

I2CTS1~0<0,0>)

0: Standard mode (100K bit/s)

1: Fast mode (400K bit/s)

Bit 4 (STOP): In Master mode, if STOP=1 and R/nW=1, then MCU must return

nACK signal to Slave device before sending STOP signal. If STOP=1 and R/nW=0, then MCU sends STOP signal after receiving an ACK signal. MCU resets when it sends STOP

signal to Slave device.

In Slave mode, if STOP=1 and R/nW=0 then MCU must return

nACK signal to Master device.

Bit 3 (SAR_EMPTY): Set when MCU transmits 1 byte data from I²C Slave Address

Register and receive ACK (or nACK) signal. Reset when MCU

writes 1 byte data to IC Slave Address Register.

Bit 2 (ACK): The ACK condition bit is set to "1" by hardware when the device

responds acknowledge (ACK). Resets when the device

responds with a not-acknowledge (nACK) signal.

Bit 1 (FULL): Set by hardware when I²C Receive Buffer register is full. Reset

by hardware when MCU reads data from I²C Receive Buffer

register.

Bit 0 (EMPTY): Set by hardware when I²C Transmit Buffer register is empty and

ACK (or nACK) signal is received. Reset by hardware when

MCU writes new data into I²C Transmit Buffer register.

6.1.30 Bank 0 R31: I2CCR2 (I²C Status and Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I2CBF	GCEN	-	BBF	I2CTS1	I2CTS0	-	I2CEN
R	R/W	-	R	R/W	R/W	-	R/W

Bit 7 (I2CBF): I²C Busy Flag Bit

0: Clear to "**0**" under Slave mode if the received STOP signal or I²C Slave Address does not match.

1: Set when I²C communicates with Master in Slave mode.

NOTE

Set when START signal occurs. Clear when Î C is disabled or STOP signal occurs for Slave mode.

Bit 6 (GCEN): 1²C General Call Function Enable bit

0: Disable General Call Function

1: Enable General Call Function

Bit 5: Not used. Set to "0" all the time.

Bit 4 (BBF): Busy Flag Bit. I²C detection is busy in Master mode. Read only.

NOTE

Set when START signal occurs. Clear when STOP signal occurs for Master mode.

Bits 3~2 (I2CTS1~I2CTS0): I²C Transmit Clock select bits. When using different operating frequency (Fm), these bits must be set correctly in order for the SCL clock to be consistent with the Standard/Fast mode.

• I2CCR1 Bit 5 = 1, Fast mode:

I2CTS1	I2CTS0	SCL CLK	Operating Fm (MHz)
0	0	Fm/10	4
0	1	Fm/20	8
1	0	Fm/30	8
1	1	Fm/40	16

• I2CCR1 Bit 5 = 0, Standard mode:

I2CTS1	I2CTS0	SCL CLK	Operating Fm (MHz)
0	0	Fm/40	4
0	1	Fm/80	8
1	0	Fm/120	8
1	1	Fm/160	16

Bit 1: Not used. Set to "0" all the time.

Bit 0 (I2CEN): I²C Enable bit

0: Disable I²C mode

1: Enable I²C mode (default)

6.1.31 Bank 0 R32: I2CSA (I²C Slave Address Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SA6	SA5	SA4	SA3	SA2	SA1	SA0	IRW
R/W							

Bits 7~1 (SA6~SA0): When the MCU is used as Master device for I²C application, these bits are the Slave Device Address register.

Bit 0 (IRW): When the MCU is used as Master device for I²C application, this bit is Read/Write transaction control bit.

0: Write**1:** Read

6.1.32 Bank 0 R33: I2CDB (I²C Data Buffer Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
R/W							

Bits 7~0 (DB7~DB0): 1²C Receive/Transmit Data Buffer

6.1.33 Bank 0 R34: I2CDAL (I²C Device Address Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
R/W							

Bits 7~0 (DA7~DA0): When the MCU is used as Slave device for I²C application, this register stores the MCU address. It is used to identify the data on the I²C bus to extract the message delivered to the MCU.

NOTE

Slave Address 0x77 is reserved for WTR use.

6.1.34 Bank 0 R35: I2CDAH (²C Device Address Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	DA9	DA8
-	-	-	-	-	-	R/W	R/W

Bits 7~2: Not used. Set to "0" all the time.

Bits 1~0 (DA9~DA8): Device Address bits

6.1.35 Bank 0 R36 ~ R4F: (Reserved)

6.1.36 Bank 1 R5: IOCR8

These registers are used to control I/O port direction. They are both readable and writable.

1: Put the relative I/O pin into high impedance

0: Put the relative I/O pin as output

6.1.37 Bank 1 R6 ~ R7: (Reserved)

6.1.38 Bank 1 R8: P5PHCR (Port 5 Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PH57	PH56	-	PH54	PH53	PH52	PH51	PH50
R/W	R/W	-	R/W	R/W	R/W	R/W	R/W

Bit 7 (PH57): Control bit used to enable pull-high of P57 pin

0: Enable internal pull-high

1: Disable internal pull-high

Bit 6 (PH56): Control bit used to enable pull-high of P56 pin

Bit 5: Not used. Set to "0" all the time.

Bit 4 (PH54): Control bit used to enable pull-high of P54 pin

Bit 3 (PH53): Control bit used to enable pull-high of P53 pin

Bit 2 (PH52): Control bit used to enable pull-high of P52 pin

Bit 1 (PH51): Control bit used to enable pull-high of P51 pin

Bit 0 (PH50): Control bit used to enable pull-high of P50 pin

6.1.39 Bank 1 R9: P6PHCR (Port 6 Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PH67	PH66	PH65	PH64	PH63	PH62	PH61	PH60
R/W							

Bit 7 (PH67): Control bit used to enable pull-high of P67 pin

0: Enable internal pull-high

1: Disable internal pull-high

Bit 6 (PH66): Control bit used to enable pull-high of P66 pin

Bit 5 (PH65): Control bit used to enable pull-high of P65 pin

Bit 4 (PH64): Control bit used to enable pull-high of P64 pin

Bit 3 (PH63): Control bit used to enable pull-high of P63 pin

Bit 2 (PH62): Control bit used to enable pull-high of P62 pin

Bit 1 (PH61): Control bit used to enable pull-high of P61 pin

Bit 0 (PH60): Control bit used to enable pull-high of P60 pin

6.1.40 Bank 1 RA: P7PHCR (Port 7 Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	P7HPH	P7LPH
-	-	-	-	-	-	R/W	R/W

Bits 7~2: Not used. Set to "0" all the time.

Bit 1 (P7HPH): Control bit used to enable pull-high of the Port 7 high nibble pin

0: Enable internal pull-high

1: Disable internal pull-high

Bit 0 (P7LPH): Control bit used to enable pull-high of the Port 7 low nibble pin

6.1.41 Bank 1 RB: P5PLCR (Port 5 Pull-low Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PL57	PL56	-	PL54	PL53	PL52	PL51	PL50
R/W	R/W	-	R/W	R/W	R/W	R/W	R/W

Bit 7 (PL57): Control bit used to enable pull low of P57 pin

0: Enable internal pull-low

1: Disable internal pull-low

Bit 6 (PL56): Control bit used to enable pull low of P56 pin

Bit 5: Not used. Set to "0" all the time.

Bit 4 (PL54): Control bit used to enable pull low of P54 pin

Bit 3 (PL53): Control bit used to enable pull low of P53 pin

Bit 2 (PL52): Control bit used to enable pull low of P52 pin

Bit 1 (PL51): Control bit used to enable pull low of P51 pin

Bit 0 (PL50): Control bit used to enable pull low of P50 pin

6.1.42 Bank 1 RC: P6PLCR (Port 6 Pull-low Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PL67	PL66	PL65	PL64	PL63	PL62	PL61	PL60
R/W							

Bit 7 (PL67): Control bit used to enable pull low of P67 pin

0: Enable internal pull-low

1: Disable internal pull-low

Bit 6 (PL66): Control bit used to enable pull low of P66 pin

Bit 5 (PL65): Control bit used to enable pull low of P65 pin

Bit 4 (PL64): Control bit used to enable pull low of P64 pin

Bit 3 (PL63): Control bit used to enable pull low of P63 pin

Bit 2 (PL62): Control bit used to enable pull low of P62 pin

Bit 1 (PL61): Control bit used to enable pull low of P61 pin

Bit 0 (PL60): Control bit used to enable pull low of P60 pin

6.1.43 Bank 1 RD: P78PLCR (Ports 7~8 Pull-low Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	P8LPL	P7HPL	P7LPL
-	-	-	-	-	R/W	R/W	R/W

Bits 7~3: Not used. Set to "0" all the time.

Bit 2 (P8LPL): Control bit used to enable pull low of Port 8 low nibble pin

0: Enable internal pull-low

1: Disable internal pull-low

Bit 1 (P7HPL): Control bit used to enable pull low of Port 7 high nibble pin

Bit 0 (P7LPL): Control bit used to enable pull low of Port 7 low nibble pin

6.1.44 Bank 1 RE: P5HDSCR (Port 5 High Drive/Sink Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
H57	H56	-	H54	H53	H52	H51	H50
R/W	R/W	-	R/W	R/W	R/W	R/W	R/W

Bits 7, 6, 4~0 (H57, H56, H54~H50): P57,P56, P54~P50 high drive/sink current control bits

0: Enable high drive/sink

1: Disable high drive/sink

Bit 5: Not used. Set to "0" all the time.

6.1.45 Bank 1 RF: P6HDSCR (Port 6 High Drive/Sink Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
H67	H66	H65	H64	H63	H62	H61	H60
R/W							

Bits 7~0 (H67~H60): P67~P60 high drive/sink current control bits

0: Enable high drive/sink1: Disable high drive/sink

6.1.46 Bank 1 R10: P78HDSCR (Ports 7~8 High Drive/Sink Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	P8LHDS	P7HHDS	P7LHDS
-	-	-	-	-	R/W	R/W	R/W

Bits 7~3: Not used. Set to "0" all the time.

Bit 2 (P8LHDS): Control bit used to enable high drive/sink of Port 8 low nibble pin

0: Enable high drive/sink

1: Disable high drive/sink

Bit 1 (P7HHDS): Control bit used to enable high drive/sink of Port 7 high nibble pin

Bit 0 (P7LHDS): Control bit used to enable high drive/sink of Port 7 low nibble pin

6.1.47 Bank 1 R11: P50DCR (Port 5 Open-Drain Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OD57	OD56	-	OD54	OD53	OD52	OD51	OD50
R/W	R/W	-	R/W	R/W	R/W	R/W	R/W

Bits 7~6, 4~0 (OD57~OD56, OD54~OD50): Open-Drain control bits

0: Disable open-drain function1: Enable open-drain function

Bit 5: Not used. Set to "0" all the time.

6.1.48 Bank 1 R12: P6ODCR (Port 6 Open-Drain Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OD67	OD66	OD65	OD64	OD63	OD62	OD61	OD60
R/W							

Bits 7~0 (OD67~OD60): Open-Drain control bits

0: Disable open-drain function

1: Enable open-drain function

6.1.49 Bank 1 R13: P7ODCR (Port 7 Open-Drain Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	P7HOD	P7LOD
-	-	-	-	-	-	R/W	R/W

Bits 7~2: Not used. Set to "0" all the time.

Bit 1 (P7HOD): Control bit used to enable open-drain of Port 7 high nibble pin

0: Disable open-drain function

1: Enable open-drain function

Bit 0 (P7LOD): Control bit used to enable open-drain of Port 7 low nibble pin

6.1.50 Bank 1 R14 ~ R15: (Reserved)

6.1.51 Bank 1 R16: PWMSCR (PWM Source Clock Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	-	PWM1S
-	-	-	-	-	-	-	R/W

Bits 7~1: Not used. Set to "0" all the time.

Bit 0 (PWM1S): Clock selection for PWM1 timer

0: Fs (default)

1: Fm

6.1.52 Bank 1 R17: PWM1CR (PWM1 Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1E		PWM1A		T1EN	T1P2	T1P1	T1P0
R/W		R/W		R/W	R/W	R/W	R/W

Bit 7 (PWM1E): PWM1 enable bit

0: Disable (default)

1: Enable. The compound pin is used as PWM1 pin

Bits 6, 4: Not used. Set to "0" all the time.

Bit 5 (PWM1A): Level option of PWM1

0: Duty level is Logic 1 (default)

1: Duty level is Logic 0

Bit 3 (T1EN): TMR1 enable bit. All PWM functions are valid only when this bit is set.

NOTE

When the PWM waveform is on, a time delay of 1.5~2.5 PWM clock will occur before PWM output starts.

0: TMR1 is off (default value)

1: TMR1 is on

PWMXEN	TXEN	Function Description
0	0	Not used as PWM function, I/O pin, or as any other pin function.
0	1	Timer function, I/O pin, or other pin function
1	0	PWM function, the waveform is kept at low level.
1	1	PWM function, normal PWM output waveform

Bits 2~0 (T1P2~T1P0):TMR1 clock prescale option bits

T1P2	T1P1	T1P0 Prescale		
0	0	0	1:1 (default)	
0	0	1	1:2	
0	1	0	1:4	
0	1	1	1:8	
1	0	0	1:16	
1	0	1	1:64	
1	1	0	1:128	
1	1	1	1:256	

6.1.53 Bank 1 R18: PRD1L (Low Byte of PWM1 Period)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRD1[7]	PRD1[6]	PRD1[5]	PRD1[4]	PRD1[3]	PRD1[2]	PRD1[1]	PRD1[0]
R/W							

Bits 7~0 (PRD1[7~0]): The contents of the register are the low byte of the PWM1 period.

NOTE

If the PWM1 duty/period needs to reload, the PRD1L register must be updated.

6.1.54 Bank 1 R19: PRD1H (High Byte of PWM1 Period)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRD1[F]	PRD1[E]	PRD1[D]	PRD1[C]	PRD1[B]	PRD1[A]	PRD1[9]	PRD1[8]
R/W							

Bits 7~0 (PRD1[F~8]): The contents of the register are the high byte of the PWM1 period

6.1.55 Bank 1 R1A: DT1L (Low Byte of PMW1 Duty)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DT1[7]	DT1[6]	DT1[5]	DT1[4]	DT1[3]	DT1[2]	DT1[1]	DT1[0]
R/W							

Bits 7~0 (DT1[7~0]): The contents of the register are the low byte of the PWM1 duty.

6.1.56 Bank 1 R1B: DT1H (High Byte of PMW1 Duty)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DT1[F]	DT1[E]	DT1[D]	DT1[C]	DT1[B]	DT1[A]	DT1[9]	DT1[8]
R/W							

Bits 7~0 (DT1[F~8]): The contents of the register are the high byte of the PWM1 duty.

6.1.57 Bank 1 R1C: TMR1L (Low Byte of Timer 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMR1[7]	TMR1[6]	TMR1[5]	TMR1[4]	TMR1[3]	TMR1[2]	TMR1[1]	TMR1[0]
R	R	R	R	R	R	R	R

Bits 7~0 (TMR1[7~0]): The contents of the register are the low byte of the PWM1 timer which is counting. These bits are read-only.

6.1.58 Bank 1 R1D: TMR1H (High Byte of Timer 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMR1[F]	TMR1[E]	TMR1[D]	TMR1[C]	TMR1[B]	TMR1[A]	TMR1[9]	TMR1[8]
R	R	R	R	R	R	R	R

Bits 7~0 (TMR1[F~8]): The contents of the register are the high byte of the PWM1 timer which is counting. These bits are read-only.

6.1.59 Bank 1 R1E ~ R44: (Reserved)

6.1.60 Bank 1 R45: TBPTL (Table Point Low Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0
R/W							

Bits 7~0 (TB7~TB0): Table Point Address Bits 7~0.

6.1.61 Bank 1 R46: TBPTH (Table Point High Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HLB	-	-	-	TB11	TB10	TB9	TB8
R/W	-	-	-	R/W	R/W	R/W	R/W

Bit 7 (HLB): Obtain MLB or LSB at machine code of ROM.

HLB	Read to Register Data Value Description
0	Read byte value is Bit 7 ~ Bit 0 from machine code.
1	Read byte value is - Highest bit fixed at " 0 " and Bit 14 ~ Bit 8 from machine code.

Bits 6~4: Not used. Set to "0" all the time.

Bits 3~0 (TB11~TB8): Table Point Address Bits 11~8.

6.1.62 Bank 1 R47: STKMON (Stack Pointer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STOF	-	-	-	STL3	STL2	STL1	STL0
R	-	-	-	R	R	R	R

Bit 7 (STOF): Stack pointer overflow indicator bit. Read only.

0: Stack pointer does not overflow

1: Stack pointer overflow

Bits 6~4: Not used. Set to "0" all the time.

Bits 3~0 (STL3~0): Stack pointer number. Read only.

6.1.63 Bank 1 R48: PCH (Program Counter High)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	PC11	PC10	PC9	PC8
-	-	-	-	R/W	R/W	R/W	R/W

Bits 7~4: Not used. Set to "0" all the time.

Bits 3~0 (PC11~PC8): The high byte of program counter

6.1.64 Bank 1 R49: (Reserved)

6.1.65 Bank 1 R4A: COBS1 (Code Option Bit Select Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HLFS	RESETEN	ENWDT	NRHL	NRE	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7 (HLFS): Mode selection bit after reset occurs

0: CPU is selected as Green mode when a reset occurs.

1: CPU is selected as Normal mode when a reset occurs (default).

Bit 6 (RESETEN): P80//RESET pin selection bit

0: Enable, /RESET pin

1: Disable, P80 pin

Bit 5 (ENWDT): WDT enable bit

0: Enable

1: Disable

Bit 4 (NRHL): Noise rejection high/low pulses defining bit. INT pin is falling edge trigger.

0: Pulses equal to 8/Fsys is regarded as signal

1: Pulses equal to 32/Fsys is regarded as signal

Bit 3 (NRE): Noise Rejection Enable Bit

0: Disable noise rejection

1: Enable noise rejection (note that in Green, Idle, and Sleep modes, the noise rejection circuit is always disabled).

Bits 2~0: Not used. Set to "0" all the time.

NOTE

When the MCU powers on, it latches the code option setting values first. Then, the values in code option words are determined whether to link them with the corresponding control registers (Bank1 R4A~4C) in accordance with COBS setting (1 or 0). If COBS equals "0", the initial values in the control registers Bank1 R4A~4C are the same with the values in the code option words. They can be modified later to any other values.

6.1.66 Bank 1 R4B: COBS2 (Code Option Bit Selection Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	C5	C4	C3	C2	C1	C0
-	-	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7~6: Not used. Set to "0" all the time.

Bits 5~0 (C5~C0): IRC frequency calibration bits in IRC oscillator mode

6.1.67 Bank 1 R4C: COBS3 (Code Option Bit Selection Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	FSS	SC3	SC2	SC1	SC0
-	-	-	R/W	R/W	R/W	R/W	R/W

Bits 7~5: Not used. Set to "0" all the time.

Bits 4 (FSS): Sub-oscillator mode selection bits

0: Fs is 64kHz **1:** Fs is 16kHz

Bits 3~0 (SC3~SC0): Sub-frequency calibration bits

NOTE

When the MCU powers on, it latches the code option setting values first. Then, the values in code option words are decided whether to link them with the corresponding control registers (Bank1 R4A~4C) in accordance with COBS setting (1 or 0). If COBS equals "0", the initial values in the control registers Bank 1 R4A~4C are the same with the values in code option words. They can be modified later to any other values.

6.1.68 Bank 1 R4D ~ R4F: (Reserved)

6.1.69 Bank 2 R21: DACR (DAC Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	DAE1	DAE0
-	-	-	-	-	-	R/W	R/W

Bits 7~2: Not used. Set to "0" all the time.

Bits 1 (DAE1): DAC enable bit of P57 pin

0: Disable. DA1/P57 serving as I/O pin

1: Enable. DA1/P57 serving as analog output pin

Bit 0 (DAE0): DAC enable bit of P56 pin

0: Disable. DA0/P56 serving as I/O pin

1: Enable. DA0/P56 serving as analog output pin

6.1.70 Bank 2 R22: DACD0 (Digital to Analog Converter Data Buffer 0)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DAD0[7]	DAD0[6]	DAD0[5]	DAD0[4]	DAD0[3]	DAD0[2]	DAD0[1]	DAD0[0]
R/W							

Bits 7~0 (DAD0[7]~DAD0[0]): DA0 Data buffer

6.1.71 Bank 2 R23: DACD1 (Digital to Analog Converter Data Buffer 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DAD1[7]	DAD1[6]	DAD1[5]	DAD1[4]	DAD1[3]	DAD1[2]	DAD1[1]	DAD1[0]
R/W							

Bits 7~0 (DAD1[7]~DAD1[0]): DA1 Data Buffer.

6.1.72 Bank 2 R25 ~ R4F: (Reserved)

6.1.73 R50~R7F, Banks 0~2 R80~RFF

These are all 8-bit general-purpose registers.

6.2 TCC/WDT and Prescaler

There are two 8-bit counters available as prescalers for the TCC and WDT respectively. The TPSR0~ TPSR2 bits of the TCCCR register (Bank0 R22) are used to determine the ratio of the prescaler of TCC. Likewise, the WPSR0~WPSR2 bits of the WDTCR register (Bank0 R21) are used to determine the prescaler of WDT. The prescaler counter will be cleared by the instructions each time they are written into TCC. The WDT and prescaler will be cleared by the "WDTC" and "SLEP" instructions. Figure 6-3 below depicts the circuit diagram of TCC/WDT.

TCCD (Bank0 R23) is an 8-bit timer/counter. The clock source of TCC can be internal clock or external signal input (edge selectable from the TCC pin). If TCC signal source is from internal clock, TCC will increase by 1 at Fc clock (without prescaler). If TCC signal source is from external clock input, TCC will increase by 1 at every falling edge or rising edge of the TCC pin. TCC pin input time length (kept in High or low level) must be greater than 1/Fc.

NOTE

- If TCC signal source is from internal clock, the TCC will stop running when Sleep mode occurs.
- If TCC signal source is from external clock, TCC will increase by 1 at every falling edge or rising edge of the TCC pin when Sleep mode occurs.

The Watchdog Timer is a free running on-chip RC oscillator. The WDT will keep on running even after the oscillator driver has been turned off (i.e., in Sleep mode). During Normal operation or sleep mode, a WDT time-out (if enabled) will cause the device to reset. The WDT can be enabled or disabled at any time during Normal mode by software programming (see WDTE bit of WDTCR register, Section 6.1.25Bank 0 R21). With no prescaler, the WDT time-out period is approximately 18ms¹ (one oscillator start-up timer period).

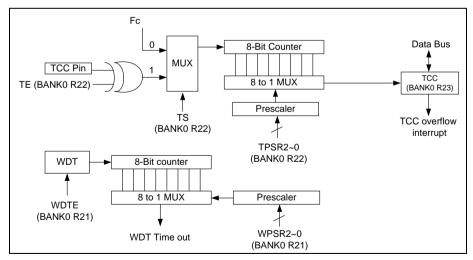
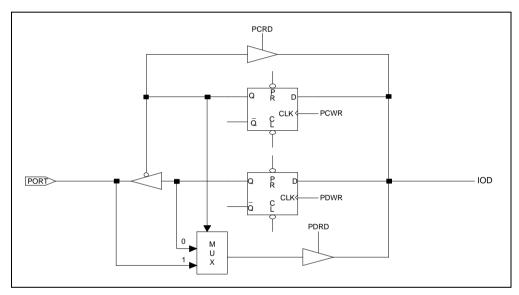


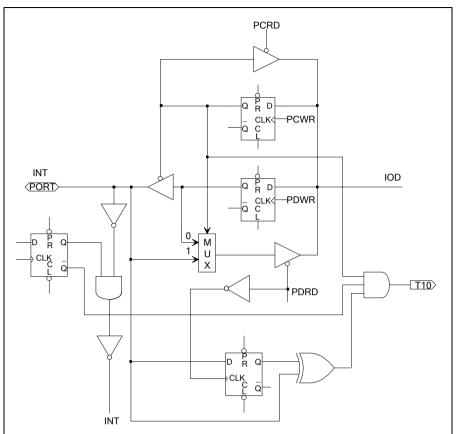
Figure 6-3 TCC and WDT Block Diagram

_

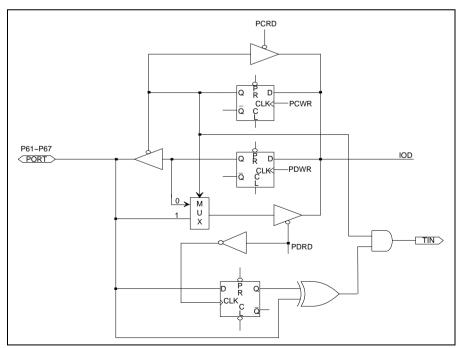

¹ VDD=5V, WDT time-out period = 16.5ms ± 8 %. VDD=3V, WDT time-out period = 18ms ± 8 %.

6.3 I/O Ports

The I/O registers, Port 5~Port 8 are bi-directional tri-state I/O ports. All can be pulled high and pulled low internally by software. Furthermore, they can also be set as open-drain output and high sink/drive by software. Ports 5~8 feature wake-up and interrupt functions as well as input status change interrupt function. Each I/O pin can be defined as "input" or "output" pin by the I/O control register (IOC5 ~ IOC8).


The I/O registers and I/O control registers are both readable and writable. The I/O interface circuits for Port 5 ~ Port 8 are shown in the following Figures 6-4a to 6-4d.

Note: Pull-down is not shown in the figure.


Figure 6-4a I/O Port and I/O Control Register for Port 5~8 Circuit Diagram

Note: Pull-high (down) and Open-drain are not shown in the figure.

Figure 6-4b I/O Port and I/O Control Register for /INT Circuit

Note: Pull-high (down) and Open-drain are not shown in the figure.

Figure 6-4c I/O Port and I/O Control Register for Ports 5~8 Circuit

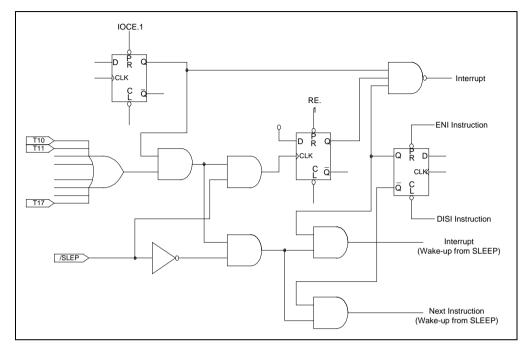


Figure 6-4d I/O Port 5~8 with Input Change Interrupt/Wake-up Block Diagram

6.3.1 Usage of Ports 5~8 Input Change Wake-up/Interrupt Function

1. Wake-up
a) Before Sleep:
1) Disable WDT
2) Read I/O Port (MOV R6,R6)
3) Execute "ENI" or "DISI"
4) Enable Wake-up bit (Set ICWKPx = 1)
5) Execute "SLEP" instruction
b) After Wake-up:
→ Next instruction

2. Wake-up and Interrupt
a) Before SLEEP
1) Disable WDT
2) Read I/O Port (MOV R6,R6)
3) Execute "ENI" or "DISI"
4) Enable Wake-up bit (Set ICWKPx = 1)
5) Enable interrupt (Set PxICIE = 1)
6 Execute "SLEP" instruction
b) After Wake-up
1) IF "ENI" → Interrupt Vector (0006H)
2) IF "DISI" → Next instruction

6.4 Reset and Wake-up

A Reset is initiated by one of the following events:

- 1) Power-on reset
- 2) /RESET pin input "low"
- 3) WDT time-out (if enabled)
- 4) LVR (if enabled)

The device is kept under Reset condition for a period of approximately 18ms² (one oscillator start-up timer period) after a reset is detected. And if the /Reset pin goes "low" or the WDT time-out is active, a reset is generated. In IRC mode, the reset time is 8/32 clocks. Once a Reset occurs, the following functions are performed (see Figure 6-5 below):

- The oscillator continuous running, or will be started.
- The Program Counter (R2) is set to all "0".
- All I/O port pins are configured as input mode (high-impedance state).
- The Watchdog Timer and prescaler are cleared.
- The control register bits are set as shown in the table under Section 6.4.3, Summary of Register Initial Values after Reset.

The Sleep (power down) mode is asserted by executing the "SLEP" instruction. While entering Sleep mode, WDT (if enabled) is cleared but keeps on running. Wake-up is then generated (in IRC mode the wake-up time is 8/32 clocks). The controller can be awakened by any of the following events:

- 1) External reset input on /RESET pin
- 2) WDT time-out (if enabled)
- 3) External (INT1,0) pin changes (if INTWEx is enabled)
- 4) Port input status changes (if ICWKPx is enabled)
- 5) I²C receives data while it serves as Slave device (if I2CWK is enabled)
- 6) TCC Counter mode overflow occur.(if TCIE is enable)

The first two events (1 and 2) will cause the eKT52xx to reset. The T and P flags of R3 are used to determine the source of the reset (Wake-up). Events 3 to 6 are considered as continuation of program execution and the global interrupt ("ENI" or "DISI" being executed) decides whether or not the controller branches to the interrupt vector following Wake-up. If ENI is executed before SLEP, the instruction will begin to execute from Address 0x02~0x1E after Wake-up. If DISI is executed before SLEP, the execution will restart from the instruction right next to SLEP after Wake-up.

_

Vdd = 5V, set up time period = 16.8ms ± 8%
Vdd = 3V, set up time period = 18ms ± 8%

Only one of Events 3 to 6 can be enabled before entering into Sleep mode. That is:

- a) If WDT is enabled before SLEP, the eKT52xx can wake-up only when Events 1 or 2 occurs. Refer to Section 6.5 *Interrupt*, for further details.
- b) If External (P80/P60, INT1/INT0) pin change is used to wake-up eKT52xx and INTWEx bit is enabled before SLEP (with WDT disabled). Hence, the eKT52xx can wake-up only when Event 3 occurs.
- c) If Port Input Status Change is used to wake-up eKT52xx and the corresponding wake-up setting is enabled before SLEP (with WDT disabled). Hence, the eKT52xx can wake-up only when Event 4 occurs.
- d) When I²C serving as Slave device and I2CWK bit of Bank0 R11 register is enabled before SLEP (with WDT disabled), the I²C will wake-up eKT52xx after it received data. Hence, the eKT52xx can wake-up only when Event 5 occurs.
- e) When TCC Counter mode uses external signal overflow to wake-up eKT52xx and TCIE bit of Bank 0 R1B register is enabled before SLEP, WDT must be disabled by software. Hence, the eKT52xx can wake-up only when Event 6 occurs.

6.4.1 Summary of Wake-up and Interrupt Mode Operation

Wake-up	Condition	Sleep	Mode	ldle l	Mode	Green	Mode	Normal Mode			
Signal	Signal	DISI	ENI	DISI	ENI	DISI	ENI	DISI	ENI		
	INTWKx = 0,EXxIE = 0		INT1/INT0 pin Disable								
External	INTWKx = 0,EXxIE = 1		Wake-up	is invalid		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector		
INT	INTWKx = 1,EXxIE = 0				INT1/INT0	pin Disable					
	INTWKx = 1,EXxIE = 1	Wake up + Next Instruction	Wake up + Interrupt Vector	Wake up + Next Instruction		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector		
	TCIE = 0		Wake-up	is invalid			Interrupt	is invalid			
TCC INT	TCIE = 1	Wake up + Next Instruction (Counter mode)	Wake up + Interrupt Vector (Counter mode)	Wake up + Next Instruction		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector		

Wake-up	Condition	Sleep	Mode	ldle I	Mode	Green	Mode	Normal	Mode	
Signal	Signal	DISI	ENI	DISI	ENI	DISI	ENI	DISI	ENI	
PWM1 (When	PWMxPIE=0		Wake-up	is invalid			Interrupt	is invalid		
Timer1 Match PRD1)	PWMxPIE=1	Wake-up	is invalid.	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
	ICWKPx = 0 PxICIE = 0		Wake-up	is invalid			Interrupt	is invalid		
Pin	ICWKPx = 0 PxICIE = 1		Wake-up	is invalid		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
Change INT	ICWKPx = 1 PxICIE = 0		-	te up + struction			Interrupt is invalid			
	ICWKPx = 1 PxICIE = 1	Wake up + Next Instruction	Wake up + Interrupt Vector	Wake up + Next Instruction	Wake up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	is invalid Next Instruction is invalid Next Instruction is invalid Next Instruction Interrupt is Next Instruction Interrupt is	Interrupt + Interrupt Vector	
	I2CWK = 0 I2CxIE = 0		Wake-up	is invalid		l ² Can'		ot is invalid It Next Instruction It Next Instruction It Next Instruction Interrupt it Next Instruction Interrupt it Next Instruction Interrupt it Next Instruction	s invalid.	
	I2CWK = 0 I2CxIE = 1		Wake-up	is invalid		I ² Can'			Interrupt + Interrupt Vector	
I ² C INT	I2CWK = 1 I2CxIE = 0	ı²c	Next Ins	te up + struction n Slave mo	ode	l ² Can'		Interrupt i	is invalid	
	I2CWK = 1 I2CxIE = 1	Wake up + Next Instruction I ² C must	Wake up + Interrupt Vector I2C must	Wake up + Next Instruction	Wake up + Interrupt Vector I2C must	Can'	C t use		Interrupt + Interrupt Vector	
WDT time out		RESET	RESET	RESET	RESET	RESET	RESET	RESET	RESET	

NOTE

After wake up:

- 1. If interrupt enable → interrupt t+ next instruction
- 2. If interrupt disable → next instruction

6.4.2 The Status of RST, T, and P of Status Register

A Reset condition is initiated by one of the following events:

- 1) A power-on condition,
- 2) A high-low-high pulse on /RESET pin,
- 3) Watchdog timer time-out,
- 4) LVR occurs

The values of T and P, as listed in the following table are used to check how the MCU wakes up. The next table shows the events that may affect the status of T and P.

■ Values of RST, T and P after Reset:

Reset Type	Т	Р
Power-on	1	1
/RESET during Operating mode	P*	P*
/RESET Wake-up during Sleep mode	1	0
WDT during Operating mode	0	P*
WDT Wake-up during Sleep mode	0	0
Wake-up on pin change during Sleep mode	1	0

* P: Previous status before reset

■ Status of T and P being Affected by Events:

Event	Т	Р
Power-on	1	1
WDTC instruction	1	1
WDT time-out	0	*P
SLEP instruction	1	0
Wake-up on pin change during Sleep mode	1	0

* P: Previous value before reset

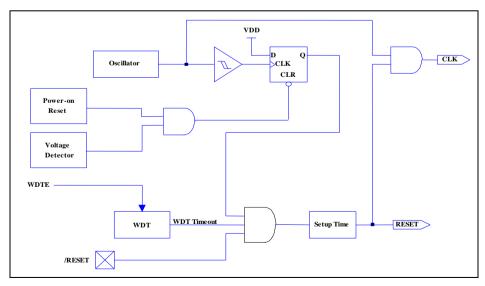


Figure 6-5 Controller Reset Block Diagram

6.4.3 Summary of Register Initial Values after Reset

Legend: U: Unknown or don't care

P: Previous value before reset

C: Same with Code option

t: Check tables under Section 6.4.2

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	-	-	-	-	-	-	-	-
	R0	Power-on	U	U	U	U	U	U	U	U
0x00	(IAR)	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name			SBS1	SBS0			GBS1	GBS0
	R1	Power-on	0	0	0	0	0	0	0	0
0x01	(BSR)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
	R2	Power-on	0	0	0	0	0	0	0	0
0x02	(PCL)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	INT	0	0	Т	Р	Z	- U P P GBS1 0 0 P PC1 0 0	С
	R3	Power-on	0	0	0	1	1	U	U	U
0x03	(SR)	/RESET and WDT	0	0	0	t	t	Р	Р	Р
		Wake-up from Sleep/Idle	Р	0	0	t	t	Р	Р	Р
		Bit Name	RSR7	RSR6	RSR5	RSR4	RSR3	RSR2	RSR1	RSR0
	R4	Power-on	1	1	1	1	1	1	1	1
0x04	(RSR)	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	P57	P56	0	P54	P53	P52	P51	P50
	Bank 0, R5	Power-on	0	0	0	0	0	0	0	0
0X05	(Port 5)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	0	Р	Р	Р	Р	Р
		Bit Name	P67	P66	P65	P64	P63	P62	P61	P60
	Bank ∩ R6	Power-on	0	0	0	0	0	0	0	0
0x06	0x06 Bank 0, R6- (Port 6)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	P77	P76	0	0	P73	P72	P71	P70
	Bank 0,	Power-on	0	0	0	0	0	P72 P71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0
0x07	R7 (Port 7)	/RESET and WDT	0	0	0	0	0	0	0	0
	(POIL 7)	Wake-up from Sleep/Idle	Р	Р	0	0	Р	Р	Р	Р
		Bit Name	0	0	0	0	0	0	0	P80
	Bank 0,	Power-on	0	0	0	0	0	0	0	0
0x08	R8	/RESET and WDT	0	0	0	0	0	0	0	0
	(Port 8)	Wake-up from Sleep/Idle	0	0	0	0	0	0	0	Р
		Bit Name	IOC57	IOC56	0	IOC54	IOC53	IOC52	IOC51	IOC50
	Bank 0,	Power-on	1	1	0	1	1	1	1	1
0X0B	RB (IOCR5)	/RESET and WDT	1	1	0	1	1	1	1	1
	(IOCKS)	Wake-up from Sleep/Idle	Р	Р	0	Р	Р	Р	Р	Р
		Bit Name	IOC67	IOC66	IOC65	IOC64	IOC63	IOC62	0 0 0 0 0 0 0 0 10C51 1 1 P 10C61 1 1 P RCM1 Code option (RCM1) Code option (RCM1) P	IOC60
	Bank 0, RC (IOCR6)	Power-on	1	1	1	1	1	1	1	1
0x0C		/RESET and WDT	1	1	1	1	1	1	1	1
	(IOCKO)	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	IOC77	IOC76	0	0	IOC73	IOC72	IOC71	IOC70
	Bank 0,	Power-on	1	1	0	0	1	1	1	1
0X0D	RD (IOCR7)	/RESET and WDT	1	1	0	0	1	1	1	1
	(IOCK7)	Wake-up from Sleep/Idle	Р	Р	0	0	Р	Р	Р	Р
		Bit Name	CPUS	IDLE					RCM1	RCM0
	Bank 0,	Power-on	Code option (HLFS)	1	0	0	0	0	option	Code option (RCM0)
0x0E	RE (OMCR)	/RESET and WDT	Code option (HLFS)	1	0	0	0	0	option	Code option (RCM0)
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	0	0	0	0	EI1ES	EI0ES	0	0
	Bank 0,	Power-on	0	0	0	0	1	1	0	0
0X0F	pr	/RESET and WDT	0	0	0	0	1	1	0	0
	LILOUR	Wake-up from Sleep/Idle	0	0	0	0	Р	Р	P71 0 0 0 P 0 0 0 IOC51 1 1 1 P IOC61 1 1 P IOC71 1 Code option (RCM1) Code option (RCM1) P 0 0 0 0	0

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	0	0	0	0	INTWK1	INTWK0	0	0
	Bank 0,	Power-on	0	0	0	0	0	0		0
0x10	R10 (WUCR1)	/RESET and WDT	0	0	0	0	0	0	0	0
	(WUCKT)	Wake-up from Sleep/Idle	0	0	0	0	Р	Р	0	0
		Bit Name	0	0	0	0	0	I2CWK	0	0
	Bank 0,	Power-on	0	0	0	0	0	0	0	0
0x11	R11 WUCR2	/RESET and WDT	0	0	0	0	0	0	0	0
	WUCRZ	Wake-up from Sleep/Idle	0	0	0	0	0	Р	0	0
		Bit Name	ICWKP8	ICWKP7	ICWKP6	ICWKP5	0	0	0	0
	Bank 0,	Power-on	0	0	0	0	0	0	0	0
0x12	R12	/RESET and WDT	0	0	0	0	0	0	0	0
	WUCR3	Wake-up from Sleep/Idle	Р	Р	Р	Р	0	0	0	0
		Bit Name	0	0	0	0	EX1SF	EX0SF	0	TCSF
	Bank 0,	Power-on	0	0	0	0	0	0	0	0
0X14	R14	/RESET and WDT	0	0	0	0	0	0	0	0
	SFR1	Wake-up from Sleep/Idle	0	0	0	0	Р	Р	0	Р
		Bit Name	0	0	0	0	0	0		PWM1 DSF
0X16	Bank 0, R16	Power-on	0	0	0	0	0	0	0	0
0.710	SFR3	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	0	0	0	0	Р	Р
		Bit Name	P8ICSF	P7ICSF	P6ICSF	P5ICSF	0	I2CSTP SF	I2CRSF	I2CTSF
0)/4=	Bank 0,	Power-on	0	0	0	0	0	0	0	0
0X17	R17 SFR4	/RESET and WDT	0	0	0	0	0	0	0	0
	SFR4	Wake-up from Sleep/Idle	Р	Р	Р	Р	0	Р	Р	Р
		Bit Name	0	0	0	0	EX1IE	EX0IE	0	TCIE
	Bank 0,	Power-on	0	0	0	0	0	0	0	0
0X1B	0X1B R1B	/RESET and WDT	0	0	0	0	0	0	0	0
	IMR1	Wake-up from Sleep/Idle	0	0	0	0	Р	Р	0	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	0	0	0	0	0	0	PWM1 PIE	PWM1 DIE
0X1D	Bank 0, R1D	Power-on	0	0	0	0	0	0	0	0
UXID	IMR3	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	0	0	0	0	0	0	Р	Р
		Bit Name	P8ICIE	P7ICIE	P6ICIE	P5ICIE	0	I2CSTP IE	I2CRIE	I2CTIE
0X1E	Bank 0, R1E	Power-on	0	0	0	0	0	0	0	0
OXIL	IMR4	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	0	Р	Р	Р
		Bit Name	WDTE				PSWE	WPSR2	WPSR1	WPSR0
	Bank 0,	Power-on	0	0	0	0	0	0	0	0
0X21	R21 WDTCR	/RESET and WDT	0	0	0	0	0	0	0	0
	WBTOR	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name		TCCS	TS	TE	PSTE	TPSR2	TPSR1	TPSR0
	Bank 0,	Power-on	0	0	0	0	0	0	0	0
0X22	R22 TCCCR	/RESET and WDT	0	0	0	0	0	0	0	0
	TOOOK	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TCC7	TCC6	TCC5	TCC4	TCC3	TCC2	TCC1	TCC0
	Bank 0,	Power-on	0	0	0	0	0	0	0	0
0X23	R23 TCCD	/RESET and WDT	0	0	0	0	0	0	0	0
	. 3 3 2	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	Strobe/ Pend	IMS	ISS	STOP	SAR_ EMPTY	ACK	FULL	EMPTY
0X30	Bank 0, R30	Power-on	0	0	0	0	1	0	0	1
0,730	I2CCR1	/RESET and WDT	0	0	0	0	1	0	0	1
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	I2CBF	GCEN	0	BBF	I2CTS1	I2CTS0	0	I2CEN
	Bank 0,	Power-on	0	0	0	0	0	0	0	0
0X31	· · · · · · · · · · · · · · · · · · ·	/RESET and WDT	0	0	0	0	0	0	0	0
	1200112	Wake-up from Sleep/Idle	Р	Р	0	Р	Р	Р	0	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	SA6	SA5	SA4	SA3	SA2	SA1	SA0	IRW
	Bank 0,	Power-on	0	0	0	0	0	0	0	0
0X32	R32 I2CSA	/RESET and WDT	0	0	0	0	0	0	0	0
	12USA	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	Bank 0,	Power-on	0	0	0	0	0	0	0	0
0X33	R33 I2CDB	/RESET and WDT	0	0	0	0	0	0	0	0
	IZCDB	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
	Bank 0,	Power-on	1	1	1	1	1	1	1	1
0X34	R34 I2CDAL	/RESET and WDT	1	1	1	1	1	1	1	1
	IZODAL	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	0	0	0	0	0	0	DA9	DA8
	Bank 0,	Power-on	0	0	0	0	0	0	1	1
0X35	R35	/RESET and WDT	0	0	0	0	0	0	1	1
	I2CDAH	Wake-up from Sleep/Idle	0	0	0	0	0	0	Р	Р
		Bit Name	0	0	0	0	0	0	0	IOC80
	Bank 1,	Power-On	0	0	0	0	0	0	0	1
0X05	R5 IOCR8	/RESET and WDT	0	0	0	0	0	0	0	1
	IOCKO	Wake-Up from Sleep/Idle	0	0	0	0	0	0	0	Р
		Bit Name	PH57	PH56	0	PH54	PH53	PH52	PH51	PH50
	Bank 1,	Power-on	1	1	0	1	1	1	1	1
0X08	R8 P5PHCR	/RESET and WDT	1	1	0	1	1	1	1	1
	FSFTICK	Wake-up from Sleep/Idle	Р	Р	0	Р	Р	Р	Р	Р
		Bit Name	PH67	PH66	PH65	PH64	PH63	PH62	PH61	PH60
	Bank 1,	Power-on	1	1	1	1	1	1	1	1
0X09		/RESET and WDT	1	1	1	1	1	1	1	1
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	0	0	0	0	0	0	P7HPH	P7LPH
	Bank 1,	Power-on	0	0	0	0	0	0	1	1
0X0A	DA ,	/RESET and WDT	0	0	0	0	0	0	1	1
	r/PHCK	Wake-up from Sleep/Idle	0	0	0	0	0	0	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	PL57	PL56	0	PL54	PL53	PL52	PL51	PL50
	Bank 1,	Power-on	1	1	0	1	1	1	1	1
0X0B	RB P5PLCR	/RESET and WDT	1	1	0	1	1	1	1	1
	POPLOR	Wake-up from Sleep/Idle	Р	Р	0	Р	Р	Р	Р	Р
		Bit Name	PL67	PL66	PL65	PL64	PL63	PL62	PL61	PL60
	Bank 1,	Power-on	1	1	1	1	1	1	1	1
0X0C	RC P6PLCR	/RESET and WDT	1	1	1	1	1	1	1	1
	POPLOR	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	0	0	0	0	0	P8LPL	P7HPL	P7LPL
	Bank 1,	Power-on	0	0	0	0	0	1	1	1
0X0D	RD P78PLCR	/RESET and WDT	0	0	0	0	0	1	1	1
	1 701 LCIK	Wake-up from Sleep/Idle	0	0	0	0	0	Р	Р	Р
		Bit Name	H57	H56	0	H54	H53	H52	H51	H50
	Bank 1,	Power-on	1	1	0	1	1	1	1	1
0X0E	RE	/RESET and WDT	1	1	0	1	1	1	1	1
	P5HDSCR	Wake-up from Sleep/Idle	Р	Р	0	Р	Р	Р	Р	Р
		Bit Name	H67	H66	H65	H64	H63	H62	H61	H60
	Bank 1,	Power-on	1	1	1	1	1	1	1	1
0X0F	RF P6HDSCR	/RESET and WDT	1	1	1	1	1	1	1	1
	I OI IDSCIX	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	0	0	0	0	0	P8LHDS	P7HHDS	P7LHDS
	Bank 1, R10	Power-on	0	0	0	0	0	1	1	1
0X10	P78HDSC	/RESET and WDT	0	0	0	0	0	1	1	1
	R	Wake-up from Sleep/Idle	0	0	0	0	0	Р	Р	Р
		Bit Name	OD57	OD56	0	OD54	OD53	OD52	OD51	OD50
	Bank 1,	Power-on	0	0	0	0	0	0	0	0
0X11	R11	/RESET and WDT	0	0	0	0	0	0	0	0
	P5ODCR	Wake-up from Sleep/Idle	Р	Р	0	Р	Р	Р	Р	Р
		Bit Name	OD67	OD66	OD65	OD64	OD63	OD62	OD61	OD60
	Bank 1,	Power-on	0	0	0	0	0	0	0	0
0X12		/RESET and WDT	0	0	0	0	0	0	0	0
	TOODOR	Wake-Up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	0	0	0	0	0	0	P7HOD	P7LOD
	Bank 1,	Power-on	0	0	0	0	0	0	0	0
0X13	R13 P7ODCR	/RESET and WDT	0	0	0	0	0	0	0	0
	PIODER	Wake-up from Sleep/Idle	0	0	0	0	0	0	Р	Р
		Bit Name	0	0	0	0	0	0	0	PWM1S
	Bank 1,	Power-on	0	0	0	0	0	0	0	0
0X16	R16 PWMSCR	/RESET and WDT	0	0	0	0	0	0	0	0
	PWWSCR	Wake-up from Sleep/Idle	0	0	0	0	0	0	0	Р
		Bit Name	PWM1E		PWM1A		T1EN	T1P2	T1P1	T1P0
	Bank 1,	Power-on	0	0	0	0	0	0	0	0
0X17	R17 PWM1CR	/RESET and WDT	0	0	0	0	0	0	0	0
	PWWICK	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PRD1[7]	PRD1[6]	PRD1[5]	PRD1[4]	PRD1[3]	PRD1[2]	PRD1[1]	PRD1[0]
	Bank 1,	Power-on	0	0	0	0	0	0	0	0
0X18	R18 PRD1L	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PRD1[F]	PRD1[E]	PRD1[D]	PRD1[C]	PRD1[B]	PRD1[A]	PRD1[9]	PRD1[8]
	Bank 1,	Power-on	0	0	0	0	0	0	0	0
0X19	R19 PRD1H	/RESET and WDT	0	0	0	0	0	0	0	0
	FROIII	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	DT1[7]	DT1[6]	DT1[5]	DT1[4]	DT1[3]	DT1[2]	DT1[1]	DT1[0]
	Bank 1,	Power-on	0	0	0	0	0	0	0	0
0X1A	OX1A R1A DT1L -	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	DT1[F]	DT1[E]	DT1[D]	DT1[C]	DT1[B]	DT1[A]	DT1[9]	DT1[8]
		Power-on	0	0	0	0	0	0	0	0
0X1B		/RESET and WDT	0	0	0	0	0	0	0	0
	חווו	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	TMR1[7]	TMR1[6]	TMR1[5]	TMR1[4]	TMR1[3]	TMR1[2]	TMR1[1]	TMR1[0]
	Bank 1,	Power-on	0	0	0	0	0	0	0	0
0X1C	R1C TMR1L	/RESET and WDT	0	0	0	0	0	0	0	0
	TIVIKTL	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TMR1[F]	TMR1[E]	TMR1[D]	TMR1[C]	TMR1[B]	TMR1[A]	TMR1[9]	TMR1[8]
	Bank 1,	Power-on	0	0	0	0	0	0	0	0
0X1D	R1D TMR1H	/RESET and WDT	0	0	0	0	0	0	0	0
	HVIKTH	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0
	Bank 1,	Power-on	0	0	0	0	0	0	0	0
0X45	R45 TBPTL	/RESET and WDT	0	0	0	0	0	0	0	0
	TOFTE	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	HLB				TB11	TB10	TMR1[1 0 0 P TMR1[9 0 0 P TB1 0	TB8
	Bank 1,	Power-on	0	0	0	0	0	0	0	0
0X46	R46 TBPTH	/RESET and WDT	0	0	0	0	0	0	0	0
	TDI III	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	STOF	0	0	0	STL3	STL2	STL1	STL0
	Bank 1,	Power-on	0	0	0	0	0	0	0	0
0X47	R47 STKMON	/RESET and WDT	0	0	0	0	0	0	0	0
	STRIVION	Wake-up from Sleep/Idle	Р	0	0	0	Р	Р	Р	Р
		Bit Name	0	0	0	0	PC11	PC10	PC9	PC8
	Bank 1,	Power-on	0	0	0	0	0	0	0	0
0X48	R48 PCH	/RESET and WDT	0	0	0	0	0	0	0	0
	POIT	Wake-up from Sleep/Idle	0	0	0	0	Р	Р	Р	Р
		Bit Name	HLFS	RESET EN	ENWDT	NRHL	NRE	0	0	0
0X4A		Power-on	Code Option	Code Option	Code Option	Code Option	Code Option	0	0	0
		/RESET and WDT	Р	Р	Р	Р	Р	0	0	0
		Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	0	0	0

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	0	0	C5	C4	C3	C2	C1	C0
Name Reset Type Bit 7 Bit 6 Bit 5 Bit 4 Bit 6 Bit 6	Code Option	Code Option	Code Option	Code Option						
0X4B		/RESET and WDT	0	0			Code Option	Code Option	Code Option	Code Option
			0	0	Р	Р	Р	Р	Р	Р
		Bit Name	0	0	0	FSS	SC3	SC2	SC1	SC0
		Power-On	0	0	0		Code Option	Code Option	Code Option	Code Option
0X4C	_	/RESET and WDT	0	0	0		Code Option	Code Option	Code Option	Code Option
			0	0	0	Р	Р	Р	Р	Р
		Bit Name	0	0	0	0	0	0	Code Option Code Option P DAE1 0 P	DAE0
		Power-on	0	0	0	0	0	0	0	0
0X21		/RESET and WDT	0	0	0	0	0	0	0	0
	DACK		0	0	0	0	0	0	Р	Р
		Bit Name	DAD0[7]	DAD0[6]	DAD0[5]	DAD0[4]	DAD0[3]	DAD0[2]	DAD0[1]	DAD0[0]
	,	Power-on	0	0	0	0	0	0	0	0
0X22		/RESET and WDT	0	0	0	0	0	0	0	0
	DACDO		Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	DAD1[7]	DAD1[6]	DAD1[5]	DAD1[4]	DAD1[3]	DAD1[2]	DAD1[1]	DAD1[0]
	,	Power-on	0	0	0	0	0	0	0	0
0X23	0X23 R23	/RESET and WDT	0	0	0	0	0	0	0	0
	DACDI	Wake-up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р

6.5 Interrupt

The eKT52xx has 10 interrupts (External, Internal) as listed below:

Interr	upt Source	Enable Condition	Int. Flag	Int. Vector	Priority
Internal / External	Reset	-	-	0	High 0
External	INT	ENI + EXIE=1	EXSF	2	1
External	Pin change	ENI +PxICIE=1	ICSF	4	2
Internal	TCC	ENI + TCIE=1	TCSF	6	3
Internal	PWMP1	ENI+PWM1PIE=1	PWM1PSF	14	4
Internal	PWMD1	ENI+PWM1DIE=1	PWM1DSF	16	5
Internal	I ² C Transmit	ENI+ I2CTIE	I2CTSF	1A	6
Internal	I ² C Receive	ENI+ I2CRIE	I2CRSF	1C	7
Internal	I2CSTOP	ENI+ I2CSTPIE	I2CSTPSF	1E	8

Bank 0 R14~R19 are the interrupt status registers that record the interrupt requests in the relative flags/bits. Bank0 R1B~R20 are the interrupt Mask register. The global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. When one of the enabled interrupts occurs, the next instruction will be fetched from individual address. The interrupt flag bit must be cleared by instructions before leaving the interrupt service routine and before interrupts are enabled to avoid recursive interrupts.

The flag (except ICSF bit delete) in the Interrupt Status Register is set regardless of the status of its mask bit or the execution of ENI. The RETI instruction ends the interrupt routine and enables the global interrupt (the execution of ENI).

External interrupt is equipped with digital noise rejection circuit (input pulse of less than **4 system clocks time** is eliminated as noise). When an interrupt (Falling edge) is generated by the External interrupt (if enabled), the next instruction will be fetched from Address 002H.

Before the interrupt subroutine is executed, the contents of ACC and the R3 (Bit 0~Bit 4) and R4 registers are saved by hardware. If another interrupt occurs, the ACC, R3 (Bit 0~Bit 4), and R4 will be replaced by the new interrupt. After the interrupt service routine is completed, ACC, R3 (Bit 0~Bit 4), and R4 restored.

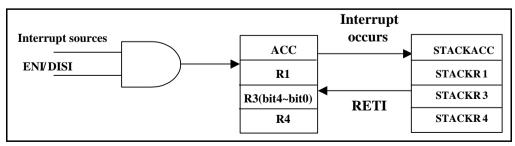


Figure 6-6a Interrupt Backup Diagram

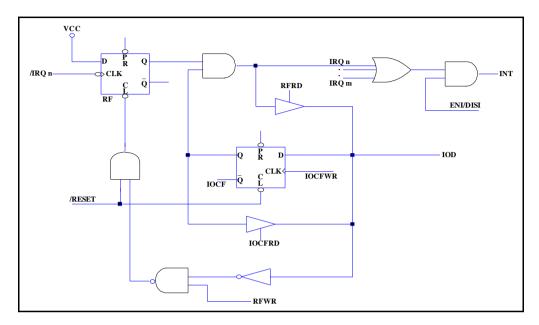


Figure 6-6b Interrupt Input Circuit

6.6 Dual Set of PWM (Pulse Width Modulation)

6.6.1 Overview

Under PWM mode, up to 16-bit resolution PWM output is generated (see. functional block diagram below). A PWM output consists of a time period and a duty cycle, and it keeps the output high. The PWM baud rate is the inverse of the time period.

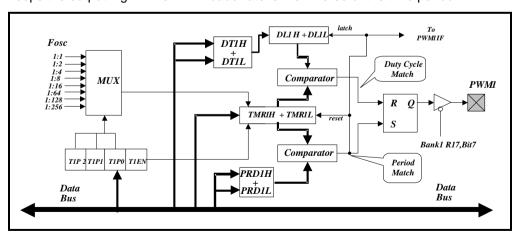


Figure 6-7a Dual PWMs Functional Block Diagram

Figure 6-7b below; *PWM Output Timing*, depicts the relationships between a time period and a duty cycle.

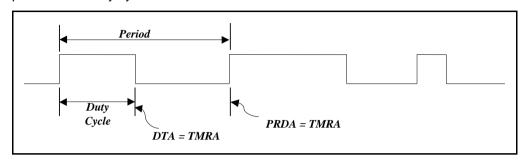


Figure 6-7b PWM Output Timing

6.6.2 Control Register

R_BANK	Addres	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
D. 1.0	0 0x17	SFR3							PWM1PSF	PWM1DS
Bank 0									F	F
Bank 0	Bank 0 0x1D	IMR3							PWM1PIE	PWM1DIE
Dalik U	UXID								R/W	R/W
Bank 1	0x16	PWMSCR								PWM1S
Dalik i	UXIO	PWWISCK								R/W
Bank 1	0x17	PWM1CR	PWM1E	-	PWM1A	-	T1EN	T1P2	T1P1	T1P0
Dank I	UXII	PWWITCK	R/W	-	R/W	-	R/W	R/W	R/W	R/W
Bank 1	0x18	PRD1L	PRD1[7]	PRD1[6]	PRD1[5]	PRD1[4]	PRD1[3]	PRD1[2]	PRD1[1]	PRD1[0]
Dalik i	UXIO		R/W							
Bank 1	0x19	PRD1H	PRD1[F]	PRD1[E]	PRD1[D]	PRD1[C]	PRD1[B]	PRD1[A]	PRD1[9]	PRD1[8]
Dalik i	UXIS	FRUIII	R/W							
Bank 1	0x1A	DT1L	DT1[7]	DT1[6]	DT1[5]	DT1[4]	DT1[3]	DT1[2]	DT1[1]	DT1[0]
Dalik i	UXIA		R/W							
Bank 1	0x1B	1B DT1H	DT1[F]	DT1[E]	DT1[D]	DT1[C]	DT1[B]	DT1[A]	DT1[9]	DT1[8]
Dalik i	OXID		R/W							
Bank 1	0x1C	TMR1L	TMR1[7]	TMR1[6]	TMR1[5]	TMR1[4]	TMR1[3]	TMR1[2]	TMR1[1]	TMR1[0]
Dalik I	UXIC		R/W							
Ponk 4	0x1D	D TMR1H	TMR1[F]	TMR1[E]	TMR1[D	TMR1[C	TMR1[B]	TMR1[A]	TMR1[9]	TMR1[8]
Bank 1	טוגט		R/W							

6.6.3 Increment Timer Counter (TMRX: TMR1H/TMR1L)

TMR1 is 16-bit clock counter with programmable prescaler. It is designed as baud rate clock generators for the PWM module. TMR can be read only. When in use, they can be turned off for power saving by setting the T1EN bit [BANK1-R17 <3>] to "0". TMR1 is internal designs and cannot be read.

6.6.4 PWM Time Period (PRDX: PRD1H/PRD1L)

The PWM time period is 16-bit resolution and is defined by writing to the PRDX register. When TMRX is equal to PRDX, the following events occur on the next increment cycle:

- 1) TMRX is cleared
- 2) The PWMX pin is set to "1"

NOTE

The PWM output cannot be set if the duty cycle is "0."

3) The PWMXIF pin is set to "1"

To calculate the PWM time period, use the following formula:

$$Period = (PRDX + 1) \times \left(\frac{1}{F_{OSC}}\right) \times (TMRX \ prescale \ value)$$

Example:

PRDX = 49; Fosc = 4 MHz; TMRX (0, 0, 0) = 1 : 1,

CLKS bit of the Code Option Register = 0 (two oscillator periods);

Then -

Period =
$$(49+1) \times \left(\frac{1}{4M}\right) \times 1 = 12.5 \mu s$$

6.6.5 PWM Duty Cycle (DTX: DT1H/DT1L)

The PWM duty cycle is defined by writing to the DTX register, and is latched from DTX to DLX while TMRX is cleared. When DLX is equal to TMRX, the PWMX pin is cleared. DTX can be loaded anytime. However, it cannot be latched into DLX until the current value of DLX is equal to TMRX.

The following formula shows how to calculate the PWM duty cycle:

Duty cycle =
$$(DTX) \times \left(\frac{1}{F_{osc}}\right) \times (TMRX \ prescale \ value)$$

Example:

DTX = 10; Fosc = 4 MHz; TMRX (0, 0, 0) = 1:1,

CLKS bit of the Code Option Register = 0 (two oscillator periods);

Then -

Duty cycle =
$$(10) \times \left(\frac{1}{4M}\right) \times 1 = 2.5 \mu s$$

6.6.6 PWM Programming Process/Steps

- 1) Load the PWM duty cycle into DT
- 2) Load the PWM time period into PRD
- 3) Enable the interrupt function by writing Bank0-R1D, if required
- 4) Load a desired value for the timer prescaler
- 5) Enable PWMX function, i.e., enable PWMXE control bit
- 6) Finally, enable TMRX function, i.e., enable TXEN control bit

If the application needs to change PWM duty and period cycle at run time, refer to the following programming steps:

- 1) Load new duty cycle (if using dual PWM function) at any time.
- Load new period cycle. You must take note of the order of loading period cycle. As soon as the low byte of PWM period cycle is assigned with a value, the new PWM cycle is loaded into circuit.
- 3) The circuit will automatically update the new duty and period cycles to generate new PWM waveform at the next PWM cycle.

6.7 I²C Function

The I²C function and transmit/receive pin are enabled by default when eKT52xx is powered-on.

■ Registers for I²C circuit:

R_BANK	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 0	0x30	I2CCR1	Strobe /Pend	IMS	ISS	STOP	SAR_ EMPTY	ACK	FULL	EMPTY
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Pank 0	0v21	I2CCR2	I2CBF	GCEN	-	BBF	I2CTS1	I2CTS0	-	I2CEN
Bank 0	0x31		R	R/W	-	R	R/W	R/W	-	R/W
Bonk 0	0.22	32 I2CSA	SA6	SA5	SA4	SA3	SA2	SA1	SA0	IRW
Bank 0	0x32		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0×22	I2CDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Dalik U	UXSS	0x33 I2CDB	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0v24	I2CDAL	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
Dalik U	0x34		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0x35	I2CDAH	-	-	-	-	-	-	DA9	DA8
Dalik U	UXSS	IZCDAN	1	-	ı	-	-	-	R/W	R/W
Bank 0	0v19	0x18 SFR4	-	-	-	-	-	I2CSTPIF	I2CRSF	I2CTSF
Dank U	UXIO		-	-	-	-	-	R/W	R/W	R/W
Bank 0	0x1E	IE IMR4	-	-	-	-	-	12CSTPIE	I2CRIE	I2CTIE
Dalik U	UXIE		-		-	-	-	R/W	R/W	R/W

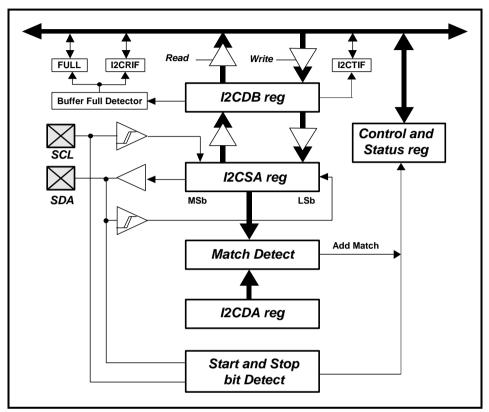


Figure 6-8a eKT52xx I²C Block Diagram

The eKT52xx supports a bidirectional, 2-wire bus, 7/10-bit addressing, and data transmission protocol. A device that sends data to the bus is defined as a transmitter, while a device receiving the data is defined as a receiver. The bus has to be controlled by a Master device which generates the Serial Clock (SCL), controls the bus access, and generates the Start and Stop conditions. Both Master and Slave can operate as transmitter or receiver, but the Master device determines which mode is activated.

Both SDA (Serial Data) and SCL are bi-directional lines, connected to a positive supply voltage via a pull-up resistor. When the bus is free, both lines are HIGH. The output stages of the devices which are connected to the bus must have an open-drain or open-collector to perform the wired-AND function. Data on the I²C-bus can be transferred at the rates of up to 100 kbit/s in Standard-mode or up to 400 kbit/s in Fast-mode.

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only be changed when the clock signal on the SCL line is LOW.

Condition	Master/Slave	Transmit Address	Transmit Data	Stop
Master Transmitter (transmits to	Master	Transmit interrupt	Transmit interrupt	-
Slave-Receiver)	Slave	Receive interrupt	Receive interrupt	Stop interrupt
Master Receiver	Master	Transmit interrupt	Receive interrupt	-

The I²C interrupt occurs as describe below:

(read Slave-

Transmitter)

Master

Slave

Within the procedure of the I²C bus, unique situations could arise which are defined as START (S) and STOP (P) conditions.

Transmit interrupt

Transmit interrupt | Receive interrupt

Transmit interrupt

A HIGH to LOW transition on the SDA line while SCL is HIGH is one such unique case. This situation indicates a START condition.

A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition.

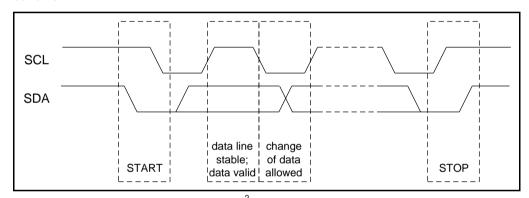


Figure 6-8b & C Transfer Condition

6.7.1 7-Bit Slave Address

Master-transmitter transmits to Slave-receiver. The transfer direction is not changed.

Master reads Slave immediately after first byte. At the moment of the first acknowledgement, the Master-transmitter becomes a Master-receiver and the Slave-receiver becomes a Slave-transmitter. This first acknowledgement is still generated by the Slave. The STOP condition is generated by the Master, which has previously sent a Not-Acknowledge (A). The difference between Master-transmitter and Master-receiver is only in their R/W bit. If the R/W bit is "0", the Master device would be transmitter. Otherwise, the Master device would be the receiver (R//W Bit="1").

Communications between the Master-transmitter/receiver and Slave-transmitter/receiver are illustrated in the following Figures 6-9a and 6-9b.

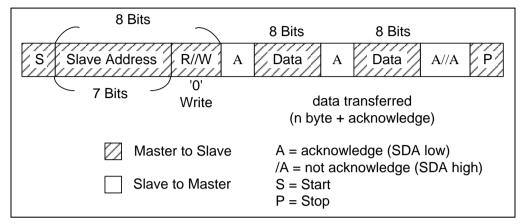


Figure 6-9a Master-Transmitter Transmits to Slave-Receiver with 7-Bit Slave Address

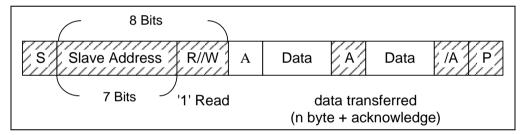


Figure 6-9b Master-Receiver Reads from Slave-Transmitter with 7-Bit Slave Address

6.7.2 10-Bit Slave Address

In 10-Bit Slave address mode, using 10-bit for addressing exploits the reserved combination 11110XX for the first seven bits of the first byte following a START(S) or repeated START (Sr) condition. The first seven bits of the first byte are the combination 11110XX of which the last two bits (XX) are the two most-significant bits of the 10-bit address. If the R/W bit is "0", the second byte after acknowledge would be the eight address bits of 10-bits Slave address. Otherwise, the second byte would just be the next transmitted data from a Slave to Master device. The first byte 11110XX is transmitted by using the Slave address register (I2CSA), and the second byte XXXXXXXX is transmitted by using the data buffer (I2CDB).

The possible data transfer formats for 10-bit Slave address mode are explained in the following paragraphs and Figures 6-10a to 6-10e.

Master-Transmitter Transmits to Slave-Receiver with a 10-bit Slave Address

When the Slave receives the first byte after START bit from Master, each Slave device will compare the first seven bits of the first byte (11110XX) with their own address and check the 8th bit (R//W). If the R//W bit is "0", a Slave or more, will return an Acknowledge (A1). Then all Slave devices will continue to compare the second address (XXXXXXXXX). If a Slave device finds a match, that particular Slave device will be the only one to return an Acknowledge (A2). The matched Slave device will remain addressed by the Master until it receives the STOP condition or until a repeated START condition followed by the different Slave address is received.

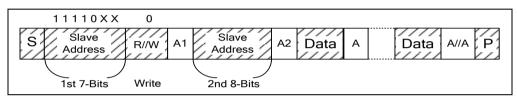


Figure 6-10a Master-Transmitter Transmits to Slave-Receiver with a 10-Bit Slave Address

■ Master-Receiver Read Slave-Transmitter with a 10-bit Slave Address

Up to, and including Acknowledge Bit A2, the procedure is the same as that described above for Master-Transmitter addressing a Slave-Receiver. After the Acknowledge (A2), a repeated START condition (Sr) takes place followed by seven bits Slave address (11110XX), but the 8th bit R/W is "1." The addressed Slave device will then return the Acknowledge (A3). If the repeated START (Sr) condition occurs and the seven bits of first byte (11110XX) are received by Slave device, all the Slave devices will compare with their own address and check the 8th bit (R/W). However, none of the Slave devices can return an acknowledgement because R/W=1.

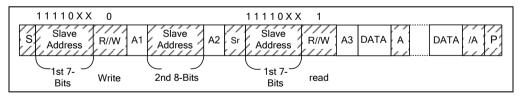


Figure 6-10b Master-Receiver Read Slave-Transmitter with a 10-Bit Slave Address

■ Master Transmits and Receives Data to and from the Same Slave Device with 10-Bit Addresses

The initial operation of this data transfer format is the same as explained in the above paragraph on "Master-Transmitter Transmits to Slave-Receiver with a 10-bit Slave Address." Then the Master device starts to transmit the data to Slave device. When the Slave device receives the Acknowledge or None-Acknowledge that is followed by repeat START (Sr), the above operation under "Master-Receiver Read Slave-Transmitter with a 10-Bit Slave Address" is repeatedly performed.

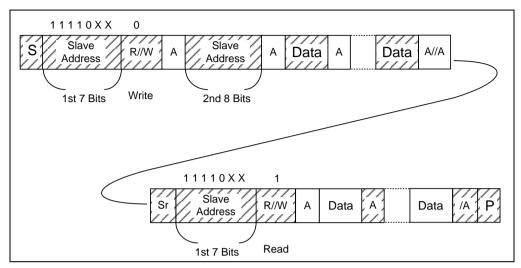


Figure 6-10c Master Addresses a Slave with 10-Bit Addresses Transmits and Receives Data with the Same Slave Device

■ Master Device Transmits Data to Two or More Slave Devices with 10 and 7 Bits Slave Address

For 10-bit address, the initial operation of this data transfer format is the same as explained in the above paragraph on "Master-Transmitter Transmits to Slave-Receiver with a 10-bit Slave Address," which describes how to transmit data to Slave device. After the Master device completes the initial transmittal, and wants to continue transmitting data to another device, the Master needs to address each of the new Slave devices by repeating the initial operation mentioned above. If the Master device wants to transmit the data in 7-bit and 10-bit Slave address modes successively, this could be done after the Start or repeat Start conditions as illustrated in the following figures.

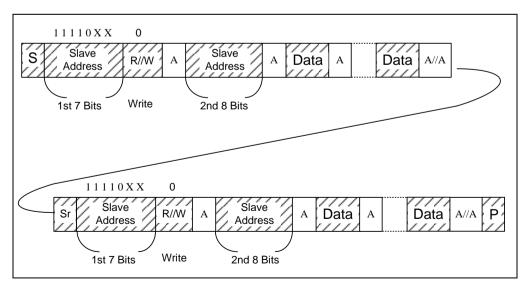


Figure 6-10d Master Transmitting to More than One Slave Devices with 10-Bit Slave Address

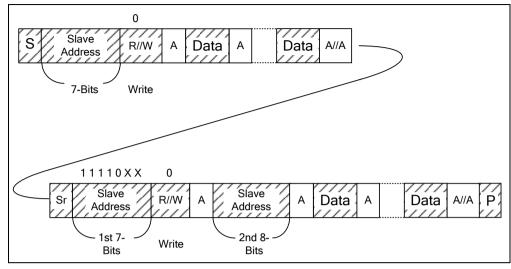


Figure 6-10e Master Successively Transmitting to 7-Bit and 10-Bit Slave Address

6.7.3 Master Mode

In transmitting (receiving) serial data, the I²C is carried on as follows:

- 1) Set I2CTS1~0, I2CCS, and ISS bits to select I²C transmit clock source.
- 2) Set I2CEN and IMS bits to enable I²C Master function.
- 3) Write Slave address into the I2CSA register and IRW bit to select read or write.
- 4) Set strobe bit to start transmitting and then check I2CTSF (I2CTSF) bit.
- 5) Write 1st data into the I2CDB register, set strobe bit, and check I2CTSF (I2CRSF) bit.
- 6) Write 2nd data into the I2CDB register, set strobe bit, STOP bit, and check I2CTSF (I2CRSF) bit.

6.7.4 Slave Mode I²C Transmit

In receiving (transmitting) serial data, the I²C is carried on as follows:

- 1) Set I2CTS1~0, I2CCS, and ISS bits to select I²C transmit clock source.
- 2) Set I2CEN and IMS bits to enable I²C Slave function.
- 3) Write device address into the I2CDA register.
- 4) Check I2CRSF (I2CTSF) bit, read I2CDB register (address), and then clear Pend bit.
- 5) Check I2CRSF (I2CTSF) bit, read I2CDB register (1st data), and then clear Pend bit.
- 6) Check I2CRSF (I2CTSF) bit, read I2CDB register (2nd data), and then clear Pend bit.
- 7) Check I2CSTPSF bit, end transmission.

6.8 Oscillator

6.8.1 Oscillator Modes

The eKT52xx can be operated in one oscillator mode, i.e., Internal RC oscillator mode (IRC). You need to set the main-oscillator modes by selecting the OSC0, and set sub-oscillator modes by selecting the FSS in the Code Option register to complete the overall oscillator mode setting.

■ Main-Oscillator Modes Defined By OSC0

Main-Oscillator Mode	OSC0
IRC (Internal RC oscillator mode; default) RCOUT (P54) acts as I/O pin	1
IRC (Internal RC oscillator mode) RCOUT (P54) acts as clock output pin	0

■ Summary of Maximum Operating Speeds

Conditions	VDD	Fxt Max. (MHz)
	2.5	4M
Two cycles with two clocks	3.0	8M
	4.5	16M

6.8.2 Internal RC Oscillator Mode

The eKT52xx offers a versatile internal RC mode with default frequency value of 4 MHz. The Internal RC oscillator mode has other frequencies (16 MHz and 8 MHz) that can be set by CODE OPTION; RCM1 and RCM0. All these three main frequencies can be calibrated by programming the Writer. Table below describes a typical drift rate of the calibration.

■ Internal RC Drift Rate (Ta=25°C, VDD=5.0V±5%, VSS=0V)

Internal DC	Drift Rate											
Internal RC Frequency	Temperature (-40℃~+85℃)	Voltage (2.5V~5.5V)	Process	Total								
4 MHz	±2%	±1%	±1%	±4%								
8 MHz	±2%	±1%	±1%	±4%								
16 MHz	±2%	±1%	±1%	±4%								

NOTE

These are theoretical values intended for reference only. Actual values may vary depending on actual conditions.

6.9 Power-on Considerations

Any microcontroller is not guaranteed to start to operate properly before the power supply reaches its steady state. The eKT52xx is equipped with a Power-On Voltage Detector (POVD) with a detection level of 2.2V. It will work well if Vdd rises fast enough (50 ms or less). However, in critical applications, extra devices are still required to assist in solving power-up problems.

6.10 External Power-on Reset Circuit

The circuit diagram in Figure 6-15 implements an external RC to generate the reset pulse. The pulse width (time constant) should be kept long enough for VDD to reach minimum operational voltage. Apply this circuit when the power supply has a slow rise time. Since the current leakage from the /RESET pin is about \pm 5µA, it is recommended that R should not be greater than 40K Ω in order for the /RESET pin voltage to remain at below 0.2V. The diode (D) functions as a short circuit at the instant of power down. The capacitor (C) will discharge rapidly and fully. The current-limited resistor (Rin) will prevent high current or ESD (electrostatic discharge) from flowing into /RESET pin.

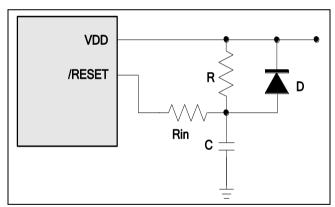


Figure 6-11 External Power-Up Reset Circuit

6.11 Residue-Voltage Protection

When the battery is replaced, device power (VDD) is taken off but residue-voltage remains. The residue-voltage may trips below VDD minimum, but not to zero. This condition may cause a poor power-on reset. The following circuits (Figures 6-12a & 6-12b) show how to accomplish a proper residue-voltage protection circuit.

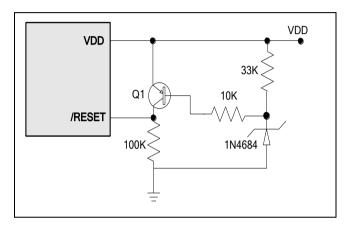


Figure 6-12a Circuit 1 for the Residue Voltage Protection

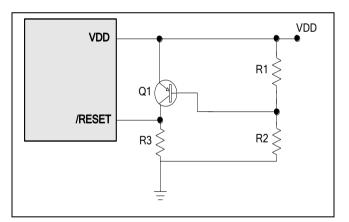


Figure 6-12b Circuit 2 for the Residue Voltage Protection

6.12 Code Option

6.12.1 Code Option Register (Word 0)

	Word 0														
Bit	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7 Bit 6		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Mnemonic	COBS	-	-	-	HLFS	-	LVR1	LVR0	RESETEN	ENWDT	NRHL	NRE	PR2	PR1	PR0
1	Code Option	High	High	High	Normal	High	High	High	P80/INT1	Disable	32/fc	Enable	Disable		е
0	Register	Low	Low	Low	Green	Low	Low	Low	/RESET	Enable	8/fc	Disable	Enable		е
Default	1	1	1	1	1	0	1	1	1	0	1	1		1	

Bit 14 (COBS): Code Option Bit Selection

- **0:** Control bits in Bank1 R4A, R4B, & R4C are read from **control register**.
- 1: Control bits in the Bank1 R4A, R4B, & R4C are read from **code option register** (default).

NOTE

When the IC powers on, IC latches the code option setting values first. Then, the values in code option words are determined to whether linked them with corresponding Control Registers Bank1 R4A~4C by setting COBS to "1" or "0". If COBS equals "0", the initial values in the Control Registers Bank1 R4A~4C are the same with the value in code option words. They can be modified later to any other values as you wish.

Bits 13~11: Not used. Set to "1" all the time.

Bit 10 (HLFS): Reset to Normal or Green Mode select bit

0: CPU is selected to enter into Green mode when a reset occurs.

1: CPU is selected to enter into Normal mode when a reset occurs. (Default)

Bit 9: Not used. Set to "0" all the time.

Bits 8~7 (LVR1~LVR0): Low Voltage Reset enable bit

LVR1, LVR0	VDD Reset Level	VDD Release Level
11	NA (Power-on	reset; default)
10	2.7V *	2.9V
01	3.5V**	3.7V
00	4.0V***	4.2V

^{*} If VDD < 2.7V and is kept for about 5us, IC will reset.

^{**} If VDD < 3.5V and is kept for about 5us, IC will reset.

^{***} If VDD < 4.0V and is kept for about 5us, IC will reset.

Bit 6 (RESETEN): P80/INT1/RESET pin select bit

0: Enable /RESET pin

1: Disable P80/INT1 pin (default)

Bit 5 (ENWDT): WDT Enable bit

0: Enable (default)

1: Disable

Bit 4 (NRHL): Noise Rejection High/Low pulse definition bit.

0: Pulses equal to 8/fc [s] is considered as valid signal

1: Pulses equal to 32/fc [s] is considered as valid signal (default)

Bit 3 (NRE): Noise Rejection Enable bit

0: Disable.

1: Enable (default)

NOTE

During Green, Idle, and Sleep modes, the Noise Rejection circuit is always disable.

Bits 2~0 (PR2 ~ PR0): Protect bit. Each protect status is as follows:

PR2	PR1	PR0	Protect
0	0	0	Enable
1	1	1	Disable

6.12.2 Code Option Register (Word 1)

	Word 1														
Bit	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Mnemonic	-	FSS	-	-	-	-	-	-	RCM1	RCM0	-	-	-	OSC0	RCOUT
1	High	16KHz	High	High	High	High	High	High	High	High	High	High	High	High	High
0	Low	64KHz	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low
Default	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1

Bit 14: Not used. Set to "1" all the time.

Bit 13 (FSS): Sub-frequency select bit

0: Fs is 64KHz

1: Fs is 16KHz (default)

NOTE

WDT frequency is always 16kHz regardless of the FSS setting.

Bits 12~7: Not used. Set to "1" all the time.

Bits 6~5 (RCM1~RCM0): IRC frequency selection

RCM1	RCM0	Frequency (MHz)
0	0	х
0	1	8 (default)
1	0	16
1	1	4

Bits 4~2: Not used. Set to "1" all the time.

Bit 1 (OSC0): Main-oscillator mode select bit

Main-Oscillator Mode	OSC0
IRC (Internal RC oscillator mode; default) RCOUT (P54) functions as I/O pin	1
IRC (Internal RC oscillator mode) RCOUT (P54) functions as clock output pin	0

Bit 0 (RCOUT): System Clock Output enable bit in IRC mode

0: OSCO pin is open drain

1: OSCO output instruction cycle time (default)

6.12.3 Code Option Register (Word 2)

	Word 2														
Bit	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Mnemonic	TAE	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	Type A	High	High	High	High	High	High	High	High	High	High	High	High	High	High
0	Type B	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low
Default	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1

Bit 14 (TAE): Touchpad Application Environment

Touchpad Application Environment	TAE
Type A	1
Type B	0

Bits 13~12: Not used. Set to "1" all the time.

Bits 11~8: Not used. Set to "1" all the time.

Bit 7: Not used. Set to "0" all the time.

Bits 6~0: Not used. Set to "1" all the time.

6.12.4 Code Option Register (Word 3)

	Word 3																
Bit	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Mnemonic	-	-	-	-	-	-	-	-	-	ID5	ID4	ID3	ID2	ID1	ID0		
1	High	High	High	High	High	High	High	High	High								
0	Low	Low	Low	Low	Low	Low	Low	Low	Low	Customer ID							
Default	1	1	1	1	1	1	1	1	1	-							

Bit 14: Not used. Set to "1" all the time.

Bits 13~8: Not used. Set to "1" all the time.

Bits 7~6: Not used. Set to "1" all the time.

Bits 5~0 (ID5~ID0): Customer's ID Code

6.13 Instruction Set

Each instruction in the instruction set is a 15-bit word divided into an OP code and one or more operands. Normally, all instructions are executed within one single instruction cycle (one instruction consists of 2 oscillator periods), unless the program counter is changed by instruction "MOV R2, A", "ADD R2, A", or by instructions of arithmetic or logic operation on R2 (e.g., "SUB R2, A", "BS(C) R2, 6", "CLR R2", etc·). In this case, the execution takes two instruction cycles.

If for some reasons, the specification of the instruction cycle is not suitable for certain applications, try modifying the instruction as follows:

• "LCALL", "LJMP", "JMP", "CALL", "RET", "RETL", "RETI", or the conditional skip ("JBS", "JBC", "JZA", "DJZ", "DJZA") commands which were tested to be true, are executed within two instruction cycles. The instructions that are written to the program counter also take two instruction cycles.

Moreover, the instruction set has the following features:

- 1) Every bit of any register can be directly set, cleared, or tested.
- 2) The I/O register can be considered as general register. That is; the same instruction can operate on I/O register.

■ Instruction Set Table:

In the following Instruction Set table, the following symbols are used:

- "R" represents a register designator that specifies which one of the registers (including operational registers and general purpose registers) is to be utilized by the instruction.
- "b" represents a bit field designator that selects the value for the bit which is located in the register "R", and affects operation.
- "k" represents an 8 or 10-bit constant or literal value.

Instruction Binary	Mnemonic	Operation	Status Affected
000 0000 0000 0000	NOP	No Operation	None
000 0000 0000 0001	DAA	Decimal Adjust A	С
000 0000 0000 0011	SLEP	0 → WDT, Stop oscillator	T,P
000 0000 0000 0100	WDTC	$0 \rightarrow WDT$	T,P
000 0000 0001 0000	ENI	Enable Interrupt	None
000 0000 0001 0001	DISI	Disable Interrupt	None
000 0000 0001 0010	RET	[Top of Stack] → PC	None
000 0000 0001 0011	RETI	[Top of Stack] → PC, Enable Interrupt	None
000 0001 rrrr rrrr	MOV R,A	$A \rightarrow R$	None
000 0010 0000 0000	CLRA	$0 \rightarrow A$	Z
000 0011 rrrr rrrr	CLR R	$0 \rightarrow R$	Z
000 0100 rrrr rrrr	SUB A,R	$R-A \rightarrow A$	Z,C,DC
000 0101 rrrr rrrr	SUB R,A	$R-A \rightarrow R$	Z,C,DC
000 0110 rrrr rrrr	DECA R	R-1 → A	Z
000 0111 rrrr rrrr	DEC R	R-1 → R	Z
000 1000 rrrr rrrr	OR A,R	$A \lor R \to A$	Z
000 1001 rrrr rrrr	OR R,A	$A \vee R \to R$	Z
000 1010 rrrr rrrr	AND A,R	$A \& R \rightarrow A$	Z
000 1011 rrrr rrrr	AND R,A	$A \& R \rightarrow R$	Z
000 1100 rrrr rrrr	XOR A,R	$A \oplus R \to A$	Z
000 1101 rrrr rrrr	XOR R,A	$A \oplus R \to R$	Z
000 1110 rrrr rrrr	ADD A,R	$A + R \rightarrow A$	Z,C,DC
000 1111 rrrr rrrr	ADD R,A	$A + R \rightarrow R$	Z,C,DC
001 0000 rrrr rrrr	MOV A,R	$R \rightarrow A$	Z
001 0001 rrrr rrrr	MOV R,R	$R \rightarrow R$	Z
001 0010 rrrr rrrr	COMA R	$/R \rightarrow A$	Z
001 0011 rrrr rrrr	COM R	$/R \rightarrow R$	Z
001 0100 rrrr rrrr	INCA R	$R+1 \rightarrow A$	Z
001 0101 rrrr rrrr	INC R	$R+1 \rightarrow R$	Z
001 0110 rrrr rrrr	DJZA R	$R-1 \rightarrow A$, skip if zero	None
001 0111 rrrr rrrr	DJZ R	$R-1 \rightarrow R$, skip if zero	None
001 1000 rrrr rrrr	RRCA R	$\begin{array}{c} R(n) \rightarrow A(n-1), \\ R(0) \rightarrow C, C \rightarrow A(7) \end{array}$	С

(Continuation)

Instruction Binary	Mnemonic	Operation	Status Affected
001 1001 rrrr rrrr	RRC R	$\begin{array}{c} R(n) \rightarrow R(n\text{-}1), \\ R(0) \rightarrow C, C \rightarrow R(7) \end{array}$	С
001 1010 rrrr rrrr	RLCA R	$R(n) \rightarrow A(n+1),$ $R(7) \rightarrow C, C \rightarrow A(0)$	С
001 1011 rrrr rrrr	RLC R	$\begin{array}{l} R(n) \to R(n+1), \\ R(7) \to C, C \to R(0) \end{array}$	С
001 1100 rrrr rrrr	SWAPA R	$R(0-3) \rightarrow A(4-7),$ $R(4-7) \rightarrow A(0-3)$	None
001 1101 rrrr rrrr	SWAP R	$R(0-3) \leftrightarrow R(4-7)$	None
001 1110 rrrr rrrr	JZA R	$R+1 \rightarrow A$, skip if zero	None
001 1111 rrrr rrrr	JZ R	$R+1 \rightarrow R$, skip if zero	None
010 0bbb rrrr rrrr	BC R,b	$0 \rightarrow R(b)$	None ¹
010 1bbb rrrr rrrr	BS R,b	$1 \rightarrow R(b)$	None ²
011 0bbb rrrr rrrr	JBC R,b	if R(b)=0, skip	None
011 1bbb rrrr rrrr	JBS R,b	if R(b)=1, skip	None
100 kkkk kkkk kkkk	CALL k	$PC+1 \rightarrow [SP],$ $(Page, k) \rightarrow PC$	None
101 kkkk kkkk kkkk	JMP k	$(Page, k) \rightarrow PC$	None
110 0000 kkkk kkkk	MOV A,k	$k \rightarrow A$	None
110 0100 kkkk kkkk	OR A,k	$A \lor k \to A$	Z
110 1000 kkkk kkkk	AND A,k	$A \& k \rightarrow A$	Z
110 1100 kkkk kkkk	XOR A,k	$A \oplus k \to A$	Z
111 0000 kkkk kkkk	RETL k	$k \to A$, [Top of Stack] $\to PC$	None
111 0100 kkkk kkkk	SUB A,k	$k-A \rightarrow A$	Z,C,DC
111 1100 kkkk kkkk	ADD A,k	$K+A \rightarrow A$	Z,C,DC
111 1010 0000 kkkk	SBANK k	K->R1(5:4)	None
111 1010 0100 kkkk	GBANK k	K->R1(1:0)	None
111 1010 1000 kkkk kkk kkkk kkkk kkkk	LCALL k	Next instruction: k kkkk kkkk kkkk PC+1→[SP], k→PC	None
111 1010 1100 kkkk kkk kkkk kkkk kkkk	LJMP k	Next instruction: k kkkk kkkk kkkk K→PC	None
111 1011 rrrr rrrr	TBRD R	$ROM[(TABPTR)] \rightarrow R$	None

This instruction is not recommended for interrupt status register operation.

If user wants to clear Bit 0 for interrupt status register (ex. 0xF), the method recommended is shown below:

MOV A, @0B11111110

AND 0xF,A

² This instruction cannot operate under interrupt status register.

7 Absolute Maximum Ratings

Items		Rating	
Temperature under bias	-40°C	to	85°C
Storage temperature	-65°C	to	150°C
Input voltage	Vss-0.3V	to	VDD+0.5V
Output voltage	Vss-0.3V	to	VDD+0.5V
Working Voltage	2.5V	to	5.5V
Working Frequency	DC	to	16 MHz

8 DC Electrical Characteristics

■ (Ta=25°C, VDD=5.0V±5%, VSS=0V)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fxt	IRC: VDD to 5.0 V	4MHz, 8MHz, 16MHz	-	F	-	Hz
IIL	Input Leakage Current for input pins	VIN = VDD, VSS	-1	0	1	μΑ
IRCE	Internal RC oscillator error per stage	-	-	±1	•	%
IRC1	IRC: VDD to 5.0V	RCM0:RCM1=1:1	-	4	-	MHz
IRC2	IRC: VDD to 5.0V	RCM0:RCM1=1:0	-	16	-	MHz
IRC3	IRC: VDD to 5.0V	RCM0:RCM1=0:1	-	8	-	MHz
IIL	Input Leakage Current for input pins	VIN = VDD, VSS	-1	0	1	μΑ
VIH1	Input High Voltage (Schmitt trigger)	Ports 5, 6, 7, 8	0.7Vdd	ı	Vdd+0.3V	>
VIL1	Input Low Voltage (Schmitt trigger)	Ports 5, 6, 7, 8	-0.3V	1	0.3Vdd	>
VIHT1	Input High Threshold Voltage (Schmitt trigger)	/RESET	0.7Vdd	ı	Vdd+0.3V	>
VILT1	Input Low Threshold Voltage (Schmitt trigger)	/RESET	-0.3V	ı	0.3Vdd	>
VIHT2	Input High Threshold Voltage (Schmitt trigger)	TCC,INT	0.7Vdd	ı	Vdd+0.3V	>
VILT2	Input Low Threshold Voltage (Schmitt trigger)	TCC,INT	-0.3V	-	0.3Vdd	V
IOH1	Output High Voltage (Ports 5, 6, 7, 8)	VOH = VDD-0.1VDD	-4.0	-5.5		mA
IOH2	Output High Voltage (high drive) (Ports 5, 6, 7, 8)	VOH = VDD-0.1VDD	-7.0	-8.0		mA

8-Bit Microcontroller

(Continuation)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
IOL1	Output Low Voltage (Ports 5, 6, 7, 8)	VOL = GND+0.1VDD	11	12	-	mA
IOL2	Output Low Voltage (high sink) (Ports 5, 6, 7, 8)	VOL = GND+0.1VDD	20	25	-	mA
IPH	Pull-high current	Pull-high active, input pin at VSS	-	-75	-80	μА
IPL	Pull-low current	Pull-low active, input pin at Vdd	-	40	60	μА
ISB1	Power down current (Sleep mode)	/RESET= 'High', Fm & Fs off. All input and I/O pins at VDD, output pin floating, WDT disabled	-	1.5	2.0	μА
ISB2	Power down current (Sleep mode)	/RESET= 'High', Fm & Fs off. All input and I/O pins at VDD, output pin floating, WDT enabled	-	5	-	μА
ISB3	Power down current (Idle mode)	/RESET= 'High', Fm off, Fs=64K/16kHz (IRC type), output pin floating, WDT disabled,	-	5	-	μА
ISB4	Power down current (Idle mode)	/RESET= 'High', Fm off, Fs=64K/16kHz (IRC type), output pin floating, WDT enabled	-	5	-	μА
ICC1	Operating supply current (Green mode)	/RESET= 'High', Fm off, Fs=64K/16kHz (IRC type), output pin floating, WDT disabled	-	30	-	μА
ICC2	Operating supply current (Green mode)	/RESET= 'High', Fm off, Fs=64K/16kHz (IRC type), output pin floating, WDT enabled	-	30	-	μА
ICC3	Operating supply current (Normal mode)	/RESET= 'High', Fm=4 MHz (IRC type), Fs on, output pin floating, WDT enabled	-	1.2	1.4	mA
ICC4	Operating supply current (Normal mode)	/RESET= 'High', Fm=8 MHz (IRC type), Fs on, output pin floating, WDT enabled	-	2.2	2.4	mA
ICC5	Operating supply current (Normal mode)	/RESET= 'High', Fm=16 MHz (IRC type), Fs on, output pin floating, WDT enabled	-	4.2	4.5	mA

NOTE

- The above parameters are theoretical values only and have not been tested or verified.
- Data under the "Min.", "Typ.", and "Max." columns are based on theoretical results at 25°C. These data are for design guidance only and have not been tested or verified.

8.1 DAC Electrical Characteristics

■ (Ta=25°C, VDD=5.0V, VSS=0V)

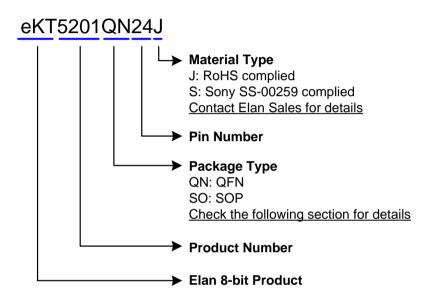
Symbol	Parameter	Conditions	Min.	Тур.	Max	Unit
Input Bits	Resolution	-	-	8	-	Bits
IDAC	Power consumpton	[7:0]=55H	-	1.25	2	mA
INL	Integral Nonlinearity	-	-	-	±3	LSB
DNL	Differential Nonlinearity	-	-	-	±2	LSB
PSRR	-	0 to 40kHz	-	50	-	dB
-	Converting Rate	-	-	-	256	kHz

9 AC Electrical Characteristics

■ (eKT52xx -40≤Ta≤85°C, VDD=5.0V, VSS=0V)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Dclk	Input CLK duty cycle	-	45	50	55	%
Tins	Instruction cycle time (CLKS=" 0 ")	RC type	500	-	DC	ns
Ttcc	TCC input period	-	(Tins+20)/N*	-	-	ns
Tdrh	Device reset hold time	-	11.3	16.2	21.6	ms
Trst	/RESET pulse width	Ta = 25°C	2000	-	-	ns
Twdt	Watchdog timer period	Ta = 25°C	11.3	16.2	21.6	ms
Tset	Input pin setup time	-	-	0		ns
Thold	Input pin hold time	-	15	20	25	ns
Tdelay	Output pin delay time	Cload=20pF	45	50	55	ns

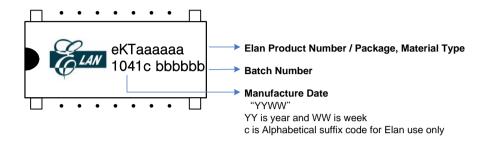
^{*} N: Selected prescaler ratio


NOTE

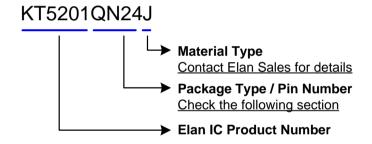
- The above parameters are theoretical values only and have not been tested or verified.
- Data under the "Min.", "Typ.", and "Max." columns are based on theoretical results at 25°C. These data are for design guidance only and have not been tested or verified.

APPENDIX

A Ordering and Manufacturing Information


For example:

eKT5201SO24S


Is eKT5201 with OTP program memory product, in 24-pin SOP 300mil package with Sony SS-00259 complied

IC Mark

Ordering Code

B Package Type

MCU	Package Type	Pin Count	Package Size
eKT5201QN24	QFN	24 pins	4x4x0.8 mm
eKT5201SO24	SOP	24 pins	300 mil
eKT5205SO24	SOP	24 pins	300 mil

These are Green products which do not contain hazardous substances and comply with the third edition of Sony SS-00259 standard.

The Pb contents are less than 100ppm and comply with Sony specifications.

Part No.	eKT52xxJ/S
Electroplate type	Pure Tin
Ingredient (%)	Sn: 100%
Melting point(°C)	232°C
Electrical resistivity (μΩ-cm)	11.4
Hardness (hv)	8~10
Elongation (%)	>50%

C Package Information

C.1 eKT52xxQN24

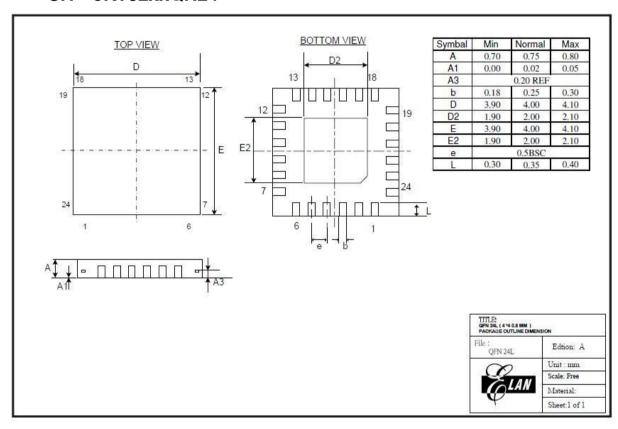


Figure C-1 eKT52xx 24-pin QFN Package Type

C.2 eKT52xxSO24

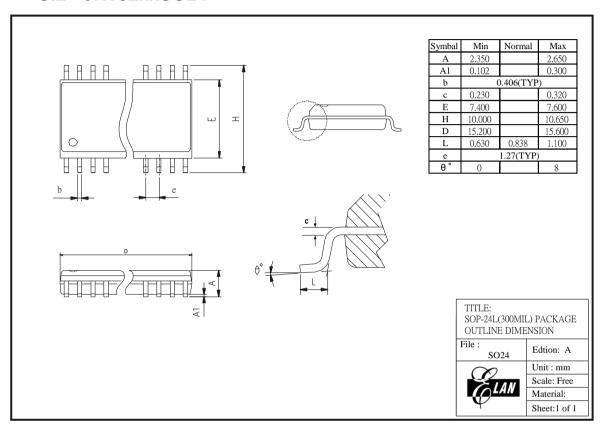


Figure C-2 eKT52xx 24-pin SOP Package Type

D Quality Assurance and Reliability

Test Category	Test Conditions	Remarks
Solderability	Solder temperature=245 \pm 5°C, for 5 seconds up to the stopper using a rosin-type flux	-
	Step 1: TCT, 65°C (15 min)~150°C (15 min), 10 cycles	
	Step 2: Bake at 125°C, TD (endurance)=24 hrs	
	Step 3: Soak at 30°C/60% , TD (endurance)=192 hrs	
Pre-condition	Step 4: IR flow 3 cycles (Pkg thickness \geq 2.5 mm or Pkg volume \geq 350 mm ³ 225 \pm 5°C) (Pkg thickness \leq 2.5 mm or Pkg volume \leq 350 mm ³ 240 \pm 5°C)	For SMD IC (such as SOP, QFP, SOJ, etc)
Temperature cycle test	-65°C (15 min)~150°C (15 min), 200 cycles	-
Pressure cooker test	TA =121°C, RH=100%, pressure=2 atm, TD (endurance)= 96 hrs	-
High temperature / High humidity test	TA=85°C , RH=85% , TD (endurance) = 168 , 500 hrs	-
High-temperature storage life	TA=150°C, TD (endurance) = 500, 1000 hrs	-
High-temperature operating life	TA=125°C, VCC = Max. operating voltage, TD (endurance) = 168, 500, 1000 hrs	-
Latch-up	TA=25°C, VCC = Max. operating voltage, 150mA/20V	-
ESD (HBM)	TA=25°C, ≥ ± 4KV	IP_ND,OP_ND,IO_ND IP_NS,OP_NS,IO_NS IP_PD,OP_PD,IO_PD,
ESD (MM)	TA=25°C, ≥ ± 400V	IP_PS,OP_PS,IO_PS, VDD-VSS(+),VDD_VSS (-) mode

D.1 Address Trap Detect

An address trap detect is one of the MCU embedded fail-safe functions that detects MCU malfunction caused by noise or the like. Whenever the MCU attempts to fetch an instruction from a certain section of ROM, an internal recovery circuit is auto started. If a noise-caused address error is detected, the MCU will repeat execution of the program until the noise is eliminated. The MCU will then continue to execute the next program.

