|

780-CPU

Z80A-CPU
‘Technical Manual

Price: $7.50
03-0029-01

Copyright© 1977 by Zilog, Inc. All rights resarved. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted,
" in any form or by any means, electronic, mechsnical, photocopying,
recording, or otherwise, without the prior written permission of Ziiog.

Zilog assumes no respansibility for the use of any circuitry other than
circuitry embodied in a Zitog product. No other circuit patent licenses
are imphied,

Reader’'s Comments

Your feedback about this document helps us ascertain your needs and fulfill them in the huture. Please
take the time to fill out this questionaire and return it to us. This information will be helpful tous and, in
time, to fuiure users of Zilog preducts.

Your Name:

Company Name:

Address:

Title of this document:

Brietly describe application:

Does this publication meet yourneeds? [Yes (O No Ifnot, why not?

How are you using this publication?
O As an iniroduction to the subject?
0 As a reference manual?

0 As an instructor or student?

How do you find the material?

Excellent Good Poor
Technicality ([D. d
Organization O O O
Completeness O O]

What would have improved the material?

Other comments and suggestions:

If you found any mistakes in this document, please let us know what and where they are:

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII AR N AN S SN SRS EE NSRS AN AE SN RE AR ESASAR MMM RS AAS e EA N EPPFRARAR A EF R R RS TRER N FEREER

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 475 CUPERTING, CA

POSTAGE WILL BE PAID BY

Zilog
Publications Department
Semiconductor Division

- 10341 Bubb Reoad
Cupertino, California 95014

Chapter

1.0

20

30

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

TABLE OF CONTENTS

Introduction
ZB0-CPU Architecture

Z80-CPU Pin Description
CPUTiming « . v v v« ..

Z80-CPU Instruction Set e e .

Interrupt Response~
Hardware Implementation Examples

Softwar§ Implementation Examples
Electrical Specifications ., e e e e

Z80-CPU Instruction Set Summary

.1

. 19

. 39

. 43

. 55

59

. 63

.69

.73

1.0 INTRODUCTION '

The term “microcomputer’ has been used to describe virtually every type of small computing device
designed within the last few years. This term has been applied to everything from simple “microprogram-
med” conirollers constructed out of TTL MSI up to low end minicomputers with a portion of the CPU
constructed out of TTL LSI “bit slices.” However, the major impact of the LSI technology within the last
few years has been with MOS LS1. With this technology, it is possible to fabricate complete and very power-
ful computer systems with only a few MOS LSI components,

The Zilog Z-80 family of components is a significant advancement in the state-of-the art of micro-
computers. These components can be configured with any type of standard semiconducior memory to
generate computer systems with an extremely wide range of capabilities. For example, as few as two LSI
circuits and three standard TTL MSI packages can be combined to form a simple controller. With additional
memory and 1/O devices a compuler can be constivcted with capabilities that only a minicomputer could
previously deliver. This wide range of computational power allows standard modules to be constructed by a
user that can satisty the requirements of an extremely wide range of applications.

The major reason for MOS LSI domination of the microcomputer market is the low cost of
these tew LSI components, For example, MOS LSI microcomputers have already replaced TTL logic in
such applications as terrninal controllers, peripheral device controllers, traffic signal controllers, point of
sale terminals, intelligent terminals and test systems. In fact the MOS LS] microcomputer is finding its way
into almost every product that now uses electronics and it is even replacing many mechanical systems such
as weight scales and automobile controls.

The MOS LS] microcomputer market is already well established and new products using them are
being developed at an extraordinary rate, The Zilog Z-80 component set has been designed to fil into
this market through the following factors:

1. The Z-80 is fully software compatible with the popular 8080A CPU offered from several scurces.
Existing designs can be easily canverted to include the Z-80 as a superior alternative.

2. The Z-80 component set is superior in both software and hardware capabilities to any other micro-
computer system on the market. These capabilities provide the user with significantly lower hardware
and software development costs while also allowing him ta offer additional features in his system,

3. For increased throughput the Z80A vperating at a 4 MHZ clock rate offers the user significant speed
advantages over competitive products.

4. A complete product line including full software support with strong emphasis on high level languages
and a disk-based development system with advanced real-time debug capabilities is offered to enable
the user to easily develop new products.

Microcomputer systems arc extremely simple to construct using Z-80 components. Any such system
consists of three parts:

1. CPU (Central Processing Unit)
2. Memory
3. Interface Circuits to peripheral devices

The CPU is the heart of the system, Its function is to obtain instructions from the mermory and perform

the desired operations, The memory is used 1o contain instructions and in most cases data that is to be
processed, For example, a typical instruction sequence may be to read data from a specific peripheral
device, store it in a location in memory, check the parity and write it out to another peripheral device. Note
that the Zilog component set includes the CPU and various general purpose IO device controllers, while a
wide range of memory devices may be used from any source. Thus, all required components can be
connected together in a very simple manner with virtually no other external logic. The user’s effort then
becomes primarily one of software development. That is, the user can concentrate on describing his prob-
lem and translating it into a series of instructions that can be loaded into the microcomputer memory . Zilog
is dedicated to making this step of software generation as simple as possible. A good example of this is our

assembly language in which a simple mnemonic is used to represent every instruction that the CPU can
perform. This language is self documenting in such a way that from the mnemonic the user can understand
exactly what the instruction is doing without constantly checking back to a complex cross listing.

2.0 Z-80 CPU ARCHITECTURE

A block diagram of the internal architecture of the Z-80Q CPU is shown in figure 2.0-1. The diagram
shows all of the major elements in the CPU and it should be referred to throughout the following
description.

8-BIT
DATA BUS

DATA BUS
CONTROL

INST. {}
K REG < INTERNAL DATA BUS > ALY

INSTRUCTION
DECODE
<>
3 CcPL

CONTROL CPL

CPU AND

SYSTEM CPU REGISTERS

CONTROL CONTROL

SIGNALS

ADDRESS
CONTROL

5V GND & 1EBIT
ADDRESS BUS

Z-80 CPU BLOCK DIAGRAM
FIGURE 2.0-1

2.1 CPU REGISTERS

The Z-80 CPU contains 208 bits of R/W memaory that are accessible to the programmer. Figure 2.0-2
illustrates how this memory is configured into eighteen 8-bit registers and four 16-bit registers. All Z-80
registers are implemented using static RAM. The registers include two sets of six general purpose registers
that may be used individuatly as 8-bit registers or in pairs as 16-bit registers. There are also two sets of
accumulator and flag registers.

Special Purpose Registers

1. Program Counter (PC). The program counter holds the 16-bit address of the current instruction being
fetched from memory. The PC is automatically incremented after its contents have been transferred
to the address lines, When a program jumgp occurs the new value is automatically placed in the PC,
overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current top of a stack located
anywhere in external system RAM memory, The external stack memory is organized as a last-in first-
out (LIFQ) file. Data car be pushed onto the stack from specific CPU registers or popped off of the
stack into specific CPU registers through the execution of PUSH and POP instructions. The data
popped from the stack is always the last data pushed onto it. The stack allows simple implementation
of multiple level interrupts, unlimited subroutine nesting and simplification of many types of data
manipulation,

MAIN REG SET ALTERNATE REGSET

A N
=
AGCUMULATOR FLAGS ACCUMULATOR FLAGS
A F A F
B c B’ c
GENERAL
D E o E' PURPOSE
. REGISTERS
H L H v
INTERRUPT MEMORY
VECTOR REFRESH
1 R
INDEX REGISTER X
SPECIAL
FURFOSE
INDEX REGISTER |Y REGISTERS
STACK POINTER SP
PROGRAM COUNTER PC

Z-80 CPU REGISTER CONFIGURATION
FIGURE 2.0-2

3. Two Index Registers (IX & IY). The two independent index registers hold a F6-bit base address that
is used in indexed addressing modes. In this mode, an index register is used as a base to point to a
region in memory from which data is to be stored or retrieved. An additional byte is included in
indexed instructions to specify a displacement from this base. This displacement is specified as a two's
complement signed integer, This made of addressing greatly simplifies many types of programs,
especially where tables of data are used,

4. Interrupt Page Address Register (I). The Z-80 CPU can be operated in a mode where an indirect call
to any memory location can be achieved in response to an interrupt. The I Register is used for this
purpose to store the high order 8-bits of the indirect address while the interrupting device provides the
lower 8-bils of the address. This feature allows interrupt routines to be dynamically located anywhere
in memory with absolute minimal access time to the routine.

5. Memory Refresh Register (R). The Z-80 CPU contains a memory refresh counter to enable dynamic

memorics to be used with the same ease as static memories. Seven bits of this 8 bit register are auto-
- matically incremented after each instruction fetch. The eighth bit will remain as programmed as the

result of an LD R, A instruction. The data in the refresh counter is sent out on the lower portion of
the address bus along with a refresh control signal while the CPU is decoding and executing the fetched
instruction. This mode of refresh is totally transparent to the programmer and does not slow down the
CPU operation, The programmer can load the R register for testing purposes, but this register is normally
not used by the programmer, During refresh, the contents of the 1 register are placed on the upper 8 bits of
the address bus.

Accumulbator and Flag Registers

The CPU includes two independent 8-bit accumulators and associated 8-bit flag registers. The accurnu-
lator holds the results of 8-bit arithmetic or logical operations while the flag register indicates specific
condijtions for 8 or 16-bit operations, such as indicating whether or not the result of an operaticn is equal
to zero, The programmer selects the accumulator and {lag pair that he wishes to work with with a single
exchange instruction so that he may easily work with either pair.

General Purpose Registers

There are two matched sets of general purpose registers, each set containing six 8-bit registers that
may be used individually as 8-bit registers or as 16-bit register pairs by the programmer. One set is called
BC, DE and HL while the complementary set is called BC’, DE’ and HL". At any one time the programmer
can select either set of registers to work with through a single exchange command for the entire set. In
systems where fast interrupt response is required, ane set of general purpose registers and an accumulator/
flag register may be reserved for handling this very fast routine. Only a simple exchange commands need be
executed to go between the routines, This greatly reduces interrupt service time by eliminating the require-
ment for saving and retrieving register contents in the external stack during interrupt or subroutine process-
ing. These general purpose registers are used for a wide range of applicalions by the programmer. They also
simplify programming, especially in ROM based systems where little external read/write memory is
available.

2.2 ARITHMETIC & LOGIC UNIT (ALU)

The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU. Internalty the ALU
commupicates with the registers and the external data bus on the internal data bus. The type of functions
performed by the ALU include:

Add Left or right shifts of rotates {arithmetic and logical)
Subtract Increment

Logical AND Decrement -

Logical OR Set bit

Logical Exclusive OR Reset bit

Compare Test bit

2.3 INSTRUCTION REGISTER AND CPU CONTROL

As each instruction is fotched from memory, it is placed in the instruction register and decoded, The
control sections performs this function and then generates and supplies all of the cantrel signals necessary
to read or write data from or to the registers, control the ALU and provide all required external control
signals.

~BLANK-

3.0 2Z2-80 CPU PIN DESCRIPTION

The Z-80 CPU is packaged in an industry standard 40 pin Dual In-Line Package. The I/O pins are shown
in figure 3.0-1 and the function of each is described below.

27 30
™, " k] %o
! | 31 A,
MREQ --—1§— L-.. A2
SYSTEM IORG -2 — — Az
= 21 34
CONTROL) AD -] 3 e Ay
WH ..-,—22_ _3_5__.. Ag
36 Ao
RFSH] Y- A ADDRESS
L Ag ’ BUS
HALT —-—o | 39 o Ag
L A'ID
AT — -—;—-- Aqy
CPU _ 16 2-80 CPU — ™ A
CONTHOLﬁ inT — ——— = A3
i — 1 | 1 e Al
2 L A5/
RESET ——
CPU I Te 25
BUS BUSRQ —E—p
CONTROL | BUSAK ~e———| “
. 15 %
6 12 21
) t——— D
; 1 8 .
+6Y T *‘?—b e DATA
GND =~ — g - D, BUS
1: Ps
g——m= DOy
13
fonp————=- D
Z-80 PIN CONFIGURATION
FIGURE 3.0-1
AgAs Tri-state output, active high. AO'AIS constitute a 16-hit address bus. The
(Address Bus) address bus provides the address for memory (up to 64K bytes) data
exchanges and for [fO device data exchanges. /O addressing uses the 8 lower
address bits to allow the user te directly select up to 256 input or 256 output
ports. Aq is the least significant address bit. During refresh time, the lower
7 bits contain a valid refresh address.
Dy D7 Tri-state input/output, active high. Dg-Dy constitute an 8-bit bidirectional
(Data Bus) ' data bus. The data bus is used for data exchanges with memory and 1O
devices.
Hl Output, active low.ﬁl indicates that the current machine cycle is the OP

code fetch cycle of an instruction execution. Note that during execution
of 2-byte op-codes, M1 is generated as each op code byte is fetched. These
two byte op-codes always begin with CBH, DDH, EDH or FDH. M} also
occurs with {ORQ to indicate an interrupt acknowledge cycle.

(Machine Cycle one)

MREQ Tri-state output, active low. The memory request signal indicates that the
(Memory Request) address bus holds a valid address for a memory read or memory write
operation.

IORQ
{Input/Output Request)

RD
(Memory Read)

WR
(Memory Write)

RFSH
(Refresh)

HALT
(Halt state)

WAIT
(Wait)

INT
(Interrupt Request)

NMI

{Non Maskable
Interrupt}

Tri-state output, active low, The IORQ signal indicates that the lower half of
the address bus holds a valid IfO address for a I/O read or write operation. An
IORQ signal is alsc generated with an M1 signal when an interrupt is being
acknowledged to indicate that an interrupt response vector can be placed on
the data bus. Interrupt Acknowledge operations occur during M, time while
1/0 operations never occur during M, time,

Tri-state output, active low. RD indicates that the CPU wants to read data
from memory or an /O device. The addressed I/Q device or memory should
use this signal to gate data onto the CPU data bus,

Tri-state output, active low. WR indicates that the CPU data bus holds valid
data to be stored in the addressed memory or [/O device,

Output, active low. RFSH indicates that the lower 7 bits of the address
bus contain a refresh address for dynamic memories and the current MREQ
signal should be used te do a refresh read to all dynamic memories.

Qutput, active low. HALT indicates that the CPU has executed a HALT soft-
ware instruction and is awaiting either a non maskable or a maskable inter-
rupt (with the mask enabled) before operation can resume. While halted, the
CPU executes NOP’s to maintzin memory refresh activity.

Input, active low. WAIT indicates to the Z-80 CPU that the addressed
memory ot I/O devices are not ready for a data transfer. The CPU continues
to enter wait states for as long as this signal is active. This signal allows
memory or [/O devices of any speed to be synchronized to the CPU.

Input, active low, The Interrupt Request signal is generated by I/O devices. A
request will be honored at the end of the current instruction if the:internal
software controlled interrupt enable flip-flop {IFF) is enabled and if the
BUSRQ signal is not active. When the CPU accepts the interrupt, an acknowl-
edge signal (IORQ during M time) is sent out at the beginning of the next
instruction cycle. The CPU can respond to an interrupt in three different
modes that are described in detail in section 5.4 (CPU Control Instructions).

Input, negative edge triggered. The non maskable interrupt request line has a
higher priority than INT and is always recognized at the end of the current
instruction, independent of the status of the interrupt enable flip-flop. NMI
automatically forces the Z-80 CPU to restart to location 0066p7. The program
counter is automatically saved in the external stack so that the user can return
to the program that was interrupted. Note that continuous WAIT cycles can
prevent the current instruction from ending, and that a BUSRQ will override
a NMI.

RESET

BUSRQ
{(Bus Request)

BUSAK
(Bus Acknowledge)

Input, active low. RESET forces the program counter to zero and initializes
the CPU. The CPU initialization includes:

1) Disable the interrupt enable flip-flop
2) Set Register I = 00y

3) Set Register R =00y

4y Set [nterrupt Mode O

During reset time, the address bus and data bus go to a high impedance state
and all control output signals go to the inactive state.

Input, active low. The bus request signal is used to request the CPU address

. bus, data bus and tri-state output contro! signals to go to a high impedance

state so that other devices can conirol these buses. When BUSR() is activated,
the CPU will set these buses to a high impedance state as soon as the current

CPU machine cycle is terminated.

Output, active low. Bus acknowledge is used to indicate to the requesting
device that the CPU address bus, data bus and tri-state control bus signals
have been set to their high impedance state and the external device can now
control these signals,

Single phase TTL level clock which requires only a 330 ohm pull-up resistor
to +5 volts to meet all clock requirements.

-BLANK-

-10-

40 CPU TIMING

The Z-80 CPU executes instructions by stepping through a very precise set of a few basic operations.
These include:

Memory read or write
I/O device read or write

Interrupt acknowledge

All instructions are merely a series of these basic operations. Each of these basic operations can take from
three to six clock periods to complete or they can be lengthened to synchronize the CPU to the speed of
external devices. The basic clock periods are referred to as T cycles and the basic operations are referred to
as M (for machine) cycles. Figure 4.0-0 illustrates how a typical instruction will be merely a series of
specific M and T cycles. Notice that this instruction consists of three machine cycles (M1, M2 and M3). The
first machine cycle of any instruction is a fetch cycle which is four, five or six T cycles long (unless length-
" ened by the wait signal which will be fully described in the next section}. The fetch cycle (M1) is used to
fetch the OF code of the next instruction to be executed. Subsequent machine cycles move data between
the CPU and memory or [/O devices and they may have anywhere from three to five T cycles (again they
may be lengthened by wait states te synchronize the external devices to the CPU). The following para-
graphs describe the timing which occurs within any of the basic machine cycles. In section 7, the exact
timing for each instruction is specified.

Machine Cyele
M1 I M2 T fz
{OP Code Fetch} IMemory Read) IMemory Write}

Instruction Cycle

BASIC CPU TIMING EXAMPLE
FIGURE 4.0-0

All CPU timing can be broken down into a few very simple timing diagrams as shown in figure 4.0-1
through 4 0-7, These diagrams show the following basic operations with and without wait states (wait states
are added to synchronize the CPU to siow memory or [/O devices).

4.0-f. Instruction OP code fetch (M1 cycle)

4.0-2. Memory data read or write cycles

4.0-3. 1O read or write cycles

4.04. Bus Request/Acknowledge Cycle

40-5. Interrupt Request/Acknowledge Cycle

40-6, Nonmaskable Interrupt Request/Acknowledge Cycle
40-7. Exit from a HALT instruction

INSTRUCTION FETCH

Figure 4.0-1 shows the timing during an M1 cycle (OP code fetch). Notice that the PC is placed on the
address bus at the beginning of the M1 eycle. One half clock time later the MREQ signal goes active, At this
time the address to the memory has had time to stabilize so that the falling edge of MREQ can be used
directly as a chip enable clock to dynamic memories. The RD line also goes active to indicate that the
memory read data should be enabled onto the CPU data bus. The CPU samples the data from the memory on.
the data bus with the rising edge of the clock of state T3 and this same edge is used by the CPU to turn off
the RD and MRQ signals. Thus the data has zlready been sampled by the CPU before the RD signal becomes
inactive. Clock state T3 and T4 of a fetch cycle are used to refresh dynamic memories. (The CPU uses this
time to decode and execute the fetched instruction so that no other operation could be performed at this
time). During T3 and T4 the lower 7 bits of the address bus contain a memory refresh address and the RFSH
signal becomes active to indicate that a refresh read of all dynamic memories should be accomplished. Notice
that a RD signal is not generated during refresh time to prevent data from different memory segments from
being gated onto the data bus. The MREQ signal during refresh time should be used to perform a refresh read
of all memory elements. The refresh signal can not be used by itself since the refresh address is only guaran-
teed to be stable during MREQ time.

M1 Cycle
T T2 T3 Ta T

* - \ \ \ \ \
AD ~ A5 1 pL 1 REFRESH ADDR. 1
WMREQ \ 1 T 1\
"B T\ /
LS I B W S N S
i A i | L _
DBO ~ D7 {w]}
RFSh 1 |

INSTRUCTION OP CODE FETCH
FIGURE 4.0

Figure 4.0-1 A illustrates how the fetch cycle is delayed if the memory activates the WAIT line. Dur-
ing T2 and every subsequent Tw, the CPU samples the WAIT line with the falling edge of ®. If the WAIT
line is active at this time, anolher wait state will be entered during the following cycle. Using this technique
the read cycle can be lengthened to match the access time of any type of memory device.

12

. " Gy J

T4 Ty T T T3 Ts
U i W s VY s WY s VY s U mn
AD ~ A5 Y PC] REFRESHADDR, 1
wRea | L I\ |
AD T /
i N f
L2 S OO A S JMUO R Y JV U N S Y A
AFSH [

INSTRUCTION OP CODE FETCH WITH WAIT STATES
FIGURE 4.0-1A

MEMORY READ OR WRITE

Figure 4.0-2 illustrates the timing of memeory read or write cycles other than an OP code fetch (M1
cycle). These cycles are generally three clock periods long unless wait states are requested by the memory
via the WAIT signal, The MREQ signal and the RD signal are used the same as in the fetch cycle. In the case
of a memory write cycle, the MREQ also becomes active when the address bus is stable so that it can be
used directly as a chip enable for dynamic memories. The WR line is active when data en the data bus is
stable so that it can be used directly as a R/W pulse to virtually any type ol semiconductor memory.
Furthermore the WR signal goes inactive one half T state before the address and data bus contents are
changed so that the overlap requirements for virtually any type of semiconductor memaory type will be met,

o M y Read Cycle ———————ont———— —— Wlemory Write Cycle ———————=
T1 Tz T3 T1 TZ T3
—
" — \ \ 1 \ \ \
AQD -~ A5 H MEMORY ADDR. 1 MEMORY ADDR. 1

AREG —\ T 1T
5 o \ f
wR U A

DATA BUS Iy { DATA OUT |__
(Do~ 07} — L

war L U T T T T

MEMORY READ OR WRITE CYCLES
FIGURE 4.0-2

Figure 4.0-2A illustrates how a WAIT request signal will lengthen any memory read or write opera-
tion. This operation is identical to that previously described for a fetch cycle. Notice in this figure that a
separate read and a separate write cycle are shown in the same figure although read and write cycles can
never occur simultaneously.

Ty Ty Tw Tw T3 T
* — k 1 1 k h l

AQ ~ A15 WMEMORY ADDR. 1

MREQ \
RD \

I }READ

CYCLE
DATA BUS i
DO~ 07} I

wh 1 / }WRITE
DATABUS | [DATA OUT b

(DG~ 07}

war 1 I T AN Y ZNS) Y W SO O S

MEMORY READ OR WRITE CYCLES WITH WAIT STATES
FIGURE 4.0-2A

INPUT OR OUTPUT CYCLES

Figure 4.0-3 illustrates an /O read or I/Q write operation, Notice that during I/Q operations a single
wait state is automatically inserted. The reason for this is that during IfO operations, the time from when
the IORQ signal goes active until the CPU must sample the WAIT line is very short and without this extra
state sufficient time does not exist for an I/O port to decode its address and activate the WAIT line if a wait
is required. Also, without this wait state it is difficult to design MOS [/O devices that can operate at full
CPU speed. Durlng this wait state time the WAIT request signal is sampled. During a read I/O operation,
the RD line is used to enable the addressed port onto the data bus just as in the case of a memory read. For
I/O write operations, the WR line is used as a clock to the I/O port, again with sufficient overlap timing
automatically provided so that the rising edge may be used as a data clock,

Figure 4.0-3A illustrates how additional wait states may be added with the WAIT line. The operation
is identical to that previously described,

BUS REQUEST/ACKNOWLEDGE CYCLE

Figure 4.04 illustrates the timing for a Bus Request/Acknowledge cycle. The BUSRQ signal is
sampled by the CPU with the rising edge of the last clock period of any machine cycle. If the BUSRQ
signal is active, the CPU will set its address, data and tri-state control signals to the high impedance state
with the rising edge of the next clock pulse. At that time any external device can control the buses 1o
transfer data between memory and 1/O devices. (This is generally known as Direct Memory Access [DMA]
using cycle stealing). The maximum time for the CPU to respond to a bus request is the length of a machine
cycle and the external controller can maintain control of the bus for as many clock cycles as is desired.
Note, however, that if very long DMA cycles are used, and dynamic memories are being used, the external
controller must also perform the refresh function, This situation only occurs if very large blocks of data are
transferred under DMA control. Also note that during a bus request cycle, the CPU cannot be interrupted
by either a NMI or an INT signa,

14

L i

AD ~ A7

I0RQ
DATA BUS
RD

WasT

DATA BUS

T1 Tz TW‘ T3 T1
P — \ \ i 1 |
AQ ~ AT 1 PORT ADDRESS H
ioRa 1 g
RD _\ J Read
Cyele
DATA BUS —{Tin}
LS IV I N A U IS I
WR " 'I }Wrile
)
DATA BUS ——fm——of ouT —— Grele
INPUT OR OUTPUT CYCLES
FIGURE 4.0-3
T T2 To* T T3
— \ \ \ \ | [
H PORT ADDRESS
\ f
s
LN READ
e [CYCLE
\ f
—i our — WRITE
CYCLE
v f

INPUT OR QUTPUT CYCLES WITH WAIT STATES

FIGURE

* Automatically inserted WAIT state

4.0-3A

Any M Cycle . g Bus Availahle States ———————gs=)
Last T State T Ty Ty T

& — \ | AR W \ \ \
BUSROQ 1 f /

Sample % Sample
BUSAK ! [
A0~ A5 s et &
Do~ D7 _— _...._....._._....-....____-_(::

REQ, RO, _]

WH, [O#G, Floating :
AFS

BUS REQUEST/ACKNOWLEDGE CYCLE
FIGURE 4.0-4

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

Figure 4.0-5 illustrates the timing associated with an interrupt cycle. The interrupt signal (ﬁ) is

sampled by the CPU with the rising edge of the last clock at the end of any instruction. The signal will not be

accepted if the internal CPU software controlled interrupt enable flip-flop is not set or if the BUSRQ signal

is active, When the signal is accepted a special M1 cycle is generated. During this special M1 cycle the [ORQ

signal becomes active {instead of the normal MREQ}) to indicate that the interrupting device can place an
8-bit vector on the data bus. Notice that two wait states are avtomatically added to this cycle. These states
are added so that a ripple priority interrupt scheme can be easily implemented. The two wait states allow
sufficient time for the ripple signals to stabilize and identify which [fO device must insert the response
vector, Refer to section 8.0 for details on how the interrupt response vector is utilized by the CPU.

Last M Cycle

T ofInstruction B Ml

Last T State T T, T T, Ts
0 — i \ T\ [\ 1\ \ 1
W TN e e T T T T
A0~ A15 1 pC | REFRESH
mi \ —
MREQ |
IORG \
DATA BUS {"in}
war | Ty C
RD

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE
FIGURE 4.0-5

16

Figures 4.0-5A and 4.0-5B illustrate how a programmable counter can be used to extend interrupt
acknowledge time. (Configured as shown to add one wait state)

TORQ I\
L eveTey
l/ 7432 I0RC
To
— PERIPHERAL!
WAIT
7432 o—
{TQ CPU}
74504 | l
M O0—O0| LoaD DN/UP 6

7ats191 opb—0 74504
7032 Jo—o
® o 1l 4 B8 ¢ D _
M —0
74504
L- L—o

8]

Q

o

+5V ——AAN—

EXTENDING INTERRUPT ACKNOWLEDGE TIME WITH WAIT STATE
FIGURE 4.0-5A

LAST T STATE OF AUTOMATIC WAIT
LAST M CYCLE OF X % USER WAIT
INSTRUCTION . . |
T | Ty | Tw | Ty l Ty ‘ T3
* /S N/ N/ N_ T\ /) W R N
W=\ l ————
Ag-Agg » X
Mi Y /
ORG N\ /
IORQ’ Y /
DATA BUS {)
wWan L L) e e e NS\
NORMAL ACKNOWLEDGE
TIME
ACKNOWLEDGE TIME WITH ONE
ADDITIONAL WAIT STATE

REQUEST/ACKNOWLEDGE CYCLE WITH ONE ADDITIONAL WAIT STATE
FIGURE 4.0-5B

17

NON MASKABLE INTERRUPT RESPONSE

Figure 4.0-6 illustrates the request/acknowledge cycle for the non maskable interrupt. This signal is
sampled at the same time as the interrupt line, but this line has priority over the normal interrupt and it can
not be disabled under software control. Its usual function is to provide immediate response to important
signals such as an impending power failure. The CPU response to a non maskable interrupt is similar to a
normal memory read operation. The only difference being that the content of the data bus is ignored while
the processor automatically stores the PC in the external stack and jumps to location 0066y. The service
routine for the non maskable interrupt must begin at this location if this interrupt is used.

HALT EXIT

Whenever a software halt instruction is executed the CPU begins executing NOP’s unti] an interrupt is
received (either a non maskable or a maskable interrupt while the interrupt flip flop is enabled). The two
interrupt lines are sampled with the rising clock edge during each T4 state as shown in figure 4.0-7. If a non
maskable interrupt has been received or a maskable interrupt hasbeen received and the interrupt enable
flip-flop is set, then the halt state will be exited on the next rising clock edge. The following cycle will then
be an interrupt acknowledge cycle corresponding to the type of interrupt that was received. If both are
received at this time, then the non maskable one will be acknowledged since it has highest priority. The
purpose of executing NOP instructions while in thé halt state is to keep the memory refresh signals active.
Each cycle in the halt state is a normal M1 (fetch) cycle except that the data received from the memory is
ignored and a NOP instruction is forced internally to the CPU. The halt acknowledge signal is active during
this time to indicate that the processor is in the halt state,

Last M Cyele B Mi
Last T Time T, Ty Ty Ta T
* S A N | J \ \ U R U
LN ISR U A i RO [N A [N I A
AD ~ A15 1 PC 1 REFRESH]
i \ {
MAEQ \ / ___J
Ao \ /o
RFSH v i
NON MASKABLE INTERRUPT REQUEST OPERATION
FIGURE 4.0-6
M -t et M1 -t M
Ta T Tz Ta Ta T Tz
EN — l l \ \ ‘l __I L
B \ i
Wi — | \ _ _ [
T
HALT INSTRUCTION
1S RECEIVED
DURING THIS HALT EX'T
MEMORY CYCLE FIGURE 4.0-7

18

50 Z-80 CPU INSTRUCTION SET

The Z-80 CPU can execute 158 different instruction types including all 78 of the 8080A CPU.
The instructions can be broken down into the following major groups:

Load and Exchange

Block Transfer and Search
Arithmetic and Logical

Rotate and Shift

Bit Manipulation (set, reset, test)
Jump, Call and Return
Input/Output

Basic CPU Control

INTRODUCTION TO INSTRUCTION TYPES

o
-

The load instructions move duta intemally between CPU registers or between CPU registers and exter-
nal memory. All of these instructions must specify a source location from which the data is to be moved
and a destination location. The source location is not altered by a load instruction. Examples of
load group instructions include moves between any of the general purpose registers such as move the data
to Register B from Register C. This group alse includes load immediate to any CPU register or to any
external memory lecation, Other types of load instructions allow transfer between CPU registers and
memory locations. The exchange instructions can trade the contents of two registers.

A unique set of block transfer instructions is provided in the Z-80. With a single instruction a
block of memory of any size can be moved to any other location in memeory. This set of block moves
is extremely valuable when large strings of data must be processed. The Z-80 block search instructions
are also valuable for this type of processing. With a single instruction, a block of external memary
of any desired length can be searched for any 8-bit character. Once the character is found or the end of the
block is reached, the instruction automatically terminates. Both the block transfer and the block search
instructions can be interrupted during their execution so as to not oceupy the CPU for long periods of time.

The arithmetic and logical insiructions operate on data stored in the accumulator and other
general purpose CPU registers or external memory locations. The results of the operations are placed
in the accumulator and the appropriate flags are set according to the result of the operation. An
example of an arithmetic operation is adding the accumulator to the contents of an external memory
location, The results of the addition are placed in the accumulator. This group aiso includes 16-bit
addition and subtraction between 16-bit CPU registers,

The rotate and shift group allows any register or any memory location to be rotated right or left
with or without carry either arithmetic or logical. Also, a digit in the accumulator can be rotated right
or left with two digits in any memory location,

The bit manipulation instructions allow any bit in the accumulator, any general purpose register
ar any external memory location to be set, reset or tested with a single instruction. For example,
the most significant bit of register H can be reset. This group is especially useful in control applications
and for controlling software flags in general purpose programming.

The jurnp, call and return instructions are used to transfer between various locations in the user’s
program, This group uses several different techniques for obtaining the new program counter address
from specific external memory locations. A unigue type of call is the restart instruction. This instruction
actually contains the new address as a part of the 8-bit OP ¢ode. This is possible since only 8 separate
addresses located in page zero of the external memory may be specified. Program jumps may also
be achieved by loading register HL, IX or IY directly into the PC, thus allowing the jump address to
be a complex furction of the routine being executed.

The input/output group of instructions in the Z-80 allow for a wide range of transfers between
external memaory locations or the general purpose CPU registers, and the external I/ devices. 1n
each case, the pert number is provided on the lower 8 bits of the address bus during any [/O
transaction. Omne instruction allows this port number to be specified by the second byte of the instruction
while other Z-80 instructions allow it to be specified as the content of the C register. Qne major ad-
vantage of using the C register as a pointer to the 1/O device is that it allows different I/O ports to
share common software driver routines. This is not possible when the address is part of the OP code
if the routines are stored in ROM. Another feature of these input instructions is that they set the
flag register automatically so that additicnal operations are not required to determine the state of
the input data (for example its parity). The Z-80 CPU includes single instructions that can move
blocks of data (up to 256 bytes) automatically to or from any IfO port directly to any memory location.
In conjunction with the dual set of general purpose registers, these instructions provide for fast
I/O block transfer rates. The value of this IO instruction set is demonstrated by the fact that the
Z-80 CPU can provide all reguired floppy disk formatting (i.e., the CPU provides the preanible, address,
data and enables the CRC codes) on double density floppy disk drives on an interrupt driven basis.

Finally, the basic CPU control instructions allow various options and modes. This group includes
instructions such as setting or resetting the interrupt enable flip flop or setting the mode of interrupt
response.

5.2 ADDRESSING MODES

Most of the Z-80 instructions operate on data stored in internal CPU registers, external memory
or in the IfO ports. Addressing refers to how the address of this data is generated in each instruction,
This section gives a brief summary of the types of addressing used in the Z-80 while subsequent sections

detail the type of addressing available for each instruction group,

Immediate, In this mode of addressing the byte following the OP code in memory contains the
actual operand.

QP Code } one or 2 bytes

Operand
d7 do

Examples of this type of instruction would be {0 load the accumulator with a constant, where the constant
is the byte immediately following the QP code.

Immediate Extended. This mode is merely an extension of immediate addressing in that the two
bytes foliowing the OP codes are the operand.

OP code | one or 2 bytes

Operand | low order

Operand | high order

Examples of this type of instruction would be to load the HL register pair (16-bit register) with
16 bits {2 bytes) of data.

20

Modified Page Zero Addressing, The Z-80 has a special single byte CALL instruction to any of 8 locations
in page zero of memory. This instruction (which is referred to as a restart) sets the PC to an effective
address in page zero, The value of this instruction is that it allows a single byte to specify a complete

1 6-bit address where commonly called subroutines are located, thus saving memory space.

OP Code | one byte

b7 bg
Effective address is (bg by by 000),

Relative Addressing. Relative addressing uses one byte of data following the OP code to specify a
displacement from the eXisting program to which a program jump can occur. This displacement is
a signed two’s complement number that is added to the address of the QP code of the following instruction.

OP Code Jump relative {(one byte QP code)
Operand 8-bit two’s complement displacement added to Address (A+2)

The value of relative addressing is that it allows jumps to nearby locations while only requiring two

bytes of memory space. For most programs, relative jumps are by far the most prevalent type of

jumnp due to the proximity of related program segments. Thus, these instructions can significantly
reduce memery space requirements, The signed displacement can range between +127 and -128

from A + 2. This allows for a total displacement of +129 to -126 from the jump relative OP code address.
Another major advantage is that it allows for relocatable code.

Extended Addressing. Extended Addressing provides for two bytes (16 bits) of address to be included
in the instruction. This data can be ar address to which a program can jump or it can be an address
where an operand is located.

OP Code }Onc or two bytes

Low Order Address or Low order operand

High Order Address or high order operand

Extended addressing is required for a program to jump from any location in memory to any other location,
or load and store data in any memory location,

When extended addressing is used to specify the source or destination address of an operand,
the notation {nn) will be used to indicate the content. of memory al nn, where nn is the 16-bit address
specified in the instruction. This means that the two bytes of address nn are used as a pointer to a memory
location. The use of the parentheses always means that the value enclosed within them is used asa
pointer to a memory location. For example, (1200) refers to the contents of memory at location {200.

Indexed Addressing. In this type of addressing, the byte of data following the OP code contains

a displacement which is added to one of the two index registers (the OP code specifies which index
register is used) to form a pointer to memory. The contents of the index register are not altered by this
operation.

OP Code
iwo byte OP code
OP Code
Displacement Operand added to index register to form a pointer to memory.

21

An example of an indexed instruction would be to load the contents of the memory location
(Index Register + Displacement) into the accumulator. The displacement is a signed two's complement
number, Indexed addressing greatly simplifies programs using tabies of data since the index register
can point to the start of any table. Two index registers are provided since very often operations require
two or more tables. Indexed addressing also allows for relocatable code.

The two index registers in the Z-80 are referred to as IX and 1Y, To indicate indexed addressing the
notation:

(IX+d) or (IY+d)

is used. Here d is the displacement specified after the OP code, The parentheses indicate that this
value is used as a pointer to external memory.

Register Addressing. Many of the Z-80 OP codes contain bits of information that specify which
CPU register is to be used for an operation, An example of register addressing would be to load the
data in register B into register C,

implied Addressing, Implied addressing refers to operations where the OP code automatically
implies one or more CPU registers as containing the operands. An example is the set of arithmetic
operations where the accumulator is always implied to be the destination of the results,

Register Indirect Addressing, This type of addressing specifies a 1 6-bit CPU register pair (such as HL)
to be used as a pointer to any location in memory, This type of instruction is very powerful and
it is used in a wide range of applications,

QP Code }one or two bytes

An example of this type of instruction would be to load the accumulator with the data in the memory
location pointed to by the HL register contents. Indexed addressing isactually a form of register indirect
addressing except that a displacement is added with indexed addressing Register indirect addressing
allows for very powerful but simple to implement memory accesses. The block move and search commands
in the Z-80 are extensions of this type of addressing where automatic register incrementing, decrementing
and comparing has been added. The notation for indicating register indirect addressing is to put
parentheses around the name of the register that is to be used as the pointer. For example, the symboi

(HL)

specifies that the contents of the HL register are to be used as a pointer t0 a memory location, Often
register indirect addressing is used to specify 16-bit operands. In this case, the register contents

point to the lower order portion of the operand while the register contents are automatically incremented
to obtain the upper portion of the operand.

Bit Addressing. The Z-80 contains a large number of bit set, reset and test instructions. These
instructions allow any memory location or CPU register to be specified for a bit operation through

one of three previous addressing modes (register, register indirect and indexed) while three bits in the OP
code specify which of the eight bits is to be manipulated,

ADDRESSING MODE COMBINATIONS

Many instructions include more than one operand (such as arithmetic instructions or loads). In
these cases, two types of addressing may be emploved. For example, load can use immediate addressing
to specify the source and register indirect or indexed addressing to specify the destination.

22

5.3 INSTRUCTION OP CODES

This section describes each of the Z-80 instructions and provides tables listing the OP codes for every
instruction. In each of these tables the OP codes in shaded areas are identical to those offered in the 8080A
CPU. Also shown is the assembly language mnemonic that is used for each instruction. All instruction OP
codes are listed in hexadecimal notation, Single byte OP codes require two hex characters while double
byte OP codes require four hex characters, The conversion from hex to binary is repeated here for
convenience.

Hex Binary Decimal RHex Binary Decimal
0 = Q000 = 0 8 = 10006 = 3
1 = 000t = 1 9 = or = 9
2 = oolo = 2 A = 1010 = 10
3 = o011 = 3 B = o1 = 11
4 = 0100 = 4 C = 1100 = 12
5 = o101 = 5 D = 1101 = 13
6 = o110 = 6 E = g = 14
7 = oy = 7 F = 1111 = 15

Z-80 instruction mnemonics consist of an OP code and zero, one or two operands. Instructions in
which the operand is implied have no cperand, Instructions which have only one logical operand or those in
which one operand is invariant (such as the Logical OR instruction) are represented by a one operand
mnemonic. Instructions which may have two varying operands are represented by two operand mnemonics.

LOAD AND EXCHANGE

Table 5.3-1 defines the OP code for all of the 8-bit load instructions implemented in the Z-80 CPU.
Also shown in this table is the type of addressing used for each instruction, The source of the data is found
on the top horizontal row while the destination is specified by the left hand column. For example, load
register C from register B uses the OP code 48H. In all of the tables the OP code is specified in hexadecimal
notation and the 48H (=0100 100¢ binary) code is fetched by the CPU from the external memory during
M1 time, decoded and then the register transfer is automatically performed by the CPU,

The assembly language mnemonic for this entire group is LD, followed by the destination followed
by the source (LD DEST., SOURCE}. Note that several combinations of addressing modes are possible. For
example, the source may use register addressing and the destination may be register indirect; such as load
the memory location pointed to by register HL with the contents of register D. The OP code for this
operation would be 72. The mnemonic for this foad instruction would be as follows:

LD (HL),D
The parentheses around the HL means that the contents of HL are used as a pointer 1o a memaory location.
In all Z-80 load instruction mnemonics the destination is always listed first, with the source following, The

Z-80 assembly language has been defined for ease of programming, Every instruction is self documenting
and programs written in Z-8¢ language are easy to maintain,

Note in table 5.3-1 that some load OP codes that are available in the Z-8C use two bytes. This is an
efficient method of memory utilization since 8, 16, 24 or 32 bit instructions are implemented in the Z-80.
Thus often utilized instructions such as aritlhimetic or logical operations are only B-bits which results in
better memory utilization than is achieved with fixed instruction sizes such as 16-bits.

All load instructions using indexed addressing for either the source or destination location
actually use three bytes of memory with the third byte being the displacement d. For example a load
register E with the operand pointed to by [X with an offset of +8 would be written:

LDE, (IX +8)

23

The instruction sequence {or this in memory would be:

Address A
Atl
A+2

DD

5E

08

OP Code

Displacernent operand

The two extended addressing instructions are also three byte instructions. For example the instruction to
load the accumulator with the operand in memory location 6F32H would be written:

LD A, (6F 32H)

and its instruction sequence would be:

Address A

3A

Atl

32

A+2

oF

OP Code
low order address

high order address

Notice that the low order portion of the address is always the first operand.

The load immediate instructions for the general purpose 8-bit registers are two-byte instructions. The
instruction load register H with the value 36H would be written:

and its sequence would be

Address A

26

Atl

36

LD H, 36H

OP Code
Operand

Loading a memeory location using indexed addressing for the destination and immediate addressing for the
source requites four bytes. For example:

would appear as:

Address A

DD

Atl

36

A+2

Fl1

At3

21

LD (IX - 15), 2iH

OF Code

displacement (-15 in
signed two’s complement)

aperand to load

Notice that with any indexed addressing the displacement always follows directly after the OP code.

Table 5.3-2 specifies the 16-bit load operations. This table is very similar to the previous one. Notice
that the extended addressing capability covers all register pairs. Also notice that register indirect operations
specifying the stack peointer are the PUSH and POP instructions. The mnemonic for these instructions is
“PUSH” and “POP.” These differ from other 16-bit loads in that the stack pointer is automatically decre-
mented and incremented as each byte is pushed onte or popped from the stack respectively. For example

the instruction;

24

PUSH AF

is a single byte instruction with the OP code of F5SH. When this instruction is executed the following
sequence is generated:

Decrement SP

LD (SP), A

Decrement SP

LD (SP), F
Thus the external stack now appears as follows:

(SP) F p#— Top of stack
Sk | A

. .
. .
SQUACE
EXT.
IMPLIED REGISTER REG INDIRECT INDEXED | AQOR.| IMME,
| Li] L) B [o E H L iHLh | t&c) | IoER |iix+d]illvodl' fnn) o
| oo FO A 3k
A ED ED F ¥4 12 Fh 8 w Fied 7E aa 1A TE 1E n n
57 SF .) . 4 a n
oo FQO
a az 0 at @ 1 4 a5 446 a5 Ll a6
d d r
. Do FI
[AF a8 49 an 48 ac an 4 4E 4E OE
d d n
ao o
REGISTER | O 57 50 &1 52 53 54 o5 £ 1] 56 16
k] d n
o FD
E 5F 58 G L Se 5C St SE SE 5E 1E
it d
oo Fo
H B} &0 61 &2 &1 4 65 B o 66 0
d d "
oo FQr
L BF L3 L] 6A &B [&0 8E GE GE 2E
. d a4 "
TESTINATION ML) 7w " 72 73 M 75 EL
. X n
AEG
mpinegr | 186 0z
(DE] M V]
=) oG oo Do Do Ch Do 3ED
11X wd} 7 0 bl brd i1 Ta 75 a
4 o d o d o d n
INDEXEG T
FBr D FD FD O FL o e
e) 7 70 bl 77 k] il 5
d d d d o d o 0
32
EXT. ABDR | (ant o
b
i ED
a7
IMPLIED
R ED
4F

8 BIT LOAD GROUP
I'LDI'
TABLE 5.3

23

The POP instruction is the exact reverse of a PUSH. Notice that all PUSH and POP instructions utilize a
[6-bit operand and the high order byte is always pushed first and popped last. That is a:

PUSH BC is PUSH B then C

PUSH DE is PUSH D then E

PUSH HL is PUSH H then.L

POP HL isPOP LthenH
The instruction using extended immediate addressing for the source obviously requires 2 bytes of data
following the OP code. For example:

LD DE, 0659H
will be:

Address A 11| OP Code
A+l { 59 | Low order operand to register E

A+2 | 06 | High order operand to register D

In all extended immediate or extended addressing modes, the low order byte always appears first after the
OP code,

Table 5.3-3 lists the 16-bit exchange instructions implemented in the Z-80. OP code O8H allows the
programmer to switch between the two pairs of accumulator flag registers while D9H allows the pro-
grammer to switch between the duplicate set of six general purpose registers. These OP codes are only one
byte in length to absclutely minimize the time necessary to perform the exchange so that the duplicate
banks can be used to effect very fast interrupt response times.

BLOCK TRANSFER AND SEARCH

Table 5.3-4 lists the extremely powerful block transfer instructions. All of these instructions operate
with three registers.

HL points to the source location,
DE points to the destination location.
BC is a byte counter.

After the programmer has initialized these three registers, any of these four instructions may be used. The
LDI (Load and Increment} instruction moves one byte from the location pointed to by HL to the location
pointed to by DE. Register pairs HL and DE are then automatically incremented and are ready to point to
the following locations. The byte counter (register pair BC) is also decremented at this time. This instruc-
tion is valuable when blocks of data must be moved but other types of processing are required between eack
move, The LDIR (Load, increment and repeat) instruction is an extension of the LDI instruction. The same
load and increment operation is repeated until the byte counter reaches the count of zero. Thus, this single
instruction can move any block of data from one location to any other.

Note that since [0-bit registers are used, the size of the block can be up to 64K bytes (1K = 1024)
long and it can be moved from any location in memory to any other location. Furthermore the blocks can
be overlapping since there are absolutely no constraints on the data that is used in the three register pairs.

The LDD and LDDR instructions are very similar to the LDI and LDIR. The only difference is that

register pairs HL and DE are decremented after every move so that a block transfer starts from the highest
address of the designated block rather than the lowest.

26

SOURCE

MM, | EXT. | REG.
REGISTER EXT. | ADDR.| INDIR,
AF BC DE HL sp IX 1Y " {nn} (56}
AF F1
a1 ED
BC n ﬁB [+5]
n n
1 ED
R DE n EB D1
g " n
ls HL 21 2a E1
‘DESTINATION T " n
E n n
b F9 oD | x| 5D
Fa Fo n n
n n
oD | DD
X 21 38 | oo
n n E1
n n
ED FD
Y 2 24 FD
n n E‘|
n n
ED ED ED | LD D
A ai | s3 | 2 | 73 | 22 | 2z
ADDR. n n n " m "
n
PUSH —|REG. [52 [P8 | s | B5 | ES oo | FD
INSTRUCTIONS IND. ES £5

NOTE: The Push & Pop Instructions adjust
the 5P after every execution

16 BIT LOAD GROUP

ILDI'

'PUSH’ AND ‘POP*

TABLE 5.3-2

‘EX’ AND "EXX’

TABLE 5.3—3

27

IMPLIED ADDRESSING
AF |ec, o sHL | W | 1x Iy

AF | o8

Be,

DE
IMPLIED| & Do

HL

DE EB
REG. | (sP) ez | oo | fo
INDIR. : £3 | E3

EXCHANGES

}

POP

INSTRUCTIONS

SOURCE

REG.
INDIR,
{HL}
ED ‘LDV* — Load {DE)—(HL}
AD In¢ HL & DE, Dec BC
ED ‘LDIR,” — Load (DE}-e—(HL)
REG BO Ine HL & DE, Dec BC, Repeat untii BC =0
DESTINATION INDI.R. {DE)
ED 'LDD' — Load {DE)--—{HL)
AR Gec HL & DE, Dec BC
ED ‘LDDR’ — Load [(DE)-s—={H1]
B8 Dec HL & DE, Dec BC, Repeatuntid BC= 0

Aeg HL points 10 source
Reg DE points to destination
Heg BC s byte counter

BLOCK TRANSFER GROUP
TABLE 53—4

Table 5.3-5 specifies the OP codes for the four block search instructions. The first, CPI (compare and
increment) compares the data in the accumulator, with the contents of the memory location pointed to by
register HL. The result of the compare is stored in one of the flag bits (see section 6.0 for a detailed expla-
nation of the flag operations) and the HL register pair is then incremented and the byte counter (register
pair BC) is decremented.

The instruction CPIR is merely an extension of the CPI instruction in which the compare is repeated
until either a match is found or the byte counter (register pair BC) becomes zero. Thus, this single instruc-
tion can search the entire memory for any 8-bit character.

The CPD (Compare and Decrement) and CPDR (Compare, Decrement and Repeat) are similar
instructions, their only difference being that they decrement HL after every compare so that they search
the memory in the opposite direction. (The search is started at the highest location in the memory block).

It should be emphasized again that these block transfer and compare instructions are extremely
powerful in string manipulation applications.

ARITHMETIC AND LOGICAL.

Table 5.3-6 lists all of the 8-bit arithmetic operations that can be performed with the accumulator,
also listed are the increment (INC)and decrement {DEC) instructions. In all of these instructions, except
INC and DEC, the specified 8-bit operation is performed between the data in the accumulator and the
source data specified in the table. The result of the operation is placed in the accumuiator with the excep-
tion of compare (CP) that leaves the accumulator unaffected. All of these operations affect the flag
register as a result of the specified operation. (Section 6.0 provides afl of the details on how the flags are
affected by any instruction type). INC and DEC instructions specify a register or a memory location as
both source and destination of the resuli. When the source operand is addressed using the index registers
the displacement must follow directly, With immediate addressing the actual operand witl follow directly.
For example the instruction:

AND 07H

would appear as:

Address A E6 | OP Code
Atl] 07 | Operand

28

SEARCH

LOCATION

REG.

INDIR.

(HL}

ED CPI’

Al Inc HL, Dec BC

ED ‘CPIR’, Inc HL, Dec BC

Bt repeat until BC = 0 or find match
ED .

4 H B

A9 CPD’ Dec HL & BC

ED ‘CPOR’ Dec HL & BC

B89 Repeat untit BC = Q or find match

HL points to location in memory
to be compared with accumulator
contents

BC is byte counter

BLOCK SEARCH GROUP
TABLE 5.3-5

Assuming that the accumulator contained the value F3H the result of 03H wouid be placed in the
accumulator:

Accbefore operation 1111 0011 = F3H

Operand 0000 0111 = O7H

Result to Acc 0000 06011 = 03H

The Add instruction {ADDY) performs a binary add between the data in the source location and the

data in the accumulator. The subtract (SUB) does a binary subtraction. When the add with carry is specified
{ADC) or the subtract with carry (SBC), then the carry flag is also added or subtracted respectively. The
flags and decimal adjust instruction (DAA) in the Z-80 (fully described in section 6.0) allow arithmetic
operations for:

multiprecision packed BCD numbers
multiprecision signed or unsigned binary numbers

multiprecision two’s complement signed numbers
Other instructions in this group are logical and (AND), logical or {(OR}), exclusive or (XOR) and compare (CP).

There are five general purpose arithmetic instructions that operate on the accumulator or carry flag.
These five are listed in table 5.3-7, The decimal adjust instruction can adjust for subtraction as well as add-
ition, thus making BCD arithmetic operations simple. Note that to allow for this operation the flag N is used.
This flag is set if the last arithmetic operation was a subtract. The negate accumnulator (NEG) instruction
forms the two’s complement of the number in the accumulator, Finally notice that a reset carry instruction
is not included in the Z-80 since this operation can be easily achieved through other instructions such as a
logical AND of the accumulator with itself, :

Table 5.3-8 lists all of the 16-bit arithmetic operations between 16-bit registers. There are five groups
of instructions including add with carry and subtract with carry. ADC and SBC affect all of the flags, These
two groups simplify address calculation operations or other 16-bit arithmetic operations,

29

SOURCE

REG.
REGISTER ADDRESSING INDIR, INDEXED IMMED.
A B c D E H L {HL) | (IX+d) | (1Y +d} n
[»{n] FB
‘ADD’ 87 80 81 82 82 Ba 85 86 |86 86 c6
. ') d d n
DD FD
ADD w CARRY aF a8 B9 84 8B 8C 8D BE BE 8E CE
ADC! d d n
: [B]n] FD
SUBTRACT L ar 90 a1 92 . 23 84 95 96 96 96 o6
‘SUB’ . d d n
. DD FD
SUB w CARRY 9F 9B] oA - 9B ac 9D 9 9E 9E DE
‘SBC’ - : d d n
oD . FO
*AND’ A7 Al Al A2 A3 Ad AD AB futsd A EG -
’ - d d]
- jaln) FD
'XOR" AF AB . Ag Al AB AC AD AE AE AE EE
: d d n
’ oD FD
‘OR* - BY BO Bt - B2 B2 B2 BS- B6 Bs B& FG.
)) : d d n
' op fo .
COMPARE EF B8 B9 BA BB BC BD BE BE BE "FE
‘cP d d [}
N ' DD FD
INCREMENT 3¢ B4 oc 14 1¢c 24 2¢ 34 3 34
‘INC” : d d
’ oD FO
DEGREMENT |. 3D 05 oD 15 1D 25 D K -] 35 35
‘DEC’ ' . d¢ d

8 BIT ARITHMETIC AND LOGIC

TABLE 5.3—6

Decimal Adjust Ace, '‘DAA’ 27
Complement Ace, "CPL’ ?F
Negate Acc, ‘NEG' ED
{25 complement} 44
Complement Carry Flag, 'CCF’ 3F
Set Carry Flag, ‘SCF’ 37

GENERAL PURPQOSE AF OPERATIONS

TABLE 5.3-7

30

SOURCE

BC DE | HL | &P IX 1y
HL 02 19 29 39
‘ADD IX DD | DD oo | oD
09 19 39 29
Y FD FD FD FD
09 19 39 29
DESTINATION
ADDWITH CARRY AND | HL ED | ED ED | ED
SET FLAGS 'ADC’ 4A 5a | 6a | A
SUBWITH CARRY AND | HL ED ED ED | ED
SET FLAGS ‘SBC’ 42 52 62 72
INCREMENT “INC’ 03 13 23 3 Do FD
23 23
DECREMENT 'DEC’ 0B 1B 26 | 38 | OD FD
28 28
16 BIT ARITHMETIC
TABLE 5.3-8
ROTATE AND SHIFT

A major capability of the Z-80 is its ability to rotate or shift data in the accumulator, any general pur-
pase register, or any memory location. All of the rotate and shift OP codes are shown in table 5.3-9. Also
included in the Z-80 are arithmetic and logical shift operations. These operations are useful in an extremely
wide range of applications including integer multiplication and division. Two BCD digit rotate instructions
(RRD and RLD} allow a digit in the accumulator to be rotated with the two digits in a memory location
pointed to by register pair HL. (See figure 5.3-9), These instructions allow for efficient BCD arithmetic.

BIT MANIPULATION

The ability to set, reset and test individual bits in a register or memory location is needed in almost
every program, These bits may be flags in a general purpose software Toutine, indications of external con-
trol conditions or data packed into memory locations to make memory utilization more efficient.

The Z-80 has the ability to set, reset or fest any bit in the accumulator, any general purpose register
or any memaory location with a single instruction, Table 5.3-10 lists the 240 instructions that are available
for this purpoese. Register addressing can specify the accumulator or any general purpose register on which
the operation is to be performed. Register indirect and indexed addressing are available to operate on
external memory locations. Bit test operations set the zero flag (Z) if the tested bit is a zero. (Refer to
section 6.0 for further explanation of flag operation).

JUMP, CALL AND RETURN

Figure 5.3-11 lists all of the jump, call and return instructions implemented in the Z-80 CPU. A jump
is a branch in a program where the program counter is loaded with the 16-bit value as specified by one of the
three available addressing modes (Immedijate Extended, Relative or Register Indirect). Notice that the jump
group has several different conditions that can be specified to be met before the jump will be made. If
these conditions are not met, the program merely continues with the next sequential instruction. The
conditions are all dependent on the data in the flag register. (Refer to section 6.0 for details on the flag
register). The immediate extended addressing is used to jump to any location in the memory. This in-
struction requires three bytes (two to specify the 16-bit address) with the low order address byte first
followed by the high order address byte,

31

Sourco and Dastinalion

H Ratate
A B 4) E H L {HLE [+ a)] Oy +a) L] 6y by Lefr Corenlar
o
e | ca| o] co| e8| oo | co| o | e | BB EE RLCA |- 07
or | oo | o | o2 | 03 | o | 08 | 08 | d d Folate
e]
] -
frerf e [ce | o8 | e | o8 | ce | o8 | B | ce | e rAca | oF
OF o8] A | 0B oc o | 0 4 4 H
bl re [— "} &
AL | co | e6 | o8 | e | o2 | ce | ca | em | eB | ce s | 1
7] oo n iz | 13 | 1a s | s | d q
6| 3 P —
oo | FO Fotate
ar | cg | ea | s | e8| @ | 6| ca e | BDY LR ¢
;:PE 1F 13 19 1A 1: [[[=3 1E "IIE O'E ffa 1 . Right
ROTATE oo 1FD Shif
oR “a | ce | ca ce | c8 | o8 | oo | ca|ce | & o8 -— v u','.
SHIET 7| 2o | & | 2| 3| | w|w |4 d t
| m
Do | fo
ERA" CB e 8 B 8 el iE =] ce B Shilt
| @ | 2| | w | ow]|x 4|4 (1 —] Right Arithmetic
oo | Fo h
s | oo | es | o8B | om | o8 | em | e | em | 68 | £
aF 38 ki) 3A 38 x jelu) IE % f!E Shile
; ? _ Right Logicn
ALD’ o 0
Rutale Digil
_ - -t
[& ! [e-to] [by=ba] by=bo]mur {7
AR
67 ACC
| [‘|’ I'"'—‘ Fintate THgit
1 I fight
ace §

For example an unconditional Jump to memory location 3E32H would be:

Address QP Code

|
1,
!

A+1} 32
A+2

Low order address
High order address

The relative jump instruction uses only two bytes, the second byte is a signed two's complement dis-
placement from the existing PC. This displacement can be in the range of +129 to -126 and is measured
from the address of the instruction OP code.

Three types of register indirect jumps are also included. These instructions are implemented by loading
the register pair HL or one of the index registers IX or 1Y directly into the PC. This capability allows for
program jumps te be a function of previous calculations.

A call is a special form of a jump where the address of the byte following the call instruction is
pushed onto the stack before the jump is made. A return instruction is the reverse of a call because the
data on the 1op of the stack is popped directly inte the PC to form a jump addzess. The call and return
instructions allow for simple subroutine and interrupt handling, Two special return instructions have been
included in the Z-80 family of components, Thereturn from interrupt instruction (RETI) and the return
from non maskabie interrupt (RETN) are treated in the CPU as an uncenditional return identical to the OP
code COH. The difference is that (RETI) can be used at the end of an interrupt routine and all Z-80 peripheral
chips will recognize the execution of this instruction for proper control of nested priority interrupt handling.
This instruction coupled with the Z-80 peripheral devices implementation simplifies the normal return from
nested interrupt. Without this feature the following sofiware sequence would be necessary to inform the
interrupting device that the interrupt routine is completed:

32

REG

REGISTER ADDRESHING INDIR.] INpEXED
A [c o E H L (HLY | Gkar | Thy+a)
BIT
oo | Fo
o B} cB | B e | ca ca | tB | cB [ca
d d
47 w0 | 5 42 a3 44 45 | 48 g d
oD | FD
1 B | ca | cB ce e | ce | oo c ca cB
4F 4a 43 LY 4B G 4D 4E d d
AE 4E
2 ca | cB | cB CB ca | ce cE | ca dEaD E.g
87 50 51 62 s3 | w4 E5 | 56
56 56
oD | F
3 |eo) |c |co |]|ce || |86 | &R
SF 52 50 5A s8 | 56 S0 [SE d d
TEST SE &E
BIT ;
4 ca | cB | c8 | ca e | ce e | co | 08| EB
&7 60 | &t 62 61 | B4 €5 B6 d d
66 66
5 c@ | e [s | B cao | oca e | s | BB [8
6F 68 &9 5A e | ec 80 | BE d
6E E
& ca | ce | ca cR ce | ce e | om g | 8
77 0 71 72 a7 b % d
7% i
H cs [cE | B 8 g | ca ca fee | BB BB
7F 1) 7% 74 76 7t | 7E d d
7E 7E
FD
o ce | cg | cB B ca | ce s | ce | B | R
a7 80 81 62 83 84 8 | 86 d
85 86
3
1 cB | ce | cB c8 & | ce | c8 | 068 | R
aF as | #g 84 a8 | ec an | BE d d
8E 14
2 ca | ce | ca | cB B | ca ce | co | B8 | 8B
a7 ® 91 2 93 | =4 5 | 95 d d
%8 a5
3 6 | cB | cB 8 ca | cB ce | ce | BF | FB
AESET sF | om 29 aa | e | sc o | sE d d
BT 8E 5E
REg 3
RES | 4 | e | e e e | ce|ce | ca| 0 | BB | R
a7 | ap | m a2 a3 | Aa as | a6 | d d
A6 | A6
5 e | ecm [ce | cB ce | cB ce {ca | 28| D
AF | A3 | A9 | an | AR | Ac | ap | AE | 4 d
aE | A
[6 | s | ca 8 cB | c8 co | ce | 081 £
87 | Bo | B1 82 B3 | B4 BS g6 | d d
BB BS
F
7 e | ca | ce o8 ce | cB ca | ce | B | &8
BF | BB 89 BA | BE | BC B | BE | g
j:13 BE
o | Fo
o e | 8 | ce | ce ca | cs | ce | ea | cB e
cr o0 ci 2 G | cs [B | o 2 de
oo | D
1 c8 CB | CB | GB ce | ce | ¢B | cB] c8
cF ce | 28 | ca | cB | ¢ | €O | cE de de
D 1]
2 c8 ce | ce | <o cB | 8 j e | co & g8
07 | o | ® d
2 03 | D | D5 | De de | %
oD | fD
3 ca e | B | cB ce | 6 | c8 | ce ce | cB
SET OF D8 D9 DA i be oo | DE d d
T oe | DE
. oD | FD
SET), G | ca | cafcafcalce | ca|o 6| A
£7 £0 E1 E2 E3 | E4 ES | Es d. ds
o0 | FD
5 ca ca | ce | cg ce | cB | ¢8| ce ca | cB
EF E8 EQ EA EA EC ED EE 2 2%
e |
0D | o
5 ca s | ce | ce s | ce | cB | co e | o8
F7 Fa F1 F2 F3 | Fa F5 | Fo d ds
oo | ED
7 B s | ce | ca cB |cs jce | ce ca | cB
FF 8 Fo | FA FE | FC o | oFE d | &

BIT MANIPULATION GROUP

TABLE 5.3—-10

33

Disable Interrupt — prevent interrupt before
routine is exited.

LD A, n ~ notify peripheral that service
OUTn, A routine is complete

Enable Interrupt

Return

This seven byte sequence can be replaced with the one byte EI instruction and the two byte RETI instruction
in the Z80. This is important since interrupt service time often must be minimized.

To facilitate program loop cantrol the instruction DINZ e can be used advantageously. This two byte,
relative jump instruction decrements the B register and the jump occurs if the B register has not been decre-
mented to zero. The relative displacement is expressed as a signed two's complement number. A simple ex-
ample of its use might be:

Address - Instruction Comments
N,N+1 LDB, 7 : ; set B register to count of 7
N+2taN+9 (Perform a sequence i
of instructions) ;loop to be performed 7 times
N+10,N+11 DINZ -8 stojump from N+ 12to N+ 2
N+12 (Next Instruction)
CONDITION
UN- NDN NON |PARUTY [PARITY | SIGN SIGN REG
COND. | CARRY | CARRY| ZERO [ZERQ |EVEN |OOD NEG POS 80
- c3 DA D2 | ca | ¢z | EA | E2 | FA | F2
JUMP P IMMED, nn n n n n o {n n |n n on
EXT. n n n n n n n n- n
JumP g RELATIVE | P04z | 18 38 30 28 20
e2 e2 a2 e2 a-2
JUMP P HL) | E9
JUMP JP° REG. {x} bD
INDIR, E9
JUMP P) FO
E9
¢D [DC D¢ { cc | o4 | EC E4 Fc | Fa
‘CALL’ IMME D. nn n n n n n n n n n
EXT. " n n n n n n n "
DECREMENT B,
JUMP IF MON | RELATIVE | PCte : 10
ZERQ ‘DINZ’ e2
RETURN REGISTER | (sP} | c9 D8 Do | cs8 co | E8 EQ 1 FO
RET* INDIR. isP+1) : :
RETURN FROM | REG. (SP) ED
INT ‘RETI INDIR, (sp+1t| 4D
RETURN FROM 1 __ sP) o
NON MASKABLE -
INT ‘RETN' INDIR, {(SP+1) | 45

MNOTE—CERTAIN

FLAGS HAVE MORE

THAN ONE PURPOSE.

REFER TCO SECTION

6.0 FOR DETAILS JUMP, CALL and RETURN GROUP

TABLE 5.3—-11

34

*Tabile 3.3-12 lists the eight OP codes for the restart instruction. This instruction is a single byte call to any
of the eight addresses listed. The simple mnemonic for these eight calls is also shown. The value of this in-
struction is that frequently used routines can be called with this instruction to minimize memory usage,

op 1
CODE

0000, [€7 ‘RET O

opog, [CF ‘RST 8°

o010, | b7 | .psris

€08, | DF [-RsT24°

0020, | E7 | ‘per a0

uemIQor rreo

UUZSH EF ‘RST 40"

UO3DH E7 ‘RST 48°

0038, | FF ‘RST 56"

RESTART GROUP
TABLE 5.3~12

INPUT/QUTPUT

The Z-80 has an extensive set of Input and OQutput instructions as shown in table 5.3-13 and table
.5.3-14. The addressing of the input or output device can be either absolute or register indirect, using the C
register. Notice that in the register indirect addressing mode data can be transferred between the [/O devices
and any of the internal registers, In addition eight block transfer instructions have been implemented. These
instructions are similar to the memory block transfers except that they use register pair HL for a pointer to
the memory source (output commands) or destination (input commands) while register B is used as a byte
counter. Register C holds the address of the port for which the input or output command is desired. Since
register B is eight bits in length, the I/O block transfer command handles up to 256 bytes.

In the instructions IN A, n and OUT n, A the [/O device address n appears in the lower half of the add-
ress bus (Ag-A) while the accumulator content is transferred in the upper half of the address bus. In all reg-
ister indirect input output instructions, including bleck [/O transfers the content of register C is transferred
to the lower haif of the address bus (device address) while the content of register B is transferred to the
upper half of the address bus,

35

SOURCE
PORT ADDRESS

IMMELD.| REG.
INDIR.

{n} w

A ps | eo
S

B ED
40

c ED
48

INPUT “IN’

D ED
50

E ED
]
INPUT

DESTINATION

GR=wumano0r» aml

H ED
€0

L ER
68

“INIT ~ INPUT & EC
In¢ HL, Dec B A2

INIR*— INP, Inc HL, ’ ED
Dec B, REPEAT IF BX0 B2
RES, | (HL) \, BLOCK INPUT

INDIR MMANDS
‘IND'—INPUT & ED co

Dec HL, Dac B AA

‘INDR’—INPUT, Dec HL, ED
Dec B, REPEAT IF B¥0 BA

INPUT GROUP
TABLE 5.3-13

CPU CONTROL GROUP

The final table, table 5.3-15 illustrates the six general purpose CPU control instructions. The NOPisa do-
nothing instruction, The HALT instruction suspends CPU operation until a subsequent interrupt is received,
while the DI and EI are used to lock out and enable interrupts, The three interrupt mode commands set the
CPU into any of the three available interrupt response modes as follows. If mode zero is set the interrupting
device can insert any instruction on the data bus and allow the CPU to execute it. Mode 1 is a simplified
mode where the CPU automatically executes a restart (RST) to location 0038H so that no external hardware
is required, (The old PC content is pushed onto the stack). Mode 2 is the most powerful in that it allows for
an indirect call to any location in memory. With this mode the CPU forms a 16-bit memory address where
the upper 8-bits are the content of register I and the lower 8-bits are supplied by the interrupting device,
This address points to the first of two sequential bytes in a table where the address of the service routine is
located. The CPU automaticaily obtains the starting address and performs a CALL to this address,

=— Pointer to Interrupt table, Reg,
1 is upper address,
Peripheral supplies lower address

Address of interrupt
service routine

36

SOURACE

BLOCK
l) OUTPUT
COMMANDS

REG.
REGISTER IND.,
A B c D E H L {HL}
imMMED.| {n} D3
n
OUT
REG. | tc) { e | ED | ED i0 | e | e | Ep
IND. 79 | @ 49 51 58 | 61 69
‘QUTI* — OUTPUT REG. | (C} ED
Inc HL, Dec b IND. A3
‘OTIR’ — OUTPUT, Inc HL, | REG. | (€} ED
Dec B, REPEAT | F B+0 IND. 83
‘QUTD’ — OUTPUT REG. | {C) ED
Dac HL & B IND. AB
‘OTDR’ — OUTPUT, DecHL | REG. | (€) ED
& B, REPEAT IF B#0 IND. BB
\-—-—_\/—_/
PORT
DESTINATION
ADDRESS
OUTPUT GROUP
TABLE 5.3-14
NOP* 00
HALT 76
DISABLE INTiDIY | F3
ENABLE INTEF’ | EB '
SET INT MODE 0 ED
Mo 5 8080A MODE
SET INT MODE 1
M1 Eg CALL TO LOCATION 0038,
SET |NT MODE 2 ED | INDIRECT CALL USING REGISTER
imz &E 1 AND 8 BITS FROM INTERRUPTING

DEVICE AS A POINTER,

MISCELLANEQUS CPU CONTROL
TABLE 5.3-15

37

-BLANK~

=38-

6.0 FLAGS

Each of the two Z-80 CPU Flag registers contains six bits of information which are set or reset by
various CPU operations. Four of these bits are testable; that is, they are used as conditions for jump, call or
return instructions. For example a jump may be desired oaly if a specific bit in the flag register is set. The
four testable flag bits are:

1) Carry Flag (C) — This flag is the carry from the highest order bit of the accumulator. For example, the
carry flag will be set during an add instruction where a carry from the highest bit of the accumulator
is generated. This flag is also set if 2 borrow is generated during a subtraction instruction. The shift
and rotate instructjons also affect this bit.

2) Zero Flag (Z) — This flag is set if the result of the operation loaded a zero into the accumulator. Other-
wise it ig reset.

3) Sign Flag (S) — This flag is intended to be used with signed numbers and it is set if the result
of the aperation was negative, Since bit 7 (MSB) represents the sign of the number (A negative
number has a 1 in bit 7), this flag stores the state of bit 7 in the accumulator.

4} Parity/Overflow Flag (P/V} — This dual purpose flag indicates the parity of the result in the accumulator
when logical operations are performed (such as AND A, B) and it represents overflow when signed
two’s complement arithmetic operations are perfiormed. The Z-80 overflow flag indicates that the
two’s complement number in the accurnulator is in error since it has exceeded the maximum pos-
sible (+127) or js less than the minimum possible (-128) number than can be represented in two's
complement notation. For example consider adding:

+120 = 0111 1000
+105 = 0110 1001

C= 0 11100001 = -85 (wrong) Overflow has occured

Here the result is incorrect, Overflow has occurred and yet there is no carry to indicate an error.
For this case the overflow flag would be set. Also consider the addition of two negative numbers:

-5 = 1111 1011
-16 = 1111 0000
C=1 11101811 = -21 correct

Notice that the answer is correct but the carry is set so that this flag can not be used as an over-
flow indicator. In this case the overflow would not be set.

For logical operations (AND, OR, XOR) this flag is set if the parity of the result is evert and it is
reset if it is odd.

There are also two non-testable bits in the tlag register, Both ol these are used for BCD arithmetic. They are:
1) Half carry (H) — This is the BCD carry or borrow result from the least significant four bits of operation.
When using the DAA (Decimal Adjust Instruction) this flag is used to correct the result of a
previous packed decimal add or subtract.
2} Subtract Flag (N) - Since the algorithm for correcting BCD operations is different for addition or

subtraction, this flag is used to specify whut type of instruction was executed last so that the
DAA operation will be correct for either addition or subtraction.

The Flag register can be accessed by the programmer and its format is as follows:

S|Z|X|H|X|PV|INiC

X means flag is indeterminate.

39

Table 6.0-1 lists how each flag bit is affected by various CEU instructions. In this table a *#” indicates
that the instruction dees not change the flag, an ‘X’ means that the flag goes to an indeterrinate state, a ‘0’
mzans that it is reset, a ‘1’ means that it is set and the symbol ‘4" indicates that it is set or reset according to
the previous discussion. Note that any instruction not appearing in this table does not affect any of the flags.

Table 6.0-1 includes a few special cases that must be described for clarity. Notice that the block search
instruction sets the Z flag if the last compare operation indicated a match between the source and the
accurnulator data. Also, the parity flag is set if the byte counter (register pair BC) is not equal to zero. This
same use of the parity flag is made with the block move instructions. Another special case is during block
iput or output instructions, here the Z flag is used to indicate the state of register B which is used as a byte
counter. Notice that when the 1/O block transfer is complete, the zero flag will be reset to a zero (i.e. B=0)
while in the case of a block move command the parity flag is reset when the operation is complete. A final
case is when the refresh or I register is loaded into the accumulator, the interrupt enable flip flap is loaded
into the parity flag so that the complete state of the CPU can be saved at any time,

40

Instruction C|Z I?V S|N|H [Comments

ADD A,s; ADC A tlE|VIE|0]|E 8-bit add or add with carry

SUB s5; SBC A, 5, CPs, NEG L R RS E I 8-bit subtract, subtract with carry, compare and

negate accumulator

AND s of¢|Pl$|0|1 } Logical operations

OR s XOR s 0|t|P|t]0]|0 | Andset’s different flags

INC 5 eit|V[t]|0|f | 8-bitincrement

DEC m el VI |14 8-bit decrement

ADD DD, 55 j|ejo|e|0IX 16-bit add

ADC HL, ss F13 V| 0[X | 16-bit add with carry

SBC HL, 35 VI 1]X 14-bit subtract with carry

RLA;RLCA, RRA,RRCA tle|w|e|0]0 Rotate accurnulator

RL m; RLC m; RR m; RRC m t|1t(P|2]|0]|O Rotate and shift location m

SLAm; SRAm;SRLm .

RLD, RRD o1 |P|1]|0|0 | Rotate digit left and right

DAA t{¢[P|$|®it | Decimal adjust accumulator

CPL olelolel]]] Complement accumulator

SCF l|{e|o|®|0]0 | Setcarry

CCF t|o|e|®|0|X | Complement carry

IN 1, (C} o $|P|3|010 | Inputregisterindirect

INI; IND; QUTT;, QUTD o4 |X[X]1|X } Block input and output

INIR; INDR; OTIR; OTDR o 1| X|X[11X [} Z=0if B+ 0 otherwise Z=1

LDL, LDD eX|t|x|olo } Block transfer instructions

LDIR, LDDR e X|0|X|0[0 PV = 1if BC #0, otherwise P/V =0

CPI,CPIR, CPD, CPDR ®|3(2]1¢] 11X | Block search instructions

Z=1if A= (HL)}, otherwise Z=0
P/V = 1 if BC # 0, otherwise P/fV = 0

1D A, LLD AR ¢ JFF{0! 0 | The content of the interrupt enable flip-flop (IFF)

is copied into the PfV flag

BIT b, s o FIX|X|0]1 The state of bit b of location s is copied into the Z flag

NEG PI3IVIEI1E S | Negate accumulator

The following notation is used in this table:

Symbol Operation

C Carry/link flag. C=1 if the operation produced a carry from the MSB of the operand or result.

z Zero flag. Z=1 if the result of the operation is zero.

5 Sign Oag. 5=1 if the MSE of the result is one.

Biv Parity or overflow flag. Parity {P} and overflow (V) share the same flag. Logical operations affect this flag
with the parity of the result while arithmetic operations affect this flag with the overilow of the result. If P/V
helds parity, PfV=1 if the result of the operation is even, P/V=0if msult is odd. [f PfV helds ovecflow, PfV=1
if the resuit of the operation produced an overflow.

H Half-carry flag. H=1 if the add or subtract operation produced a carry into or borrow from inte bit 4 of the accumulator.

N Add/Subtract flag, N=1 if the previous operation was a subtract,

H and N fags are used in conjunction with the decimal adjust instruction (DAA) to propady coerect the re-
sult into packed BCD format following addition or subtraction using operands with packed BCD format.

b4 The flag is affected according to the result of the operation.

- The Aag is unchanged by the operation,

0 The flag is reset by the operation.

1 The fag is set by the operation.

X The flag is a “don’t care,™

v PF{V fag affected according to the overflow result of the operation.

P PfV flag affected according to the parity result of the operation.

T Any one of the CPU registers A, B, C, D, E, H, L.

5 Any 8-bit location for all the addressing modes allowed for the particular instructien. .

5 Any 16-bit location for all the addressing modes allowed for that instruction.

ii Any one of the two index registers TX or TY.

R Refresh counter,

n 8-bit value in range <D, 255>

nn 16-bit value in range <0, 65535

m Any 8-bit location for all the addressing modes allowed for the particular instruction.

SUMMARY OF FLAG OPERATION
TABLE 6.0-1

41

~BLANK~

42w

7.0 SUMMARY OF OP CODES AND EXECUTION TIMES

The following section gives a summary of the Z-80 instructions set. The instructions are logically arranged
into groups as shown on tables 7.0-1 through 7.0-11. Each table shows the assembly language mnemonic
OP code, the actual OP code, the symbaolic operation, the content of the flag register following the execu-
tion of each instruction, the number of bytes required for each instruction as well as the number of memory
cycles and the total number of T states (external clock periods) required for the fetching and execution of
each instruction. Care has been taken to make each table self-explanatory without requiring any cross refer-
ence with the test or other tabies,

43

Symboalic Flags OPCode | Ho- o | ot :
Mnemonic Operation Cl|ZFVS|N|H |76 543 210 | Byies Cycles | Cycles | Comments
LDr 1 [—r s |ata|s|sle |01 I r 1 1 4 f A o Reg.
LDnn [+n «|e]|» |00 ¢ 110 2 2 -1 vili] B
- N 01 C
LD ¢, (HL) r+ (HL) s|lsla|le|s |01 r 110 1 2 7 010 D
LD r, (1X+d} £+ {IX+d) s|lelale|s]ll 011 101 3 5 19 011 E
01 ¢ 118 100 H
< d4 = 101 L
LD 1, ([¥+d) 1+ {IY+d) s|o|s]a|es|®]1l 111 101 | 3 5 19 111 A
01 ¢ 110
+— g —
LD (HL), r {HL) +r o|lele 01 110 ¢ 1 2 7
LD {IX+d), 1 {(AX+d) ~r (oo 11 011 101 3 5 192
01 110 ¢
- d had
LD (I¥+d), r {I¥+d) ~1 ol ln|e|lein]|ejll 111 101 3 5 19
01 110 ¢
— d —
LD (HL), n (HL) + n #|la|e|e]|a]|e |00 110 110 | 2 3 10
— n —t
LD (IX+d), n {IX+d) ~=n ele|o|o]|ea|es|1]1 011 101 4 5 19
o0 110 110
- d -
- n —
LD (OIY+i), n | (J¥Y+l)«<n s|la|la|w|e|=|11 111 101 4 5 19
a0 110 k10 |
- d —
-+ n -3
LD A, (BC) A+~ (BC) LIAEIR] 00 001 010 1 2 T
LD A, {DE) A« (DE} w|w]» 00 011 019 1 2 7
LD A, (nn) A~ {nn) LRI 00 111 010 3 4 13
-+ n —
LD (BC}), A (BC)— A #|ele|n 00 00D D10 1 2 7
LD (DE}, A (DBE)+~ A eleo|w 0 M0 01 1 2 7
LD {nn), A {nm}+— A IR 00 110 010 3 4 13
— n -
-+~ n -
LD A,I Acl o 1[IFF$] 070 |11 101 101 2 2 9
ot oo 111 |
LD AR A+R o| $IIFF ¥ O] B |11 101 101 2 2 b
01 011111
LD A I<A ofe] o] ofofe]11 101 101 | 2 2 9
01 8400 111
LDR, A Re~A o|le|w|e|elea|ll 101 101 2 2 9
01 001 131

Motes: 1, T means any of the registers A, B, C, D, E H, L

IFF the content of the intecrupt enable [ip-flop ([FF) is copied inta the P/V flag

Flag Notation:

® = flag not affected, 0 = Nag reset, 1 = flag set, X = Nag is unknown,

t = flag is affected according to the result of the operation.

8-8IT LOAD GROUP
TABLE 7.0-1

44

Flaga |

OpCode | Mo, No. No,
Symbotic ¥, of of M of T
Mremonic Cpergtion z| M s| N{H| 76 543 210 Bytes | Cycles | States | Commennn
LD dd, nn dd+nn a|n|e =] 00 dd0 Q01 3 3 10 dd Pair
- n B BC
- 0o 1 DE
LDIX, an X ~nn | w|e| w]|e]11 011 101 4 4 14 I HL
o0 100 001 11 5F
- n =
- n -
LD 1Y, an 1¥ = nn w|w|w w11 111 101 4 4 14
o0 100 61
- 1 -
- n -
LDHL, {nn} | H-inntl) w|w|e|w|e]00 10l 010]| 3 3 16
L« inn) ~ n =
- g -
LD dd, ton} ddyy = (nn+1) stale|lojell] 10L101{ 4 6 0
dd) e (nn} o adl 011
- -
- n -
LD IX, inn) IXH-‘(nnﬂ) w|e|e| e|s]|11 011 101 4 6 2
[X; + {nn} o0 101 410
- n -
- 0 -
LD IV {na) | 1Yy (o) slaloleleliy 1i100 | 4 § 20
¥y + () 00 10l ala
- n -
- n =
LD (n), HL | (an+l} ~H alals|o|a|g0 10D QLO| 3 5 1&
{nn)~L - o -
- o =
Li¥ (nn}, dd (nn+1) —ddyy s|lals|lalelll 19l 101]| 4 & i
. (nn) -~ dd; 01 d4dd G11
- n -
e n -
L3 (nny, 1X (nn*])-]!(H o s|= =sfe]l] D11 100 4 & 0
(i) = 1% 00 100 010
- n -
- o =
LD nn), 1Y | @i} -1y, w|o|o|o|ofte 121101 4 6 20
(nn) — 1Y) 00 100 oL
- a -
- 1 -
Ly 5P HL SP+~HL o|o|®| a]ja] k1 111 OD1 1 1 [
LE SPIX SP-IX «|w|n|elalil 011100 2 2 Hu
11 111 991
LD 5P, IY SP+1Y wlw|w|l o011 111 101 2 2 10
11111 901 qq Pair
PUSH gq (8P-2} —qq o|s|s]ab=ill qq0 1N 1 3 1 W BC
{8P-1) ~qqy n DE
PUSH1X (P2 ~1X; w|w|o|w|o]ti i1 200| 2 4 15 14 HL
(8P-1) +1Xgy EL 100 181 11 AF
BUSH LY (8P-2) 1Y, o|e|w| w]w| 0L 111 303] 2 4 15
(8P-1) = 1Y, 1L 100 101
POP qq qqﬂf{s?ﬂ} o|s|s] &l efll qq0 001 1 3 10
qqg —{5P)
POP 1X Ty =~ (5P+1) oo o=l 1] 020200 | 2 4 14
1%, ~(sF) 11 100 601
PORIY 1Yy = (5P+1) ol alo] miel)] 1IEODL| 2 4 14
1Y, ~(5F) 11 100 o1

Notes: dd isany of the register pairs BC, DE, HL, SP
qq is any of the Tegistet paits AF, BC, DE, HL
(PAIR)y, {PAIR); sefer to high order and law arder eight bits of the regisler pair respectively.

Eg. BC) =C,AFy=A

Flag Notatsom:

= flag not affected, {f = flag reset, 1 = flag set, X = flag is uoknown,
% flag iz affected according to the result of the operation.

16-BIT LOAD GROUP
TABLE 7.0-2

45

Flags Op-Lode
No. No. No.
Symbolic ﬁr of of M of T
Mnemonic Operation ClZ|V|S|N|H|7 543 210 | Bytes Cycles | States | Commenis
X DE, HL DE --HL o w|e|e|a]|= |11 101 011 1 1 4
EX AF, AF" AF - AF* ejefjele|=]|» |00 001 000 1 1 4
EXX (BD-CC') sie|afuie]la|l]l 011 OM i 1 4 Register bank and
DE I DE* auxiliary register
H L’ bank exchange
EX (8P, HL H = (SP+1) slo|ale|e]e |11 10O O1] i 5 19
L~1{5P)
EX {5P}, 1X [xH“{SF‘Fl) eje|le|e|e|e{l] 011 101 2 & 23
[XLﬂ{SP} 11 100 011
EX (5P), [Y IYH“ISP+I} e|le|oia]|eie 1l 111 1M 2 [23
IYL”(SP] 11 100 011
@
L {DE}« {HL} e|le|t|[ejO] O |11 101 ID 2 4 16 Load {HL} into
DE = DE+] 10 100 000 . (DE), increment the
painters and
HL « HL+1 decrement the byte
BC ~ BC-I counter (BC)
LDMR iDEY —iHLj so|e|O]|=|a]0]11 101 101 2 5 21 ITBC=+ 0
DE « DE+1 10 110 000 2 4 16 WRC =10 y
HL — HL+I
B — BO-L
Repeal untit
BC=0
@
Lo (DEY = (HL) slelplelujefin 101 1M 2 4 16
DE -~ DE-1 1101 03
HL ~ HL-1
BC -~ B
LBbR {DEY ~ IHL) eje|O0]ep 0] 011 101 1M 2 5 21 IEBC =10
DE «— DE-1 10 111 Q0D 2 4 16 ITBC =9
HL ~ H1-1
BC = B(-|
Repeat until
BC =0
QI
CPI A - HL) ejp)]s 0] s |11 101 101 2 4 16
HL — EHL+1 10 100 001
BC ~ B{- 1
QD
CPIR A - (HL}Y altttlty 1]t |11 101 1) 2 5 21 IfBC # 0and A + (HL)
HL ~ HL+1 10 110 001 2 4 16 IFBC=0oarA=(HL)
BC — BC-|
Repueat until
A= (HL)or
BC =0
&0, :
CPrp A - (HL} ottt |8t L1 101 1DI 2 4 i6
HL ~- HL-1 10 101 o
B(«— BOC-1
QO
CPRR A~-iHL) U RIEIEI BRI BN SRR A 3 5 21 IfBC # 0and A # (HL)
HL ~HL-1 1 L1 o 2 4 16 ITBC =D or A ={HL}
8C ~ B{-1
Ropeat until
A ={HL)or
BC =10

Notes: (D PiV fag is (i1 the result of BC-1 = 0, otherwise PAV = 1
@ 7 flapas il A = ¢(HLY, otherwise Z =0,

I'lag Notation: e = flag not affected, 0= flag resct. | = flag set, X = flag is unknown,
1 = Nap is affected aceording to the ezsull of the operation.

EXCHANGE GROUP AND BLOCK TRANSFER AND SEARCH GROUP
TABLE 7.0-3

46

Flags Qp-Code
P Na. Ne. No.
Symbuolic ! of aof M of T
Mnemonic Operation Clz|v|S|N|H |7 543 210 Bytes Cycles | States Comments
ADD A, r A—A+r tls|vi({t|o]t |1e[000] « 1 1 4 r Reg.
ADD A,n AwAtn sle]vislols [t [of s0 | 2 2 7 gg? g
AL oo D
ADDA,(HLY | Ava+HL) [t|t]|v|t|o]|t [r1o@mBli | 2 2 1 a1l E
ADD A, (IX+d) a—a+aXed) [t |3 |v|efofs |11 o0y 500 | 3 5 19 100 H
101 L
10 [660] 110 1l A
- 4 =
ADD A, (1Y +d} A—A+(lY+d) thElV|s|0 |t |11 111 101 3 5 i9
10 [000) 110
— o il
"ADC A, s AvA+s+CY[t[s|Vv|t]|o]1t sis any of r, n,
SUBs AvA-s tlefvi|s]r]s (ML}, (1X2d),
(1Y +d} o shown lor
SBCA,s AcA-s-CY[1 |t VI3[t [0T] AIMY instruction
ANDs A-A A s [0|t]|P|t]|0]1
DR s A—A NV s |D(t|P|t|0]0 The indicated bits
- replace the 000 in
XOR s Aches Ot jeioio the ADD sel above.
CPs A-g [S
INC r r—r+1 = | Y |t|0(t |00 r OO | | 4
INC{HL) (HL)—(HL}+1|=» |t [Vt |6 |2 [oo tioficol | 1 3 1
INC (IX+d) (IX+d) — LR AN ENEN IR 3] 23
(X +dy+] o8 110
- o -
INC (1Y +d) (IY+d) sl v]tlolt it oo | 3 3 13
(y=dy + I o0 116180
- g
DEC m mem-1 oVt 01 m is any of 1, (HL),
X +dd ALY vy ux

shown Tor INC.
Same format and
shales as NG,
Replace [0 with
L in OF cadde,

Notes: The ¥V symbol in the P/V flag column indicates that the BV Tag contains the overfllow of the resalt of the
operation Similarly the P symbol indicates parity, ¥V = Dmcans averilow, ¥V = 0 means not overllow. P = 1
means parity of the resullis even, P = 0 means parity of the result s odd.

Ilag Notation:

o = flag not affected, O = Nap reset, | = flag s, X = flag s unknown,
{ = flag is affected according to (he result of the operation,

8-BIT ARITHMETIC AND LOGICAL GROUP

TABLE 7.0-4

47

Flags Op-Code
T No. No. No.
Symbalic f of of M of T
M peration V|S| NI H|76 543 210 Bytes Cycles | States | Comments
DaA Converts acc, Plt|e]t |00 100 111 1 1 4 Decimal adjust
content into accumulator
packed BCD
following add
or subtract
with packed
BCP operands
CPL AcA ein|1| 1|00 101 111 | 1 1 4 Complement
accumulator
(one's complement)
NEG AvO-4a Vlg|1]t]11 101 101 2 b 8 Megate ace. {twa's
01 000 100 complemaent)
CCF CY «CY e|o|ofx]o0o 121 311 | 1t i 4 Complement carry
flag
SCF C¥+1 o|=|0| 0|00 110 }13 H 1 4 Set carry flag
NOP No operation e!w|e e |00 QRO QOO 1 3 4
HALT CPU halted w|s|=]|= |01 110 10 1 1 4
D IFF +~Q eleofale|]1] 110 011 1 1 4
EI IFF + 1 o|le|ate |11 111 011 | 1 1 4
iM0 Set intermupt s|s|ele]ll 101 I 2 2 8
mode 0 01 000 110
M1 Set interrupt s|le|e]e |11 141 181 2 2 1
mode 1 01 010 110
M2 Set interrupt o|e|w]es]11 101 131 2 2 8
mode 2 01 011 110
Notes: [FF indicates the interrupt enable flip-flop

CY indicates the carry flip-flop.

Flag Notation: # = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
t = flag is affected according to the result of the operation.

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS
TABLE 7.0-5

48

Mo, No, No.
Symbolic | Flags OpLode | of ofM | of T
Mnemonic Operation C Z'p_,v S[N|H|[76 543 210 | Bytes | Cycles | States [Comments
ADDHL, 5 HL — HEL+ss t]le]le|e|0 {X[00 st QO 1 3 11 EH] Reg.
00 BC
ADC HL, s HL+~HL+s3+CY|$ | ¢ | V]| ¢ |0)X |11 101 107 2 4 15 ?E} EE
a1 sl 010 . 11 5P
SBCHL, = HL+~HL-s5-CY [t]| ¢| V2|1]X]11 i0l 101 2 4 15
01 ss@ 010
ADDIX,pp |IX—IX+pp [t]|e|e|e|0 [X[11 011 200 | 2 4 15 [Reg.
00 ppl O [11] BC
ot DE
10 X
. 1t sp
ADDIY,1r 1Y+1¥+1r t|e]le|e|0X]I1 0L LOI 2 4 15 [+ 4 Reg.
a0l oM 0D BC
ot bE
10 1Y
it sp
TNC 58 85— 58 + 1 e|leo|o|n|w|a|00 50 BN 1 | 6
INC IX IX~=IX+1 w|lo|s|a|e|e]1] OIL LI 2 2 10
Q0 100 011
INC IY IY ~1Y + 1 o|le|le|o]afofll 111 £0L 2 2 14
0 100 011
DEC =5 55 + 55 - 1 o|la|w|a|s]e]|00 s51 O11 1 1 6
DECIX [X—EX-1 o|le|e|o]|e|a]l]l] 1D 2 2 10
ad 101 oLl
DECIY Y —1¥ - 1 e|lo|w|a|e]s]11 111 101 2 2 Ly
0o 101 011

Notes: $5 is any of the repister pairs BC, DE, HL, SP
pp is any of the register pairs BC, DE, IX, SP
r1 is any of the register pairs BC, DE, 1Y, 5P,

Flag Notation: & = flag not affected, 0= ilag reset, 1 = fag set, X = Aag is unknown,
£ = flap is affected according 10 the result of the operation.

16-BIT ARITHMETIC GROUP
TABLE 7.0-6

49

Flags Op-Code
T No. No, Mo,
Symbolic I of of M of T
Mnemonic Operation ClEZ|V|S|N|H|76 543 210 Bytes Cycles | States Comments
RLCA t[e|w]= a0 ooe 111 1 1 4 Rotate left circular
accumulator
RLA ..1 -— nl R 0|00 01O 111 1 1 4 Rotate left
* accumulator
RRCA III tisle]e o|oo 001 111 1 1 4 Rotate right circular
~ accumnulator
ERA — . t e|e]» o100 011 111 1 1 4 Rotate nght
0 accurmnulator
RLC 1 1|t|P]t 0] 001 011 2 2 8 Rotate left circular
00 r register r
RLC (HL) it Pls 0{11 001 011 2 4 15 I Reg.
cofooo}r 10 000 B
RLC (IX+d)| © I'q ¢le[P]efofolir 011 tor]| 4 6 23 g% <
rANLY, {1X4d)Y+ 11 001 Dll 011 E
- d - 100 H
o
RLC (I'Y+d) t|t|P|¢ 011 11 101 4 6 23
11 001 0N
[d —
oo[oon]110
ELm lc ., -— nl t|e]|P|s 1] Instruction format and
= states are a8 shown
S ILL XA b (IR f(}l’ RLC Jm. TD form
H gw OP-code replace
RRE m [— 7 t{tip[t]o]0 ﬁ@ofRLc,m with
m S r (HL [1Xed), {1V+g) shown code
RR m = [¢|s]r|+]ofo
m =r, (HLE (TXed), 1Y +d)
HLAam a7 == o [t]2|P]2 V]
S0, HLLAICHS, (1Y) .
SRA m == t{t|ets|ofo
m Er, (HLY, {1X+d}, {1V Hd)
SRL m ewlt —= d tpsjpielolo| [T
m = LY, (14, (T+d}
RLD IEF sulelslelsjofofis 101 101] 2 5 18 Ratate digit left and
] 01 101 111 right between the
accumulator
[and location {HE).
RRD LY O ENC, I EIR EN TGS DR o G]1& 161 101 2 5 18 The content of the
0% 100 111 I.IppEl'h:llfoﬂ‘le
aceumulator is
unaffected
Flag Notation: « =-flag not affegted, 0 = flag reset, 1 = flag set, X = flag is unknown,

} = flag is affected according to the result of the operation.

ROTATE AND SHIFT GROUP
TABLE 7.0-7

30

Flags OpLode
P 0 No. No. No.
Symbolic ! of of M of T
Mnemonic Operation ClZ|¥]|S|N|H] 76 543 210 Bytes Cycles | States | Comments
BIT b, r Za—?b ot X]X]Of1]11 001 01 2 2 8 |4 Reg.
Bl b 1 000 B
BITb, HL) | 2-THD), o|t|x{x{of1]11 001011} 2 3 12 g% g
01 b 110 011 E
BIT b, (IX+d) Z-—(IX+d)h o $| X]|X]O]1]11 011 1D 4 5 20 100 H
11 001 011 101 L
111 A
+— d —
01 b 110 b Bit Tested
BIT b, (IY+d) Z-—(I?i-d)b et X|Xq0]1]|11 111 11 4 5 20 000 a
11 031 O 010 2
- 4 - D11 3
DI b 11 100 4
101 5
110 6
111 7
SETbH, r rb«—l s|w|ala]|w]|s]2l 001 O1F 2 2 8
b o
SET b, (HL) {HL}bo—l o|le|s]e|w|s|1l 001 011 2 4 15
[v 110
SET b, (IX+d} {Ix+d}b4—1 sle|eleo|e]lell] O 101 4 6 21
11 001 all
-— d —
[i1] b 1to
SET b, (IY+d) [IY+d)b-—1 sle|lele|w|es]11 111 tOL 4 3 23
11 401 01l
— d -
(b 110
RES b, m s 0 Ta form new OP-
= code replace
m=r, ({HL), -
(IX+d) SET bym with
. . Flags and time
(¥+) states for SET
instruction

Notes: The notatien 5 indjcates bit b ({ to 7) o1 location s.

Flag Motation:

® = flag not affected, D = flug reset, | = flag set. X = flag is unknown,
t = flag is aftected according to the result of the operation.

BIT SET, RESET AND TEST GROUP
TABLE 7.0-8

51

Flags Op-Code
F MNa. Na, No,
Symbaolic ! of of M of T
Mnemonic Operation ClZ| ¥|S|N|H| 76 543 210 Bytes I Cycles | States | Comments
IP nin PC «~nn efje|w |o|e]e]|11 000 0L 3 3 10
. —— n —
— n o Condition
IP cc, nn [f conditioncc} o| o |» |o o o])] cc O1D| 3 3 1 NZnon zero
is true PC «nn, - n - 001 | Z zero
otherwise . Qi | NCnon carry
continue - n arl | © carry
160 | PO parity odd
101 | PE parity even
1) | P sipn positive
IRe PC~PC+e w|la|o|o|w]|s|00 011 DOO| 2 3 12 181 | M sign negative
— 8-2 =
RC e we=49, efo|n |a|e]|e|00 111 Q00 2 2 7 If condition not met
continue - gul =
wcs=1, 2 3 12 If condition is met
B+ BC+e
JRNC, e IfC=1, o|le|n |e]|o]a|D0 110 COD 2 2 7 I condition not met
continue - g2 o
IfC=0, 2 3 12 If condition is met
PC~PC+e
JRZ,e IFZ=0 sle|o|e|a|e|}Dd 101 0DO 2 2 7 I{ condition not met
continue - gl -
IfFZ=1, 2 k) 12 I condition is mel
PC~PC+e
JR NZ, ¢ ItTZ=1, a|ls|o |o]|nte|d0 100 OO0 2 2 ki if candition not mye
continue - g=2
IfZ=0, 2 3 12 If condition met
PC P +e
IP (HL) PC* -~ HL a|lo|w|a|a]|a] it 101 O 1] 4
JP (1X) PC 11X w|o|e]e]e|w]il D11 101 4 2 8
1 181 go1
IP (1Y) PC +IY sleo|w|o|w|w]|11 11 101 2 2 g
1L 9ol
DINZ,e B~ B-1 alw|e|o|n]|e|00 010 O0G| 2 2 a IfB=10
IB=0,
i = a1 -
continue
IEB =0, 2 3 13 IFB+0
PC+PC+e

Notes: e represents the extension in the relative addressing mode.
e is a signed two's compl 1 per in the range <-126, 129>

e-2 In the ap-code provides an effective address of pe +e a5 PCis
incremented by 2 prior to the addition of e.

Flag Notation: # = flag not affected, & = flag reset, 1 = fag set, X = flag is unknown,
$ = flag is affected according to the result of the operation.

JUMP GROUP
TABLE 7.0-9

52

Flags Dp-LCode

P Nao, No. No,

Symbolic ! of of M of T
Mpemoniz Operation VISINIH|TE 543 210 Bytes Cycles | States Comments
CALL nn (SP-I)«PCH #|eojs|si]] 001 LOL 3 5 17

(SP-2)~FC; - n -

PL-nn - n -
CALL c&, nn If capdition e o|a]|e]ll e 100 3 3 10 [fec is false

ce is false n o=

continue, -

otherwize - n = 3 3 17 [f ce is tme

SAME A5

CALL nn
RET PCL—(SP) o|ale|lel]l]l 001 OO1 1 3 0

PCH+-(SP+1)
RET cc If condition o|le]|w|will c 000 1 1 5 If ceis false

cc is false

i

E‘:::em:é 1 3 11 If cois troe

same as [J Condition

RET Q00| NZ non zero

ool | z zero
010 | NC non carry

RETI Return from ole|e|es]l] 101 101 H 4 14 ol | ¢ casTy

interrupt oL 001 101 100 | PO par@ty odd
RETN Retum from olole|olirior 12| 2 4 14 1l0| BE parity even

nen mas sigh positive

T 101 - A

interrupt 01 000 111 | M sign negative
RSTp (SP-1)+-PCpy olo]elelll t 111 1 3 11

(SP-2)~PCp

PCy -0

PCL-P .
Flag Notation: = = flag not affected, 0 = flag reset, 1 = flag set, X = fag is unknown

t = fag is affected according to the result of the operation,

CALL AND RETURN GROUP
TABLE 7.0-10

53

Flags Op-Code
i B No. No. No.,
Symbolic f of of M of T
Mnemonic Operation C Vs H] 76 543 210 | Bytes Cycles | States | Comments
IN A, (n) A ={n} o|e]eie 1011011 | 2 3 1 N0 AL~ Aq
+~ n = Acctoa*\s"*&”
IN 1, (<) r+-(C) . Pl 11 101 101 2 3 12 Ctoﬁo"'ﬁ?
il'r=11[}c_mly 01 ¢ 000 BtoAS-A]s
the flags will
be affected
INI (HL) —{C) X XX X|11 101 101 2 4 16 CtoAO"'A?
B+B-1 10 100 Lo EIOAE'"AIS
HL~HL +1{
INIR (HL) ~ {C) X X| X X| 11 101 101 2 5 1 Cto A0~A7
BeB-1 10 110 010 arh =0 BloAg~ A
HL ~HL +} 2 4 16
Repeat until (EB=q)
B=0
IND (HL} » {C) X X| X X| 11 10t 101 2 4 16 Cto &0"'!\
B~B-1 ic 101 010 Bta AE'*AIS
HL ~HL -1
INDR (HL) = {C) X X| X X[l 101 101 2 § 21 Cto A "'A?
B-B-1 10 11t 910 (1B +0) BtoAg~ A
HL +HL -1 3 4 16
Re;peat until df B =0)
OUT (a), A] i(n})—A . s I oooLr | 2 3 L1 nio Ay~ Ay
— n — AccmAs~A15
QUT (C), ¢ (Cy~r . LA 1l 101 101 2 3 12 Cto AO'-AT
0L ¢ am BloAs‘-Als
ouTl (C) +~ (HL) X XX X| 11 10l 131 2 4 16 Clo A “'A?
B+B-1 10 196 011 BIOAS*‘AIS
HL ~HL +1
OTIR (Cy + (HL) X X| X X| 11 101 101 2 5 21 Cle AU“‘A?
B«B-1 10 110 011 (HE=0) BloAy ~ A
o 2l
Bog (B =0
ouUTD (C) +~(HL} X XX X{ 1o 1ol 2 4 16 Cle A ‘-A?
B—B-1 10 kG OFL BIDAB‘~A]5
HL~HL- |
OTDR {Cr < (HL) X Xl X Ll 101 101 2 5 21 Cto A "‘AT
B—B-1 19 111 011 (arg =0y BloAg~ A
s SR
B (MB=0)

Notes: @ 1f the result of B - 1 is 2ero the Z flag is set, otherwise it is teset .

Flag Notation:

= flag not affected, & = flag reset, 1 = Dag set, X = fay is unknown,
t = flag is affected according to the result of the aperation.

TABLE 7.0-11

54

INPUT AND OUTPUT GROUP

8.0 INTERRUPT RESPONSE

The purpose of an interrupt is to allow peripheral devices to suspend CPU operation in an orderly
manner and force the CPU to start a peripheral service routine. Usually this service routine is involved with
the exchange of data, or status and control information, between the CPU and the peripheral. Once the
service routine is completed, the CPU returns to the operation from which it was interrupted.

INTERRUPT ENABLE — DISABLE

The Z50 CPU has two interrupt inputs, a software maskable interrupt and a non maskable interrupt.
The non maskable interrupt (NMI) can no? be disabled by the programmer and it will be accepted when-
ever a peripheral devise requests it. This interrupt is generally reserved for very important functjons that
must be serviced whenever they occur, such as an impending power failure. The maskable interrupt (INT)
can be selectively enabled or disabled by the programmer. This allows the programmer to disable the inter-
rupt during periods where his program has timing constraints that do not allow it to be interrupted. In the
Z80 CPU there is an enable flip flop {called IFF) that is set or reset by the programmer using the Enable
Interrupt (El) and Disable Interrupt (DI) instructions. When the IFF is reset, an interrupt can not be
accepted by the CPU.

Actually, for purposes that will be subsequently explained, there are two enable flip flops, called IFFl
and IFF,.
2

IFF IFF2
Actually disables interrupts Temporary storage location
from being accepted. for IFFI.

The state of [FF | is used to actually inhibit interrupts while IFF+ is used as a temporary starage location
for JFF . The purpose of storing the IFF| will be subsequently explained.

A reset to the CPU will force both IFF | and IFF+ to the reset state so that interrupts are disabled.
They can then be enabled by an EI instruction at any time by the programmer. When an El instruction is
executed, any pending interrupt request will not be accepted until after the instruction following EI has
been executed. This single instruction delay is necessary for cases when the following instruction is a return
instruction and interrupts must not be allowed until the return has been completed. The EI instruction sets
both [FF| and IFF7 to the enable state. When an interrupt is accepted by the CPU, both IFF| and IFF»
are automatically reset, inhibiting further interrupts until the programmer wishes to issue a new EI instruc-
tion, Note that for all of the previous cases, IFF| and IFF4 are always equal.

The purpose of IFF; is to save the status of IFF | when a non maskable interrupt occurs. When a non
maskable interrupt is accepted, IFF | is 1eset to prevent further interrupts until reenabled by the pro-
grammer. Thus, after a non maskable interrupt has been accepted, maskable interrupts are disabled but the
previous state of IFF| has been saved so that the complete state of the CPU just prior to the non maskable
interrupt can be restored at any time. When a Load Register A with Register I (LD A, I) instruction or a
Load Register A with Register R (LD A, R) instruction is executed, the state of [FF5 is copied into the
parity flag where it can be tested or stored,

A second method of restoring the status of IFF| is thru the execution of a Return From Non
Maskabie Interrupt (RETN) instruction. Since this instruction indicates that the non maskable interrupt
service routine is complete, the contents of IFF5 are now copied back into IFF |, so that the status of IFF;
just prior 1o the acceptance of the non maskable interrupt will be restored automatically.

55

Figure 8.0-1 is a summary of the effect of different instructions ont the two enable flip flops.

Action IFF; IFF;
CPU Reset 0 0
DI -0 0
EI 1 1
LD A,I . . IFF 5 ~>Parity flag
ILDAR . . IFF 4 —>Parity flag
Accept NMI 0 » '
RETN IFF2 . IFF2 “‘)‘IFFI
“#”" indicates no change

FIGURE 8.0:1
INTERRUPT ENABLE/DISABLE FLIP FLOPS

CPU RESPONSE
Non Maskable

A nonmaskable interrupt wiil be accepted at all times by the CPU. When this occurs, the CPU ignotes
the next instruction that it fetches and instead does a restart to location 0066H. Thus, it behaves exactly as
if it had received a restart instruction but, it is to 4 location that is riot one of the 8 software restart loca-
tions. A restart is merely a call to a specific address in page 0 of memory.

Maskable

The CPU can be programmed to respond to the maskable interript in any one of three possible
modes.

Mode 0

This mode is identical to the 8080A interrupt response mode. With this mode, the interrupting device
can place any instruction on the data bus and the CPU will execute it. Thus, the intetrupting device pro-
vides the next instruction to be executed instead of the memory, Often this will be a restart instruction
since the interrupting device only need supply a single byte instruction, Alterpatively, any other instruction
such as a 3 byte call to any location in memory could be executed.

The number of clock cycles necessary to execute this instruction is 2 more than the normal number for the
instruction. This occurs since the CPU automatically adds 2 wait states to an interrupt response cycle to
allow sufficient time to implement an external daisy chain for priority control, Section 5.0 illustrates the
detailed timing for an interrupt response, After the application of RESET the CPU will automatically enter
interrupt Mode Q.

Mode 1

When this mode has been selected by the programiner, the CPU will respond to an interrupt by
executing a restart to location 0D38H. Thus the response is identical to that for a non maskable interrupt
except that the call location is 0038H instead of 0066H. Another difference is that the number of cycles
required to complete the restart instruction is 2 more than normal due to the two added wuit states,

56

Mode 2

This mode is the most powerful interrupt response mode. With a singie 8 bit byte from the user an
indirect call can he made to any memory location.

With this mode the programmer maintains a table of 16 bit starting addresses for every interrupt
service routine. This table may be located anywhere in memory. When an interrupt is accepted, a 16 bit
pointer must be formed to obtain the desired interrupt service routine starting address from the table.

The upper 8 bits of this pointer is formed from the contents of the I register. The I register must have been -
previously loaded with the desired value by the programmer, i.. LD [, A. Note that a CPU reset clears the I
register so that it is initialized to zero. The lower eight bits of the pointer must be supplied by the interrupt-
ing device. Actually, only 7 bits are required from the interrupting device as the least significant bit must be
a zero. This is required since the pointer is used to get two adjacent bytes to form a complete 16 bit service
routine starting address and the addresses must always start in even locations,

-’
desired starting address

Interrupt pointed to by:
Service
Routine low order } I REG 7 BITS FROM |,
Starting ﬁ high order CONTENTS PERIPHERAL
Address
Table

.

The first byte in the table is the least significant (low order) portion of the address. The programmer must
obviously fill this tabie in with the desired addresses before any interrupts are to be accepted.

Note that this table can be changed at any time by the programmer (if it is stored in Read/Write
Memory) to allow different peripherals to be serviced by different service routines.

Once the interrupting devices supplies the lower portion of the pointer, the CPU automatically pushes
the program counter onto the stack, obtains the starting address from the table and does a jump to this
address. This mode of response requires 19 clock periods to complete (7 to fetch the lower 8 bits from the
interrupting device, 6 to save the program counter, and 6 to obtain the jump address.) N

Note that the Z80 peripheral devices all include a daisy chain priority interrupt structure that auto-

matically supplies the programmed vector to the CPU during interrupt acknowledge. Refer to the Z80-PIO,
Z80-810 and Z80-CTC manuals for details.

37

-BLANK-

-58-

9.0 HARDWARE IMPLEMENTATION EXAMPLES

This chapter is intended to serve as a basic intreduction to implementing systems with the Z80-CPUJ.

MINIMUM SYSTEM

Figure 9.0-1 is a diagram of a very simple Z-80 system. Any Z.80 system must include the following

five elements:

1} Five volt power supply

2) Oscillator

3) Memory devices
4) IfO circuits

5) CPU

+BY

RESET

-

+6 VOLT
osC FOWER SUPPLY
]
Ag-Ag +6Y GND
ADDRESS
In
MREQ =
c
=5 J €4 SKBIT
ACE, RO
DATA
280 DATA BUS our
cPU <
®
oRD l
_CE AD
-—0 IGRGQ B/A f—— Ay
i - Z80- PIO
—0 Wit CiDjar— Ay
PORT A PORT B
QUTPUT INPUT
DATA DATA
FIGURE 9.0-1

MINIMUM 280 COMPUTER SYSTEM

Since the Z80-CPU only requires a single 5 volt supply, most small systems can be implemented using

only this single supply.

The oscillator can be very simple since the only requirement is that it be a 5 volt square wave. For
systems not running at full speed, a simple RC oscillator can be used. When the CPU is operated near the
highest possible frequency, a crystal oscillator is generally required because the system timing will not
tolerate the drift or jitter that an RC network will generate. A crystal oscillator can be made from inverters
and a few discrete components or monolithic circuits are widely available.

The external memory can be any mixture of standard RAM, ROM, or PROM. In this simple example
we have shown a single 8K bit ROM (1K bytes) being utilized as the entire memory system. For this
example we have assumed that the Z-80 internal register configuration contains sufficient Read/Write
storage so that external RAM memory is not required.

59

Every compulter system requires [/O circuits to aliow it to inlerface to the “real world.” In this simple
example it is assumed that the output is an 8 bit control vector and the input is an 8 bit status word. The
input data could be gated onto the data bus using any standard tri-state driver while the output data could
be latched with any type of standard TTL latch. For this example we have used a Z80-PIO for the [/O
circuit. This single circuit attaches to the data bus as shown and provides the required 16 bits of TTL
compatible 1/Q. (Refer to the Z80-PIQ manual for details on the operation of this circuit.) Notice in this
example that with only three LSI circuits, a simple oscillator and a single 5 volt power supply, a
powerful computer has been implemented.

ADDING RAM

Most computer systems require some amount of external Read/Write memory for data storage and to
implement a “'stack.” Figure 9 0-2 illustrates how 256 bytes of static memory can be added to the previous
example. In this example the memory space is assumed to be organized as fallows:

Address

0O000H
1K bytes
ROM

03FFH
256 bytes | 0400H
RAM

04FFH

ADDRESS BUS

UAO-AQ UAU-A? UAD'A?
WHAEG - RD o, RO [on EJ¥Ra RB[o o, MRQ
A K x8 256 x 4 266 x 4
10 ROM WR RAM Ats WR RAM Asn
——fcE, lrw CE, LLLE YR CEp——
dp-dy dg-d3 @"4‘ d;
DATA BUS
FIGURE 9.0-2

ROM & RAM IMPLEMENTATION EXAMPLE

In this diagram the address space is described in hexidecimal notation. For this example, address bit Ao
separates the ROM space from the RAM space so that it can be used for the chip select function. For
larger amounts of external ROM or RAM, a simple TTL decoder will be required to form the chip selects.

MEMORY SPEED CONTROL

For many applications, it may be desirable to use slow memories to reduce costs. The WAIT line on
the CPU allows the Z-80 to operate with any speed memory. By referring back to section 4 you will notice
that the memory access time requirements are most severe during the M1 cycle instruction fetch. All other
memory accesses have an additional one half of a clock cycle to be completed. For this reason it may be
desirable in some applications to add one wait state to the M1 cycle so that slower memories can be used.
Figure 9,0-3 is an example of a simple circuit that will accomplish this task. This circuit can be changed to
add a single wait state to any memory access as shown in Figure 9.04,

60

WAIT

R R
T T WAIT \ I
+5V +5Y

FIGURE 9.0-3
ADDING ONE WAIT STATE TO AN M1 CYCLE

WAIT
+5V +5v 7400
l l T1 TZ Tw
MREDQ 5 3 P
D a D Q
" 7474 B 7474 | MREQ _-\
c ar— C [a]
TR i WAIT \ ‘
+AY T+5\.|r
FIGURE 9.0-4

ADDING ONE WAIT STATE TO ANY MEMORY CYCLE

INTERFACING DYNAMIC MEMORIES

This section is intended only to serve as a brief introduction to interfacing dynamic memories. Each
individuai dynamic RAM has varying specifications that will require minor modifications to the description
given here and no attempt will be made in this document to give details for any particular RAM. Separate
application notes showing how the Z80-CPU can be interfaced to most popular dynamic RAM’s are
available from Zilog.

Figure 9.0-5 illustrates the logic necessary to interface 8K bytes of dynamic RAM using 18 pin 4K
dynamic memories. This figure assumes that the RAM’s are the only memory in the system so that Ayyis
used to select between the two pages of memory. During refresh time, all memories in the system must be
read. The CPU provides the proper refresh address on lines A through Ag. To add additional memory to
the system it is necessary to only replace the two gates that operate on Ao with a decoder that operates
on all required address bits. For larger systems, buffering for the address and data bus is also generally
required.

61

—0
MREQ]
O
P e)
—)
— 1
AO— A11 CE
> 4K x8 RAM ARBAY
RW
PAGE 1
dU-d? DATA BUS {1000 to 1FFF)
CE
WR- ["> 4Kx8RAMARRAY
R
PAGE 0
{0000 to OFFF}
FIGURE 9.0-5

INTERFACING DYNAMIC RAMS

62

10.0 SOFTWARE IMPLEMENTATION EXAMPLES
10.1 METHODS OF SOFTWARE IMPLEMENTATION

Several different approaches are possible in developing software for the Z-80 (Figure 10.1), First of
all, Assembly Language or PL/Z may be used as the source language. These languages may then be trans.
lated into machine language on a commerciat time sharing facility using a cross-assembler or cross-compiler
or, in the case of assembly language, the translation can be accomplished on a Z-80 Development System
using a resident assembler. Finally, the resulting machine code can be debugged either on a time-sharing
facility using a Z-80 simulator or on a Z-80 Development System which uses a Z80-CPU directly.

SOURCE
LANGUAGE TRANSLATION DEBUGGING

RESIDENT ASSEMBLER
ABSEMBLY DEVELOPMENT
LANGUAGE SYSTEM
MACHINE
CROS5 ASSEMBLER LANGUAGE
PL/Z OR OTHER
HIGH LEVEL '——|_-| SIMULATOR

LANGUAGE CROSS COMPILER

FIGURE 10.1

In selecting a source language, the primary factors to be considered are clarity and ease of program-
ming vs. code efficiency. A high level language such as PL/Z with its machine independent constructs is
typically better for formulating and maintaining algorithms, but the resulting machine code is usually
somewhat less efficient than what can be written directly in assembly language. These tradeoffs can often
be balanced by combining PL/Z and assembly language routines, identifying those portions of a task which
must be optimized and writing them as assembly language subroutines,

Deciding whether to use a resident or cross assembler is a matter of availability and short-term vs.
long-term expense. While the initial expenditure for a development system is higher than that for a time-
sharing terminal, the cost of an individual assembly using a resident assembler is negligible while the same
operation on a time-sharing system is relatively expensive and in 2 short time this cost can equal the total
cost of a development system.

Debugging on a development sysiem vs. a simulator is also a matter of availability and expense com-
bined with operational fidelity and flexibility. As with the assembly process, debugging is less expensive on
a development system than on a simulator available through time-sharing. In addition, the fidelity of the
operating environment is preserved through real-time execution on a Z80-CPU and by connecting the 1/0
and memeory components which will actually be used in the production system. The only advantage to
the use of a simulator is the range of criteria which may be selected for such debugging procedures as trac-
ing and setting breakpoints. This flexibility exists because a software simulation can achieve any degree of
complexity in its interpretation of machine instructions while development system procedures have hard-
ware limitations such as the capacity of the real-time storage module, the number of breakpoint registers
and the pin configuration of the CPU. Despite such hardware limitations, debugging on a development
system is typically more productive than on a simulator because of the direct interaction that is possible
between the programmer and the authentic execution of his program.

63

10.2 SOFTWARE FEATURES OFFERED BY THE Z80-CPU

The Z-80Q instruction set provides the user with a large and flexible repetoire of operations with which
to formulate control of the Z80-CPU.

The primary, auxiliary and index registers can be used to hold the arguments of arithmetic and logical
operations, or to form memory addresses, or as fast-access storage for frequently used data.

[nformation can be moved directly from register to register; from memory to memory; from memory
to registers; or from registers to memory, In addition, register contents and register/memory contents can
be exchanged without using ternporary storage. In particular, the contents of primary and avxilary registers
can be completely exchanged by executing only two instructions, EX and EXX. This register exchange
procedure can be used to separate the set of working registers between different logical procedures or to
expand the set of available registers in a single procedure.

Storage and retrieval of data between pairs of registers and memory can be controlled on a last-in
first-out basis through PUSH and POP instructions which utitize a special stack pointer register, SP. This
stack register is available both to manipulate data and to automatically store and retrieve addresses for
subroutine linkage. When a subroutine is called, for example, the address following the CALL instruction
is placed on the top of the push-down stack pointed to by SP, When a subroutine returns to the calling
routing, the address on the top of the stack is used to set the program counter for the address of the next
instruction, The stack pointer is adjusted automatically to reflect the current *“‘top” stack position during
PUSH, POP, CALL and RET instructions. This stack mechanism allows pushdown data stacks and sub-
routine calls to be nested to any practical depth because the stack area can potentially be as [arge as
Memaory space.

The sequence of instruction execution can be controlled by six different flags (carry, zero, sign,
parity/overflow, add-subtract, haif-carry} which reflect the results of arithmetic, logical, shift and compare
instructions. After the execution of an instruction which sets a flag, that flag can be used to control a
conditional jump or return instruction. These instructions provide logical control following the manipula-
tion of single bit, eight-bit byte (or) sixteen-bit data quantities,

A full set of logical operations, including AND, OR, XOR (exclusive - OR), CPL (NOR) and NEG
(two’s complement) are available for Boolean operations between the accumulator and 1) all other sight-bit
registers, 2) memory locations or 3} immediate operands.

In addition, a full set of arithmetic and legical shifts in both directions are available which operate
on the contents of all eight-bit primary registers or directly on any memory location. The carry flag can be
included or simply set by these shift instructions Lo provide both the testing of shift results and to link
register/register or register/memory shift operations.

10.3 EXAMPLES OF USE OF SPECIAL Z80 INSTRUCTIONS
A, Let us assume that a string of data in memory starting at location “DATA™ is to be moved into

ancther area of memory starting at location “BUFFER™ and that the string length is 737 bytes, This
operation can be accomplished as follows:

LD HL , DATA :START ADDRESS OF DATA STRING

LD DE , BUFFER ; START ADDRESS OF TARGET BUFFER

LD BC , 737 ; LENGTH OF DATA STRING

LDIR ; MOVE STRING — TRANSFER MEMORY POINTED TO

; BY HL INTO MEMORY LOCATION POINTED TO BY DE
; INCREMENT HL AND DE, DECREMENT BC
; PROCESS UNTIL BC = 0.

11 bytes are required for this operation and each byte of data is moved in 21 clock cycles.

64

Let’s assume that a string in memory starting at location “DATA” is to be moved into another area
of memory starting at location “BUFFER” until an ASCIT 3 character (used as string delimiter) is
found. Let’s alsa assume that the maximum string length is 132 characters. The operation can be
performed as follows:)

LD HL , DATA ; STARTING ADDRESS OF DATA STRING
LD DE , BUFFER ; STARTING ADDRESS OF TARGET BUFFER
1D BC , 132 ; MAXIMUM STRING LENGTH
LD ALY . STRING DELIMITER CODE
LOOP:CP (HL) ; COMPARE MEMORY CONTENTS WITH DELIMITER
IR Z ,END —§ ;GO TO END IF CHARACTERS EQUAL
LDI . MOVE CHARACTER (HL) to (DE)
; INCREMENT HL AND DE, DECREMENT BC
IP PE,LOOP ;GO TO “LOOP” {F MORE CHARACTERS
END: : OTHERWISE, FALL THROUGH

-NOTE: P/V FLAG IS USED
: TO INDICATE THAT REGISTER BC WAS
: DECREMENTED TO ZERO.

19 bytes are required for this operation.

Let us assume that a 16-digit decimal number represented in packed BCD format (two BCD digits/
byte) has to be shifted as shown in the Figure 10.2 in order to mechanize BCD multiplication or
division. The operation can be accomplished as follows:

LD HL , DATA : ADDRESS OF FIRST BYTE
LD B, COUNT : SHIFT COUNT
XOR A . CLEAR ACCUMULATOR
ROTAT:RLD . ROTATE LEFT LOW ORDER DIGIT IN ACC
. WITH DIGITS IN (HL)
INC HL : ADVANCE MEMORY POINTER
DINZ ROTAT — § . DECREMENT B AND GO TO ROTAT IF

; BIS NOT ZERO, OTHERWISE FALL THROUGH

11 bytes are required for this operation.

4

s

FIGURE 10.2

65

D. Let us assume that one number is to be subtracted from another and a) that they are both in packed
BCD format, b) that they are of equal but varying length, and c) that the result is to be stored in the
location of the minuend. The operation can be accomplished as follows:

LD HL , ARG : ADDRESS OF MINUEND
LD DE , ARG2 : ADDRESS OF SUBTRAHEND
LD B, LENGTH : LENGTH OF TWO ARGUMENTS
AND A :CLEAR CARRY FLAG
SUBDEC: LD A ,(DE) . SUBTRAHEND TO ACC
SBC A, (HL) . SUBTRACT (HL) FROM ACC
DAA : ADJUST RESULT TO DECIMAL CODED VALUE
LD (HL) , A : STORE RESULT
INC HL : ADVANCE MEMORY POINTERS
INC DE _
DINZ SUBDEC — $: DECREMENT B AND GO TO “SUBDEC” IF B

;NOT 2ERO, OTHERWISE FALL THROUGH

17 bytes are required for this operation.

10.4 EXAMPLES OF PROGRAMMING TASKS

A. The following program sorts an array of numbers each in the range {0,255} into ascending order using
a standard exchange sorting algorithm.

66

01/22176

LOC

(000
0003
0005
0006
0007
(000B
000E
000F
0012
0013
0015
0018
001B
001D
001F

0021
0023
0025

0026
0026

OBJ CODE

222600
CBg4

41

Q5
DD2A2600
DD7EQQ
57
DD5EDI
93

3008
DD7300
DD7201
CBC4
DD23
10EA

CB44
20DE
C9

11:14:37

e B e R L

BUEBLE LISTING PAGE |
STMT SOURCE STATEMENT

; *** STANDARD EXCHANGE (BUBBLE)} SORT ROUTINE ##%*

; AT ENTRY: HL CONTAINS ADDRESS OF DATA

C CONTAINS NUMBER OF ELEMENTS TO BE SORTED
{1<C<256)

; AT EXIT: DATA SORTED IN ASCENDING ORDER

; USE OF REGISTERS

; REGISTER CONTENTS

E;F‘:NUOU:’}-

SORT:
LOOP:

NEXT:

NOEX:

FLAG:
DATA:

LD
RES
LD
DEC
LD
LD
LD
LD
SUB
IR
LD
LD
SET
INC

DINZ NEXT-§

BIT
IR
RET

EQU
DEFS
END

TEMPORARY STORAGE FOR CALCULATIONS
COUNTER FOR DATA ARRAY

LENGTH OF DATA ARRAY

FIRST ELEMENT IN COMPARISON

SECOND ELEMENT IN COMPARISON

FLAG TO INDICATE EXCHANGE

UNUSED

POINTER INTO DATA ARRAY

UNUSED
(DATA), HL ; SAVE DATA ADDRESS
FLAG,H ; INITIALIZE EXCHANGE FLAG
B,C ; INITIALIZE LENGTH COUNTER
B ; ADJUST FOR TESTING
IX, (DATA) . INITIALIZE ARRAY POINTER
A (IX) ; FIRST ELEMENT IN COMPARISON
D A ; TEMPORARY STORAGE FOR ELEMENT
E,(IX+1) ; SECOND ELEMENT IN COMPARISON
E ; COMPARISON FIRST TO SECOND
NC, NOEX-% ;IF FIRST > SECOND, NO TUMP
(IX),E ; EXCHANGE ARRAY ELEMENTS
(IX+1),D
FLAG,H ; RECORD EXCHANGE OCCURRED
IX ;POINT TO NEXT DATA ELEMENT

; COUNT NUMBER OF COMPARISONS

; REPEAT IF MORE DATA PAIRS

FLAG, H ; DETERMINE IF EXCHANGE OCCURRED
NZ,LOOP-3% ; CONTINUE IF DATA UNSORTED

, OTHERWISE, EXIT
0 ; DESIGNATION OF FLAG BIT
2 ; STORAGE FOR DATA ADDRESS

67

B.

pair.
01/22/76
LOC OBJCODE
0000
0000 0610
0002 4A
0003 7B
0004 EB
0005 210000
0008 CB39
000a 1F
000B 3001
000D 19
(WOE EB
0O00F 29
0010 EB
001t I0F5
0013 C9

11:32:36

eI I T R S P S]

[P U S P L S e T o L e I S e B i e o Bt
P b o— DD 00] S R Wb — OO0 - S g — DD

MULT:;

bl

MLOOP:

NQADD:

MULTIPLY LISTING
STMT SOURCE STATEMENT

The following program multiplics two unsigned 16 bit integers and leaves the result in the HL register

PAGE 1

UNSIGNED SIXTEEN BIT INTEGER MULTIPLY.
ON ENTRANCE: MULTIPLIER IN DE.
MULTIPLICAND IN HL.

ON EXIT: RESULT IN HL.

REGISTER USES:

FOoOmmOr I

SRL
RRA

IR
ADD

EX
ADD
EX
DINZ
RET;
END;

HIGH ORDER PARTIAL RESULT
LOW ORDER PARTIAL RESULT
HIGH ORDER MULTIPLICAND

LOW ORDER MULTIPLICAND
COUNTER FOR NUMBER OF SHIFTS
HIGH ORDER BITS OF MULTIPLIER
LOW ORDER BITS OF MULTIPLIER

NC,NOADD-§;
HL, DE;

DE, HL;
HL,HL;
DE, HL;
MLOOP-§;

68

NUMBER OF BITS- INITIALIZE
MOVE MULTIPLIER

MOVE MULTIPLICAND
CLEAR PARTIAL RESULT
SHIFT MULTIPLIER RIGHT
LEAST SIGNIFICANT BIT I8
IN CARRY.

IF NO CARRY, SKIP THE ADD.
ELSE ADD MULTIPLICAND TO
PARTIAL RESULT.

SHIFT MULTIPLICAND LEFT
BY MULTIPLYING IT BY TWOQ,

REPEAT UNTIL NO MORE BITS.

Absolute Maximum Ratings

Temperature Under Bias

Storage Temperaluze -65°C to +150°C

Woltage On Any Pin 0.3V ta ¥V
with Respect o Ground
Pawer Dissipation 1.5W

Specified operaling range.

*Comment

Stresses above those listed under “*Absolute
Muximum Rating™™ may cause permanent
damage to the device. This is a stress rating
only and functional eperation of the device
at these or any other condition above those
indicated in the pperational sections of this
specification is not implied. Exposure Lo
absolute maximum raling conditions for
extlended periods may affect device reliability.

Z80-CPU D.C. Characteristics

T, =0°C 10 70°C. V. = 5V = 5% unless ntherwise specified

Mate: Far ZEACPU all AC aud DC characteristics remain the

siame for the mililary grade parts exeept 1.

IL.L‘ = 200 ma

Capacitance

Ty =25°C, £= | MHz,
unmeasured pins returned to ground

Symbol | Pasameter . | Max, | Unit
Cqp Clock Capucinange 35 pF
CIN Input Capacitance s pF
Cout Output Capucitance 10 pF

Symbol Parameter Min. Typ. Max. | Unit Test Condition
ViLe Clock lnpur Low Voluge 0.3 045 v

VII'IC Clock Inpul High Yalluge Voo -6 Vcc+'3 \Y

ViL Input Low Voluuge 0.3 08 v

VIH Input High Vulige 20 Vcc v

VoL Quipur Low Valtuge 04 v I =1 8mA
Yan Quiput High ¥oltage T4 W igy = -250uA
lee Power Supply Current 150 mi

I Input Leakoge Current L0 pA Vin=0 oV,
I.on Tri-S1ate Outpa Leakage Current in Fluoan 10 A Vaur=24te VvV,
lLob Tri-State Output Leakage Cureenl in Flast -0 HA Vaur04v
LD Dy Bus Leakage Current in Input Muode *i0 A 0LV Vcc

Z80A-CPU D.C. Characteristics

Ty = 070 1 . \"L_L, =AY £ 3 anbess othierwose spevitied

Z80-CPU
Ordering Information

C — Ceramic

F = Plastic

$ — Standard 5V 5% 0° to 70°C

E — Extended 5V :5% —40° to 85°C
M — Military 5V £10% 35" 10 125°C

Capacitance

. a N
T =25°C, 1= 1 MHz
unmeasured pins returned 1o ground

Symbul Parameler M. Unii
U Clack Chpavitonmey 15 pt
('l_\‘- It Capacinanes s pl-
(\Ul'] utput Capacitance Il pF

Symboal Parameter Min. Typ. Max. Unil Test Condition
VILL' Clogk Inpul Low Valtage =03 035 v

VlHL' Clowk Tnput High Yoliage Vcc -6 Vcc+.3 v

V"_ Tnpuk Lo Voltage -1).3 08 y

Yin Lpan Hight Wuliage U Vi v

V“l_ Outpht Low Yoliuge 0.4 A lg =18mA
Yo Quipnt Hhigh Volhiage 24 ¥ Iy = 1A
|(.(- Porwer Supply Current . 30 100 A

Iy Input Leakage Cuerent 18] pA AT \"L_",
L on Tre-Siate Qurpn Beakage Current m Flog Iy A VOLITZE"‘ LC
II oL Tei-Srane Onigoat Leakage Careent i Float =10 i VOLJT:U"W
Iy Lravy Bus Leakage Carrent i bopat Mode 10 uh LR B4 \'"L.c

69

Z80A-CPU
Ordering Information

C — Ceramic
P — Plastic
3 — Srandard 3V 25% 07 10 70°C

A.C. Characteristics ZSO-éPU

T =0°C 10 70°C, Ve = +5V # 5%, Unless Otherwise Noted,

Signal Symbol Parameler Min Max Unit Test Condition
" Cluck Periad . 4 1121 e N2) = typaby * Ywiply ™ 5+ I
» 1y, I HY Cluck Pulse Widih, Clock High 180 |E] nse
Ly 41L) Clock Pulse Widih, Clock Low 180 2000 nse
Lor Cluck Rise and Fall Tie Jo Tsec
D IADY Address Gutpun Delay 145 nsec
LF (4D Delay 1o Fioan 110 nsec
Lyem Address Stable Prior o MRFQ[(Memury Cycle} (1] nsew -
Ag-15 Taei Address Stable Prive 1o | Q RIS or WR (/O Cyule) (B3] TseC €= S0pF U1 tag = Yuqary * b= 75
Tea Address Suble Mrom _@ VR, ORQ ar MREii 1.3] NsEC
Teal Address Stable From RD o “ R Duiing Fluat (4] nses [2) g1 -80
* DD} Data Quipn Dely 230 nscu Pl ey = Lypepry ¥ 1 - 90
) Delay ter Fluay During Write {yele Ti) nsec
156 (M Data Setup Tine 1o Rising Lidge of Cluck During ML Cycle L nsec 1 eaf = lufebly T 1r 60
Dy.7 5T Data Setup Th.ne to Falling Edge of Clock During M2 to M5 60 nsec CL = 5(pF s —t 210
ldem Daa Stable Prior to WR (Memory Cycle) 151 nsCC i3] tli(:l'l'l e
ci Data Stable Frior to WR (1}0 Cycle) [[
L Data Stzhle Frum WR 171 6] i = tw‘('i’l.) - 210
IH Any Huold Time for Setup Time 0 nsee 7 Lar= tw('-I)L) tt, -80
\DLF MRy | FIREQ Delay From Falling Edge of Clock, MREQ Low 100 | nsee
- {DH® {MR) MREG Delay From Rising Edge uf Cluck, MREG MREQ High 100 nsec
MRED IDHD (MR) MREQ) Delay From Falling Edge of Cluck, MRE*) High] nsec CL = S0pF
tw {MRL} Pulse Width, MREQ Low [El] nse 8]ty (MRL)= L - 40
tw (MRH) Pulse Width, MRE(Q High ED] ngec
— — 1?1 tuRH) = Sipk) * 1= 30
iDL (IR} HOR(Delay From Rising Edge of Clock, IORQ Low o0 nsec M) wlbH)
070 IDLE (1R) IORQ Detay From Falling Edge of Clock, IOR() Low L] nsec o
IoR DH® (IR) 1ORC) Delay From Rising Edge of Clock, IDRG High 100 nsec Cp=50pF
'DHE (IR) JORGQ Delay From Falling Edge of Clock, ORI High i nsec
DL (RDY ﬁ) Detay From Rising Edge of Clock, ﬁﬁ Low 100 nsec
T3] {DLF (RD) RD Delay From Falling Edge of Clock, RD Low 130 nsec C. = S00F
IDHE (RDY | RD Delay From Rising Edge of Clack, RD RD High 1oU nsec L P
IDHT (RD) RD Delay From Falling Edge of Clock, RD High 110 nsec
tDLb (WR) W Delay From Rising Edge of Cluck, WR Low 50 nsec
Wi tDLF (WR) WR Delay From Falling Edge of Clock, WR Low 20 nsec ¢, = SOpF
IDH® {WR} WR Delay From Faliing Edge of Clock, WR High 100 nses
tw (WEL) Pulse Width, WR Low (ol nsge (o] 40
lweiy=t.-
— — wi{WRL) ™ '
w DL (ML) M1 Delay From Rising Edge of Clock, M1 Low 120 nsee Lo = 50pF (
{DH (M1) M1 Delay From Rising Edge of Clock, M1 High [nsec L F
— IDL (RF) RESH Delay From Rising Edge of Clock, RFSH Low 180 ngee -
RFSH (DH {RF} RFSH Delay From Rising Edge of Clack, RFSH High 150 nsec CL 30eF
WAIT L5 (WT}) WAIT Setup Time v Falling Edge of Clock n nsec
HALT D {HT) HALT Delay Time From Falling Fdge of Clock 300 nsec CL = 50pF
INT (1T} TNT Serup Time w Rising Edge of Cluck ’ 80 nsee
NMi Iy (NMIL} Pulse Width, NM1 Low 80 nsec
BUSRD 15 (BQ) BUSRQ Setup Time o Rising Edee of Clock 50 nsgc
BUSAR D) (BA) BUSAK Delay From R:'si!'lg Edge of Clack, BUSAK an' 120 nsec €. = 50pF
Dl (BA) BUSAK Delay From Falling Edge of Clock, BUSAK High 1o nsec L
RESET 15 (RS) RESET Setup Time 1o Rising Edge of Clock Q0 nsec
IF{C) Delay ter Floal (MEEG, TORQ. RD and WR) 100 | nsec
Tr M1 Stable Prior to 10RO {Interrupl Ack.} [1§] nsEC 1]t =2+ L dH) t - 80
Ve
NOTES:
__ TEST POINT LR
A. Data should be enubled onta the CPU duta bus when RD is uctive. During interrupl acknowledze duta T
should be eabled when M1 und 1ORQ are huth active, vyt fat
B, All contrul signals are imtermally synchronized. so they may be torally asynchronous with respect _L
1 the elack. £ 100ut.
. The RESET signal must be active Tor o minimum o 3 chock cyeles.]_: 4
. Quiput Deluy vi. Loaded Capagitance - -
Ta =0T Moo= +5W 150 -
Add 10nsec delay for each S0pf increase in load up to 8 maximum of 200pf for the data bus & 100p[for -
address & control lines Load ireuit for Cutput
E. Although static by design, testing puarantees L H) ol 200 usee maximum

70

A.C. Timing Diagram

Tirning measurements are made at the following

voltages, unless otherwise specified: -1 “0"
CLOCK Vcc -6V 45V
QUTPLT 20V 8V
p NPUT 20V sV
v FLOAT AV 05V
W)
ta
F ‘ r—\ F f \
‘:’ E ?. 3 _I \ \ Z \ E
| tE (AD)
P R
by (L) ------.._\
Ap-Ats [
p (AD}
(L e [t
e b # ¥ A Y &
Ao-18 Xr)\ 4 r. I 1}___
3T 1] s
Wim -
- N . T
EN '<
T 0 0 N
L th Pt TR | Bt
0-7 wiop M
L) 4=ty LA 4.
out ﬁ» e
' L
41 =k
oL thi) 'O (M]]—— - teal
- -\\ 1. ‘e
w1 X { . .
LX) ' DH(HIFI Lol L Lot
DL {RF]—=]
R J‘ 'F et
RFSH N ||
oMb (MR = -
oL mAY TOHT {WRI—— {WR) \DHT {MA - };
t, 11 I
WMREGQ ‘!\t ‘e) "W (MAL) \¥_J)f)’ - .
_ T by (MRH) ! s
1oL 1RO} 'DH:I> (RO} DHT iRDY—— oy
. /_
BD LY
AD \= e \ | (o L -
) a -
DL {WR} | }—‘nuq- WAl
_ L —.
R Ly o L o/
‘oL {IR] gL (IR I
| 0 1R} —] 'nulTsum-—| =
[—\\
jORQ . L ' ’ ufpmv”
7 ‘pLniRDl 1L
BHT IRD}-={ -
__ N /_
RD it 7‘ e
‘oL (wR) T
] ‘DH T (W —
R h
S || oy | TNl et
WAIT J 4
-r - g [HT) 0 {HT)
HALT
iNT
NMI
s oy | 'H
| j
BUSRQ u
T i~ 'DH {8A)
LB
BUSAK AN }"
SiRsy| 'm L,
RESET
o

71

A.C. Characteristics Z80A-CPU

T4 =0°C 1o 70°C, Ve = #5V 2 5% Unless Otherwise Noted.

Signa! Symbol Parameter Min Max Unit Test Condition
[Cluck Peried 25 12] nisew
o 1, (2H) Clock Pulse Widih, Clock High 110 |E) kS
1, 1L} Clock Pulzse Width, Clock Low 110 200 nsev
Yo Clock Rise and Fall Time ' 30 nsev
D (AD) Address Output Delay 110 nsec
W (AD) Detay 10 Float 90 nsec
1o Adudress Stable Prior to MEEQ (Memory Cycle) T flses) = SOpF
Ap-15 i Address Stable Prior 1o TFRG; RD or WRA1/0 Cycle) T weeT LT
Ty Address Stable from RD, WR, 10RQ or MRED 3] N3ty
toaf Address Stable Iinivm RD ar WE During Floal 4] nEL
D(D) Data Qutput Delay 150 nsex
1F (D) Delay 10 Float During Write Cycle 20 nsew
15 (D) Data Setup Time to Rising Ldge of Cluck During M1 Cyele 35 sty
Dy_+ 15T (D) Data Setup Time to Falling Edge of Cleck Doning M2 te M5 50 nseC CL = 50pk
tdemn Data Stable Prior 1o WR {Memuory Cycles [5) nsev
i Data Stable Frior to WR /O Cyele) T8l misee
et Data Stable From WR 71
1t Any Hold Time for Setup Time 0 niee
IDLF MR) MREQ Delay From Falling Edge of Clock, MREQ Low 85 | msec
IDHD (MR) MREQ Delay From Rising Edpe of Clack, MRI REQ High EL nsec
MREQ IDHE (MR} MREG Delay From Falling Edge of Clock, MRED High 85 nsec ¢ =3opF
tw (MRL) Pulse Widih, MREQ Low 18] n52¢
tyy (IRH) Pulse Width, MREQ High [E]] nsec
IDLG (1R) 10RO Delay From Rising Edge of Clock, IORQ Low 75 nsee
ORO IDLE (IR} IORQ Delay From Falling Edge of Clock, 10R{) Low 85 nsec €. = SOoF
{DH (IR) [ORQ) Delay From Rising Edge of Clock, [ORQ High BS 3 L=P
tDHT(IR) IORQ Delay From Falling Edge of Clock, IOR0) High [nse
DL (RD} RD Delay From Rising Edge of Clock, RD Luw 5 nsto
5 tBLE (RD) RD Delay From Falling Edge of Clack, RD Low)5 nsec C. = 50oF
tDHS (RD} EI_)Delay From Rising Edge of Clock, Pﬁﬁlgh H3 N5t L=F
{DH® (RD) RD Delay From Falling Edge of Clock, RD High 85 nste
tOL® (WR) “-R Delay From Rising Edge of Clack, WR Laow G5 nsec
R 1DLE (WR) WR Dlay From Falling Edge of Clock, WR Low B0 nseC C, = SOpF
IDH® {WR) WR Delay From Falling Edge of Clack, WR High :) [L P
w (WRL) Pulse Width, WR_Low {10} nsec
o (DL (M1} E Delay From Rising Edge of Clock, hi_l Law 100 nge: -
M DH (M1} Mt Delay From Rising Edge of Clock, M1 High 100 nses Cy = 0pF
IS DL (RF} RFSH Delay Fram Rising Edge of Cleck, RFSH Low 130 nsec -
RFSH {DH (RF} RFSH Delay From Rising Edge of Clack, RFSH High 120 nsec CL 50pF
WAIT ty (WT) WAIT Setup Time to Falling Edge of Clock 0 nsec
HALT Ip(HT) HALT Detay Time From Falling Edge of Cluck 300 nses CL = iopF
INT L ([T) TNT Setup Time to Rising Edge of Clock &0 nsce
Ml Ly (ML) Pulse Width, NM1 Low 80 nsec
BUSRQ ts (ROY BUSRQ Setup Time to Rising Edge of Clock 50 nsec
STTERT tpL¢Ba) |. BUSAK Delay From Rising Edge of Clack, BUSAK Low 100 nsec - SOnF
BUSAK | o (B SUSAR Delay From Falling Edge of Clock, BUSAK High 100 | meec | CL75P
RESET L5 (RS) RESET Setup Time Lo Rising Edge of Clack &0 fisec
IE (C) Delzy 1@ Float (MREQ, TORQ, RD and WR) 80 | nsec
Ime MI Stable Prior Lo IORQ (Inlerrupt Ack.) i nse
NOTES: TEST POINT
A. Data should be enabled onto the CPU data bus when ED is active. During interrupt acknowledge data FRAOM DUTPUT
should be enabled when ™M1 and TORQ) ate both active. LNGER TEST
B. Al control signals are intemally synchronized, so they may be totally asynchronous with respect
to the clogk
C. The RESET signal must be active for a minimum of 3 clock cycles.
0. Output Delay vi. Loaded Capacitance

TA=70°C Voo =435V £5%

Add 10nsec delay for each 50p increase in load up to maximum of 200pf for dats bus and 100pf for

address & control lines.
Alihough static by design, testing guarantees lw{fbH) of 200 psec makimum

72

112t =ty Flwgay P 4t iy

(1 G ™ gty * 1~ 65

2]ty =t =70

¥ ot,= tw(@L) tt - 50
4] Vur® Lyt 45

15) tgem=te -170
6] g = tygppy +tp - 170
71 togr = tyep) ¥ty - 70

181ty ghirey = 'o- 30

(2] U(MRH) = twipin) * - 20

[}0] tw(“,—R'-L) = tc =30

(V] by = 206 Lty + - 65

Vee

A-21En

Load cireutit fior Qutput

% - 780-CPU

Zilog INSTRUCTION SET

ADC HL, ss
ADCA,s

ADD A, n
ADDA,r

ADD A, (HL}
ADD A (1X+d}
ADD A, (IY+d}
ADD HL, ss
ADD IX, pp
ADD Y, rr
AND s

BIT b, (HL)
BIT b, (1X+d}
BIT b, (1Y+d)
BIT b, r

CALL cc, nn

CALL nn

CCF
CPs

cPD

CPDR

cPt

CPIR

CPL
DAA
DEC m
DEC IX

Add with Carry Reg. pair ss to HL
Add with carry operand s to Acc.
Add value n to Acc.

Add Reg. r to Ace.

Add tocation (HL) to Acc.

Add location {tX+d) to Ace.

Add location (I'Y+d) to Acc.

Add Req. pair ss to HL

Add Reg. pair pp to 1X

Add Req. pair rr to 1Y

Lagical ‘AND’ of operand s and Acc.
Test BIT b of location {HL}

Test BIT b of location (1X+d)
Test BIT b of location {(1'Y+d)
Test BIT b of Reg. v

Call subroutine at location nn if
condition cc if true

Unconditional call subroutine at
location nn

Complement carry flag
Compare operand s with Acc.

Compare location (HL) and Acc.
decrement HL and BC

Compare location (HL) and Acc.
decrement HYL and BC, repeat
until BC=0

Compare location {HL} and Acc.
increment HL and decrement BC

Compare location (HL} and Ace.
increment HL, decrement BC
repeat untit BC=0

Complement Ace. {1's comp}
Decimal adjust Acc.
Decrement operand m

Decrement | X

DECI1Y
DEC ss
[B]]

DJNZ e

El

EX (SP), HL
EX {SP), IX
EX {SP}, IY

EX AF, AF’
EX DE, HL

EXX

HALT
1M 0
1 1
v 2

IN A, (n)
IN r, (C)

INC {HL)
INC IX
INC (FX+d)
INC 1Y

INC (1Y+d)
INCr

INC ss5
IND

INDR

NI

73

Decrement 1Y
Decrement Reg. pair ss
Disable interrupts

Decrement B and Jump
relative if B#0

Enable interrupts

Exchange the location (SP) and HL
Exchange the location {SP) and I X
Exchange the location {SP) and |Y

Exchange the contents of AF
and AF’

Exchange the contents of DE
and HL

Exchange the contents of BC, DE,
HL with contents of BC’, DE’, HL'
respectively

HALT (wait for interrupt or reset}
Set interrupt mode D
Set interrupt mode 1
Set interrupt mode 2

Load the Acc. with input from
device n

l.oad the Beg. r uyitb input from
device {C)

increment location (HL)
Increment 1X
Increment location (1X{+d)

Encrement 1Y

Increment location (1 Y+d}
Increment Reg. r
Increment Reg. pair ss

Load location {HL} with input
from port {C), decrement HL
and B

Load location {HL) with input
from port {C}), decrement HL and
decrement B, repeat until B=0

Load location {HL} with input
from port {C}; and increment HL
and decrement B

INIR

JP{HL)
JP{IX)
JP{ry)

JP cc, nn

JP nn

JPC, e
JRe

JP NC, e

JRNZ e

JRZe

LD A, {BC)
LD A, {DE}
LD At

LD A, {nn)
LD A, R

LD {BC}, A
LD {DE), A
LD {HL), n
LD dd, nn
LD HL, {nn).
LD (HL}, r
LD A

LF IX, nn
LD 1X, {nn}
LD {iX+d), n
LD (IX+d), r
LD 1Y, nn
LD 1Y, {nn}
LD {IV+d), n

LD {1Y+d), r

L oad tocation {HL} with input
from port {C}, increment HL
and decrement B, repeat until
B=0

Unconditional Jump to {HL)
Unconditional Jump to (13}
Unconditonal Jump to {1Y)

Jump to location nn if
condition cc is true

Unconditional jump to location
nn

Jump relative to PC+e if carry=1

Unconditional Jump relative
to PC+e

Jump relative to PCe if carry=0

Jump relative to PC+e if non
zero {Z2=0}

Jump relative to PC+e if zero {Z=1}

Load Ace. with location (BC)
Load Ace. with location (DE)
Lnatd Ace. with |

Lbad Ace. with location nn
Load Acc. with Reg, R

Load location (BC) with Acc.
Load location {DE} with Acc.
Load location (HL) with value n

Load Reg. pair dd with value nn

Load HL with location (nn}

Load location {HL) with Reg. r
Load | with Acc.

Load IX with value nn

Load X with location (nn)

Loead location {1 X+d} with value n
Load location {1X+d} with Reg. r
Load 1Y with value nn

Load |Y with jocation {nn)

Load location {1 Y+d} with value n

Load location (1Y+d) with Reg. r

LD {nn}, A
LD {nn), dd
LD (nn), HL
LD {an), IX
LD {nn), 1Y
LD R A

LD r, (HL)
LD r, (1X+d)
LD r, {1Y+d)
LDr,n
LD, r

LD SP, HL
LD SP, IX
LD SP, IY

LDD

LDDR

LDI

LDIR

NEG
NOP

ORs
OTDR

OTIR

OouTI(C), r

oUT {n}, A
GuUTD

ouTI

74

Load location {nn} with Acc.
Load location {nn} with Reg. pair dd
Load location {nn} with HL
Load location {nn} with 1X

Load location {nn) with 1Y
Load R with Acc.

Load Reg. r with location {HL}
Load Reg. r with location {1 X+d}
Load Reg. r with location {1 Y+d)
Load Reg. r with value n

Load Reg. r with Reg. r’

Load SP with HL

Load SP with IX

Load SP with 1Y

Load location {DE) with location
(HL), decrement DE, HL and BC

Load location (DE) with location
(HL}, decrement DE, HL and BC;
repeat until BC=0

Load location {DE} with location
{HL), increment DE, HL,
decrement BC

Load location {DE} with location
{HL}, increment DE, HL,
decrement BC and repeat until
BC=0

Negate Acc. (2's complement)
No operation

Logical ‘OR’ or operand s and Acc,
Load autput port (C) with location
{HL) decrement HL and B, repeat
until B=0

Load output port {C) with location
{HL)}, increment HL, decrement B,
repeat until B=0

Load output port (C) with Reg. r

Load output port {n) with Acc,

Load output port {C) with location
{HL), decrement HL and B

Load output port {C} with location
{HL), increment HL and decrement
B

POP IX
POP 1Y
POP gg
PUSH 1X
PUSH 1Y
PUSH qq
RES b, m

RET
RET ¢c

RETI
RETN

RL m

HLA

RLC {HL}
RLC {IX+d)
RLC (1Y+d}
RLCr
RLCA

RLD

Load 1X with top of stack

Load 1Y with top of stack

Load Reg. pair gq with top of stack
Load IX onto stack

Load 1Y onto stack

Load Reg. pair gq onto stack

Reset Bit b of operand m

Return from subroutine

Return from subroutine if condition
cc is frue

Return from interrupt

Return from non maskable interrupt
Rotate left through carry operand m
Rotate left Acc. through carry
Rotate location {HL) left circutar
Rotate focation {1 X+d} feft circular
Rotate location {1'Y+d} left circular
Rotate Reg. r left circular

Rotate left circular Acc.

Rotate digit left and right between
Acc. and location {HL)

RRm
RRA
RRC m
RRCA
RRD

RSTp

SBCA,s

SBC HL, ss

SCF

SET b, (HL}
SET b, (1X+d)
SET b, (1Y+d)
SETh, r
SLAm

SRA m
SALm

SUB s

XORs

75

Rotate right through carry operand m
Rotate right Ace. through carry
Rotate operand m right circular
Rotate right circular Acc.

Rotate digit right and left between
Ace. and location (HL)

Restart to location p

Subtract operand s from Ace. with
carry

Subtract Reg. pair ss from HL with
carry

Set carry flag (C=1)

Set Bit b of location (HL)

Set Bit b of location (1X+d)

Set Bit b of location {1Y+d)

Set Bit b of Rea. r

Shift operand m left arithmetic
Shift operand m right arithmetic
Shift operand m right logical
Subtract operand s from Acc.

Exclusive ‘OR’ cperand s and Acc.

