

Description

The YB1300S is a switched capacitor DC/DC boost converter that produces a regulated 5V output. The input voltage range is from 2.7V to 5.0V that makes the YB1300S ideally for a single cell Li-Ion battery source.

The YB1300S works well for step-up applications without the need for an inductor. The 1MHz switching frequency allows the use of small SMD capacitors. The YB1300S provides thermal protection, short-circuit current limit protection. In order to prevent in-rush current effectively, it provides automatic soft-start. The shutdown current is less than 0.1μ A. The YB1300S is available in a 6-pin SOT23 package.

Features

- Switched-Capacitor Step-Up Operation
- Input Range : 2.7V to 5.0V
- Shutdown Mode
- 5V/4.5V Fix Output Voltage
- 1MHz Internal Oscillator
- Thermal Protection Shutdown
- Output Short-circuit Current Limit Protection
- Automatic Soft-Start Reduces In-Rush Current
- SOT23-6 Package

Applications

- Cellular Phones
- White LED Drivers
- Smart Card Reader
- PCMCIA Cards
- Li-Ion Battery Backup Supplies

Typical Application Circuit

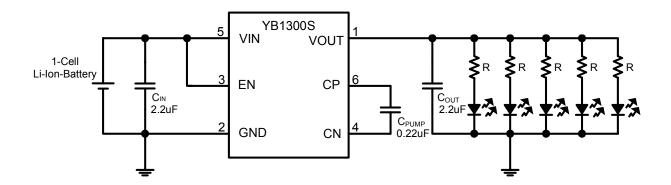
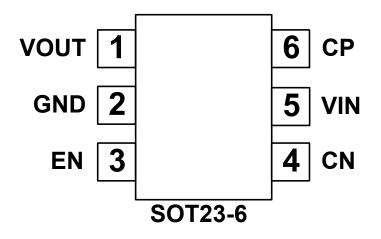



Figure 1: Typical Application Circuit

Pin Configuration

Pin Description

Table 1					
Pin	Name	Description			
1	VOUT	Regulated output voltage. V_{OUT} should be bypassed with a low ESR capacitor for the best performance.			
2	GND	Ground pin.			
3	EN	1.2V or above will turn on the IC. Below 0.4V will put the chip in the shutdown mode.			
4	CN	Pumping capacitor negative terminal.			
5	VIN	Input supply voltage. V_{IN} should be bypassed with a 2.2 μF I_{OW} ESR capacitor.			
6	CP	Pumping capacitor positive terminal.			

Ordering Information

Order Number Package Type		Supplied As	Package Marking	
YB1300ST26S450	SOT23-6	3000 Units Tape & Reel	TBB	
YB1300ST26S500	SOT23-6	3000 Units Tape & Reel	TBA	

Absolute Maximum Ratings (Note 1)

Supply Voltage
Output Voltage5.5V
Output Short-Circuit Duration Continuous
Junction Temperature Range 125°C
Storage Temperature Range65°C to 150°C
Lead Temperature250°C
ESD HBM (Human Body Mode) 2KV
ESD MM (Machine Mode)200V

(Note	2)
-------	----

Input Supply Voltage	2.7V to 5V
Operating Temperature	40°C to 85°C

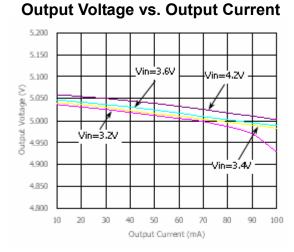
Thermal Information	(Note 3)
SOT23-6 θ _{JA}	.220°C/W

Note:

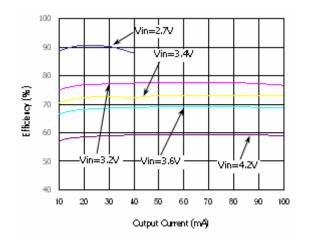
- 1. Exceeding these ratings may damage the device.
- 2. The device is not guaranteed to function outside of its operating conditions.
- 3. θ_{JA} is measured in free air at $T_A = 25^{\circ}C$ on a low effective thermal conductivity board.

Electrical Characteristics

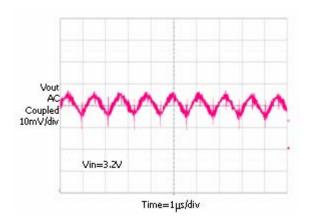
Table 2

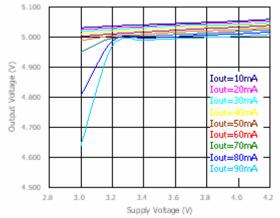

(V_{IN} = 3.2V, I_{OUT} = 10mA, C_{IN} = C_{OUT} =2.2 μ F, C_{PUMP} = 0.22 μ F, V_{EN} = V_{IN}, T_A=25°C, unless otherwise noted.)DescriptionSymbolTest ConditionsMINTYPMAXUnitsInput VoltageV_{IN}2.75.0V

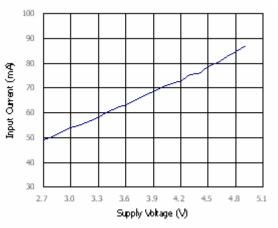
Description	Cymbol			• • •		011113
Input Voltage	V _{IN}		2.7		5.0	V
Output Voltage	V _{OUT}	V _{IN} = 3.3V, I _{OUT} = 60mA	4.8	5.0	5.2	V
Maximum Output Current	I _{OUT}	V _{IN} = 3.2V	100		250	mA
Short Circuit Current	I _{SC}	V _{IN} = 4.5V		80		mA
Oscillator Frequency	F _{osc}		0.8	1	1.2	MHz
Efficiency	η	I _{OUT} = 20mA, V _{IN} =2.7V		90		%
Ripple Voltage	V _R	V _{IN} =3.4V, I _{OUT} =60mA		35		$\mathrm{mV}_{\mathrm{PP}}$
Enable Control (High)	V _{IH}	V _{IN} = 5.0V	1.2		V _{IN}	V
Enable Control (Low)	V _{IL}	V _{IN} = 5.0V	-0.2		0.4	V
Thermal Shutdown	T _{ST}	Shutdown Temperature		160		°C
Thermal Recovery	T _{RT}	Recovery Temperature		140		°C
Supply Current (Quiescent)	I _{QC}	V _{IN} = 3.4V, I _{OUT} = 0mA		1		mA
Supply Current (Shutdown)	I _{SD}	V_{IN} = 2.7 to 5.0V, Enable = 0V		0.1		μA

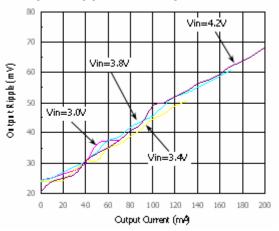


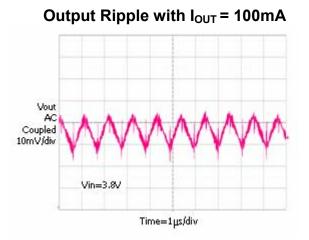
Typical Performance Characteristics

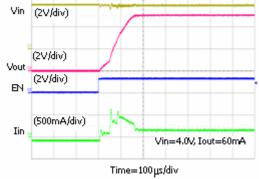

 $V_{\text{IN}} = 3.2V, \text{ I}_{\text{OUT}} = 10\text{mA}, \text{ C}_{\text{IN}} = \text{C}_{\text{OUT}} = 2.2\mu\text{F}, \text{ C}_{\text{PUMP}} = 0.22\mu\text{F}, \text{ V}_{\text{EN}} = \text{V}_{\text{IN}}, \text{ T}_{\text{A}} = 25^{\circ}\text{C}, \text{ unless otherwise noted}.$

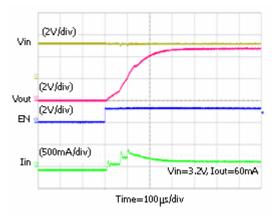

Efficiency vs. Output Current

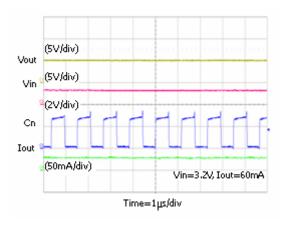

Output Ripple with IOUT = 60mA

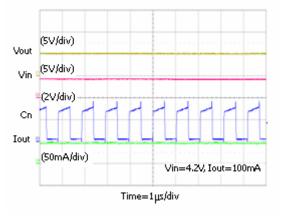

Output Voltage vs. Input Voltage

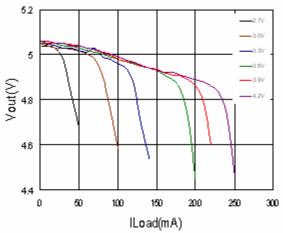

Input Short-Circuit Current vs. Input Voltage


Output Ripple vs. Output Current




Inrush Current and Start Up Time


Inrush Current and Start Up Time


Normal Operation

Normal Operation

Output Voltage vs. Output Current

Function Block

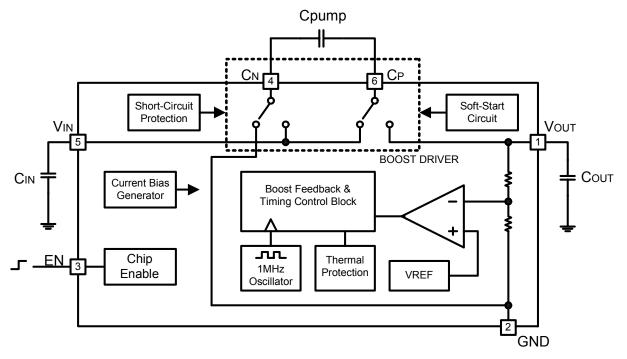


Figure 3: Function Block

Function Description

The YB1300S regulated charge pump provides a regulated 5V output voltage for input voltages between 2.7V and 5V. This is accomplished by a step-up or boost mode of operation. A conversion clock of 50% duty cycle is generated. During the first half the pumping capacitor cycle, CPUMP charges to V_{IN}. During the second half cycle, the voltage on C_{PUMP} is added to V_{IN} , then deliver to V_{OUT} . The output voltage is regulated by skipping clock cycles as necessary.

Soft-Start and Short-Circuit Protection Circuitry

The YB1300S includes soft-start circuitry to limit inrush current at turn-on. When starting up, the output capacitor is charged through the charge-pump capacitor with a limited current source. When the output voltage approached to its design value, the soft-start is terminated and normal operation begins. If an overload condition occurs, for example, the output is shorted to ground, the output current is limited by the YB1300S switching technique.

Thermal Protection

The regulator has thermal shutdown circuitry that protects it from damage caused by high temperature conditions. The thermal protection circuitry shut down the device when the junction temperature reached approximately 160° C, allowing the device to cool. When the junction temperature cools to approximately 140° C,

the device is automatically reenabled. Continuously running the regulator into thermal shutdown can degrade reliability. **Shutdown Mode**

A control pin on the regulator can be used to place the device into an energy-saving shutdown mode. In this mode, the output is disconnected from the input.

Layout Consideration

Due to large transient currents and high switching frequency produced by the YB1300S, careful consideration of PCB layout is necessary. In order to minimize both input and output ripple, keep the capacitors as close as possible to the regulator using short, direct circuit traces. A ground plane and short connections to all capacitors will improve performance and proper regulation under ensure all conditions. Figure 4 and Figure 5 show the recommended layout configuration.

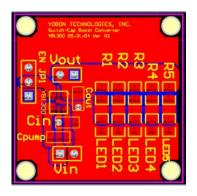


Figure 4: Top Layer

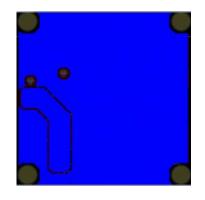
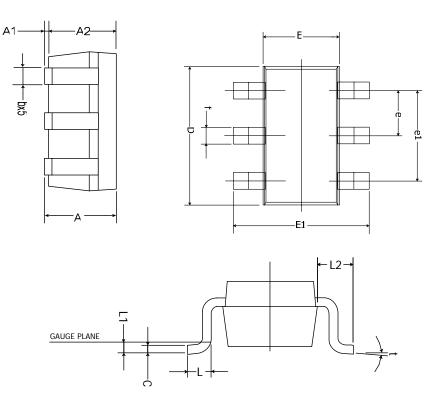



Figure 5: Bottom Layer

Package Information (SOT23-6)

Symbol	milimeters		Inches		
Syn	MIN.	MAX.	MIN.	MAX.	
Α	C . 95	1 . 45	.037	.057	
A1	C . 05	C.15	.002	.006	
A 2	C . 90	1.30	.035	.051	
b	C . 30	C.50	.0118 .019		
C	C . 08	C.20	.0031	.0078	
D	2.84	3.00	.1118	.118	
Ε	1.50	1.70	.059	.0669	
E1	2.60	3.00	.102	.118	
e	C.95	BSC.	.0374 BSC		
€ 1	1 . 90	BSC.	.0748 BSC.		
f	C.50	BSC.	.0197 BSC.		
L	C.35	C.55	.0137	.0216	
L1	C.10	BSC.	.0039 BSC.		
L2	C . 60	BSC.	.0236 BSC.		
t	C°	°3	C° E°		

NOTICE:

- The information described herein is subject to change without notice.
- Yobon does not assume any responsibility for use of any circuitry or applications described herein, nor does it convey any patent license.