

XRT79L71 1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

REV. P1.0.3

JUNE 2003

GENERAL DESCRIPTION

The XRT79L71 is a single channel, ATM UNI/PPP Physical Layer Processor with integrated DS3/E3 framing controller and Line Interface Unit with Jitter Attenuator that is designed to support ATM direct mapping and cell delineation as well as PPP mapping and Frame processing. For ATM UNI applications, this device provides the ATM Physical Layer (Physical Medium Dependent and Transmission Convergence sub-layers) interface for the public and private networks at DS3/E3 rates. For Clear-Channel Framer applications, this device supports the transmission and reception of "user data" via the DS3/E3 payload.

The XRT79L71 includes DS3/E3 Framing, Line Interface Unit with Jitter Attenuator that supports mapping of ATM or HDLC framed data. A flexible parallel microprocessor interface is provided for configuration and control. Industry standard UTOPIA II and POS-PHY interface are also provided.

GENERAL FEATURES:

- Integrated T3/E3 Line Interface Unit
- Integrated Jitter Attenuator that can be selected either in Receive or Transmit path
- Flexible integrated Clock Multiplier that takes single frequency clock and generates either DS3 or E3 frequency.
- 8/16 bit UTOPIA Level I and II and PPP Multi-PHY Interface operating at 25, 33 or 50 MHz.
- HDLC Controller that provides the mapping/ extraction of either bit or byte mapped encapsulated packet from DS3/E3 Frame.
- Contains on-chip 16 cell FIFO (configurable in depths of 4, 8, 12 or 16 cells), in both the Transmit (TxFIFO) and Receive Directions (RxFIFO)
- Contains on-chip 54 byte Transmit and Receive OAM Cell Buffer for transmission, reception and processing of OAM Cells
- Supports ATM cell or PPP Packet Mapping
- Supports M13 and C-Bit Parity Framing Formats
- Supports DS3/E3 Clear-Channel Framing.
- Includes PRBS Generator and Receiver
- Supports Line, Cell, and PLCP Loop-backs
- Interfaces to 8 Bit wide Intel, Motorola, PowerPC, and Mips µPs
- Low power 3.3V, 5V Input Tolerant, CMOS
- Available in 208 STBI PBGA Package

JTAG Interface

LINE INTERFACE UNIT

- On chip Clock and Data Recovery circuit for high input jitter tolerance
- Meets E3/DS3 Jitter Tolerance Requirements
- Detects and Clears LOS as per G.775.
- Receiver Monitor mode handles up to 20 dB flat loss with 6 dB cable attenuation
- · Compliant with jitter transfer template outlined in ITU G.751, G.752, G.755 and GR-499-CORE, 1995 standards
- Meets ETSI TBR 24 and GR-499 Jitter Transfer Requirements
- On chip B3ZS/HDB3 encoder and decoder that can be either enabled or disabled
- On-chip clock synthesizer provides the appropriate rate clock from a single 12.288 MHz Clock
- On chip advanced crystal-less Jitter Attenuator
- Jitter Attenuator can be selected in Receive or Transmit paths
- 16 or 32 bits selectable FIFO size
- Meets the Jitter and Wander specifications described in T1.105.03b,ETSI TBR-24, Bellcore GR-253 and GR-499 standards
- Jitter Attenuator can be disabled
- Typical power consumption 1.3W

DS3/E3 FRAMER

- DS3 framer supports both M13 and C-bit parity.
- DS3 framer meets ANSI T1.107 and T1.404 standards.
- Detects OOF,LOF,AIS,RDI/FERF alarms.
- Generation and Insertion of FEBE on received parity errors supported.
- Automatic insertion of RDI/FERF on alarm status.
- E3 framer meets G.832,G.751 standards.
- Framers can be bypassed.

ATM/PPP PROTOCOL PROCESSOR

TRANSMIT CELL PROCESSING

- Extracts ATM cells
- Supports ATM cell payload scrambling
- Maps ATM cells into E3 or DS3 frame
- PLCP frame and mapping of ATM cell streams

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE CELL PROCESSING

- Extraction of ATM cells from PLCP frame or directly from E3 or DS3 frame
- Termination of PLCP frame
- Supports payload cell de-scrambling

TRANSMIT PACKET PROCESSING

- Inserts PPP packets into data stream
- Maps HDLC data stream directly into DS3 or E3 frame
- Extracts in-band messaging packets
- Supports CRC-16/32, HDLC flag and Idle sequence generation

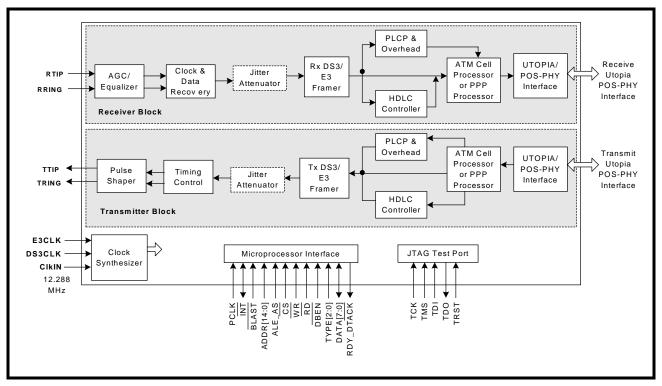
RECEIVE PACKET PROCESSING

- Extracts HDLC data stream from DS3 or E3 frame
- Inserts in-band messaging packets
- Detects and removes HDLC flags

UTOPIA/ SYSTEM INTERFACE

FIGURE 1. BLOCK DIAGRAM OF THE XRT79L71

• 8/16 bit UTOPIA Level I and II and PPP Multi-PHY Interface operating at 25, 33 or 50 MHz.


- Compliant with ATM Forum UTOPIA II interface
- Programmable FIFO size for both Transmit and Receive direction
- Compliant to POS-PHY Level 2 interface

SERIAL INTERFACE

- Serial clock and data interface for accessing DS3/ E3 framer
- Serial clock and data interface for accessing cell/ packet processor

APPLICATIONS

- Digital Access and Cross Connect Systems
- 3G Base Stations
- DSLAMs
- Digital, ATM, WAN and LAN Switches

PRODUCT ORDERING INFORMATION

PRODUCT NUMBER	PACKAGE TYPE	OPERATING TEMPERATURE RANGE
XRT79L71IB	17X17 mm 208 Ball Shrink Thin Ball Grid Array	-40°C to +85°C

Z EXAR	PRELIMINARY
1 - CHANNEL DS3/E3 ATM UNI/PPP C	COMBO IC

XRT79L71
REV. P1.0.3

	×		ME				~	Ψ		ЧE	Ш	Щ				
A	RXGFCCLK	RXPLOF	TXPOHFRAME	RXNB_2	RXSER	RXCLK	RXOHCLK	RXOHFRAME	TXNIB_0	TXNIBFRAME	TXFRAMEREF	TXOHENABLE	TXAISEN	PDATA_3	PDATA_7	PAS_L
В	RXGFCMSB	RXPRED	ТХРОНСLК	RXNIB_3	RXOUTCLK	RXFRAME	RXOHENABLE	TXNOB_3	DINHOXT	TXFRAME	TXOHFRAME	TXOHCLK	PDATA_2	PDATA_6	PBLAST_L	PWR_L
ပ	RXUDATA_13	TXGFCCLK	RXGFC	RXPOHFRAME	RXNIB_0	RXOHIND	RXOH	TXNOB_2	TXSER	TXINCLK	тхон	PDATA_1	PDATA_5	PRDY_L	PRD_L	PADDR_0
D	RXUDATA_9	RXUDATA_12	RXUDATA_15	RXCP	RXPOOF	RXNIB_1	RXLOS	TXNB_1	TXNIBCLK	TXOHINS	PDATA	PDATA_4	PINT_L	PCS_L	PADDR_1	PADDR_2
ш	RXUDATA_5	RXUDATA_8	RXUDATA_11	RXUDATA_14									PADDR_6	PADDR_5	PADDR_4	PADDR_3
ш	RXUDATA_2	RXUDATA_4	RXUDATA_7	RXUDATA_10							-		DPADDR_3	DPADDR_2	DPADDR_1	DPADDR_0
ი	RXUDATA_1	RXUDATA_0	RXUDATA_3	RXUDATA_6			DOV	aav	ααλ	DDV			DPADDR_7	DPADDR_6	DPADDR_5	DPADDR_4
т	RXUCLAV	RXUSOC	кхирктү	RXUEN_L			GND	GND	GND	GND			DA_SEL	DDV	GND	PCLK
٦	RXUADDR_4 RXUADDR_0 RXUCLAV RXUDATA_1	RXUADDR_1	RXUADDR_2	RXUADDR_3			GND	GND	GND	GND			PDBEN_L	PTYPE_2	РТҮРЕ_1	PTYPE_0
х	RXUADDR_4	RXUCLKO	RXPEOP	RSX_RSOF			DOV	DDV	DDV	DDV			GPO_2	GP0_1	GPO_0	ССКОЛТ
	RXMOD	RXPERR	RXUCLK	TSX_TSOF									GPL_2	GPI_1	GPI_0	NIBBLEINTF
Σ	TXUCLK	TXPER	TXMOD	TXUEN_L									OGND	RESET_L	TESTMODE	E3CLK
z	тхреор	RXPDVAL	TXUCLAV	TXUDATA_10	TXUDATA_4	TXUDATA_8	TXUDATA_13	GPI0_1	TDO	TXDGND	ТХРИРР	TXAGND	aavo	DDV	GND	CLKGND
٩	тхисько	TXUADDR_4	TXUSOC	TXUDATA_1	TXUDATA_5	TXUDATA_9	TXUDATA_15 TXUDATA_14	GPIO_2	TDI	MTIP	MRING	REFAGND	ANAIO1	ANAIO2	ICTB	DS3CLK
Ъ	TXUADDR_3	TXUADDR_0 TXUADDR_2	ТХИРКТҮ	TXUDATA_2	TXUDATA_6	TXUDATA_11	TXUDATA_15	GPIO_3	TMS	TRST	NC	REFAVDD	RRING	RTIP	TXON	CLKVDD
F	TXUADDR_1	TXUADDR_0	TXUDATA_0	TXUDAT_3	TXUDATA_7	TXUDATA_12	GPIO_0	0 ОМД	тск	TRING	dITT	TXAVDD	DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	RXAGND	JAGND	JAAVDD
	-	2	с	4	5	9	7	8	6	10	11	12	13	14	15	16

TABLE 1: PIN OUT OF THE XRT79L71 (TOP VIEW)

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TABLE OF CONTENTS

GENERAL DESCRIPTION	1
GENERAL FEATURES:	1
Line Interface Unit	1
DS3/E3 Framer	
ATM/PPP PROTOCOL PROCESSOR	
Transmit Cell Processing	
Receive Cell Processing	
Transmit Packet Processing	
Receive Packet Processing	
Utopia/ System Interface Serial Interface	
APPLICATIONS	
FIGURE 1. BLOCK DIAGRAM OF THE XRT79L71	
PRODUCT ORDERING INFORMATION	
TABLE 1: PIN OUT OF THE XRT79L71 (TOP VIEW)	
TABLE OF CONTENTS	
PIN DESCRIPTIONS	
MICROPROCESSOR INTERFACE	
Test and Diagnostic	
General Purpose Input and Output Pins	
TRANSMIT SYSTEM SIDE INTERFACE PINS	
Receive System Side Interface Pins	
TRANSMIT LINE SIDE SIGNALS	
Receive Line Side Signals	
VDD Pins	
GND Pins	
NOT CONNECTED PINS	
ELECTRICAL CHARACTERISTICS	
AC ELECTRICAL CHARACTERISTIC INFORMATION	
MICROPROCESSOR INTERFACE TIMING FOR REVISION A SILICON	
MICROPROCESSOR INTERFACE TIMING - ASYNCHRONOUS INTEL MODE	
TABLE 2: DC ELECTRICAL CHARACTERISTICSS	
Applies to all TTL-Level Input and CMOS Level Output pins - Ambient Temperature = 25°C FIGURE 2. ASYNCHRONUS MODE 1 - INTEL TYPE PROGRAMMED I/O TIMING (WRITE CYCLE)	
FIGURE 2. ASYNCHRONUS MODE 1 - INTEL TYPE PROGRAMMED I/O TIMING (WRITE CYCLE) FIGURE 3. ASYNCHRONUS MODE 1 - INTEL TYPE PROGRAMMED I/O TIMING (READ CYCLE)	
TABLE 3: TIMING INFORMATION FOR THE MICROPROCESSOR INTERFACE, WHEN CONFIGURED TO OPERATE IN THE INTEL ASYNCHRO	
Mode	
MICROPROCESSOR INTERFACE TIMING - ASYNCHRONOUS MOTOROLA (68K)	
MODE	41
Figure 4. Asynchronus Mode 2 - Motorola 68K Programmed I/O Timing (Write Cycle)	41
FIGURE 5. ASYNCHRONUS MODE 2 - MOTOROLA 68 PROGRAMMED I/O TIMING (READ CYCLE)	
MICROPROCESSOR INTERFACE TIMING - POWER PC 403 SYNCHRONOUS MOD	E42
TABLE 4: TIMING INFORMATION FOR THE MICROPROCESSOR INTERFACE WHEN CONFIGURED TO OPERATE IN THE MOTOROLA (68K) CHRONOUS MODE	42
FIGURE 6. SYNCHRONOUS MODE 3 - IBM POWERPC 403 INTERFACE TIMING (WRITE CYCLE)	
FIGURE 7. SYNCHRONOUS MODE 3 - IBM POWERPC 403 INTERFACE TIMING (READ CYCLE) TABLE 5: TIMING INFORMATION FOR THE MICROPROCESSOR INTERFACE, WHEN CONFIGURED TO OPERATE IN THE IBM POWER PC4	43
TABLE 5. TIMING INFORMATION FOR THE MICROPROCESSOR INTERFACE, WHEN CONFIGURED TO OPERATE IN THE IBM POWER PC4	
MICROPROCESSOR INTERFACE TIMING - IDT3051/52 MODE	
FIGURE 8. SYNCHRONOUS MODE 4 - IDT 3051/52 INTERFACE TIMING (WRITE CYCLE)	
FIGURE 9. SYNCHRONOUS MODE 4 - IDT 3051/52 INTERFACE TIMING (READ CYCLE)	45
TABLE 6: TIMING INFORMATION FOR THE MICROPROCESSOR INTERFACE, WHEN CONFIGURED TO OPERATE IN THE IBM POWER PC4	403
DS3/E3 LIU INTERFACE - LINE SIDE ELECTRICAL CHARACTERISTIC INFORMATI	
46	

XP EXAR

PRELIMINARY

XRT79L71 *REV. P1.0.3*

Fourier 10. Project Masker core E3 (dd. 386Mbere) Interestace as even UT second-antons. 46 DS3 Lines Side PARAMETERS 47 Fourier 11. Biccores GR-990-CORE Proze Thermatic Recoverements or NOS3 Annucations. 47 Fourier 11. Biccores GR-990-CORE Proze Thermatic Recoverements from DS3 Annucations. 48 Thate 8: DS3 Fruste Mark Examples. 49 Fourier 12. Junnel Dangame for the Transmit UTOPIA Interestate Bucoc. 49 Fourier 13. Tamos Disconsen for the Transmit UTOPIA Interestate Bucoc. 49 France 10. Tunnel Interestance Multiput IntERFACE 50 TRANSMIT FAYLOAD DATA INPUT INTERFACE 50 TRANSMIT FAYLOAD DATA INPUT INTERFACE + TIMING REQUIREMENTS. 50 Figure 13. Tamos Diagname Romes. 51 Fourier 11. Tunnel Diagname Romes More Soc. 52 Fourier 11. Tunnel Diagname Romes More Soc. 52 Fourier 13. Tunnel Diagname Romes More Soc. 52 Fourier 14. Tunnel Diagname Romes More Soc. 52 Fourier 13. Tunnel Diagname Romes More Soc. 52 Fourier 13. Tunnel Diagname Romes	E3 Line Side Parameters	46
DS3 Line Side Parameters 47 Fouse II. BELCOGE GRAGGORE PUISE TEMENTE REQUIREMENTS FOR DS3 APPLICATIONS 47 Trade 8: DS3 Transmitter lines Side Controls 48 TRANSMIT UTOPIA INTERFACE 49 France 1: Tamos Margam Forth TE TRANSMIT UTOPIA INTERFACE BLOCK 49 Trans MIT PAYLOAD DATA INPUT INTERFACE 50 TRANSMIT PAYLOAD DATA INPUT INTERFACE 50 TRANSMIT FAYLOAD DATA INPUT INTERFACE 50 Figure 1: Tamos Morgam For The TRANSMIT PAYLOAD DATA INPUT INTERFACE BLOCK 50 Figure 1: Tamos Dangam For The TRANSMIT PAYLOAD DATA INPUT INTERFACE WHEN THE XFTRD-TI IS CHEATING IN BOTHED TRANSMIT PAYLOAD DATA INPUT INTERFACE WHEN THE XFTRD-TI IS CHEATING IN BOTHED TRANSMIT PAYLOAD DATA INPUT INTERFACE WHEN THE XFTRD-TI IS CHEATING IN BOTHED TO S0 Figure 1: Tamos Dangam For THE TRANSMIT PAYLOAD DATA INPUT INTERFACE SIGCK 52 Figure 1: Tamos Dangam For THE TRANSMIT PAYLOAD DATA INPUT INTERFACE 53 TRANSMIT OVERHEAD DATA INPUT INTERFACE 53 TRANSMIT OVERHEAD DATA INPUT INTERFACE 54 TRANSMIT OVERHEAD DATA INPUT INTERFACE 54 Tamas Information Ford THE		
Picure 11. BELCODE GR-496-CORE PULSE TENERALE REQUEREMENTS FOR DS3 APPLICATIONS. 47 Trale 8: DS3 Transmitte Line Side Culturu and Receiver Line Side Invut Stectications (GR-499) 48 TRANSMIT UTOPIA INTERFACE 49 Fourie 12. Taims Diversant on on the Transmit UTOPIA intersace Block. 49 TRANSMIT PAYLOAD DATA INPUT INTERFACE 50 TRANSMIT PAYLOAD DATA INPUT INTERFACE - TIMING REQUIREMENTS. 50 TRANSMIT PAYLOAD DATA INPUT INTERFACE - TIMING REQUIREMENTS. 50 Trans North Modes 51 PICINE 13. Taims brochame Motes 51 PICINE 14. Taims incomme Motes 51 PICINE 15. Taims brochame Motes 51 PICINE 15. Taims Dagaan For the Transmit PayLoad Data Inveit InterFace With the XRT7RUT is corestating on Both THE D32 Min Looh.Taims Modes 51 PICINE 15. Taims Dagaan For the Transmit PayLoad Data Inveit InterFace With the XRT7RUT is corestating on Both THE D32 Min Looh.Taims Modes 52 FOLME 15. Taims Dagaan For the Transmit PayLoad Data Inveit InterFace With THE XRT7RUT is corestating on Both THE D32 FOLME 15. Taims Dagaan For the Transmit PayLoad Data Neuri InterFace With THE XRT7RUT is corestating on Both THE D32 FOLME 15. Taims Dagaan For the Transmit PayLoad Data Neuri InterFace Steck FOLME 15. Taims Dagaan For the Tran		
 TABLE 8: DS3 FURSHINGS LEW STORE CONTRUT AND RECEIVER LINE SIDE UNPUT SPECIFICATIONS (GR-499) 48 TRANSMIT UTOPIA INTERFACE 49 FOURD 1: THING DURAN FOR THE TRAVENT UTOPIA INTERFACE BLOCK. 49 TRANSMIT PAYLOAD DATA INPUT INTERFACE - TMING REQUIREMENTS. 50 TRANSMIT PAYLOAD DATA INPUT INTERFACE - TMING REQUIREMENTS. 50 TRANSMIT PAYLOAD DATA INPUT INTERFACE - TMING REQUIREMENTS. 50 TRANSMIT PAYLOAD DATA INPUT INTERFACE - TMING REQUIREMENTS. 50 FOURE 11: THING BURGMATION TO THE TRANSMIT PAYLOAD DATA MULT INTERFACE BLOCK. 51 FOURE 11: THING BURGMATION TO THE TRANSMIT PAYLOAD DATA MULT INTERFACE WHEN THE XETTPL71 is OPERATING IN ANOTHE DATA MULT INTERFACE WHEN THE XETTPL71 is OPERATING IN ANOTHE DATA MULT INTERFACE WHEN THE XETTPL71 is OPERATING IN ANOTHE DATA MULT INTERFACE WHEN THE XETTPL71 is OPERATING IN ANOTHE DATA MULT INTERFACE WHEN THE XETTPL71 is OPERATING IN ANOTHE DATA MULT INTERFACE WHEN THE XETTPL71 is OPERATING IN ANOTHE DATA MULT INTERFACE WHEN THE XETTPL71 is OPERATING IN ANOTHE DATA MULT INTERFACE WHEN THE XETTPL71 is OPERATING IN ANOTHE DATA MULT INTERFACE WHEN THE XETTPL71 is OPERATING IN ANOTHE DATA MULT INTERFACE WHEN THE XETTPL71 is OPERATING IN ANOTHE DATA MULT INTERFACE WHEN THE XETTPL71 is OPERATING IN ANOTHE DATA MULT INTERFACE WHEN THE XETTPL71 is OPERATING IN ANOTHE DATA MULT INTERFACE MULT		
TARANSMIT UTOPIA INTERFACE PREME 12. TIMMS DAGRAM FOR THE TRANSMIT UTOPIA INTERFACE BLOCK. 49 TRANSMIT PAYLOAD DATA INPUT INTERFACE. 49 TRANSMIT PAYLOAD DATA INPUT INTERFACE. 50 Fourier 13. TIMES BUGGMARTOR TO RUE TRANSMIT PAYLOAD DATA INPUT INTERFACE WIRE METARE ELCOK. 50 Fourier 13. TIMES BUGGMARTOR TO RUE TRANSMIT PAYLOAD DATA INPUT INTERFACE WIRE METART ELCOR. 51 FOURE 14. TIMES BUGGMARTOR THE TRANSMIT PAYLOAD DATA INPUT INTERFACE WIRE METARTTPL71 IS GEEATING IN BOTH THE D33 52 FOURE 14. TIMES BUGGMARTOR THE TRANSMIT PAYLOAD DATA INPUT INTERFACE WIRE THE RATTPL71 IS GEEATING IN BOTH THE D35 52 FOURE 15. TIMES BUGGMARTOR THE TRANSMIT PAYLOAD DATA INPUT INTERFACE WIRE THE RATTPL71 IS GEEATING IN BOTH THE D35 53 TRANSMIT OVERHEAD DATA INPUT INTERFACE - TIMING REQUIREMENTS. 54 TRANSMIT OVERHEAD DATA INPUT INTERFACE - TIMING REQUIREMENTS. 54 TABL 21. TIMES BUGGMARTOR THE TRANSMIT OWERHEAD DATA INPUT INTERFACE METHOD 1 ACCESS) 56 FOURE 15. TIMES DAGRAM FOR THE TRANSMIT OWERHEAD DATA INPUT INTERFACE METHOD 1 ACCESS) 54 TABL 21. TIMES BUGGMARTO		
TRANSMIT UTOPIA INTERFACE		
Folume 12. Tanko Robinson Por the Transmut TOTPM Interpace BLock. 49 TRANSMIT PAYLOAD DATA INPUT INTERFACE 50 TRANSMIT PAYLOAD DATA INPUT INTERFACE - TIMING REQUIREMENTS. 50 Table 11: Tanko Buckamatorio Portite Transmut TotPation Data Invert Interpace BLOCK. 50 Folume 13: Tanko Dukamatorio Portite Transmut Parkuoad Data Invert Interpace Week the RT79L71 is Operating in Booth the D33 50 Mol Loor-Thanso Modes 51 Folume 14: Tanko Dukama Kon Parking Parkuoad Data Invert Interpace Week the RT79L71 is Operating in Booth the D33 52 Mol Loor-Thanso Modes 52 Folume 15: Tanko Dukama Kon The Transmit Parkuoad Data Invert Interpace Week the RT79L71 is Operating in Booth the D33 Mol Loor-Thanso Modes 53 TRANSMIT OVERHEAD DATA INPUT INTERFACE Week the RT79L71 is Operating in Booth the D33 MBELE-PARLIE AND LOOC-Thanso MOdes 53 TRANSMIT OVERHEAD DATA INPUT INTERFACE 54 TRANSMIT OVERHEAD DATA INPUT INTERFACE 54 TRANSMIT OVERHEAD DATA INPUT INTERFACE 54 TRANSMIT OVERHEAD DATA OUTPUT INTERFACE 57 Table 13: Tamko Buckama For the Transmit Overhead Data Invert Interpace (Method 1 Access) 56 Folume 14: Tamko Buckama For the Reserve Parkuado Data Output Interpace (Method 1 Access) 57		
TABLE 10: TAINING INFORMATION FOR THE TRANSMIT UTOPIA INTERFACE 99 TRANSMIT PAYLOAD DATA INPUT INTERFACE 50 TRANSMIT PAYLOAD DATA INPUT INTERFACE 50 TRANSMIT PAYLOAD DATA INPUT INTERFACE 50 Folder 31: TAINING MOREAMER FOR THE TRANSMIT PAYLOAD DATA INPUT INTERFACE WHEN THE KRT79L71 IS OPERATING IN THE PASS 50 Folder 31: TAINING MORES 51 Folder 41: TAINING MORES 52 Folder 41: TAINING MORES 53 TRANSMIT OVERHEAD DATA INPUT INTERFACE 54 TRANSMIT OVERHEAD DATA INPUT INTERFACE 54 TRANSMIT OVERHEAD DATA INPUT INTERFACE - TIMING REQUIREMENTS 54 TABLE 12: TAINING MOREM FOR THE TRANSMET OVERHEAD DATA INPUT INTERFACE MEETING 1 ACCESS) 56 FOLDER 12: TAINING MOREM FOR THE TRANSMET OVERHEAD DATA INPUT INTERFACE 54 TRANSMIT OVERHEAD DATA OUTPUT INTERFACE - TIMING REQUIREMENTS 54 TABLE 12: TAINING MOREM FOR THE TRANSMET OVERHEAD DATA INPUT INTERFACE 56 FECELVE PAYLOAD DATA OUTPUT INTERFACE		
TRANSMIT PAYLOAD DATA INPUT INTERFACE 50 TRANSMIT PAYLOAD DATA INPUT INTERFACE - TIMING REQUIREMENTS 50 Tallel 11: Tumins information to rist the Transmer Payload Data Invert Interface BLOCK 50 Folume 13: Tumins Duckam root the Transmer Payload Data Invert Interface BLOCK 50 Non LOOP-Times Modes 51 Folume 14: Tumins Duckam root the Transmer Payload Data Invert Interface when the XRT78L71 is operating in BOTH the D33 Non LOC-Times Modes 52 Folume 15: Tuming Duckam root the Transmer Payload Data Invert Interface when the XRT78L71 is operating in BOTH the D33 Nable-Prantile and LOC-Times Modes 52 Folume 15: Tuming Duckam root the Transmer Payload Data Invert Interface when the XRT78L71 is operating in BOTH the D33 Nable-Prantile and LOCA-Times Modes 54 TRANSMIT OVERHEAD DATA INPUT INTERFACE - TIMING REQUIREMENTS 54 TRANSMIT OVERHEAD DATA OUTPUT INTERFACE 54 TRANSMIT OVERHEAD DATA OUTPUT INTERFACE 57 RECEIVE PAYLOAD DATA OUTPUT INTERFACE - TIMING REQUIREMENTS 56 Folume 17: Tuming Diversition for the Reserve Payload Data Neurly Interface (Merindo 1 Access) 56 Folume 19: Tuming Diversition for the Reserve Payload Data Output Interface (Merindo 2 Access) 56 Folume 19: Tuming Diversition for the Reserve Payload Data		
TRANSMIT PAYLOAD DATA INPUT INTERFACE - TIMING REQUIREMENTS 60 Taule 11: Tuming Parchantone or or the TRANSMET PAYLOAD DATA NEUT INTERFACE ULCK 60 Ficule 12: Tuming Modes 61 Ficule 14: Tuming Modes 61 Ficule 14: Tuming Modes 61 Ficule 14: Tuming Modes 62 Ficule 14: Tuming Modes 62 Ficule 15: Tuming Modes 62 Ficule 15: Tuming Modes 62 Ficule 16: Tuming Modes 63 TRANSMIT OVERHEAD DATA INPUT INTERFACE 54 Tabus 11: Tuming Modes 64 Tuming 12: Tuming Modes 64 Tuming 12: Tuming Modes 64 Tuming 12: Tuming Modes 65 Foure 17: Tuming Diagona rop the Transmet Overning Data Neuri Interface (Merrino 1 Access) 66 Foure 17: Tuming Diagona rop the Transmet Overning Data Neuri Interface (Merrino 1 Access) 66 Foure 19: Tuming Diagona rop the Transmet Overning Data Neuri Interface (Merrino 1 Access) 66 Foure 19: Tuming Diagona rop the Tr		
TABLE 11: TIMING NAMOR THO FOR THE TRANSMIT PAYLOAD DATA INPUT INTERFACE WHEN THE XRT79L71 IS OPERATING IN BOTH THE DS3 AND LOOP. TIMING MODES 56 FIGURE 13. TIMING MODES 56 FIGURE 14. TIMING MODES 52 AND LOCAL TIMING MODES 52 MIREL FARALELE AND LOOP. TIMING MODES 52 MIREL FARALELE AND LOOP. TIMING MODES 52 FIGURE 16. TIMING DIAGRAM FOR THE TRANSMIT PAYLOAD DATA INPUT INTERFACE WHEN THE XRT79L71 IS OPERATING IN BOTH THE STANSMIT DATA INPUT INTERFACE HOLD TATA INPUT INTERFACE MIREL FARALELE AND LOCAL TIMING MODES 53 TRANSMIT OVERHEAD DATA INPUT INTERFACE - TIMING REQUIREMENTS 54 TRANSMIT OVERHEAD DATA INPUT INTERFACE - TIMING REQUIREMENTS 54 FIGURE 17. TIMING INGGRAM FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE (METHOD 1 ACCESS) 56 FIGURE 17. TIMING INGGRAM FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE METHOR 2 ACCESS 56 FIGURE 12. TIMING INGGRAM FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE STOMMETHOR TO REPORT (METHOR 2 ACCESS) 56 FIGURE 12. TIMING INGGRAM FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE 57 57 F		
 Figure 13. Timms Diagram for the Transmit Parkoan Data Input Interface when the XRT79L71 is operating in Both the SAT AND LOP-Timms Modes. Figure 14. Timms Diagram for the Transmit Parkoan Data Input Interface when the XRT79L71 is operating in Both the DS3 MB Loca-Timms Modes. Figure 15. Timms Diagram for the Transmit Parkoan Data Input Interface when the XRT79L71 is operating in Both the DS3 NBBE. Figure 15. Timms Diagram for the Transmit Parkoan Data Input Interface when the XRT79L71 is operating in Both the DS3 NBBE. Figure 16. Timms Diagram for the Transmit Parkoan Data Input Interface when the XRT79L71 is operating in Both the DS3 NBBE. Figure 16. Timms Diagram for the Transmit Parkoan Data Input Interface when the XRT79L71 is operating in Both the DS3 NBBE. Figure 17. Timms Diagram for the Transmit Overhead Data Input Interface Both Technologies (Stransmither Control of the Transmith Overhead Data Input Interface Both Technologies (Stransmither Technologies) Fecure 18. Timms Diagram for the Transmit Overhead Data Input Interface Both Technologies (Stransmither Technologies) Fecure 18. Timms Diagram for the Transmit Overhead Data Input Interface Both Technologies (Stransmither Stransmither Technologies) Fecure 19. Timms Diagram for the Receive Parkoan Data Outrul Interface Both Technologies (Stransmither Stransmither Stransmither		
AND LOOP. TIMING MODES		
AND LOCAL-TIMINE MODES	AND LOOP-TIMING MODES	51
Figure 15. Tunno Diagram for the TRANSMIT PAYLOAD DATA INPUT INTERFACE WHEN THE XRT79L71 IS OPERATING IN BOTH THE DS3/ NIBBLE-PARALLEL AND LOOP-TIMING MODES 52 FIGURE 16. TUNNO DIAGRAM FOR THE TRANSMIT PAYLOAD DATA INPUT INTERFACE WHEN THE XRT79L71 IS OPERATING IN BOTH THE DS3/ 54 TRANSMIT OVERHEAD DATA INPUT INTERFACE 54 TRANSMIT OVERHEAD DATA INPUT INTERFACE 54 TRANSMIT OVERHEAD DATA INPUT INTERFACE 54 TRALE 12. TUNNO INFORMATION FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE BLOCK 54 TABLE 12. TUNNO INFORMATION FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE BLOCK 56 FIGURE 18. TUNNO DIAGRAM FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE BLOCK 57 RECEIVE PAYLOAD DATA OUTPUT INTERFACE 57 TABLE 13. TUNNO DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE BLOCK 57 FIGURE 13. TUNNO DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE BLOCK 57 FIGURE 20. TUNNO DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE MENDED 57 FIGURE 21. TUNNO DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE MODE) 57 FIGURE 21. TUNNO DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE MODE) 57 FIGURE 21. TUNNO DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE MODE) 57 FIGURE 21. TUNNO DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFA		
Number PARALLEL AND LOOP-TIMING MODES 52 Figure 16. Thums Dingenam For HTE TRANSMIT PAYLOAD DATA INPUT INTERFACE WHEN THE XRT79L71 IS OPERATING IN BOTH HD S3/ NBBLE-PARALLEL AND LOCAL-TIMING MODES 53 TRANSMIT OVERHEAD DATA INPUT INTERFACE 54 TRANSMIT OVERHEAD DATA INPUT INTERFACE - TIMING REQUIREMENTS 54 TRANSMIT OVERHEAD DATA NUPUT INTERFACE - TIMING REQUIREMENTS 56 Figure 17. TIMING DINGRAM FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE BLOCK. 56 FIGURE 18. TIMING DINGRAM FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE (METHOD 1 ACCESS) 56 FIGURE 18. TIMING DINGRAM FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE METHOD 2 ACCESS) 57 RECEIVE PAYLOAD DATA OUTPUT INTERFACE - TIMING REQUIREMENTS 57 TABLE 13. TIMING DINGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE BLOCK. 57 FIGURE 19. TIMING DINGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE (METHOD 1-USING RACHCEL). 59 RECEIVE OVERHEAD DATA OUTPUT INTERFACE - TIMING REQUIREMENTS 59 RECEIVE OVERHEAD DATA OUTPUT INTERFACE. 59 RECEIVE OVERHEAD DATA OUTPUT INTERFACE (METHOD 1-USING RACHCEL). 60 RECEIVE OVERHEAD DATA OUTPUT INTERFACE (METHOD 1-USING RACHCEL). 60 RECEIVE OVERHEAD DATA OUTPUT INTERFACE. 59 AC ELECTRICAL CHARACTERISTICS (CONT). 59		
Figure 16. Timms Diagram for the Transmit Partoab Data Interface when the XRT79L71 is operating in Both the DS3/ NBBLE-PracticeLIAND LOCAL-TIMING MODES 53 TRANSMIT OVERHEAD DATA INPUT INTERFACE 54 TRANSMIT OVERHEAD DATA INPUT INTERFACE - TIMING REQUIREMENTS 54 TRAINE DISCOMMENTOR FOR the TRANSMIT OVERHEAD DATA INPUT INTERFACE BLOCK 54 Figure 17. TIMING DIAGRAM FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE (METHOD 2 ACCESS) 66 PECEIVE PAYLOAD DATA OUTPUT INTERFACE 57 RECEIVE PAYLOAD DATA OUTPUT INTERFACE 57 TABLE 13. TIMING DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE (METHOD 2 ACCESS) 57 Figure 13. TIMING DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE 57 TABLE 13. TIMING DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE BLOCK 57 Figure 20. TIMING DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE BLOCK 57 Figure 21. TIMING DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE STALLEL MODE) 58 RECEIVE OVERHEAD DATA OUTPUT INTERFACE - TIMING REQUIREMENTS 59 RECEIVE OVERHEAD DATA OUTPUT INTERFACE 59 RECEIVE OVERHEAD DATA OUTPUT INTERFACE 59 PECEIVE OVERHEAD DATA OUTPUT INTERFACE 59 RECEIVE OVERHEAD DATA OUTPUT INTERFACE 59 Figure 21. TIMING DI		
TRANSMIT OVERHEAD DATA INPUT INTERFACE 54 TRANSMIT OVERHEAD DATA INPUT INTERFACE - TIMING REQUIREMENTS 54 Taket 12: Tuming Diagram for the Transmit Overhead Data Input Interface BLOCK 54 Figure 17. TIMING DIAGRAM for the TRANSMIT OVERHEAD DATA INPUT INTERFACE (METHOD 1 ACCESS) 56 PIGURE 18. TIMING DUAGRAM FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE (METHOD 2 ACCESS) 56 RECEIVE PAYLOAD DATA OUTPUT INTERFACE 57 RECEIVE PAYLOAD DATA OUTPUT INTERFACE 57 Taket 13: TIMING DUAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE (SERIAL MODE) 57 Figure 20. TIMING DUAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE 59 RECEIVE OVERHEAD DATA OUTPUT INTERFACE 59 AC ELECTRICAL CHARACTERISTICS (CONT.) 59 Figure 21. TIMING DUAGRAM FOR THE RECEIVE OVERHEAD DATA OUTPUT INTERFACE (METHOD 1 - USING RXOHCuk) 60 Figure 23. TIMING DUAGRAM FOR THE RECEIVE OVERHEAD DATA OUTPUT INTERFACE (METHOD 1 - USING RXOHCuk) 60 Figure 23. TIMING DUAGRAM FOR THE RECEIVE OVERHEAD DATA OUTPUT INTERFACE (METHOD 1 - USING RXOHCuk) 60 Figure 24. TIMING DUAGRAM FOR THE RECEIVE OV		
TRANSMIT OVERHEAD DATA INPUT INTERFACE - TIMING REQUIREMENTS. 54 TABLE 12: TIMING INFORMATION FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE (METHOD 1 ACCESS) 56 FIGURE 13. TIMING DIAGRAM FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE (METHOD 1 ACCESS) 56 FIGURE 13. TIMING DIAGRAM FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE (METHOD 2 ACCESS) 56 RECEIVE PAYLOAD DATA OUTPUT INTERFACE 57 RECEIVE PAYLOAD DATA OUTPUT INTERFACE 57 RECEIVE OYLOAD DATA OUTPUT INTERFACE 57 FIGURE 13. TIMING DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE (SERIAL MODE) 57 FIGURE 20. TIMING DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE (SERIAL MODE) 58 RECEIVE OVERHEAD DATA OUTPUT INTERFACE - TIMING REQUIREMENTS 59 RECEIVE OVERHEAD DATA OUTPUT INTERFACE 59 RECEIVE OVERHEAD DATA OUTPUT INTERFACE METHOD 1 - USING RXOHCAK) 60 RECEIVE UTOPIA INTERFACE 59 FIGURE 21. TIMING DIAGRAM FOR THE RECEIVE OVERHEAD DATA OUTPUT INTERFACE (METHOD 1 - USING RXOHEMABLE) 60 RECEIVE UTOPIA INTERFACE 61	NIBBLE-PARALLEL AND LOCAL-TIMING MODES	53
Table 12: Tuning Information For the Transmit Overhead Data Input Interface (MEthol 1 Access) 54 Figure 17: Tuning Diagram For the Transmit Overhead Data Input Interface (MEthol 2 Access) 56 RECEIVE PAYLOAD DATA OUTPUT INTERFACE 57 RECEIVE PAYLOAD DATA OUTPUT INTERFACE 57 Table 13: Tuning Information For the Receive Payload Data Output Interface Block 57 Table 20: Tuning Diagram For the Receive Payload Data Output Interface Block 57 Figure 19: Tuning Diagram For the Receive Payload Data Output Interface Block 57 Figure 20: Tuning Diagram For the Receive Payload Data Output Interface (Serial Mode) 58 RECEIVE OVERHEAD DATA OUTPUT INTERFACE 59 RECEIVE OVERHEA	TRANSMIT OVERHEAD DATA INPUT INTERFACE	54
Figure 17. Tuning Diagram for the Transmit Overhead Data InPUT InterFACE (Method 2 Access) 56 RECEIVE PAYLOAD DATA OUTPUT INTERFACE 57 <i>RECEIVE PAYLOAD DATA OUTPUT INTERFACE</i> 57 <i>RECEIVE PAYLOAD DATA OUTPUT INTERFACE</i> 57 <i>Table</i> 13: Timing Information for the Receive Payload Data Output Interface (Belock 57 <i>Figure</i> 20. Timing Diagram for the Receive Payload Data Output Interface (Senial Mode) 57 <i>Figure</i> 20. Timing Diagram for the Receive Payload Data Output Interface (Senial Mode) 58 RECEIVE OVERHEAD DATA OUTPUT INTERFACE 59 <i>RECEIVE OVERHEAD DATA OUTPUT INTERFACE</i> 60 <i>Figure</i> 21. Timing Diagram for the Receive Overhead Data Output Interface (Method 1 - Using RoHenale) 60 <i>RECEIVE UTOPIA INTERFACE</i> 61 <i>RECEIVE UTOPIA INTERFACE</i> 61 <i>REGEISTER MAP OF THE RECEIVE UTOPIA INTERFACE BLOCK</i> 61 <i>REGEISTER MAP OF THE RECEIVE UTOPIA INTERFACE BLOCK</i> 61 <i>RECEIVE UTOPIA INTERFACE</i> 61 <i>RECEIVE UTOPIA I</i>	TRANSMIT OVERHEAD DATA INPUT INTERFACE - TIMING REQUIREMENTS	54
Figure 18. Tuming Diagram for The Transmit Overnead Data Input InterFace (Method 2 Access) 56 RECEIVE PAYLOAD DATA OUTPUT INTERFACE 57 RECEIVE PAYLOAD DATA OUTPUT INTERFACE - TIMING REQUIREMENTS 57 Table 13. Tuming Information for the Receive PayLoad Data Output Interface (Senal Mode) 57 Figure 20. Tuming Diagram for the Receive PayLoad Data Output Interface (Senal Mode) 58 RECEIVE OVERHEAD DATA OUTPUT INTERFACE 59 RECEIVE OVERHEAD DATA OUTPUT INTERFACE 59 RECEIVE OVERHEAD DATA OUTPUT INTERFACE 59 AC EleCTRICAL CHARACTERISTICS (CONT.) 59 Figure 21. Tuming Diagram for the Receive Overhead Data Output Interface (Method 1 - Using RxOHCuk) 60 Figure 22. Tuming Diagram for the Receive Overhead Data Output Interface (Method 2 - Using RxOHCuk) 60 Figure 23. Tuming Diagram for the Receive Overhead Data Output Interface (Method 2 - Using RxOHEnable) 60 RECEIVE UTOPIA INTERFACE 61 RECEIVE UTOPIA INTERFACE 61 RECEIVE UTOPIA INTERFACE 63 CommonControl Registers of the XRT79L71 63 Common Control Registers of the XRT79L71 63 CLEAR-CHANNEL FRAMER BLOCK REGISTERS 64 LIU/JJITTER ATTENUATOR CONTROL REGISTER SUDION 77 </td <td>TABLE 12: TIMING INFORMATION FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE BLOCK</td> <td> 54</td>	TABLE 12: TIMING INFORMATION FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE BLOCK	54
RECEIVE PAYLOAD DATA OUTPUT INTERFACE 57 RECEIVE PAYLOAD DATA OUTPUT INTERFACE - TIMING REQUIREMENTS 57 TABLE 13: TIMING INFORMATION FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE BLOCK. 57 FIGURE 20: TIMING DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE (SERIAL MODE). 58 RECEIVE OVERHEAD DATA OUTPUT INTERFACE 59 AC ELECTRICAL CHARACTERISTICS (CONT.)		
RECEIVE PAYLOAD DATA OUTPUT INTERFACE - TIMING REQUIREMENTS 57 TABLE 13: TIMING INFORMATION FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE (SERIAL MODE). 57 FIGURE 19: TIMING DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE (SERIAL MODE). 57 FIGURE 20: TIMING DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE (NIBBLE-PARALLEL MODE). 58 RECEIVE OVERHEAD DATA OUTPUT INTERFACE 59 RECEIVE OVERHEAD DATA OUTPUT INTERFACE 59 AC ELECTRICAL CHARACTERISTICS (CONT.)		
Table 13: TIMING INFORMATION FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE BLOCK. 57 FIGURE 19. TIMING DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE (SIRAL MODE) 58 RECEIVE OVERHEAD DATA OUTPUT INTERFACE 59 <i>RECEIVE OVERHEAD DATA OUTPUT INTERFACE</i> 59 <i>RECEIVE OVERHEAD DATA OUTPUT INTERFACE</i> - TIMING REQUIREMENTS 59 <i>RECEIVE OVERHEAD DATA OUTPUT INTERFACE</i> 59 <i>RECEIVE OVERHEAD DATA OUTPUT INTERFACE</i> - TIMING REQUIREMENTS 59 <i>FIGURE 21.</i> TIMING DIAGRAM FOR THE RECEIVE OVERHEAD DATA OUTPUT INTERFACE (METHOD 1 - USING RXOHCIK) 60 <i>FIGURE 22.</i> TIMING DIAGRAM FOR THE RECEIVE OVERHEAD DATA OUTPUT INTERFACE (METHOD 2 - USING RXOHENABLE) 60 RECEIVE UTOPIA INTERFACE 61 <i>RECEIVE UTOPIA INTERFACE</i> 63 <i>COMMONCONTROL REGISTERS</i> 64 <i>LIUJITER ATTENUATOR CONTROL RECEIVE UTOPIA INTERFACE BLOCK</i> 61 REGISTER MAP OF THE X		
Figure 19. Timing Diagram for the Receive PayLoad Data Output InterFace (Serial Mode)		
Figure 20. Timing Diagram for the Receive PayLoad Data OUTPUT INTERFACE (NIBBLE-PARALLEL MODE) 58 RECEIVE OVERHEAD DATA OUTPUT INTERFACE 59 <i>RECEIVE OVERHEAD DATA OUTPUT INTERFACE</i> 59 <i>Figure 21. Timing Diagram for the Receive Overhead Data Output Interface (Method 1 - Using RxOHCLK)</i> 60 <i>Figure 22. Timing Diagram for the Receive Overhead Data Output Interface (Method 2 - Using RxOHEnable)</i> 60 <i>RECEIVE UTOPIA INTERFACE</i> 61 <i>Figure 23. Timing Diagram for the Receive UTOPIA Interface BLOCK</i> 61 <i>REGISTER MAP OF THE XRT79L71</i> 63 <i>COMMONCONTROL REgisters of the XRT79L71</i> 63 <i>CLEAR-CHANNEL FRAMER BLOCK REGISTERS</i> 64 <i>LIUJJITTER ATTENUATOR CONTROL REGISTERS</i> 68 <i>RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS</i> 69 OPERATION BLOCK INTERRUPT REGISTER BIT FORMATS 77 <i>OPERATION CONTROL REGISTER - BYTE 3 (ADDRESS = 0x0100)</i> 77 <i>OPERATION CONTROL REGISTER - BYTE 1 (ADDRESS = 0x0102)</i> 78 <i></i>		
RECEIVE OVERHEAD DATA OUTPUT INTERFACE 59 RECEIVE OVERHEAD DATA OUTPUT INTERFACE - TIMING REQUIREMENTS 59 AC ELECTRICAL CHARACTERISTICS (CONT.) 59 Figure 21. TIMING DIAGRAM FOR THE RECEIVE OVERHEAD DATA OUTPUT INTERFACE (METHOD 1 - USING RXOHCLK). 60 Figure 22. TIMING DIAGRAM FOR THE RECEIVE OVERHEAD DATA OUTPUT INTERFACE (METHOD 2 - USING RXOHENABLE). 60 RECEIVE UTOPIA INTERFACE 61 RECEIVE UTOPIA INTERFACE 61 Figure 23. TIMING DIAGRAM FOR THE RECEIVE UTOPIA INTERFACE BLOCK. 61 TABLE 14: TIMING INFORMATION FOR THE RECEIVE UTOPIA INTERFACE BLOCK. 61 REGISTER MAP OF THE XRT79L71 63 COMMONCONTROL REGISTERS OF THE XRT79L71. 63 CLEAR-CHANNEL FRAMER BLOCK REGISTERS 64 LIU/JJITTER ATTENUATOR CONTROL REGISTERS 64 LIU/JJITTER ATTENUATOR CONTROL REGISTERS 65 OPERATION BLOCK INTERRUPT REGISTER BIT FORMATS 77 OPERATION CONTROL REGISTER - BYTE 3 (ADDRESS = 0x0100) 77 OPERATION CONTROL REGISTER - BYTE 1 (ADDRESS = 0x0102) 78 OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0102) 79 Revision ID REGISTER (ADDRESS = 0x0105) 80 OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x		
RECEIVE OVERHEAD DATA OUTPUT INTERFACE - TIMING REQUIREMENTS 59 AC ELECTRICAL CHARACTERISTICS (CONT.) 59 FIGURE 21. TIMING DIAGRAM FOR THE RECEIVE OVERHEAD DATA OUTPUT INTERFACE (METHOD 1 - USING RXOHCLK) 60 RECEIVE UTOPIA INTERFACE 61 TABLE 14: TIMING INFORMATION FOR THE RECEIVE UTOPIA INTERFACE BLOCK. 61 TABLE 14: TIMING INFORMATION FOR THE RECEIVE UTOPIA INTERFACE BLOCK. 61 REGISTER MAP OF THE XRT79L71 63 COMMONCONTROL REGISTERS OF THE XRT79L71 63 CLEAR-CHANNEL FRAMER BLOCK REGISTERS 64 LIU/JITTER ATTENUATOR CONTROL REGISTERS 64 LIU/JITTER ATTENUATOR CONTROL REGISTERS 68 RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS 69 OPERATION BLOCK INTERRUPT REGISTER BIT FORMATS 77 OPERATION CONTROL REGISTER - BYTE 3 (ADDRESS = 0x0100) 77 OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0102) 78 OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0102) 78 OPERATION CONTROL REGISTER - BYTE 1 (ADDRESS = 0x0		
AC ELECTRICAL CHARACTERISTICS (CONT.) 59 Figure 21. TIMING DIAGRAM FOR THE RECEIVE OVERHEAD DATA OUTPUT INTERFACE (METHOD 1 - USING RXOHCLK). 60 FIGURE 22. TIMING DIAGRAM FOR THE RECEIVE OVERHEAD DATA OUTPUT INTERFACE (METHOD 2 - USING RXOHENABLE) 60 RECEIVE UTOPIA INTERFACE . 61 RECEIVE UTOPIA INTERFACE 61 FIGURE 23. TIMING DIAGRAM FOR THE RECEIVE UTOPIA INTERFACE BLOCK. 61 TABLE 14: TIMING INFORMATION FOR THE RECEIVE UTOPIA INTERFACE BLOCK. 61 REGISTER MAP OF THE XRT79L71 63 COMMONCONTROL REGISTERS OF THE XRT79L71 63 CLEAR-CHANNEL FRAMER BLOCK REGISTERS 64 LIU/JITTER ATTENUATOR CONTROL REGISTERS 64 LIU/JITTER ATTENUATOR CONTROL REGISTERS 64 DPERATION BLOCK INTERRUPT REGISTERS BLOCK CONTROL REGISTERS 69 OPERATION BLOCK INTERRUPT REGISTER BIT FORMATS 77 OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0100) 77 OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0101) 77 OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0102) 78 OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0102) 78 OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0112) 80 OPERATION INTERR		
Figure 21. Timing Diagram for the Receive Overhead Data Output Interface (Method 1 - Using RxOHCLK)		
Figure 22. Timing Diagram for the Receive Overhead Data Output Interface (Method 2 - Using RXOHENaBLE) 60 RECEIVE UTOPIA INTERFACE 61 <i>RECEIVE UTOPIA INTERFACE</i> 61 <i>Figure 23. Timing Diagram for the Receive UTOPIA Interface Block</i> 61 <i>Table 14: Timing Information for the Receive UTOPIA Interface Block</i> 61 REGISTER MAP OF THE XRT79L71 63 <i>COMMONCONTROL REGISTERS OF THE XRT79L71</i> 63 <i>CLEAR-CHANNEL FRAMER BLOCK REGISTERS</i> 64 <i>LIU/JITTER ATTENUATOR CONTROL REGISTERS</i> 64 <i>LIU/JITTER ATTENUATOR CONTROL REGISTERS</i> 68 <i>RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS</i> 69 OPERATION BLOCK INTERRUPT REGISTER BIT FORMATS 77 <i>OPERATION CONTROL REGISTER - BYTE 3 (ADDRESS = 0x0100)</i> 77 <i>OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0101)</i> 77 <i>OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0102)</i> 78 <i>OPERATION INTERRUPT Status REGISTER - BYTE 1 (ADDRESS = 0x0112)</i> 80 <i>OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0113)</i> 81 <i>OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0113)</i> 81 <i>OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0113)</i> 81 <		
RECEIVE UTOPIA INTERFACE61RECEIVE UTOPIA INTERFACE61FIGURE 23. TIMING DIAGRAM FOR THE RECEIVE UTOPIA INTERFACE BLOCK.61TABLE 14: TIMING INFORMATION FOR THE RECEIVE UTOPIA INTERFACE BLOCK.61REGISTER MAP OF THE XRT79L7163COMMONCONTROL REGISTERS OF THE XRT79L7163CLEAR-CHANNEL FRAMER BLOCK REGISTERS64LIU/JITTER ATTENUATOR CONTROL REGISTERS64LIU/JITTER ATTENUATOR CONTROL REGISTERS69OPERATION BLOCK INTERRUPT REGISTER BIT FORMATS77OPERATION CONTROL REGISTER - BYTE 3 (ADDRESS = 0x0100)77OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0101)77OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0102)78OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0102)78OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0102)78OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0102)79REVISION ID REGISTER (ADDRESS = 0x0105)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0112)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 0 (ADDRESS		
RECEIVE UTOPIA INTERFACE61FIGURE 23. TIMING DIAGRAM FOR THE RECEIVE UTOPIA INTERFACE BLOCK.61TABLE 14: TIMING INFORMATION FOR THE RECEIVE UTOPIA INTERFACE BLOCK.61 REGISTER MAP OF THE XRT79L71 63COMMONCONTROL REGISTERS OF THE XRT79L7163CLEAR-CHANNEL FRAMER BLOCK REGISTERS64LIU/JITTER ATTENUATOR CONTROL REGISTERS68RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS69 OPERATION BLOCK INTERRUPT REGISTER BIT FORMATS 77OPERATION CONTROL REGISTER - BYTE 3 (ADDRESS = 0x0100)77OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0101)77OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0102)78OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0102)78OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0102)79DEVICE ID REGISTER (ADDRESS = 0x0105)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0112)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0112)80OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0117)83CHANNEL INTERRUPT INDICATION REGISTERS84		
Figure 23. Timing Diagram for the Receive UTOPIA Interface Block. 61 Table 14: Timing Information for the Receive UTOPIA Interface Block. 61 REGISTER MAP OF THE XRT79L71 63 COMMONCONTROL REGISTERS of the XRT79L71 63 CLEAR-CHANNEL FRAMER BLOCK REGISTERS 64 LIU/JITTER ATTENUATOR CONTROL REGISTERS 64 DU/JITTER ATTENUATOR CONTROL REGISTERS 68 RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS 69 OPERATION BLOCK INTERRUPT REGISTER 77 OPERATION CONTROL REGISTER - BYTE 3 (ADDRESS = 0x0100) 77 OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0101) 77 OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0101) 77 OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0102) 78 OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0103) 79 DEVICE ID REGISTER (ADDRESS = 0x0105) 80 OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0112) 80 OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0113) 81 OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0113) 81 OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0116) 82 OPERATION INTERRUPT ENABLE REGISTE		
REGISTER MAP OF THE XRT79L7163COMMONCONTROL REGISTERS OF THE XRT79L7163CLEAR-CHANNEL FRAMER BLOCK REGISTERS64LIU/JITTER ATTENUATOR CONTROL REGISTERS68RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS69OPERATION BLOCK INTERRUPT REGISTER BIT FORMATS77OPERATION CONTROL REGISTER - BYTE 3 (ADDRESS = 0x0100)77OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0101)77OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0102)78OPERATION CONTROL - LOOP-BACK CONTROL REGISTER (ADDRESS = 0x0102)78OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0103)79DEVICE ID REGISTER (ADDRESS = 0x0104)79REVISION ID REGISTER (ADDRESS = 0x0105)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0112)80OPERATION INTERRUPT STATUS REGISTER - BYTE 0 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 0 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0117)83CHANNEL INTERRUPT INDICATION REGISTERS84		
COMMONCONTROL REGISTERS OF THE XRT79L7163CLEAR-CHANNEL FRAMER BLOCK REGISTERS64LIU/JITTER ATTENUATOR CONTROL REGISTERS68RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS69 OPERATION BLOCK INTERRUPT REGISTER BIT FORMATS77 OPERATION CONTROL REGISTER - BYTE 3 (ADDRESS = 0x0100)77OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0101)77OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0101)77OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0101)78OPERATION CONTROL - LOOP-BACK CONTROL REGISTER (ADDRESS = 0x0102)78OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0103)79DEVICE ID REGISTER (ADDRESS = 0x0104)79REVISION ID REGISTER (ADDRESS = 0x0105)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0112)80OPERATION INTERRUPT STATUS REGISTER - BYTE 0 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0117)83 CHANNEL INTERRUPT INDICATION REGISTERS84		61
CLEAR-CHANNEL FRAMER BLOCK REGISTERS64LIU/JITTER ATTENUATOR CONTROL REGISTERS68RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS69 OPERATION BLOCK INTERRUPT REGISTER BIT FORMATS77 OPERATION CONTROL REGISTER - BYTE 3 (ADDRESS = 0x0100)77OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0101)77OPERATION CONTROL - LOOP-BACK CONTROL REGISTER (ADDRESS = 0x0102)78OPERATION CONTROL - LOOP-BACK CONTROL REGISTER (ADDRESS = 0x0102)79DEVICE ID REGISTER (ADDRESS = 0x0104)79REVISION ID REGISTER (ADDRESS = 0x0105)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0112)80OPERATION INTERRUPT STATUS REGISTER - BYTE 0 (ADDRESS = 0x0112)81OPERATION INTERRUPT STATUS REGISTER - BYTE 0 (ADDRESS = 0x0112)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 0 (ADDRESS = 0x0116)82OPERATION INTERRUPT ENABLE REGISTER - BYTE 0 (ADDRESS = 0x0117)83 CHANNEL INTERRUPT INDICATION REGISTERS84	REGISTER MAP OF THE XRT79L71	63
LIU/JITTER ATTENUATOR CONTROL REGISTERS68RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS69OPERATION BLOCK INTERRUPT REGISTER BIT FORMATS77OPERATION CONTROL REGISTER - BYTE 3 (ADDRESS = 0x0100)77OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0101)77OPERATION CONTROL - LOOP-BACK CONTROL REGISTER (ADDRESS = 0x0102)78OPERATION CONTROL - LOOP-BACK CONTROL REGISTER (ADDRESS = 0x0102)79DEVICE ID REGISTER (ADDRESS = 0x0104)79REVISION ID REGISTER (ADDRESS = 0x0105)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0112)81OPERATION INTERRUPT STATUS REGISTER - BYTE 0 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0117)83CHANNEL INTERRUPT INDICATION REGISTERS84		
RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS.69OPERATION BLOCK INTERRUPT REGISTER BIT FORMATS77OPERATION CONTROL REGISTER - BYTE 3 (ADDRESS = 0x0100)77OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0101)77OPERATION CONTROL - LOOP-BACK CONTROL REGISTER (ADDRESS = 0x0102)78OPERATION CONTROL - LOOP-BACK CONTROL REGISTER (ADDRESS = 0x0102)79DEVICE ID REGISTER (ADDRESS = 0x0104)79REVISION ID REGISTER (ADDRESS = 0x0105)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0112)81OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0116)82OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0117)83CHANNEL INTERRUPT INDICATION REGISTERS84		
OPERATION BLOCK INTERRUPT REGISTER BIT FORMATS77OPERATION CONTROL REGISTER - BYTE 3 (ADDRESS = 0x0100)77OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0101)77OPERATION CONTROL - LOOP-BACK CONTROL REGISTER (ADDRESS = 0x0102)78OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0103)79DEVICE ID REGISTER (ADDRESS = 0x0104)79REVISION ID REGISTER (ADDRESS = 0x0105)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0112)80OPERATION INTERRUPT STATUS REGISTER - BYTE 0 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0116)82OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0117)83CHANNEL INTERRUPT INDICATION REGISTERS84		
OPERATION CONTROL REGISTER - BYTE 3 (ADDRESS = 0x0100)77OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0101)77OPERATION CONTROL - LOOP-BACK CONTROL REGISTER (ADDRESS = 0x0102)78OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0103)79DEVICE ID REGISTER (ADDRESS = 0x0104)79REVISION ID REGISTER (ADDRESS = 0x0105)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0112)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0116)82OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0117)83CHANNEL INTERRUPT INDICATION REGISTERS84	RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS	69
OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0101)77OPERATION CONTROL - LOOP-BACK CONTROL REGISTER (ADDRESS = 0x0102)78OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0103)79DEVICE ID REGISTER (ADDRESS = 0x0104)79REVISION ID REGISTER (ADDRESS = 0x0105)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0112)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0116)82OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0117)83CHANNEL INTERRUPT INDICATION REGISTERS84	OPERATION BLOCK INTERRUPT REGISTER BIT FORMATS	77
OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0x0101)77OPERATION CONTROL - LOOP-BACK CONTROL REGISTER (ADDRESS = 0x0102)78OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0103)79DEVICE ID REGISTER (ADDRESS = 0x0104)79REVISION ID REGISTER (ADDRESS = 0x0105)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0112)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0116)82OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0117)83CHANNEL INTERRUPT INDICATION REGISTERS84	OPERATION CONTROL REGISTER - BYTE 3 (ADDRESS = 0x0100)	77
OPERATION CONTROL - LOOP-BACK CONTROL REGISTER (ADDRESS = 0x0102)78OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0103)79Device ID Register (ADDRESS = 0x0104)79Revision ID Register (ADDRESS = 0x0105)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0112)80OPERATION INTERRUPT STATUS REGISTER - BYTE 0 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0116)82OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0116)83CHANNEL INTERRUPT INDICATION REGISTERS84		
OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0103)79DEVICE ID REGISTER (ADDRESS = 0x0104)79REVISION ID REGISTER (ADDRESS = 0x0105)80OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0112)80OPERATION INTERRUPT STATUS REGISTER - BYTE 0 (ADDRESS = 0x0113)81OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0116)82OPERATION INTERRUPT ENABLE REGISTER - BYTE 0 (ADDRESS = 0x0116)83CHANNEL INTERRUPT INDICATION REGISTERS84	OPERATION CONTROL - LOOP-BACK CONTROL REGISTER (ADDRESS = 0x0102)	78
Device ID Register (Address = 0x0104)		
Revision ID Register (Address = 0x0105)		
OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0x0112) 80 OPERATION INTERRUPT STATUS REGISTER - BYTE 0 (ADDRESS = 0x0113) 81 OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0116) 82 OPERATION INTERRUPT ENABLE REGISTER - BYTE 0 (ADDRESS = 0x0117) 83 CHANNEL INTERRUPT INDICATION REGISTERS 84		
OPERATION INTERRUPT STATUS REGISTER - BYTE 0 (ADDRESS = 0x0113) 81 OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0116) 82 OPERATION INTERRUPT ENABLE REGISTER - BYTE 0 (ADDRESS = 0x0117) 83 CHANNEL INTERRUPT INDICATION REGISTERS 84		
OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0x0116)		
OPERATION INTERRUPT ENABLE REGISTER - BYTE 0 (Address = 0x0117)		
CHANNEL INTERRUPT INDICATION REGISTERS		

Channel Interrupt Indicator - LIU/Jitter Attenuator Block (Address = 0x011D)	
CHANNEL INTERRUPT INDICATOR - TRANSMIT CELL PROCESSOR/PPP PROCESSOR BLOCK (ADDRES	
85	,
CHANNEL INTERRUPT INDICATOR - DS3/E3 FRAMER BLOCK (ADDRESS = 0x0127)	86
OPERATION GENERAL PURPOSE PIN DATA REGISTER (ADDRESS = 0x0147)	
OPERATION GENERAL PURPOSE PIN DIRECTION CONTROL REGISTER (ADDRESS = 0x014B)	86
RECEIVE UTOPIA INTERFACE BLOCK	87
TABLE 15: RECEIVE UTOPIA/POS-PHY INTERFACE BLOCK - REGISTER/ADDRESS MAP	
RECEIVE UTOPIA/POS-PHY CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0503)	
Receive UTOPIA Port Address Register (Address = 0x0513)	
Receive UTOPIA Port Number Register (Address = 0x0517)	
TRANSMIT UTOPIA INTERFACE BLOCK	
TABLE 16: TRANSMIT UTOPIA INTERFACE BLOCK - REGISTER/ADDRESS MAP	
TRANSMIT UTOPIA/POS-PHY CONTROL REGISTER - BYTE 0 (ADDRESS = 0x0583)	
TRANSMIT UTOPIA PORT ADDRESS REGISTER (ADDRESS = 0x0593)	
TRANSMIT UTOPIA PORT NUMBER REGISTER (ADDRESS = 0x0597)	
LIU/JITTER ATTENUATOR CONTROL REGISTER BIT-FORMAT	-
LIU TRANSMIT APS/REDUNDANCY CONTROL REGISTER (ADDRESS = 0x1300)	
LIU INTERRUPT ENABLE REGISTER (ADDRESS = 0x1301)	
LIU INTERRUPT STATUS REGISTER (ADDRESS = 0x1302)	
LIU ALARM STATUS REGISTER (ADDRESS = 0x1303)	
LIU TRANSMIT CONTROL REGISTER (ADDRESS = 0x1304)	
LIU RECEIVE CONTROL REGISTER (ADDRESS = 0x1305)	
LIU CHANNEL CONTROL REGISTER (ADDRESS = 0x1306)	
JITTER ATTENUATOR CONTROL REGISTER (ADDRESS = 0x1307)	
LIU RECEIVE APS/REDUNDANCY CONTROL REGISTER (ADDRESS = 0x1308)	
DS3/E3 FRAMER BLOCK REGISTERS	
OPERATING MODE REGISTER (DIRECT ADDRESS = 0x1100)	
I/O CONTROL REGISTER (DIRECT ADDRESS = 0x1101)	
BLOCK INTERRUPT ENABLE REGISTER (DIRECT ADDRESS = 0x1104)	
BLOCK INTERRUPT STATUS REGISTER (DIRECT ADDRESS = 0x1105)	
Test Register (Direct Address = 0x110C) Receive DS3 Related Registers	
RECEIVE DS3 RELATED REGISTERS RxDS3 Configuration and Status Register (Direct Address = 0x1110)	
RxDS3 CONFIGURATION AND STATUS REGISTER (DIRECT ADDRESS = 0x1110) RxDS3 Status Register (Direct Address = 0x1111)	
RxDS3 STATUS REGISTER (DIRECT ADDRESS = 0x1111) RxDS3 Interrupt Enable Register (Direct Address = 0x1112)	
RxDS3 INTERRUPT ENABLE REGISTER (DIRECT ADDRESS = 0x1112) RxDS3 INTERRUPT STATUS REGISTER (DIRECT ADDRESS = 0x1113)	
RxDS3 Sync Detect Register (Direct Address = 0x1113)	
RxDS3 FEAC Register (Direct Address = 0x1114)	
RxDS3 FEAC INTERRUPT ENABLE/STATUS REGISTER (DIRECT ADDRESS = 0x1117)	
RxDS3 LAPD Control Register (Direct Address = 0x1118)	
RxDS3 LAPD Status Register (Direct Address = 0x1119)	
RxDS3 PATTERN REGISTER (DIRECT ADDRESS = 0x112F)	
RxE3 Configuration and Status Register # 1 - G.751 (Direct Address = 0x1110)	
RxE3 Configuration and Status Register # 2 - G.751 (Direct Address = 0x1111)	
RxE3 INTERRUPT ENABLE REGISTER # 1 - G.751 (DIRECT ADDRESS = 0x1112)	
RxE3 INTERRUPT ENABLE REGISTER # 2 - G.751 (DIRECT ADDRESS = 0x1113)	
RxE3 INTERRUPT STATUS REGISTER # 1 - G.751 (DIRECT ADDRESS = 0x1114)	
RxE3 INTERRUPT STATUS REGISTER # 2 - G.751 (DIRECT ADDRESS = 0x1115)	
RxE3 LAPD CONTROL REGISTER - G.751 (DIRECT ADDRESS = 0x1118)	147
RxE3 LAPD STATUS REGISTER - G.751 (DIRECT ADDRESS = 0x1119)	149
RxE3 Service Bits Register - G.751 (Direct Address = 0x111A)	150
RECEIVE E3, ITU-T G.832 RELATED REGISTERS	
RxE3 Configuration and Status Register # 1 - G.832 (Direct Address = 0x1110)	
RxE3 Configuration and Status Register # 2 - G.832 (Direct Address = 0x1111)	152

RxE3 INTERRUPT ENABLE REGISTER # 1 - G.832 (DIRECT ADDRESS = 0x1112)	
RxE3 INTERRUPT ENABLE REGISTER # 2 - G.832 (DIRECT ADDRESS = 0x1113)	
RxE3 INTERRUPT STATUS REGISTER # 1 - G.832 (DIRECT ADDRESS = 0x1114)	
RxE3 INTERRUPT STATUS REGISTER # 2 - G.832 (DIRECT ADDRESS = 0x1115)	
RxE3 LAPD Control Register - G.832 (Direct Address = 0x1118)	
RxE3 LAPD STATUS REGISTER - G.832 (DIRECT ADDRESS = 0x1119)	
RxE3 NR Byte Register - G.832 (Direct Address = 0x111A)	
RxE3 GC Byte Register - G.832 (Direct Address = 0x111B)	167
RxE3 TTB-0 REGISTER - G.832 (DIRECT ADDRESS = 0x111C)	
RxE3 TTB-1 REGISTER - G.832 (DIRECT ADDRESS = 0x111D)	
RxE3 TTB-2 REGISTER - G.832 (DIRECT ADDRESS = 0x111E)	
RxE3 TTB-3 REGISTER - G.832 (DIRECT ADDRESS = 0x111F)	
RxE3 TTB-4 REGISTER - G.832 (DIRECT ADDRESS = 0x1120)	
RxE3 TTB-5 REGISTER - G.832 (DIRECT ADDRESS = 0x1121)	
RxE3 TTB-6 REGISTER - G.832 (DIRECT ADDRESS = 0x1122)	
RxE3 TTB-7 REGISTER - G.832 (DIRECT ADDRESS = 0x1123)	
RxE3 TTB-8 REGISTER - G.832 (DIRECT ADDRESS = 0x1124)	170
RxE3 TTB-9 REGISTER - G.832 (DIRECT ADDRESS = 0x1125)	171
RxE3 TTB-10 REGISTER - G.832 (DIRECT ADDRESS = 0x1126)	171
RxE3 TTB-11 REGISTER - G.832 (DIRECT ADDRESS = 0x1127)	171
RxE3 TTB-12 REGISTER - G.832 (DIRECT ADDRESS = 0x1128)	172
RxE3 TTB-13 REGISTER - G.832 (DIRECT ADDRESS = 0x1129)	172
RxE3 TTB-14 Register - G.832 (Direct Address = 0x112A)	172
RxE3 TTB-15 REGISTER - G.832 (DIRECT ADDRESS = 0x112B)	173
RxE3 SSM REGISTER - G.832 (DIRECT ADDRESS = 0x112C)	173
TRANSMIT DS3 RELATED REGISTERS	
TxDS3 Configuration Register (Direct Address = 0x1130)	
TxDS3 FEAC CONFIGURATION AND STATUS REGISTER (DIRECT ADDRESS = 0x1131)	
TxDS3 FEAC Register (Direct Address = 0x1132)	
TxDS3 LAPD Configuration Register (Direct Address = 0x1133)	
TxDS3 LAPD STATUS/INTERRUPT REGISTER (DIRECT ADDRESS = 0x1134)	
TxDS3 M-Bit Mask Register (Direct Address = 0x1135)	
TxDS3 F-Bit Mask # 1 Register (Direct Address = 0x1136)	183
TxDS3 F-Bit Mask # 2 Register (Direct Address = 0x1137)	
TxDS3 F-Bit Mask # 3 Register (Direct Address = 0x1138)	191
TxDS3 F-Bit Mask # 4 Register (Direct Address = 0x1139)	
TRANSMIT DS3 PATTERN REGISTER (DIRECT ADDRESS = 0x114C)	
TRANSMIT E3, ITU-T G.751 RELATED REGISTERS	
TxE3 Configuration Register - G.751 (Direct Address = 0x1130)	
TxE3 LAPD CONFIGURATION REGISTER - G.751 (DIRECT ADDRESS = 0x1133)	
TxE3 LAPD STATUS/INTERRUPT REGISTER - G.751 (DIRECT ADDRESS = 0x1134)	
TxE3 Service Bits Register - G.751 (Direct Address = 0x1135)	
TxE3 FAS ERROR MASK UPPER REGISTER - G.751 (INDIRECT ADDRESS = 0xNE, 0x48; DIRE	
208	
TxE3 FAS Error Mask Lower Register - G.751 (Indirect Address =0xNE, 0x49; I	Direct Address =
0x1149)	
TxE3 BIP-4 Mask Register - G.751 (Direct Address = 0x114A)	
TRANSMIT E3, ITU-T G.832 RELATED REGISTERS	
TxE3 Configuration Register - G.832 (Direct Address = 0x1130)	
TxE3 LAPD CONFIGURATION REGISTER - G.832 (DIRECT ADDRESS = 0x1133)	
TxE3 LAPD STATUS/INTERRUPT REGISTER - G.832 (DIRECT ADDRESS = 0x1134)	
TxE3 GC Byte Register - G.832 (Direct Address = 0x1135)	
TxE3 MA Byte Register - G.832 (Direct Address = $0x1136$)	
TxE3 NR Byte Register - G.832 (Direct Address = 0x1137)	

TxE3 TTB-1 Register - G.832 (Direct Address = 0x1139)	
TxE3 TTB-2 Register - G.832 (Direct Address = 0x113A)	
TxE3 TTB-3 Register - G.832 (Direct Address = 0x113B)	
TxE3 TTB-4 Register - G.832 (Direct Address = 0x113C)	
TxE3 TTB-5 Register - G.832 (Direct Address = 0x113D)	
TxE3 TTB-6 Register - G.832 (Direct Address = 0x113E)	
TxE3 TTB-7 Register - G.832 (Direct Address = 0x113F)	
TxE3 TTB-8 Register - G.832 (Direct Address = 0x1140)	
TxE3 TTB-9 Register - G.832 (Direct Address = 0x1141)	
TxE3 TTB-10 Register - G.832 (Direct Address = 0x1142)	
TxE3 TTB-11 Register - G.832 (Direct Address = 0x1143)	
TxE3 TTB-12 REGISTER - G.832 (DIRECT ADDRESS = 0x1144)	
TxE3 TTB-13 Register - G.832 (Direct Address = 0x1145)	
TxE3 TTB-14 Register - G.832 (Direct Address = 0x1146)	
TxE3 TTB-15 Register - G.832 (Direct Address = 0x1147)	
TxE3 FA1 Error Mask Register - G.832 (Direct Address = 0x1148)	
TxE3 FA2 Error Mask Register - G.832 (Direct Address = 0x1149)	
TxE3 BIP-8 Error Mask Register - G.832 (Direct Address = 0x114A)	
Performance Monitor Registers	
PMON Excessive Zero Count Registers - MSB (Direct Address = 0x114E)	
PMON Excessive Zero Count Registers - LSB (Direct Address = 0x114F)	
PMON LINE CODE VIOLATION COUNT REGISTERS - MSB (DIRECT ADDRESS = 0x1150)	
PMON LINE CODE VIOLATION COUNT REGISTERS - LSB (DIRECT ADDRESS = 0x1151)	
PMON FRAMING BIT/BYTE ERROR COUNT REGISTER - MSB (DIRECT ADDRESS = 0x1152)	
PMON FRAMING BIT/BYTE ERROR COUNT REGISTER - LSB (DIRECT ADDRESS = 0x1153)	226
PMON PARITY/P-BIT ERROR COUNT REGISTER - MSB (DIRECT ADDRESS = 0x1154)	226
PMON PARITY/P-BIT ERROR COUNT REGISTER - LSB (DIRECT ADDRESS = 0x1155)	
PMON FEBE Event Count Register - MSB (Direct Address = 0x1156)	
PMON FEBE Event Count Register - LSB (Direct Address = 0x1157)	228
PMON CP-BIT ERROR COUNT REGISTER - MSB (DIRECT ADDRESS = 0x1158)	
PMON CP-BIT ERROR COUNT REGISTER - LSB (DIRECT ADDRESS = 0x1159)	229
PRBS Error Count Register - MSB (Direct Address = 0x1168)	
PRBS Error Count Register - LSB (Direct Address = 0x1169)	230
PMON Holding Register (Direct Address = 0x116C)	230
ONE SECOND ERROR STATUS REGISTER (DIRECT ADDRESS = 0x116D)	231
ONE SECOND - LCV COUNT ACCUMULATOR REGISTER - MSB (DIRECT ADDRESS = 0x116E)	232
ONE SECOND - LCV COUNT ACCUMULATOR REGISTER - LSB (DIRECT ADDRESS = 0x116F)	232
ONE SECOND - PARITY ERROR ACCUMULATOR REGISTER - MSB (DIRECT ADDRESS = 0x1170)	233
ONE SECOND - PARITY ERROR ACCUMULATOR REGISTER - LSB (DIRECT ADDRESS = 0x1171)	
ONE SECOND - CP BIT ERROR ACCUMULATOR REGISTER - MSB (DIRECT ADDRESS = 0x1172)	234
ONE SECOND - CP BIT ERROR ACCUMULATOR REGISTER - LSB (DIRECT ADDRESS = 0x1173)	235
General Purpose I/O Pin Control Registers	
Line Interface Drive Register (Direct Address = 0x1180)	236
LINE INTERFACE SCAN REGISTER (DIRECT ADDRESS = 0x1181)	238
LAPD CONTROLLER BYTE COUNT REGISTERS	
TxLAPD Byte Count Register (Direct Address = 0x1183)	239
RxLAPD Byte Count Register (Direct Address = 0x1184)	239
RECEIVE DS3/E3 INTERRUPT STATUS REGISTER - SECONDARY FRAME SYNCHRONIZER BLOCK (DIRECT	r Address
= 0x11F9	
THE RECEIVE ATM CELL PROCESSOR BLOCK	
RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CONTROL REGISTER - BYTE 3 (ADDRESS = (246	
RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CONTROL REGISTER - BYTE 2 (ADDRESS = 0)x1701).
246	

X EXAR

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

PRELIMINARY

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CONTROL REGISTER - BYTE 1 (ADDRESS = 0x1702) 247 RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CONTROL REGISTER - BYTE 0 (ADDRESS = 0x1703) 249 RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM INTERRUPT STATUS REGISTER - BYTE 0 (ADDRESS = RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM INTERRUPT ENABLE REGISTER - BYTE 0 (ADDRESS = RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELL INSERTION/EXTRACTION MEMORY CONTROL REG-RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 3 (AD-RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 2 (AD-RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 1 (AD-RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 0 (AD-RECEIVE ATM CELL PROCESSOR BLOCK - UDF3 BYTE VALUE REGISTER (ADDRESS = 0x171A)265 RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE TEST CELL HEADER BYTE - BYTE 1 (ADDRESS = 0x1720). 266 RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE TEST CELL HEADER BYTE - BYTE 2 (ADDRESS = 0x1721). 266 RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE TEST CELL HEADER BYTE - BYTE 3 (ADDRESS = 0x1722). 267 RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE TEST CELL HEADER BYTE - BYTE 4 (ADDRESS = 0x1723). 267 RECEIVE ATM CELL PROCESSOR BLOCK - TEST CELL ERROR COUNT REGISTERS - BYTE 3 (ADDRESS = 0x1724) 268 RECEIVE ATM CELL PROCESSOR BLOCK - TEST CELL ERROR COUNT REGISTERS - BYTE 2 (ADDRESS = 0x1725) 269 RECEIVE ATM CELL PROCESSOR BLOCK - TEST CELL ERROR COUNT REGISTERS - BYTE 1 (ADDRESS = 0x1726) 270 RECEIVE ATM CELL PROCESSOR BLOCK - TEST CELL ERROR COUNT REGISTERS - BYTE 0 (ADDRESS = 0x1727) 271 RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELL COUNT REGISTER - BYTE 3 (ADDRESS = 0x1728) 272 RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELL COUNT REGISTER - BYTE 2 (ADDRESS = 0x1729) 273 RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELL COUNT REGISTER - BYTE 1 (ADDRESS = 0x172A) 274 RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELL COUNT REGISTER - BYTE 0 (ADDRESS = 0x172B) 275 RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE DISCARDED ATM CELL COUNT - BYTE 3 (ADDRESS = 0x172C) 276 RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE DISCARDED ATM CELL COUNT - BYTE 2 (ADDRESS = 0x172D) 277

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE DISCARDED ATM CELL COUNT - BYTE 1 (ADDRESS = 0x172E) 278 RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE DISCARDED ATM CELL COUNT - BYTE 0 (ADDRESS = 0x172F) 279 RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELLS WITH CORRECTABLE HEC BYTE ERROR COUNT RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELLS WITH CORRECTABLE HEC BYTE ERROR COUNT RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELLS WITH CORRECTABLE HEC BYTE ERROR COUNT RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELLS WITH CORRECTABLE HEC BYTE ERROR COUNT RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELLS WITH UNCORRECTABLE HEC BYTE ERROR COUNT RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELLS WITH UNCORRECTABLE HEC BYTE ERROR COUNT RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELLS WITH UNCORRECTABLE HEC BYTE ERROR COUNT RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELLS WITH UNCORRECTABLE HEC BYTE ERROR COUNT RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER CONTROL - FILTER 0 (ADDRESS = 0x1743) 284 RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - PATTERN REGISTER - HEADER BYTE RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - PATTERN REGISTER - HEADER BYTE RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - PATTERN REGISTER - HEADER BYTE RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - PATTERN REGISTER - HEADER BYTE RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - CHECK REGISTER - BYTE 1 (ADDRESS RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - CHECK REGISTER - BYTE 2 (ADDRESS RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - CHECK REGISTER - BYTE 3 (ADDRESS RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - CHECK REGISTER - BYTE 4 (ADDRESS RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - FILTERED CELL COUNT - BYTE 3 (AD-RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - FILTERED CELL COUNT - BYTE 2 (AD-RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - FILTERED CELL COUNT - BYTE 1 (AD-RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - FILTERED CELL COUNT - BYTE 0 (AD-RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER CONTROL - FILTER 1 (ADDRESS = 0x1753) 297 RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 1 - PATTERN REGISTER - HEADER BYTE RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 1 - PATTERN REGISTER - HEADER BYTE RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 1 - PATTERN REGISTER - HEADER BYTE RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 1 - PATTERN REGISTER - HEADER BYTE

4 (Address = 0x1757)
RECEIVE A I M CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 1 - CHECK REGISTER - BYTE 1 (ADDRESS
= 0x1758)
$= 0x1759) \dots 304$
= 0X1759)
- Ov175A)
= 0x175A)
= 0x175B)
Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Filtered Cell Count - Byte 3 (Ad-
DRESS = 0x175C)
Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Filtered Cell Count - Byte 2 (Ad-
DRESS = 0x175D)
Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Filtered Cell Count - Byte 1 (Ad-
DRESS = 0x175E)
Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Filtered Cell Count - Byte 0 (Ad-
DRESS = 0x175F)
RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER CONTROL - FILTER 2 (ADDRESS = 0x1763)
311
RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE
1 (ADDRESS = 0x1764)
RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE
2 (ADDRESS = 0x1765)
Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Register - Header Byte
3 (ADDRESS = 0x1766)
RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 4 (ADDRESS = 0x1767)
4 (ADDRESS = 0x1767)
$= 0x1768) \dots 317$
Receive ATM Cell Processor Block - Receive User Cell Filter #2 - Check Register - Byte 2 (Address
$= 0x1769) \dots 318$
Receive ATM Cell Processor Block - Receive User Cell Filter #2 - Check Register - Byte 3 (Address
= 0x176A)
Receive ATM Cell Processor Block - Receive User Cell Filter #2 - Check Register - Byte 4 (Address
= 0x176B)
Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Filtered Cell Count - Byte 3 (Ad-
DRESS = 0x176C)
RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - FILTERED CELL COUNT - BYTE 2 (AD-
DRESS = 0x176D)
RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - FILTERED CELL COUNT - BYTE 1 (AD-
DRESS = 0x176E)
RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - FILTERED CELL COUNT - BYTE 0 (AD-
DRESS = 0x176F)
RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER CONTROL - FILTER 3 (ADDRESS = 0x1773)
<i>325</i>
RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - PATTERN REGISTER - HEADER BYTE
1 (Address = 0x1774)
RECEIVE A I M CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1774)
Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Register - Header Byte
2 (ADDRESS = 0x1775)
2 (ADDRESS = 0X1775)
3 (ADDRESS = 0x1776)
Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Register - Header Byte
4 (ADDRESS = 0x1777)

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - CHECK REGISTER - BYTE 1 (ADDRESS = 0x1778)
Receive ATM Cell Processor Block - Receive User Cell Filter #3 - Check Register - Byte 2 (Address = 0x1779)
RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - CHECK REGISTER - BYTE 3 (ADDRESS = 0x177A)
RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - CHECK REGISTER - BYTE 4 (ADDRESS = 0x177B)
RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - FILTERED CELL COUNT - BYTE 3 (ADDRESS = 0x177C)
RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - FILTERED CELL COUNT - BYTE 2 (AD- DRESS = 0x177D)
RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - FILTERED CELL COUNT - BYTE 1 (AD- DRESS = 0x177E)
RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - FILTERED CELL COUNT - BYTE 0 (AD- DRESS = 0x177F)
RECEIVE PPP PACKET PROCESSOR BLOCK (PPP APPLICATIONS ONLY)
TRANSMIT ATM CELL PROCESSOR BLOCK - Register/Address Map
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CONTROL REGISTER - BYTE 1 (ADDRESS = 0x1F02) 345
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CONTROL - BYTE 0 (ADDRESS = 0x1F03)347 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM STATUS REGISTER (ADDRESS = 0x1F07)349 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM INTERRUPT STATUS REGISTER (ADDRESS = 0x1F0B) 350
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM INTERRUPT ENABLE REGISTER (ADDRESS = 0x1F0F) 352
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM INTERRUPT ENABLE REGISTER (ADDRESS = 0x1F0F) 352 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CELL INSERTION/EXTRACTION MEMORY CONTROL REG- ISTER (0x1F13)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM INTERRUPT ENABLE REGISTER (ADDRESS = 0x1F0F) 352 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CELL INSERTION/Extraction MEMORY CONTROL REG- ISTER (0x1F13)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM INTERRUPT ENABLE REGISTER (ADDRESS = 0x1F0F) 352 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CELL INSERTION/Extraction Memory Control Register (0x1F13)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM INTERRUPT ENABLE REGISTER (ADDRESS = 0x1F0F) 352 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CELL INSERTION/Extraction Memory Control Reg- ISTER (0x1F13)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM INTERRUPT ENABLE REGISTER (ADDRESS = 0x1F0F) 352 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CELL INSERTION/EXTRACTION MEMORY CONTROL REG- ISTER (0x1F13)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM INTERRUPT ENABLE REGISTER (ADDRESS = 0x1F0F) 352 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CELL INSERTION/EXTRACTION MEMORY CONTROL REG- ISTER (0x1F13)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM INTERRUPT ENABLE REGISTER (ADDRESS = 0x1F0F) 352 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CELL INSERTION/EXTRACTION MEMORY CONTROL REG- ISTER (0x1F13) 354 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 3 (AD- DRESS = 0x1F14) 356 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 2 (AD- DRESS = 0x1F15) 357 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 1 (AD- DRESS = 0x1F15) 357 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 1 (AD- DRESS = 0x1F16) 358 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 0 (AD- DRESS = 0x1F16) 358 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 0 (AD- DRESS = 0x1F17) 359 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 1 (ADDRESS = 0x1F18). 360 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 2 (ADDRESS = 0x1F19). 360 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 2 (ADDRESS = 0x1F19). 360 TRANSMIT ATM C
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM INTERRUPT ENABLE REGISTER (ADDRESS = 0x1F0F) 352 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CELL INSERTION/Extraction Memory Control Reg- ISTER (0x1F13)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM INTERRUPT ENABLE REGISTER (ADDRESS = 0x1F0F) 352 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CELL INSERTION/EXTRACTION MEMORY CONTROL REG- ISTER (0x1F13)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM INTERRUPT ENABLE REGISTER (ADDRESS = 0x1F0F) 352 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CELL INSERTION/EXTRACTION MEMORY CONTROL REGISTER (0x1F13) 354 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 3 (ADDRESS = 0x1F14) 356 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 2 (ADDRESS = 0x1F15) 357 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 2 (ADDRESS = 0x1F16) 358 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 1 (ADDRESS = 0x1F16) 358 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 0 (ADDRESS = 0x1F17) 359 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 0 (ADDRESS = 0x1F17) 359 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 1 (ADDRESS = 0x1F18). 360 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 2 (ADDRESS = 0x1F18). 360 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 3 (ADDRESS = 0x1F18). 360 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 4 (AD
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM INTERRUPT ENABLE REGISTER (ADDRESS = 0x1F0F) 352 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CELL INSERTION/EXTRACTION MEMORY CONTROL REGISTER (0x1F13) 354 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 3 (ADDRESS = 0x1F14) 356 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 2 (ADRESS = 0x1F15) 357 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 1 (ADDRESS = 0x1F16) 358 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 1 (ADDRESS = 0x1F16) 358 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 0 (ADDRESS = 0x1F17) 359 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 1 (ADDRESS = 0x1F18). 360 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 2 (ADDRESS = 0x1F18). 360 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 3 (ADDRESS = 0x1F18). 360 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 4 (ADDRESS = 0x1F18). 361 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 4 (ADDRESS = 0x1F18).
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM INTERRUPT ENABLE REGISTER (ADDRESS = 0x1F0F) 352 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CELL INSERTION/EXTRACTION MEMORY CONTROL REG- ISTER (0x1F13) 354 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 3 (AD- DRESS = 0x1F14) 356 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 2 (AD- DRESS = 0x1F15) 357 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 1 (AD- DRESS = 0x1F16) 358 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 1 (AD- DRESS = 0x1F16) 358 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 0 (AD- DRESS = 0x1F17) 359 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 1 (ADDRESS = 0x1F18). 360 360 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 2 (ADDRESS = 0x1F18). 361 361 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 4 (ADDRESS = 0x1F18). 360 360 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 4 (ADDRESS = 0x1F18).

XP EXAR

363

	PROCESSOR BLOCK - TRANSM	nit Test Cell Header Byte - Byte 4 (Address = 0x1)
364 T	D	
		IT ATM CELL COUNTER - BYTE 3 (ADDRESS = 0x1F28)
		IT ATM CELL COUNTER - BYTE 2 (ADDRESS = 0x1F29)
		nit ATM Cell Counter - Byte 1 (Address = 0x1F2A)
		nit ATM Cell Counter - Byte 0 (Address = 0x1F2B)
TRANSMIT ATM CELL	PROCESSOR BLOCK - TRANSMIT	TDISCARDED ATM CELL COUNT - BYTE 3 (ADDRESS = 0x11
367		
TRANSMIT ATM CELL	PROCESSOR BLOCK - TRANSMIT	Discarded ATM Cell Count - Byte 2 (Address = 0x1)
367		
TRANSMIT ATM CELL	PROCESSOR BLOCK - TRANSMIT	Discarded ATM Cell Count - Byte 1 (Address = 0x1)
368		
TRANSMIT ATM CELL	PROCESSOR BLOCK - TRANSMIT	Discarded ATM Cell Count - Byte 0 (Address = 0x1)
368		
TRANSMIT ATM CELL	PROCESSOR BLOCK - TRANSMIT	ATMHEC Byte Error Count Register - Byte 3 (Addr
	PROCESSOR BLOCK - TRANSMIT	ATMHEC BYTE ERROR COUNT REGISTER - BYTE 2 (ADD
TRANSMITATMCFLL	PROCESSOR BLOCK - TRANSMIT	ATMHEC Byte Error Count Register - Byte 1 (Addr
TRANSMITATMCFU	PROCESSOR BLOCK - TRANSMIT	ATMHEC Byte Error Count Register - Byte 0 (Addr
		IT UTOPIA PARITY ERROR COUNT REGISTER - BYTE 3
		3
		IT UTOPIA PARITY ERROR COUNT REGISTER - BYTE 2
		3
		IT UTOPIA PARITY ERROR COUNT REGISTER - BYTE 1
		3
		IIT UTOPIA PARITY ERROR COUNT REGISTER - BYTE 0
		3
		r User Cell Filter Control - Filter 0 (Address = 0x1
373		
	PROCESSOR BLOCK - TRANSMI	t User Cell Filter #0 - Pattern Register - Header B
		TUSER CELL FILTER #0 - PATTERN REGISTER - HEADER E
Γοληςμιτ ΔΤΜ Γειι	PROCESSOR BLOCK - TRANSMI	T USER CELL FILTER #0 - PATTERN REGISTER - HEADER E
		T USER CELL FILTER # 0 - PATTERN REGISTER - HEADER E
+ (ADDRESS = UX IF4	PROGRAD PLOOK TRANOMI	r User Cell Filter #0 - Check Register - Byte 1 (Addr
		1
		r User Cell Filter #0 - Check Register - Byte 4 (Addr
= UX1F4B)		
		IIT USER CELL FILTER # 0 - FILTERED CELL COUNT - BY
		IIT USER CELL FILTER # 0 - FILTERED CELL COUNT - BY
$(\Lambda D D D C C C - \Omega \sqrt{1} E I C$))	
		/IT USER CELL FILTER # 0 - FILTERED CELL COUNT - BY

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 0 - FILTERED CELL COUNT - BYTE 0 (ADDRESS = 0x1F4F)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER CONTROL - FILTER 1 (ADDRESS = 0x1F53) 387
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #1 - PATTERN REGISTER - HEADER BYTE
1 (ADDRESS = 0x1F54)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #1 - PATTERN REGISTER - HEADER BYTE 2 (ADDRESS = 0x1F55)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 1 - PATTERN REGISTER - HEADER BYTE
3 (ADDRESS = 0x1F56)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #1 - PATTERN REGISTER - HEADER BYTE
4 (ADDRESS = 0x1F57)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #1 - CHECK REGISTER - BYTE 1 (ADDRESS
= 0x1F58)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #1 - CHECK REGISTER - BYTE 2 (ADDRESS
= 0x1F59)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 1 - CHECK REGISTER - BYTE 3 (ADDRESS = 0x1F5A)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #1 - CHECK REGISTER - BYTE 4 (ADDRESS
= 0x1F5B)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 1 - FILTERED CELL COUNT - BYTE 3
(ADDRESS = 0x1F5C)
(ADDRESS = 0x1F5C)
(ADDRESS = 0x1F5D)
(ADDRESS = 0x1F5E)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 1 - FILTERED CELL COUNT - BYTE 0
(ADDRESS = 0x1F5F)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER CONTROL - FILTER 2 (ADDRESS = 0x1F63)
401
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64)403
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64)403 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 2 (ADDRESS = 0x1F65)404
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 2 (ADDRESS = 0x1F65) 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 2 (ADDRESS = 0x1F65) 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 3 (ADDRESS = 0x1F65) 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 3 (ADDRESS = 0x1F66)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 3 (ADDRESS = 0x1F65) 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 4 (ADDRESS = 0x1F67)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 1 (ADDRESS 406
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - HEADER BYTE 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 1 (ADDRESS = 0x1F68) 407
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 1 (ADDRESS = 0x1F67) 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 1 (ADDRESS = 0x1F68) 407 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 2 (ADDRESS = 0x1F68) 407
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 1 (ADDRESS = 0x1F67) 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 1 (ADDRESS = 0x1F68) 407 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 2 (ADDRESS = 0x1F69) 408
TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - Pattern Register - Header Byte 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - Pattern Register - Header Byte 404 Z (ADDRESS = 0x1F65) 404 TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - Pattern Register - Header Byte 404 Z (ADDRESS = 0x1F65) 405 TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - Pattern Register - Header Byte 405 J (ADDRESS = 0x1F66) 405 TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - Pattern Register - Header Byte 4 (ADDRESS = 0x1F67) 406 TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - CHECK Register - Byte 1 (ADDRESS = 0x1F68) 407 TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - CHECK Register - Byte 1 (ADDRESS = 0x1F68) 407 TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - CHECK Register - Byte 2 (ADDRESS = 0x1F69) 408 TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - CHECK Register - Byte 3 (ADDRESS
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - CHECK REGISTER - BYTE 1 (ADDRESS = 0x1F67) 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - CHECK REGISTER - BYTE 1 (ADDRESS = 0x1F68) 407 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - CHECK REGISTER - BYTE 2 (ADDRESS = 0x1F69) 408 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - CHECK REGISTER - BYTE 3 (ADDRESS = 0x1F6A) 409
TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - Pattern Register - Header Byte 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - Pattern Register - Header Byte 404 Z (ADDRESS = 0x1F65) 404 TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - Pattern Register - Header Byte 404 Z (ADDRESS = 0x1F65) 405 TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - Pattern Register - Header Byte 405 J (ADDRESS = 0x1F66) 405 TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - Pattern Register - Header Byte 4 (ADDRESS = 0x1F67) 406 TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - CHECK Register - Byte 1 (ADDRESS = 0x1F68) 407 TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - CHECK Register - Byte 1 (ADDRESS = 0x1F68) 407 TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - CHECK Register - Byte 2 (ADDRESS = 0x1F69) 408 TRANSMIT ATM Cell PROCESSOR BLOCK - TRANSMIT USER Cell Filter #2 - CHECK Register - Byte 3 (ADDRESS
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 2 (ADDRESS = 0x1F65) 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 3 (ADDRESS = 0x1F66) 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 4 (ADDRESS = 0x1F66) 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 4 (ADDRESS = 0x1F67) 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 1 (ADDRESS = 0x1F68) 407 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 2 (ADDRESS = 0x1F69) 408 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 2 (ADDRESS = 0x1F69) 408 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 3 (ADDRESS = 0x1F6A) 409 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 4 (ADDRESS = 0x1F6A)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64) TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 2 (ADDRESS = 0x1F65) 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 3 (ADDRESS = 0x1F65) 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 3 (ADDRESS = 0x1F66) 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 4 (ADDRESS = 0x1F67) 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - CHECK REGISTER - BYTE 1 (ADDRESS = 0x1F68) 407 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - CHECK REGISTER - BYTE 2 (ADDRESS = 0x1F69) 408 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - CHECK REGISTER - BYTE 3 (ADDRESS = 0x1F6A) 409 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - CHECK REGISTER - BYTE 4 (ADDRESS = 0x1F6A) 409 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - CHECK REGISTER - BYTE 4 (ADDRESS = 0x1F6B)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64)
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 1 (ADDRESS = 0x1F68). 407 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 2 (ADDRESS = 0x1F64). 408 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 3 (ADDRESS = 0x1F64). 409 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 4 (ADDRESS = 0x1F6B). 409 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 4 (ADDRESS = 0x1F6B). 410 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 4 (ADDRESS = 0x1F6B). 410 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - FILTERED CELL COUNT - BYTE 3 (ADDRESS = 0x1F6C). 411 TRANSMIT ATM CELL PROCESSOR BLOCK - T
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 1 (ADDRESS 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 1 (ADDRESS 407 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 2 (ADDRESS 0x1F68) 0x1F69) 408 409 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 3 (ADDRESS 0x1F6A) 0X1F6A) 409 409 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 4 (ADDRESS 0X1F6B) 0X1F6B) 410 410 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - FILTERED CELL COUNT - BYTE 3 (ADDRESS = 0x1F6C) 11 410
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - HEADER BYTE 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 1 (ADDRESS = 0x1F68) 407 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 2 (ADDRESS = 0x1F69) 408 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 3 (ADDRESS = 0x1F6A) 409 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 4 (ADDRESS = 0x1F6B) 410 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - FILTERED CELL COUNT - BYTE 3 (ADDRESS = 0x1F6C) 411 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - FILTERED CELL COUNT - BYTE 3 (ADDRESS = 0x1F6C) 412 TRANSMIT ATM CELL PROCESSOR BLOCK - TR
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - CHECK REGISTER - BYTE 1 (ADDRESS = 0x1F68) 407 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - CHECK REGISTER - BYTE 2 (ADDRESS = 0x1F69) 408 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - CHECK REGISTER - BYTE 3 (ADDRESS = 0x1F6A) 409 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - CHECK REGISTER - BYTE 4 (ADDRESS = 0x1F6B) 410 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - FILTERED CELL COUNT - BYTE 3 4D0 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - FILTERED CELL COUNT - BYTE 3 4D0 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - FILTERED CELL COUNT - BY
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0x1F64) 403 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 404 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 405 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - PATTERN REGISTER - HEADER BYTE 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - HEADER BYTE 406 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 1 (ADDRESS = 0x1F68) 407 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 2 (ADDRESS = 0x1F69) 408 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 3 (ADDRESS = 0x1F6A) 409 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - CHECK REGISTER - BYTE 4 (ADDRESS = 0x1F6B) 410 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - FILTERED CELL COUNT - BYTE 3 (ADDRESS = 0x1F6C) 411 TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #2 - FILTERED CELL COUNT - BYTE 3 (ADDRESS = 0x1F6C) 412 TRANSMIT ATM CELL PROCESSOR BLOCK - TR

XP EX4R

4	1	4
---	---	---

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #3 - PATTERN REGIST	
1 (Address = 0x1F64) Transmit ATM Cell Processor Block - Transmit User Cell Filter #3 - Pattern Regist	
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - PATTERN REGIST	ER - HEADER BYTE
2 (ADDRESS = 0x1F65)	
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #3 - PATTERN REGIST	ER - HEADER BYTE
3 (ADDRESS = 0x1F66)	
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - PATTERN REGIST	ER - HEADER BYTE
4 (ADDRESS = 0x1F67)	
4 (Address = 0x1F67) Transmit ATM Cell Processor Block - Transmit User Cell Filter #3 - Check Register ·	- BYTE 1 (ADDRESS
= 0x1F68) Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Check Register -	
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #3 - CHECK REGISTER	- BYTE 2 (ADDRESS
= 0x1F69)	
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER #3 - CHECK REGISTER	
= 0x1F6A) Transmit ATM Cell Processor Block - Transmit User Cell Filter #3 - Check Register ·	
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - CHECK REGISTER ·	• BYTE 4 (ADDRESS
= 0x1F6B)	
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - FILTERED CELL	
(ADDRESS = 0x1F6C)	
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - FILTERED CELL	
(Address = 0x1F6D)	
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - FILTERED CELL	
(Address = 0x1F6E)	
TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - FILTERED CELL	
(Address = 0x1F6F)	
ORDERING INFORMATION	
PACKAGE DIMENSIONS	428
208 SHRINK THIN BALL GRID ARRAY (17.0 MM X 17.0 MM, STBGA)	428
REVISION HISTORY	

PRELIMINARY **XP EXAR** 1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

PIN DESCRIPTIONS

PIN #	NAME	TYPE	DESCRIPTION
MICROPI	ROCESSOR INT	ERFA	CE
F16	A0	Ι	Address Bus Input pins Microprocessor Interface:
F15	A1		These pins are used to select the on-chip Framer/UNI registers and RAM space for
F14	A2		READ and WRITE Operations with the Microprocessor.
F13	A3		
G16	A4		
G15	A5		
G14	A6		
G13	A7		
C16	A8		
D15	A9		
D16	A10		
E16	A11		
E15	A12		
E14	A13		
E13	A14		
D11	D0	I/O	Bi-Directional Data Bus pins Microprocessor Interface:
C12	D1		These pins are used to drive and receive data over the bi-directional data bus.
B13	D2		
A14	D3		
D12	D4		
C13	D5		
B14	D6		
A15	D7		
A16	ALE/AS	I	Address Latch Enable/Address Strobe:
			This input pin is used to latch the address present at the Microprocessor Interface Address Bus pins (A[6:0]) into the Framer/UNI Microprocessor Interface block and to indicate the start of a READ or WRITE cycle. This input pin is active-high, in the Intel Mode and active low in the Motorola Mode.
D14	CS	I	Chip Select Input:
			The user must assert this active low signal in order to select the Microprocessor Interface for READ and WRITE operations between the Microprocessor and the UNI/ Framer on-chip registers and RAM locations.
D13	INT	0	Interrupt Request Output:
			This open-drain, active-low output signal will be asserted when the Framer/UNI device is requesting interrupt service from the Microprocessor. This output pin should typically be connected to the Interrupt Request input of the Microprocessor.
C15	RD/DS/	Ι	READ Strobe Intel Mode:
			If the Microprocessor Interface is operating in the Intel Mode, then this input pin will function as the RD (READ Strobe) input signal from the Microprocessor. Once this active-low signal is asserted, then the Framer/UNI will place the contents of the addressed register within the Framer/UNI IC on the Microprocessor Bi-directional Data Bus (D[7:0]). When this signal is negated, the Data Bus will be tri-stated. Data Strobe Motorola Mode: If the Microprocessor Interface is operating in the Motorola Mode, then this input will
			If the Microprocessor Interface is operating in the Motorola Mode, then this input w function as the $\overline{\text{DS}}$ (Data Strobe) signal.

XRT79L71 REV. P1.0.3

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

PIN DESCRIPTIONS

PIN #	ΝΑΜΕ	TYPE	DESCRIPTION
C14	RDY/DTACK	0	 READY or DTACK: This active-low output pin will function as the READY output when the Microprocessor Interface is configured to operate in the Intel Mode; and will function as the DTACK output, when the Microprocessor Interface is running in the Motorola Mode. Intel Mode - READY output: When the Framer/UNI negates this output pin (e.g., toggles it "Low") it indicates to the Microprocessor that the current READ or WRITE operation is to be extended until this signal is asserted (e.g., toggled "High"). Motorola Mode - DTACK Data Transfer Acknowledge Output: The Framer/UNI will assert this pin in order to inform the Microprocessor that the present READ or WRITE cycle is nearly complete. If the Framer/UNI requires that the current READ or WRITE cycle be extended, then the Framer/UNI will delay its assertion of this signal. The 68000 family of Microprocessors requires this signal from its peripheral devices, in order to quickly and properly complete a READ or WRITE cycle.
M14	RESET	I	Reset Input: When this active-low signal is asserted, the Framer/UNI device will be asynchro- nously reset. When this occurs, all outputs will be tri-stated and all on-chip registers will be reset to their default values.
H16	μPCLK	I	Microprocessor Interface Clock Input: This clock input signal is used for synchronous/burst/DMA data transfer operations. This clock can be running up to 33MHz.
B16	WR/R/W	I	 Write Strobe Intel Mode: If the Microprocessor Interface is configured to operate in the Intel Mode, then this active-low input pin functions as the WR (WRITE Strobe) input signal from the Microprocessor. Once this active-low signal is asserted, the Framer/UNI will latch the contents of the bi-directional data (D[7:0]) into the addressed registers or Buffer location within the Framer/UNI IC. R/W Input Pin Motorola Mode: When the Microprocessor Interface Section is operating in the Motorola Mode, then this pin is functionally equivalent to the R/W pin. In the Motorola Mode, a READ operation occurs if this pin is at a logic "1". Similarly a WRITE operation occurs if this pin is at a logic "0".

PIN DESCRIPTIONS

Pin #	ΝΑΜΕ	TYPE			DESCRIPTION	DESCRIPTION		
J16 J15 J14	PTYPE_0 PTYPE_1 PTYPE_2	I	Microprocessor Type Select input: These three input pins are used to configure the Microprocessor Interface block to readily support a wide variety of Microprocessor Interfaces. The relationship between the settings of these input pins and the corresponding Microprocessor Inter- face configuration is presented below.					
			РТҮ	PE[2:0]	Microprocessor Interface Mode			
				000	Asynchronous Intel			
				001	Asynchronous Motorola			
				010	Intel X86			
				011	Intel 1960, Motorola MPC860			
				100	IDT3051/52 (MIPS)			
				101	IBM Power PC			
J13	DBEN	1	is used to enable the	or Interface is e Bi-directiona n "Low" enable	operating in the Intel-I960 Mode, then this al Data Bus. es the Bi-directional Data bus. Setting thi			
B15	BLAST	I	is used to indicate to is the last data trans The Microprocessor	or Interface is the Micropro sfer within the should assent ent READ or	operating in the Intel-1960 Mode, then this cessor Interface block that the current dat current burst operation. "t this input pin by toggling it "Low" in orde WRITE operation within a BURST operat	ta transfer er to		
H13	Direct_Ad	Ι	 Direct Address Select pin: This input pin is used to select the addressing mode for the Microprocessor Interface block. Setting this pin "High" will put the Microprocessor Interface block of the XRT79L71 into Direct Addressing Mode. In Direct Addressing Mode, all 15 address pins (A0 - A14) are used to select the on-chip Framer/UNI registers and RAM space for READ and WRITE Operations with the Microprocessor. NOTE: It is recommended to set this pin "High" and access the Microprocessor Interface block using the Direct Addressing Mode. Setting this pin "Low" will put the Microprocessor Interface block of the XRT79L71 into Indirect Addressing Mode. In Indirect Addressing mode, only the lower 8 address pins (A0 - A7) are used to select the on-select the on-chip Framer/UNI registers and RAM space for READ and WRITE Operations with the Microprocessor. 					

XP EXAR

PRELIMINARY

XRT79L71 *REV.P1.0.3*

PIN #	NAME	TYPE	DESCRIPTION
TEST AN	D DIAGNOSTIC		
Т9	тск	I	Test Clock input, Boundary Scan Clock input:
			Note: This input pin should be pulled "Low" for normal operation.
P9	TDI	I	Test Data input, Boundary Scan Test Data Input:
			Note: This input pin should be pulled "Low" for normal operation.
N9	TDO	0	Test Data output:
			Boundary Scan Test Data Output:
R9	TMS	I	Test Mode Select, Boundary Scan Test Mode Select input pin:
			Note: This input pin should be pulled "Low" for normal operation.
R10	TRST	I	Test Mode Reset, Boundary Scan Mode Reset Input pin:
			Note: This input pin should be pulled "Low" for normal operation.
M15	TESTMODE	***	Factory Test Mode Pin:
			Tie this pin to Ground.
P15	ICT	I	In-Circuit Test Input Pin:
			For normal operation, the user should pull this pin "High".
			Note: This input pin is internally pulled "High".
P13 P14	AnalO1 AnalO2	I/O	Analog Input/Output Test Pin: These pins should be pulled "Low" for normal operation.
L15 L14	GPI_0 GPI_1	I	General Purpose Input Test Pin: These pins should be pulled "Low" for normal operation.
L14 L13	GPI_2		mese pins should be pulled Low for normal operation.
K15	GPO_0	0	General Purpose Output Test Pin:
K13 K14	GPO_1	0	These pins should be left unconnected for normal operation.
K13	GPO_2		

PIN #	NAME	TYPE	DESCRIPTION		
GENERAL PURPOSE INPUT AND OUTPUT PINS					
Τ8	DMO	0	Drive Monitor Output Output Pin: If this input signal is "High", then it means that the drive monitor circuitry within the XRT79L71 has not detected any bipolar signals at the MTIP and MRING inputs within the last 128 ± 32 bit periods. If this input signal is "Low", then it means that bipolar signals are being detected at the MTIP and MRING input pins of the XRT79L71.		
T7	GPIO_0	I/O	General Purpose Input/Output Pins:		
N8	GPIO_1		Each of these pins can be configured to function as either an input or output pin.		
P8	GPIO_2		If a given pin is configured to function as an input pin, then the state of this input		
R8	GPIO_3		pin can be monitored by reading Bit X within the "XXX" Register (Address Location = 0xXX, 0xXX).		
			If a given pin is configured to function as an output pin, then the state of these output pins can be controlled by writing the appropriate value into Bit X within the "XXX" Register.		

PIN #	ΝΑΜΕ	TYPE	DESCRIPTION		
TRANSMIT SYSTEM SIDE INTERFACE PINS					
A13	TxAISEn	1	 Transmit AIS Pattern Input pin: This input pin is used to command the Transmit DS3/E3 Framer block to transmit an AIS pattern to the remote terminal equipment. Setting this input pin "High" configures the Transmit DS3/E3 Framer block to transmit an AIS pattern to the remote terminal equipment. Setting this input pin "Low" configures the Transmit DS3/E3 Framer block to NOT transmit an AIS pattern to the remote terminal equipment. Note: For normal operation, or if the user wishes to control the Transmit AIS function, via Software Control; the user should tie this input pin to GND. 		
L16	NibbleIntf		 Nibble Interface Select Input pin: This input pin is used to configure the Transmit Payload Data Input Interface and the Receive Payload Data Output Interface blocks to operate in either the Serial or the Nibble-Parallel Mode. Setting this input pin "High" configures each of these blocks to operate in the Nibble-Parallel Mode. In this mode, the Transmit Payload Data Input Interface block will accept the outbound payload data from the local terminal equipment in a nibble-parallel manner via the TxNib[3:0] input pins. Further, the Receive Payload Data Output Interface block will output inbound payload data to the local terminal equipment in a nibble-parallel via the RxNib[3:0] output pins. Setting this input pin "Low" configures each of these blocks to operate in the Serial Mode. In this mode, the Transmit Payload Data Input Interface block will accept the outbound payload data from the local terminal equipment in a nibble-parallel via the RxNib[3:0] output pins. Setting this input pin "Low" configures each of these blocks to operate in the Serial Mode. In this mode, the Transmit Payload Data Input Interface block will accept the outbound payload data from the local terminal equipment in a serial manner via the TxSer input pin. Further, the Receive Payload Data Output Interface block will output the inbound payload data to the local terminal equipment in a serial manner via the TxSer input pin. Further, the Receive Payload Data Output Interface block will output the inbound payload data to the local terminal equipment in a serial manner via the TxSer input pin. Note: This input pin is only active if the XRT79L71 has been configured to operate in the Clear-Channel Framer Mode. 		

XRT79L71 *REV. P1.0.3*

PIN #	NAME	TYPE	DESCRIPTION
B10	TxFrame	0	 Transmit End of DS3/E3 Frame Indicator: This output pin is pulse "High" for one DS3 or E3 clock period, when the Transmit Section of the XRT79L71 is processing the last bit of a given DS3 or E3 frame. The implications of this output pin, for each mode of operation, are described below. ATM UNI/PPP/High-Speed HDLC Controller Mode: This output pin serves as an end-of-frame indication to the local terminal equipment. Clear-Channel Framer Mode: If the XRT79L71 is configured to operate in the Clear-Channel Framer mode, then this output pin serves to alert the Local Terminal Equipment that it needs to begin transmission of a new DS3 or E3 frame. Hence, the Local Terminal Equipment uses this output signal to maintain Framing Alignment with the XRT79L71.
A11	TxFrameRef	I	 Transmit DS3/E3 Framer - Framing Alignment Input pin: If the the Transmit Section of the XRT79L71 is configured to operate in the Local-Timing/Frame-Slave Mode, then the Transmit DS3/E3 Framer block will use this input signal as the Framing Reference. When the XRT79L71 is configured to operate in this mode any rising edge at this input pin will cause the Transmit DS3/E3 Framer block to begin its creation of a new DS3 or E3 frame. Consequently, the user must supply a clock signal that is equivalent to the DS3 or E3 frame rates to this input pin. Further, it is imperative that this clock signal be synchronized with the 44.736MHz or 34.368MHz clock signal applied to the TxInClk input pin. Note: This input pin should be tied to GND if it is not to be used as the Transmit DS3/E3 Framer - Framing Reference input signal.
C10	TxInClk	I	 Transmit DS3/E3 Framer Block - Timing Reference Signal: If the Transmit Section of the XRT79L71 is configured to operate in the Local- Timing Mode, then it will use this signal as the Timing Reference. If the XRT79L71 is being operating in the DS3 Mode, then the user is expected to apply a high-quality 44.736MHz clock signal to this input pin. Likewise, if the XRT79L71 is being operated in the E3 Mode, then the user is expected to apply a high-quality 34.368MHz clock signal to this input pin. Note for Clear-Channel Framer Operation: If the user is operating the XRT79L71 in the Clear-Channel Framer mode, then the user should design the local terminal equipment circuitry, such that outbound DS3 or E3 data will be output, upon the falling edge of TxInClk. The Transmit Payload Data Input Interface within the Transmit Section of the XRT79L71 will sample the data, applied to the TxSer input pin, upon the rising edge of TxInClk. Note: This input pin should be tied to GND if the XRT79L71 is configured to operate in the Loop-Timing Mode.

PIN #	NAME	TYPE	DESCRIPTION
C11	TxOH/ TxHDLCDat_5	1	 Transmit Overhead Data Input/Transmit HDLC Controller Data Bit 5 input pin: The function of This input pin depends upon whether or not the XRT79L71 has been configured to operate in the High-Speed HDLC Controller Mode. Non-High Speed HDLC Controller Mode - TxOH: The Transmit Overhead Data Input Interface accepts overhead via this input pin, and insert this data into the overhead bit positions within the outbound DS3 or E3 frames. If the TxOHIns input pin is pulled "High", then the Transmit Overhead Data Input Interface will sample the overhead data, via this input pin, upon the falling edge of the TxOHClk output signal. Conversely, if the TxOHIns input pin is NOT pulled "High", then the Transmit Overhead data via the TxOH input pin. High Speed HDLC Controller Mode - TxHDLCDat_5: If the XRT79L71 is configured to operate in the High-Speed HDLC Controller mode, then the local terminal equipment will be provided with a byte-wide Transmit HDLC Controller byte-wide input interface. This input pin will function as Bit 5 within this byte wide interface.
D10	TxOHIns/ TxHDLCDat_4	I	 Transmit Overhead Data Insert Input/Transmit HDLC Controller Data Bit 4 input pin: The function of this input pin depends upon whether or not the XRT79L71 has been configured to operate in the High-Speed HDLC Controller Mode. Non-High Speed HDLC Controller Mode - TxOHIns: This input pin is used to either enable or disable the Transmit Overhead Data Input Interface block. If the Transmit Overhead Data Input Interface block is enabled, then it will accept overhead data from the local terminal equipment via the TxOH input pin; and insert this data into the overhead bit positions within the outbound DS3 or E3 data stream. Conversely, if the Transmit Overhead Data Input Interface block is disabled, then it will NOT accept overhead data from the local terminal equipment.Pulling this input pin "High" enables the Transmit Overhead Data Input Interface block. Pulling this onput pin "Low" disables the Transmit Overhead Data Input Interface block. High-Speed HDLC Controller Mode - TxHDLCDat_4: If the XRT79L71 is configured to operate in the High-Speed HDLC Controller mode, then the local terminal equipment will be provided with a byte-wide Transmit HDLC Controller byte-wide input interface. Data, residing on the Transmit HDLC Controller byte wide input interface, will be sampled upon the rising edge of the TxHDLCCIk output signal.
B12	TxOHCIk	0	 Transmit Overhead Clock Output: This output pin functions as the Transmit Overhead Data Input Interface clock signal. If the user enables the Transmit Overhead Data Input Interface block by asserting the TxOHIns input pin, then the Transmit Overhead Data Input Interface block will sample and latch the data residing on the TxOH input pin upon the falling edge of this signal. Note: The Transmit Overhead Data Input Interface block is disabled if the user has configured the XRT79L71 to operate in the High-Speed HDLC Controller Mode.

XP EXAR

PRELIMINARY

XRT79L71 *REV. P1.0.3*

PIN #	NAME	TYPE	DESCRIPTION
B11	TxOHFrame/ TxHDLCClk	0	 Transmit Overhead Framing Pulse/Transmit HDLC Controller Clock Output pin: The function of this output pin depends upon whether or not the XRT79L71 has been configured to operate in the High-Speed HDLC Controller Mode. Non-High-Speed HDLC Controller Mode - TxOHFrame: This output pin pulses high for one TxOHClk period coincident with the instant the Transmit Overhead Data Input Interface would be accepting the first overhead bit within an outbound DS3 or E3 frame. High Speed HDLC Controller Mode - TxHDLCClk: This output pin functions as the demand clock output signal for the Transmit HDLC Controller byte-wide input interface. This clock signal is ultimately derived from either the TxInClk or the RxOutClk signal. Hence, the frequency of this clock signal is nominally one-eight of that of the TxInClk or the RxOutClk signals. The Transmit HDLC Controller block will sample the contents of the Transmit HDLC Controller byte-wide input interface, upon the rising edge of this clock output signal. Therefore, the local terminal equipment should be designed to output data onto the TxHDLCDat[7:0] bus upon the falling edge of this clock output signal.
A12	TxOHEnable/ TxHDLCDat_7	I/O	 Transmit Overhead Enable Output indicator/Transmit HDLC Controller Data Bit 7 Input: The function of this input pin depends upon whether or not the XRT79L71 is configured to operate in the High Speed HDLC Controller Mode. Non-High Speed HDLC Controller Mode - TxOHEnable: The XRT79L71 will assert this output pin, for one TxInClk period, just prior to the instant that the Transmit Overhead Data Input Interface will be sampling and processing an overhead bit. If the local terminal equipment intends to insert its own value for an overhead bit, into the outbound DS3 or E3 data stream, then it is expected to sample the state of this signal, upon the falling edge of TxInClk. Upon sampling the TxOHEnable signal "High", the local terminal equipment should; (1) place the desired value of the overhead bit onto the TxOH input pin and (2) assert the TxOHIns input pin. The Transmit Overhead Data Input Interface block will sample and latch the data on the TxOH signal, upon the rising edge of the very next TxInClk input signal. High-Speed HDLC Controller Mode - TxHDLCDat_7: If the XRT79L71 is configured to operate in the High-Speed HDLC Controller mode, then the local terminal equipment will be provided with a byte-wide Transmit HDLC Controller byte-wide input interface. This input pin will function as Bit 7 (the MSB) within this byte wide interface.

PRELIMINARY

PIN #	NAME	TYPE	DESCRIPTION
C9	TxSer TxPOH SendMSG	I	Transmit Payload Data Serial Input/Transmit PLCP Path Overhead Input/ Send HDLC Message Request Input: The function of this input pin depends upon whether the XRT79L71 is configured to operate in the Clear-Channel Framer Mode, the High-Speed HDLC Controller Mode or in the ATM/PLCP Mode. Clear-Channel Framer Mode - TxSer:
			If the XRT79L71 is configured to operate in the Clear-Channel Framer mode, then this input pin functions as the Transmit Payload Data Serial Input pin. In this case, the local terminal equipment is expected to apply all outbound data which is intended to be carried via the DS3 or E3 payload bits to this input pin. The Transmit Payload Data Input Interface will sample the data, residing at the TxSer input pin, upon the rising edge of TxInClk.
			ATM/PLCP Mode - TxPOH: If the XRT79L71 is configured to operate in the ATM Mode, and if within the ATM Mode, the chip is also configured to operate in the PLCP Mode, then this input pin functions as the Transmit PLCP Path Overhead Input Pin. In this mode, the user can externally insert desired path overhead byte values into the outbound
			PLCP frames. The Transmit PLCP Path Overhead Input Pin (and Port) become active whenever the user asserts the TxPOHIns input pin by pulling it "High". In this case, the data, residing upon the TxPOH input pin will be sampled upon the rising edge of the TxPOHClk signal.
			Note: This input pin is inactive if the XRT79L71 is configured to operate in the Direct-Mapped ATM Mode.
			High-Speed HDLC Controller Mode - SendMSG: If the XRT79L71 is configured to operate in the High-Speed HDLC Controller Mode, then this input pin functions as the Transmit HDLC Controller Input Inter- face enable input pin.
			If the user asserts this input pin by pulling it "High" then the Transmit HDLC Con- troller Input Interface will proceed to latch the data, residing on the TxHDL- CDat[7:0] input pins, upon each rising edge of the TxHDLCClk signal. All data that is latched into the Transmit HDLC Controller Input Interface for the duration that the SendMSG input pin is "High" will be encapsulated into an HDLC frame and ultimately transported via the payload bits of the outbound DS3 or E3 data stream.
			If the user pulling this input pin "Low", then the Transmit HDLC Controller Input Interface will cease latching the data, residing on the TxHDLCDat[7:0] bus. Note: This input pin is inactive if the XRT79L71 has been configured to operate
B3	TxPOHClk	0	in the PPP Mode. Transmit PLCP Frame POH Byte Insertion Clock:
вз	TXPOHUK		Transmit PLCP Frame POH Byte Insertion Clock: This pin, along with the TxPOH and the TxPOHMSB input pins, function as the Transmit PLCP Frame POH Byte serial input port. This output pin functions as a clock output signal that is be used to sample the user's POH data at the TxPOH input pin. This output pin is always active, independent of the state of the TxPO- HIns pin.
			Note: This pin is only active if the XRT79L71 has been configured to operate in the ATM/PLCP Mode.

XRT79L71 *REV. P1.0.3*

PIN #	NAME	TYPE	DESCRIPTION
B9	TxOHInd/ TxPFrame/ TxHDLCDat_6/	I/O	Transmit Overhead Data Indicator Output/Transmit PLCP Frame Boundary Indicator Output/Transmit HDLC Controller Data Bit 6 input pin: The function of these input/output pins depends upon whether the XRT79L71 has been configured to operate in the Clear-Channel Framer Mode, the ATM/ PLCP Mode or the High-Speed HDLC Mode.
			Clear-Channel Framer Mode - TxOHInd:
			In the Clear-Channel Framer Mode, this output pin functions as the transmit over- head data indicator for the local terminal equipment. This output pin is pulsed "High" for one DS3 or E3 bit period in order to indicate to the local terminal equipment that the Transmit Section of the Framer is going to be processing an overhead bit, upon the next rising edge of TxInClk., and will NOT latch the data that is applied to the TxSer input pin. Therefore, when the local terminal equip- ment samples the TxOHInd output pin "High", then it must not apply the next payload bit to TxSer input pin. This output pin serves as a warning that this par- ticular payload bit is going to be ignored by the Transmit Section of the Framer, and will not be inserted into payload bits, within the outbound DS3 or E3 data stream.
			ATM/PLCP Mode - TxPFrame:
			If the XRT79L71 is configured to operate in the ATM UNI/PLCP Mode, then this output pin will denote the boundaries of outbound PLCP frames, as they are being processed by the Transmit PLCP Processor block. This output pulses "High" when the last nibble of a given PLCP frame is being routed to the Transmit DS3/E3 Framer block.
			This output pin is inactive if the XRT79L71 is operating in the Direct-Mapped ATM Mode.
			High-Speed HDLC Controller Mode - TxHDLCDat_6:
			If the XRT79L71 is configured to operate in the High-Speed HDLC Controller mode, then the local terminal equipment will be provided with a byte-wide Transmit HDLC Controller byte-wide input interface. This input pin will function as Bit 6 within this byte wide interface.
			Data, residing on the Transmit HDLC Controller byte wide input interface, will be sampled upon the rising edge of the TxHDLCClk output signal.

PRELIMINARY

D9 TxNibClk/ I/O Transmit Nibble Clock Output pin/Transmit GFC Byte - MSB Indicator Output/Send FCS Value Request Input: SendFCS SendFCS The function of this input/output pin depends upon whether the XRT79L71 is configured to operate in the Clear-Channel Framer Mode, the High-Speed HDLC Controller Mode or in the ATM Mode. Clear-Channel Framer Mode - TxNibClk: When operating in the Nibble-Parallel Mode the XRT79L71 will derive this clock signal from either the TxInClk or the RxLineClk signal depending upon whether the chip is operating in the Local-Timing or Loop-Timing Mode. The user is advised to the XRT79L71 onto the TxNib_[3:0] input pins, upon the rising edge of this clock signal. Notes: Notes: Notes:	TxGFCMSB/ SendFCSput/Send FCS Value Request Input: The function of this input/output pin depends upon whether the XRT79L71 is configured to operate in the Clear-Channel Framer Mode, the High-Speed HDLC Controller Mode or in the ATM Mode.Clear-Channel Framer Mode - TxNibClk: When operating in the Nibble-Parallel Mode the XRT79L71 will derive this clock signal from either the TxInClk or the RxLineClk signal depending upon whether the chip is operating in the Local-Timing or Loop-Timing Mode. The user is advised to configure the Terminal Equipment to output the outbound payload data to the XRT79L71 onto the TxNib_[3:0] input pins, upon the rising edge of this clock signal. The Transmit Payload Data Input Interface block will sample the data, residing on the TxNib_[3:0] line, upon the falling edge this clock signal.
 the local terminal equipment for each outbound DS3 frame. For E3, ITU-T G.832 applications, the XRT79L71 will output 1074 clock pulses to the local terminal equipment for each outbound E3 frame. For E3, ITU-T G.751 applications, the XRT79L71 will output 384 clock pulses to the local terminal equipment for each outbound E3 frame. ATM Mode - TxGFCMSB: This signal, along with TxGFC and TxGFCClk combine to function as the Transmit GFC Nibble Field serial input port. This output signal will pulse "High" when the MSB (most significant bit) of the GFC nibble for a given outbound cell is expected at the TxGFC input pin. High-Speed HDLC Controller Mode - SendFCS: The local terminal equipment is expected to control both this input pin, along with the SendMSG input pin, during the construction and transmission of each outbound HDLC frame. This input pin is used to command the Transmit HDLC Controller block to compute and insert the computee FCS (Frame-Check Sequence) value into the back-end of the outbound HDLC frame, then the local terminal equipment is expected to hold this input pin "High" for two periods of TxHDL-CClk. Conversely, if the user has configured the Transmit HDLC frame, then the local terminal equipment is expected to hold this input pin "High" for four (4) periods of TxHDLCCLk. 	 This input/output pin is inactive if the XRT79L71 has been configured to operate in the PPP Mode. This input/output pin is inactive if the XRT79L71 has been configured to

XRT79L71 *REV. P1.0.3*

PIN #	NAME	TYPE	DESCRIPTION
C2	TxGFCClk	0	 Transmit GFC Nibble-Field Serial Input port - Clock Output signal: This signal, along with TxGFC and TxGFCMSB combine to function as the Transmit GFC Nibble-field serial input port. This output signal functions as the demand clock signal for this port. The user will specify the value of the GFC field, within a given ATM cell, by serially transmitting its four bit-value into the TxGFC input pin. The Transmit GFC Nibble-Field serial input port will latch the contents of TxGFC upon the rising edge of this clock signal. Hence, the local terminal equipment should be designed to place its outbound GFC bits on to the TxGFC line, upon the falling edge of this clock signal. Note: This output pin is only active if the XRT79L71 has been configure to operate in the ATM Mode.
B8	TxNib_3/ TxPOHIns/ TxHDLCDat_3	Ι	Transmit Nibble Interface - Bit 3/Transmit PLCP Path Overhead Insert enable/Transmit HDLC Controller Data Bus - Bit 3 input: The function of this input pin depends upon whether the XRT79L71 is configured to operate in the Clear-Channel Framer Mode, the High-Speed HDLC Controller Mode or in the ATM/PLCP Mode.
			Clear-Channel Framer Mode - TxNib_3: If the XRT79L71 is configured to operate in the Nibble-Parallel Mode, then this input pin will function as the bit 3 (MSB) input to the Transmit Nibble-Parallel input interface. The Transmit Payload Data Input Interface block will sample this signal (along with TxNib_0 through TxNib_2) upon the falling edge of TxNibClk. Note: This input pin is inactive if the XRT79L71 is configured to operate in the Serial Mode.
			ATM/PLCP Mode - TxPOHIns: f the XRT79L71 is configured to operate in the ATM Mode, and if (within the ATM Mode, the chip is also configured to operate in the PLCP Mode), then this input pin functions as the Transmit PLCP Path Overhead Port - Enable input pin. In this mode, the user can externally insert desired path overhead byte values into the outbound PLCP frames. The Transmit PLCP Path Overhead Input port becomes active whenever the user asserts this input pin by pulling it "High". Once this occurs, the data, residing upon the TxPOH input pin will be sampled upon the rising edge of the TxPOHClk
			 applied upon the TXPOT input pin will be sampled upon the fising edge of the TXPOT Cirk signal. This input pin is inactive if the XRT79L71 is configured to operate in the Direct-Mapped ATM Mode. High-Speed HDLC Controller Mode - TxHDLCDat_3: If the XRT79L71 is configured to operate in the High-Speed HDLC Controller mode, then the local terminal equipment will be provided with a byte-wide Transmit HDLC Controller byte-wide input interface. This input pin will function as Bit 3 within this byte wide interface. Data, residing on the Transmit HDLC Controller byte wide input interface, will be sampled upon the rising edge of the TxHDLCCIk output signal.

PRELIMINARY

PIN #	NAME	TYPE	DESCRIPTION
C8	TxNib_2/ TxStuff_Ctl/	I	Transmit Nibble Input Interface - Bit 2/Transmit PLCP Stuff Control Input/ Transmit HDLC Controller Data Bus - Bit 2 Input:
	TxHDLCDat_2		The function of this input pin depends upon whether the XRT79L71 is configured to operate in the Clear-Channel Framer Mode, the High-Speed HDLC Controller Mode, or in the ATM/PLCP Mode.
			Clear-Channel Framer Mode - TxNib_2:
			If the XRT79L71 is configured to operate in the Nibble-Parallel Mode, then this input pin will function as the bit 1 input to the Transmit Nibble-Parallel input interface. The Transmit Payload Data Input Interface block will sample this signal (along with TxNib_0, TxNib_2 and TxNib_3) upon the falling edge of TxNibClk
			Note: This input pin is inactive if the XRT79L71 is configured to operate in the Serial Mode.
			ATM/PLCP Mode - TxStuff_CtI:
			This input pin is used to externally exercise or forego trailer nibble stuffing oppor- tunities by the Transmit PLCP Processor. PLCP trailer nibble stuff opportunities occur in periods of three PLCP frames (375 us). The first PLCP frame (first, within a stuff opportunity period) will have 13 trailer nibbles appended to it. The second PLCP frame (second within a stuff opportunity period will have 14 trailer nibbles appended to it. The third PLCP frame (the location of the stuff opportu- nity) will contain 13 trailer nibbles if this input pin is pulled "Low", and 14 trailer nibbles if this input pin is pulled "High".
			Note: This input pin is inactive if the XRT79L71 is configured to operate in the Direct-Mapped ATM Mode.
			High-Speed HDLC Controller Mode - TxHDLCDat_2:
			If the XRT79L71 is configured to operate in the High-Speed HDLC Controller mode, then the local terminal equipment will be provided with a byte-wide Transmit HDLC Controller byte-wide input interface. This input pin will function as Bit 1 within this byte wide interface.
			Data, residing on the Transmit HDLC Controller byte wide input interface, will be sampled upon the rising edge of the TxHDLCClk output signal.

XRT79L71 *REV.P1.0.3*

PIN #	NAME	TYPE	DESCRIPTION				
D8	TxNib_1/ Tx8KREF/	I	Transmit Nibble Input Interface - Bit 1/Transmit PLCP Framing 8kHz Reference Input/Transmit HDLC Controller Data Bus - Bit 1 Input:				
	TxHDLCDat_1		The function of this input pin depends upon whether the XRT79L71 is configured to operate in the Clear-Channel Framer Mode, the High-Speed HDLC Controller Mode, or in the ATM/PLCP Mode.				
			Clear-Channel Framer Mode - TxNib_1:				
			If the XRT79L71 is configured to operate in the Nibble-Parallel Mode, then this input pin will function as the bit 1 input to the Transmit Nibble-Parallel input interface. The Transmit Payload Data Input Interface block will sample this signal (along with TxNib_0, TxNib_2 and TxNib_3) upon the falling edge of TxNibClk.				
			NOTE: This input pin is inactive if the XRT79L71 is configured to operate in the Serial Mode.				
			ATM/PLCP Mode - Tx8KREF:				
			If the XRT79L71 is configured to operate in the ATM/PLCP Mode, then the Trans- mit PLCP Processor can be configured to synchronize its PLCP frame genera- tion to this input clock signal. The Transmit PLCP Processor will also use this input signal to compute the nibble-trailer stuff opportunities.				
			Note: This input pin is inactive if the use has configured the XRT79L71 to operate in the Direct-Mapped ATM Mode.				
			High-Speed HDLC Controller Mode - TxHDLCDat_1:				
			If the XRT79L71 is configured to operate in the High-Speed HDLC Controller mode, then the local terminal equipment will be provided with a byte-wide Transmit HDLC Controller byte-wide input interface. This input pin will function as Bit 1 within this byte wide interface.				
			Data, residing on the Transmit HDLC Controller byte wide input interface, will be sampled upon the rising edge of the TxHDLCClk output signal.				
A9	TxNib_0/ TxGFC/	I	Transmit Nibble Interface - Bit 0/Transmit GFC Input pin/Transmit HDLC Controller Data Bus - Bit 0 Input:				
	TxGFC/ TxHDLCDat_0			The function of this input pin depends upon whether the XRT79L71 is configured to operate in the Clear-Channel Framer Mode, the High Speed HDLC Controller Mode or in the ATM Mode.			
			Clear-Channel Framer Mode - TxNib_0:				
							If the XRT79L71 is configured to operate in the Nibble-Parallel Mode, then this input pin will function as the bit 0 (LSB) input to the Transmit Nibble-Parallel input interface. The Transmit Payload Data Input Interface block will sample this signal (along with TxNib_1 through TxNib_3) upon the falling edge of TxNibClk.
			NOTE: This input pin is inactive if the XRT79L71 is configured to operate in the Serial Mode.				
			ATM Mode - TxGFC:				
			This signal, along with TxGFCMSB, and TxGFCClk combine to function as the Transmit GFC Nibble Field serial input port. The user will specify the value of the GFC field, within a given ATM cell, by serially transmitting its four bit-value into this input pin. Each of these four bits will be clocked into the port upon the rising edge of the TxGFCClk output signal.				
			High-Speed HDLC Controller Mode - TxHDLCDat_0:				
			If the XRT79L71 is configured to operate in the High-Speed HDLC Controller mode, then the local terminal equipment will be provided with a byte-wide Transmit HDLC Controller byte-wide input interface. This input pin will function as Bit 0 (the LSB) within this byte wide interface.				
			Data, residing on the Transmit HDLC Controller byte wide input interface, will be sampled upon the rising edge of the TxHDLCClk output signal.				

PRELIMINARY

PIN #	NAME	TYPE	DESCRIPTION
A10	TxCellTxed/ TxNibFrame/ ValidFCS	0	 Transmit Cell Generator indicator/Transmit Nibble Frame Indicator/Valid FCS Indicator output: The function of this output pin depends upon whether the XRT79L71 has been configured to operate in the ATM Mode, the Clear-Channel Framer Mode or in the High-Speed HDLC Controller Mode. ATM Mode - TxCellTxed: This output pin pulses "High" each time the Transmit Cell Processor transmits a cell to either the Transmit PLCP Processor or the Transmit DS3/E3 Framer block. Clear-Channel Framer Mode - TxNibFrame: This output pin pulses "High" when the last nibble of a given DS3 or E3 frame is expected at the TxNib[3:0] input pins. The purpose of this output pin is to alert the local terminal equipment that it needs to begin the transmission of a new DS3 or E3 frame to the XRT79L71. NOTE: This output pin is not active if the XRT79L71 is configured to operate in the Serial-Mode. High-Speed HDLC Controller Mode - ValidFCS: The combination of the RxIdle and ValidFCS output signals are used to convey information about data that is being output via the Receive HDLC Controller output Data bus (RxHDLCDat_[7:0]). If RxIdle = "High": The Receive HDLC Controller block with drive this output pin "High" anytime the flag sequence octet (0x7E) is present on the RxHDLCDat[7:0] output data bus. If RxIdle and ValidFCS are both "High": The Receive HDLC Controller block has received a complete HDLC frame, and has determined that the FCS value within this HDLC frame are valid. If RxIdle is "High" and ValidFCS is "Low":
			<i>If RxIdle is "High" and ValidFCS is "Low":</i> The Receive HDLC Controller block has received an ABORT sequence.
M2	TxPERR	I	 Transmit Error Indicator from Link Layer: This input signal is used to indicate that the current packet is ABORTED and must be discarded. This input pin should only be asserted when the last byte (or word) is be written onto the TxPData[15:0] input pins. Note: This input pin is only active if the XRT79L71 has been configured to operate in the PPP Mode.
N1	TxPEOP	I	 Transmit POS-PHY Interface - End of Packet: The link layer processor toggles this output pin "High" whenever the Link Layer Processor is writing the last byte (or word) of a given Packet into the TxP-Data[15:0] data bus. Notes: This input pin is only valid when the XRT79L71 is configured to operate in the PPP Mode. This input pin is only valid when the Transmit POS-PHY Interface - Write Enable Input pin (TxPEn) is asserted.

XP EXAR

PRELIMINARY

XRT79L71 *REV. P1.0.3*

PIN #	NAME	TYPE	DESCRIPTION
R3	TxUPrty/ TxPPrty	I	Transmit UTOPIA Data Bus - Parity Input/Transmit POS-PHY Interface - Par- ity Input:
			The function of this input pin depends upon whether the XRT79L71 has been configured to operate in the ATM UNI or PPP Mode.
			ATM UNI Mode - TxUPrty:
			The ATM Layer processor will apply the parity value of the byte or word which is being applied to the Transmit UTOPIA Data Bus (e.g., TxUData[7:0] or TxU-Data[15:0]) inputs of the XRT79L71, respectively.
			Note: This parity value should be computed based upon the odd-parity of the data applied at the Transmit UTOPIA Data Bus.
			The Transmit UTOPIA Interface block within the XRT79L71 will independently compute an odd-parity value of each byte (or word) that it receives from the ATM Layer processor and will compare it with the logic level of this input pin. PPP Mode - TxPPrty:
			The Link Layer Processor will apply the parity value of the byte or word which is being applied to the Transmit POS-PHY Data Bus (e.g., TxPData[7:0] or TxP-Data[15:0]) inputs of the XRT79L71, respectively.
			Note: This parity value should be computed based upon the odd-parity of the data applied to the Transmit POS-PHY Data Bus. The Transmit POS-PHY Interface block within the XRT79L71 will independently compute an odd-parity value of each byte (or word) that it receives from the Link Layer processor and will compare it will the logic level of this input pin.
M4	TxUEN/ TxPEN	I	Transmit UTOPIA Interface Block - Write Enable/Transmit POS-PHY Interface - Write Enable:
			The function of this input pin depends upon whether the XRT79L71 has been configured to operate in the ATM UNI or PPP Mode.
			ATM UNI Mode Operation - TxUEN:
			This active-low signal, from the ATM Layer processor enables the data on the Transmit UTOPIA Data Bus to be written into the TxFIFO on the rising edge of TxUClk. When this signal is asserted, then the contents of the byte or word that is present, on the Transmit UTOPIA Data Bus, will be latched into the Transmit UTOPIA Interface block, on the rising edge of TxUClk.
			When this signal is negated, then the Transmit UTOPIA Data bus inputs will be tri-stated.
			PPP Mode Operation - TxPEN:
			This active-low signal, from the Link Layer processor enables the data on the Transmit POS-PHY Data Bus to be written into the TxFIFO on the rising edge of TxPClk. When this signal is asserted, then the contents of the byte or word that is present, on the Transmit POS-PHY Data Bus, will be latched into the Transmit POS-PHY Interface block, on the rising edge of TxPClk.
			When this signal is negated, then the Transmit POS-PHY Data bus inputs will be tri-stated.

PRELIMINARY

PIN #	NAME	TYPE	DESCRIPTION
N3	TxUClav/ TxPPA	0	 Transmit UTOPIA Interface - Cell Available Output Pin/Transmit POS-PHY Interface - Packet Data Available Output pin: The function of this output pin depends upon whether the XRT79L71 has been configured to operate in the ATM UNI or PPP Mode. ATM UNI Mode - TxUClav: This output pin supports data flow control between the ATM Layer processor and the Transmit UTOPIA Interface block. This signal is asserted (toggles "High") when the TxFIFO is capable of receiving at least one more full cell of data from the ATM Layer processor. This signal is negated, if the TxFIFO is not capable of receiving one more full cell of data from the ATM Layer processor. Multi-PHY Operation: When the UNI chip is operating in the Multi-PHY mode, this signal will be tri- stated until the TxUClk cycle following the assertion of a valid address on the Transmit UTOPIA Address bus input pins (e.g., when the contents on the Trans- mit UTOPIA Address bus pins match that within the Transmit UTOPIA Address Register. Afterwards, this output pin will behave in accordance with the cell-level handshake mode. PPP Mode - TxPPA: The XRT79L71 will drive this output pin "High" whenever a programmable num- ber of bytes of empty space is available for writing more packet data into the TxFIFO.
P3	TxUSoC/ TxPSoP	Ι	 Transmit UTOPIA - Start of Cell Input/Transmit POS-PHY - Start of Packet Input: The function of this input signal depends upon whether the XRT79L71 has been configured to operate in the ATM UNI or in the PPP Mode. ATM UNI Mode Operation - TxUSoC: This input pin is driven by the ATM Layer Processor and is used to indicate the start of an ATM cell that is being transmitted from the ATM Layer Processor. This input pin must be pulsed "High" whenever the first byte (or word) of a new cell is present on the Transmit UTOPIA Data Bus (TxUData[15:0]). This input pin must remain "Low" at all other times. PPP Mode Operation - TxPSoP/TxPSoC: If the XRT79L71 has been configured to operate in the Packet-Mode, then this input pin is pulsed "High" to denote that the first byte (or word) of a given packet is placed on the TxPData[15:0] input pins. If the XRT79L71 has been configured to operate in the Cell-Chunk Mode, then this input pin is pulsed "High" to denote that the first byte of a packet chunk, if placed on the TxPData[15:0] input pins. Note: This input pin is only valid if the XRT79L71 has been configured to operate in the PPP Mode.

XRT79L71 *REV. P1.0.3*

PIN #	NAME	TYPE	DESCRIPTION
L4	TxTSX/ TxPSOF	1	 Transmit - Start of Transfer/Transmit - Start of PPP Packet in Chunk Mode: The function of this input pin depends upon whether the XRT79L71 has been configured to operate in the Packet Mode or Cell-Chunk Mode. Packet Mode - TxTSX: The Link-Layer processor pulses this input pin "High" when an in-band port address is present on the TxPData[7:0] bus. When this input pin and TxPEN are both set "High" then the value of TxP-Data[7:0] is the address value of the TxFIFO to be selected. Subsequent write operations, into TxPData[15:0] will fill the TxFIFO corresponding to this inband address. Chunk Mode - TxPSOF: The Link Layer processor pulses this input pin "High" in order to indicate that the first byte (or word) of a given Packet is placed on the TxPData[15:0] pins. NOTE: This input pin is only active if the XRT79L71 has been configured to operate in the PPP Mode.
P1	TxUCIkO/ TxPCIkO	0	Transmit UTOPIA Interface Clock/Transmit POS-PHY Interface Clock Out- put: This output is derived from an internal PLL.
M1	TxUClk/ TxPClk	I	Transmit UTOPIA Interface Clock/Transmit POS-PHY Interface Clock Input: The function of this input pin depends upon whether the XRT79L71 has been configured to operate in the ATM UNI or in the PPP Mode. ATM UNI Mode - TxUCIk: The Transmit UTOPIA Interface clock is used to latch the data on the Transmit UTOPIA Data bus, into the Transmit UTOPIA Interface block. This clock signal is also used as the timing source for circuitry used to process the ATM cell data into and through the TxFIFO. During Multi-PHY operation, the data on the Transmit UTOPIA Address bus pins is sampled on the rising edge of TxUCIk. PPP Mode - TxPCIk: The Transmit POS-PHY Interface clock is used to latch the data on the Transmit POS-PHY Data bus, into the Transmit POS-PHY Interface block. This clock sig- nal is also used as the timing source for circuitry used to process the Packet data into and through the TxFIFO.
T2 T1 R2 R1 P2	TxUAddr_0 TxUAddr_1 TxUAddr_2 TxUAddr_3 TxUAddr_4	I	Transmit UTOPIA Address Bus: These input pins comprise the Transmit UTOPIA Address Bus input pins. The Transmit UTOPIA Address Bus is only in use when the XRT79L71 is operating in the Multi-PHY mode. When the ATM Layer processor wishes to write data to a particular UNI (PHY-Layer) device, it will provide the address of the intended UNI on the Transmit UTOPIA Address Bus. The contents of the Transmit UTOPIA Address Bus input pins are sampled on the rising edge of TxUClk. The UNI will compare the data on the Transmit UTOPIA Address Register (Address = 70h). If these two values are identical and the TxUEN pin is asserted, then the TxUClav pin will be driven to the appropriate state based upon the TxFIFO fill level for the Cell Level handshake mode of operation.

PRELIMINARY

M3	TxMod	Ι	Transmit PPP Data Bus - Modulo Indicator:
			This input pin is used to specify the number of valid packet octets are being placed on the TxPData[15:0] input pins.
			The Link Layer Processor is expected to set this input pin "Low" when both bytes on the TxPData[15:0] data bus is valid packet data. Conversely, the Link Layer Processor is expected to set this input pin "High" when only the upper octet has valid packet data.
			Notes: 1. This input pin is only active if the XRT79L71 has been configured to operate in the PPP Mode.
			 The Link Layer Processor is expected to set this input pin to the appropriate state, as each 16-bit word is being written into the TxPData[15:0] data bus.
Т3	TxUData_0/	Ι	Transmit UTOPIA Data Bus Inputs/Transmit POS-PHY Data Bus Inputs:
	TxPData_0		The function of these input pins depends upon whether the XRT79L71 is operat-
P4	TxUData_1/		ing in the ATM UNI Mode or in the PPP Mode.
	TxPData_1		ATM UNI Operation - TxUData[15:0]:
R4	TxUData_2/		These input pins comprise the Transmit UTOPIA Data Bus input pins. When the ATM Layer Processor wishes to transmit ATM cell data through the XRT72L74
	TxPData_2		ATM UNI, it must place this data on these pins. The data, on the Transmit UTO-
T4	TxUData_3/		PIA Data Bus is latched into the Transmit UTOPIA Interface block upon the rising
NE	TxPData_3		edge of TxUClk.
N5	TxUData_4/ TxPData_4		PPP Operation - TxPDATA[15:0]
P5	TxUData_5/		These input pins comprise the Transmit POS-PHY Data Bus input pins. When a Network Processor wishes to transmit PPP data through the XRT79L71 Framer/
	TxPData_5		UNI IC, it must place this data on these pins. The data, on the Transmit POS-
R5	TxUData_6/		PHY Data Bus is latched into the Transmit POS-PHY Interface block upon the ris-
	TxPData_6		ing edge of TxPClk.
T5	TxUData_7/		
	TxPData_7		
N6	TxUData_8/		
	TxPData_8		
P6	TxUData_9/		
	TxPData_9		
	TxUData_10/ TxPData_10		
	TxPData_10 TxUData_11/		
	TxPData_11		
	TxUData_12/		
	TxPData_12		
	TxUData_13/		
	TxPData_13		
	TxUData_14/		
	TxPData_14		
	TxUData_15/		
	TxPData_15		

XRT79L71 REV. P1.0.3

PIN #	ΝΑΜΕ	TYPE	DESCRIPTION		
RECEIVE SYSTEM SIDE INTERFACE PINS					
A4	RxAIS/ RxNib_2/	0	Receive AIS Pattern Indicator/Receive Nibble Output Interface - Bit 2/ Receive HDLC Controller Data Bus - Bit 2 output pin:		
	RxHDLCDat_2		The function of this output pin depends upon whether the XRT79L71 has been configured to operate in the Clear-Channel Framer/Nibble-Parallel Interface Mode, the High-Speed HDLC Controller Mode, or in the other modes.		
			Other Modes - RxAIS:		
			This output pin is driven "High" whenever the Receive Section of the XRT79L71 has detected and is currently declaring an AIS (Alarm Indicator Signal) condition.		
			Clear-Channel Framer/Nibble-Parallel Interface Mode - RxNib_2:		
			If the XRT79L71 is configured to operate in the Nibble-Parallel Mode, then this output pin will function as the bit 2 output from the Receive Nibble-Parallel output interface. The Receive Payload Data Output Interface block will output this signal (along with RxNib_0, RxNib_1, and RxNib_3) upon the rising edge of the RxClk output signal.		
			High-Speed HDLC Controller Mode - RxHDLCDat_2:		
			This output pin along with RxHDLCDat_[7:3] and RxHDLCDat_[1:0] functions as the Receive HDLC Controller byte wide output data bus. The Receive HDLC Controller will output the contents of all HDLC frames via this output data bus, upon the rising edge of the RxHDLCClk output signal. Hence, the user's local terminal equipment should be designed/configured to sample this data upon the falling edge of the RxHDLCClk output clock signal.		
B4	RxRED/ RxNib_3/	0	Receive Section Red Alarm Indicator/Receive Nibble Interface Output pin - Bit 3/Receive HDLC Controller Data Bus output pin - Bit 3:		
	RxHDLCDat_3		The function of this output pin depends upon whether the XRT79L71 has been configured to operate in the Clear-Channel Framer/Nibble-Parallel Mode, the High-Speed HDLC Controller Mode, or in some other mode.		
			Clear-Channel Framer/Nibble-Parallel Mode - RxNib_3:		
			The XRT79L71 will output Received data from the remote terminal equipment to the local terminal equipment via this pin, along with RxNib_0 through RxNib_2. This particular output pin functions as the LSB. The data at this pin is updated on the rising edge of the RxClk output signal. Hence, the user's local terminal equipment should sample this signal upon the falling edge of RxClk. High-Speed HDLC Controller Mode - RxHDLCDat_3:		
			This output pin along with RxHDLCDat_[7:4] and RxHDLCDat_[2:0] functions		
			as the Receive HDLC Controller byte wide output data bus. The Receive HDLC Controller will output the contents of all HDLC frames via this output data bus, upon the rising edge of the RxHDLCClk output signal. Hence, the user's local terminal equipment should be designed/configured to sample this data upon the falling edge of the RxHDLCClk output clock signal. Other Modes - RxRED:		
			The Framer/UNI asserts this output pin to denote that one of the following events has been detected by the Receive DS3/E3 Framer block:		
			LOS - Loss of Signal Condition		
			OOF - Out of Frame Condition		
			AIS - Alarm Indication Signal Detection		

PRELIMINARY

PIN #	ΝΑΜΕ	TYPE	DESCRIPTION
D6	RxOOF/ RxNib_1/ RxHDLCDat_1	0	Receive Out of Frame Indicator/Receive Nibble Interface Output pin - Bit 1/ Receive HDLC Controller Data Bus Output pin - Bit 1: The function of this output pin depends upon whether the XRT79L71 has been configured to operate in the Clear-Channel Framer/Nibble-Parallel Mode or the
			High-Speed HDLC Controller Mode.
			Clear-Channel Framer/Nibble-Parallel Mode - RxNib_1: The XRT79L71 will output Received data from the remote terminal equipment to the local terminal equipment via this pin, along with RxNib_0, RxNib_2 and RxNib_3: This particular output pin functions as the LSB. The data at this pin is updated on the rising edge of the RxClk output signal. Hence, the user's local terminal equipment should sample this signal upon the falling edge of RxClk.
			High-Speed HDLC Controller Mode - RxHDLCDat_1: This output pin along with RxHDLCDat_[7:2] and RxHDLCDat_0 functions as the Receive HDLC Controller byte wide output data bus. The Receive HDLC Controller will output the contents of all HDLC frames via this output data bus, upon the rising edge of the RxHDLCClk output signal. Hence, the user's local terminal equipment should be designed/configured to sample this data upon the falling edge of the RxHDLCClk output clock signal. All other Modes - RxOOF:
			The UNI Receive DS3 Framer will assert this output signal whenever it has declared an Out of Frame (OOF) condition with the incoming DS3 frames. This signal is negated when the framer correctly locates the F- and M-bits and regains synchronization with the DS3 frame.
B5	RxLCD/ RxOutClk/	0	Receive Loss of Cell Delineation indicator/Receive Output Clock signal/ Receive HDLC Controller Data Bus - Bit 7 Output:
	RxHDLCDat_7		The function of output pin depends upon whether the XRT79L71 has been con- figured to operate in the ATM, Clear-Channel Framer or High Speed HDLC Con- troller Mode.
			ATM Mode - RxLCD:
			This active-high output pin will be asserted whenever the Receive Cell Proces- sor has experienced a Loss of Cell Delineation. This pin will return "Low" once the Receive Cell Processor has regained Cell Delineation.
			Clear-Channel Framer Mode - RxOutClk:
			This clock signal functions as the Transmit Payload Data Input Interface clock source, if the XRT79L71 has been configured to operate in the loop-timing mode.
			In this mode, the local terminal equipment is expected to input data to the TxSer input pin, upon the rising edge of this clock signal. The XRT79L71 will use the rising edge of this signal to sample the data on the TxSer input.
			High-Speed HDLC Controller Mode - RxHDLCDat_7:
			This output pin along with RxHDLCDat_[6:0] functions as the Receive HDLC Controller byte wide output data bus. This particular output pin functions as the MSB (Most Significant Bit) of the Receive HDLC Controller byte wide data bus. The Receive HDLC Controller will output the contents of all HDLC frames via this output data bus, upon the rising edge of the RxHDLCClk output signal. Hence, the user's local terminal equipment should be designed/configured to
			sample this data upon the falling edge of the RxHDLCClk output clock signal.

XRT79L71 *REV. P1.0.3*

PIN #	NAME	TYPE	DESCRIPTION
D7	RxLOS	0	Framer/UNI - Loss of Signal Output Indicator: This pin is asserted when the Receive Section of the XRT79L71 encounters 180 consecutive 0's (for DS3 applications) or 32 consecutive 0's (for E3 applications) via the RxPOS and RxNEG pins. This pin will be negated once the Receive DS3/E3 Framer has detected at least 60 "1s" out of 180 consecutive bits (for DS3 applications) or has detected at least four consecutive 32 bit strings of data that contain at least 8 "1s" in the receive path.
B2	RxPRED	0	 Receiver Red Alarm Indicator - Receive PLCP Processor: The Framer/UNI asserts this output pin to denote that one of the following events has been detected by the Receive PLCP Processor: OOF - Out of Frame Condition LOF - Loss of Frame Condition Note: This output pin is only valid if the XRT79L71 has been configured to operate in the ATM/PLCP Mode.
D5	RxPOOF	0	 Receive PLCP Out of Frame Indicator: The Receive PLCP Processor will assert this pin, when it declares an Out of Frame condition. This output will be negated when the Receive PLCP Processor reaches the In Frame Condition. Note: This output pin is only valid if the XRT79L71 has been configured to operate in the ATM/PLCP Mode.
A2	RxPLOF	0	 Receive PLCP - Loss of Frame Output Indicator: The Receive PLCP Processor will assert this pin, when it declares a Loss of Frame condition. This output will be negated when the Receive PLCP Processor reaches the In Frame Condition. Note: This output pin is only active is the XRT79L71 has been configured to operate in the ATM/PLCP Mode.
C5	RxNib_0/ RxHDLCDat_0	0	 Receive Nibble Interface Output pin - Bit 0/Receive HDLC Controller Data Bus output pin - Bit 0: The function of this output pin depends upon whether the XRT79L71 has been configured to operate in the Clear-Channel/Nibble-Parallel Mode, the High- Speed HDLC Controller Mode, or in some other mode. Clear-Channel/Nibble-Parallel Mode - RxNib_0: The XRT79L71 will output Received data from the remote terminal equipment to the local terminal equipment via this pin, along with RxNib_1 through RxNib_3. This particular output pin functions as the LSB. The data at this pin is updated on the rising edge of the RxClk output signal. Hence, the user's local terminal equipment should sample this signal upon the falling edge of RxClk. High-Speed HDLC Controller Mode - RxHDLCDat_0: This output pin along with RxHDLCDat_[7:1] functions as the Receive HDLC Controller byte wide output data bus. This particular output pin functions as the LSB (Least Significant Bit) of the Receive HDLC Controller byte wide data bus. The Receive HDLC Controller will output the contents of all HDLC frames via this output data bus, upon the rising edge of the RxHDLCClk output signal. Hence, the user's local terminal equipment should be designed/configured to sample this data upon the falling edge of the RxHDLCClk output signal. Hence, the user's local terminal equipment should be designed/configured to sample this data upon the falling edge of the RxHDLCClk output clock signal. NOTE: This output pin is only active if the XRT79L71 is configured to operate in the Clear-Channel/Nibble-Parallel Mode or in the High-Speed HDLC Controller Mode. This output is inactive for all remaining modes.

XRT79L71 REV. P1.0.3 PRELIMINARY

PIN #	NAME	TYPE	DESCRIPTION
Β7	RxOHEnable/ RxHDLCDat_5	0	Receive Overhead Data Output Interface - Enable Output/Receive HDLC Controller Data Bus - Bit 5 output: The function of this output pin depends upon whether the XRT79L71 has been configured to operate in the Clear-Channel Framer Mode or in the High-Speed HDLC Controller Mode.
			Clear-Channel Framer Mode - RxOHEnable: The XRT79L71 will assert this output signal for one RxOHClk period when it is safe for the local terminal equipment to sample the data on the RxOH output pin. High-Speed HDLC Controller Mode - RxHDLCDat_5:
			This output pin along with RxHDLCDat_[4:0], RxHDLCDat_6 and RxHDLCDat_7 functions as the Receive HDLC Controller byte wide output data bus. The Receive HDLC Controller will output the contents of all HDLC frames via this output data bus, upon the rising edge of the RxHDLCClk output signal. Hence, the user's local terminal equipment should be designed/configured to sample this data upon the falling edge of the RxHDLCClk output clock signal.
C7	RxOH/ RxHDLCDat_6	0	Receive Overhead Data Output Interface - output/Receive HDLC Controller Data Bus - Bit 6 output: The function of this output pin depends upon whether the XRT79L71 has been
			configured to operate in the Clear-Channel Framer mode or in the High-Speed HDLC Controller Mode.
			All overhead bits, which are received via the Receive Section of the XRT79L71 will be output via this output pin, upon the rising edge of RxOHClk.
			High-Speed HDLC Controller Mode - RxHDLCDat_6:
			This output pin along with RxHDLCDat_[5:0] and RxHDLCDat_7 functions as the Receive HDLC Controller byte wide output data bus. The Receive HDLC Controller will output the contents of all HDLC frames via this output data bus, upon the rising edge of the RxHDLCClk output signal. Hence, the user's local terminal equipment should be designed/configured to sample this data upon the falling edge of the RxHDLCClk output clock signal.
A7	RxOHClk/ RxHDLCClk	0	Receive Overhead Data Output Interface - clock/Receive HDLC Controller - Clock output: The function of this output pin depends upon whether the XRT79L71 has been configured to operate in the Clear-Channel Framer mode or in the High-Speed
			HDLC Controller Mode. Clear-Channel Framer Mode - RxOHClk:
			The XRT79L71 will output the overhead bits within the incoming DS3 or E3 frames via the RxOH output pin, upon the falling edge of this clock signal.
			As a consequence, the user's local terminal equipment should use the rising edge of this clock signal to sample the data on both the RxOH and RxOHFrame output pins.
			Note: This clock signal is always active.
			High-Speed HDLC Controller Mode - RxHDLCCIk: This output pin functions as the Receive HDLC Controller Data bus clock output. The Receive HDLC Controller block outputs the contents of all received HDLC frames via the Receive HDLC Controller Data bus (RxHDLCDat_[7:0]) upon the rising edge of this clock signal. Hence, the user's local terminal equipment should be designed/configured to sample this data upon the falling edge of this clock signal.

XRT79L71 *REV. P1.0.3*

PIN #	NAME	TYPE	DESCRIPTION
A8	RxOHFrame/ RxHDLCDat_4	0	Receive Overhead Data Interface - Framing Pulse indicator/Receive HDLC Controller Data Bus - Bit 4 output: The function of this output pins depends upon whether the XRT79L71 has been configured to operate in the Clear-Channel Framer Mode or in the High-Speed HDLC Controller Mode. Clear-Channel Framer Mode - RxOHFrame: This output pin pulses "High" whenever the Receive Overhead Data Output Interface block outputs the first overhead bit of a new DS3 or E3 frame. High-Speed HDLC Controller Mode - RxHDLCDat_4: This output pin along with RxHDLCDat_[3:0] and RxHDLCDat_[7:5] functions as the Receive HDLC Controller byte wide output data bus. The Receive HDLC Controller will output the contents of all HDLC frames via this output data bus, upon the rising edge of the RxHDLCClk output signal. Hence, the user's local terminal equipment should be designed/configured to sample this data upon the falling edge of the RxHDLCClk output clock signal.
B6	RxFrame	0	 Receive Boundary of DS3 or E3 Frame Output indicator: The function of this output pin depends upon whether or not the XRT79L71 is operating in the Clear-Channel Framer/Nibble-Parallel Mode. Clear-Channel Framer/Nibble-Parallel Mode: The Receive Section of the XRT79L71 will pulse this output pin "High" for one nibble period, when the Receive Payload Data Output interface block is driving the very first nibble of a given DS3 or E3 frame, on the RxNib[3:0] output pins. Clear-Channel Framer/Serial Mode: The Receive Section of the XRT79L71 will pulse this output pin "High" for one bit period, when the Receive Payload Data Output interface block is driving the very first bit of a given DS3 or E3 frame, on the RxNib[3:0] output pins. Clear-Channel Framer/Serial Mode: The Receive Section of the XRT79L71 will pulse this output pin "High" for one bit period, when the Receive Payload Data Output interface block is driving the very first bit of a given DS3 or E3 frame, on the RxSer output pin. All Other Modes: The Receive Section of the XRT79L71 will pulse this output pin "High" when the Receive DS3/E3 Framer block is processing the first bit within a new DS3 or E3 frame.
D4	RxCellRxed	0	 Receive Cell Processor - Cell Received Indicator: This output pin pulses "High" each time the Receive Cell Processor receives a new cell from the Receive PLCP Processor or the Receive DS3/E3 Framer block. Note: This output pin is only active if the XRT79L71 has been configured to operate in the ATM UNI Mode.

XRT79L71 REV. P1.0.3 PRELIMINARY

Pin #	NAME	TYPE	DESCRIPTION
A5	RxPOH/ RxSer	0	Receive PLCP Path Overhead Output pin/Receive Serial Output pin: The function of this output depends upon whether the XRT79L71 has been con- figured to operate in the ATM/PLCP Mode or in the Clear-Channel Framer Mode. ATM/PLCP Mode - RxPOH:
			This output pin along with the RxPOHClk, RxPOHFrame and RxPOHIns pins comprise the Receive PLCP Frame POH Byte serial output port. For each PLCP frame, that is received by the Receive PLCP Processor, this serial output port will output the contents of all 12 POH (Path Overhead) bytes. The data that is output via this pin, is updated on the rising edge of the RxPOHClk output clock signal. The RxPOHFrame pin will pulse "High" whenever the first bit of the Z6 byte is being output via this output pin.
			Clear-Channel Framer Mode - RxSer: If the XRT79L71 is configured to operate in the Clear-Channel Framer/Serial Mode, then the chip will output all received data, via this output pin. This output
			signal will be updated upon the rising edge of RxClk. Note: The user should either configure the XRT79L71 to operate in the Gapped-Clock Mode, or validate the sampling of each bit from the RxSer output with the state of RxOHInd' output pin, in order to prevent the local terminal equipment from sampling overhead bits.
			This output pin is only active if the XRT79L71 has been configured to operate in the ATM/PLCP or the Clear-Channel Framer/Serial Mode. This pin is inactive for all remaining modes of operation.

XRT79L71 *REV. P1.0.3*

PIN #	NAME	TYPE	DESCRIPTION
A6	RxPOH_Clk/ RxClk/	0	Receive PLCP Path Overhead Serial Port Clock output/Receive Nibble-Par- allel Output port clock/Receive Serial Clock output:
	RxNibClk		The function of this output pin depends upon whether the XRT79L71 has been configured to operate in the ATM/PLCP Mode or the Clear-Channel Framer Mode.
			ATM/PLCP Mode - RxPOH_Clk:
			This output clock pin along with RxPOH, RxPOHFrame and RxPOHIns pins comprise the Receive PLCP Frame POH Byte serial output port. All POH (Path Overhead) data that is output via the RxPOH output pin is updated on the rising edge of this clock signal.
			NOTE: This output signal is inactive if the XRT79L71 has been configured to operate in the Direct-Mapped ATM Mode.
			Clear-Channel Framer Mode - RxClk:
			This output pin is active whenever the XRT79L71 has been configured to oper- ate in either the Serial or Nibble Parallel Mode, as is described below.Clear- Channel Framer/Serial Mode - RxClkIn this serial mode, this output is a 44.736MHz clock output signal (for DS3 applications) or 34.368MHz clock out- put signal (for E3 applications). The Receive Payload Data Output Interface will update the data via the RxSer output pin, upon the rising edge of this clock sig- nal.
			The user is advised to design (or configure) the local terminal equipment to sample the RxSer data, upon the falling edge of this clock signal.
			Clear-Channel Framer/Nibble-Parallel Mode - RxNibClk:
			In the Nibble-Parallel Mode, the XRT79L71 will derive this clock signal from the RxLineClk signal. The XRT79L71 will pulse this clock signal 1176 times for each inbound DS3 frame or 1074 times for each inbound E3/ITU-T G.832 frame or 384 times for each inbound E3/ITU-T G.751 frame. The Receive Payload Data Output Interface block will update the data on the RxNib[3:0] output upon the falling edge of this clock signal.
			The user is advised to design (or configure) the local terminal equipment to sample the data on the RxNib[3:0] output pins, upon the rising edge of this clock signal.
C4	RxPOHFrame	0	Receive PLCP Frame POH Serial Output Port - Frame Indicator:
			This output pin along with the RxPOH RxPOHClk and RxPOHIns pins comprise the Receive PLCP Frame POH Byte serial output port. This output pin provides framing information to external circuitry receiving and processing this POH (Path Overhead) data, by pulsing "High" whenever the first bit of the Z6 byte is being output via the RxPOH output pin. This pin is "Low" at all other times dur- ing this PLCP POH Framing cycle.
			Note: This output pin is only active if the XRT79L71 has been configured to operate in the ATM/PLCP Modes.

XRT79L71 REV. P1.0.3 PRELIMINARY

PIN #	ΝΑΜΕ	TYPE	DESCRIPTION
C6	RxPFrame/ RxOHInd	0	Receive PLCP Frame Indicator/Receive Overhead Indicator Output: The function of this output pin depends upon whether the XRT79L71 has been
			configured to operate in the ATM/PLCP, the Clear-Channel Framer/Serial or the Clear-Channel Framer/Nibble-Parallel Modes.
			ATM/PLCP Mode - RxPFrame:
			This output pin pulses "High" when the Receive PLCP Processor is receiving the last bit of a PLCP frame.
			Note: This output pin is inactive if the XRT79L71 is configured to operate in the Direct-Mapped ATM Mode.
			Clear-Channel Framer/Serial Mode - RxOHInd:
			This output pin pulses "High" for one bit-period whenever an overhead bit is being output via the RxSer output pin, by the Receive Payload Data Output Interface block.
			Note: If the user configures the XRT79L71 to operate in the Gapped-Clock Mode, then this output pin will provide a demand clock to the local terminal equipment. In the Gapped-Clock Mode, this output pin will only provide a clock pulse, whenever a payload bit is being output via the RxSer output pin. This output pin will NOT generate a clock pulse, whenever an overhead is being output via the RxSer output pin.
			Clear-Channel Framer/Nibble-Parallel - RxOHInd:
			This output pin pulse "High" for one nibble-period whenever an overhead nibble is being output via the RxNib[3:0] output pins by the Receive Payload Data Output Interface block.
			Note: The purpose of this output pin is to alert the local terminal equipment that an overhead bit (or nibble) is being output via the RxSer or RxNib[3:0] output pins and that this data should be ignored.
C3	RxGFC/	0	Receive GFC Nibble Field - Output Pin/Receive Idle Sequence Indicator:
	RxIdle		The function of this output pin depends upon whether the XRT79L71 is operat- ing in the ATM Mode or in the High-Speed HDLC Controller Mode. ATM Mode - RxGFC:
			This pin, along with the RxGFCClk and the RxGFCMSB pins form the Receive GFC Nibble-Field serial output port. This pin will serially output the contents of
			the GFC Nibble field of each cell that is processed via the Receive Cell Proces- sor. This data is serially clocked out of this pin on the rising edge of the RxGFC- Clk signal. The MSB of each GFC value is designated by a pulse at the RxGFCMSB output pin.
			High-Speed HDLC Controller Mode - RxIdle:
			The combination of the RxIdle and ValidFCS output signals are used to convey information about data that is being output via the Receive HDLC Controller output Data bus (RxHDLCDat_[7:0]).
			If RxIdle = "High":
			The Receive HDLC Controller block will drive this output pin "High" anytime the flag sequence octet (0x7E) is present on the RxHDLCDat[7:0] output data bus. <i>If RxIdle and ValidFCS are both "High":</i>
			The Receive HDLC Controller block has received a complete HDLC frame, and has determined that the FCS value within this HDLC frame are valid.
			If RxIdle is "High" and ValidFCS is "Low":
			The Receive HDLC Controller block has received a complete HDLC frame, and
			has determined that the FCS value within this HDLC frame is invalid.
			If RxIdle is "High" and ValidFCS is "Low":
			The Receive HDLC Controller block has received an ABORT sequence.

XRT79L71 REV. P1.0.3

PIN #	NAME	TYPE	DESCRIPTION
A1	RxGFCClk	Ο	Received GFC Nibble Serial Output Port Clock Signal: This output pin functions as a part of the Receive GFC Nibble-Field Serial Output Port, also consisting of the RxGFC and RxGFCMSB pins. This pin provides a clock pulse which allows external circuitry to latch in the GFC Nibble-Data via the RxGFC output pin. Note: This output pin is only active if the XRT79L71 is operating in the ATM UNI Mode.
B1	RxGFCMSB	0	 Receive GFC Nibble Field - MSB Indicator: This output pin functions as a part of the Receive GFC Nibble Field Serial Output port which also consists of the RxGFC and RxGFCClk pins. This pin pulses "High" the instant that the MSB (Most Significant Bit) of a GFC Nibble is being output on the RxGFC pin. Note: This output pin is only active if the XRT79L71 is operating in the ATM UNI Mode.
H1	RxUClav/RxPPA	0	 Receive UTOPIA - Cell Available/Receive POS-PHY Interface - Packet Available: The function of this output pin depends upon whether the XRT79L71 has been configured to operate in the ATM UNI or PPP Mode. ATM UNI Mode - RxUClav: The Receive UTOPIA Interface block will assert this output pin in order to indi- cate that the Rx FIFO has some ATM cell data that needs to be read by the ATM Layer Processor. This signal is asserted if the RxFIFO contains at least one full cell of data. This signal toggle "Low" if the RxFIFO is depleted of data, or if it contains less than one full cell of data. Multi-PHY Operation: When the UNI chip is operating in the Multi-PHY mode, this signal will be tri- stated until the RxClk cycle following the assertion of a valid address on the Receive UTOPIA Address bus input pins (e.g., if the contents on the Receive UTOPIA Address bus pins match that with the Receive UTOPIA Address Regis- ter. Afterwards, this output pin will behave in accordance with the cell-level handshake mode. PPP Mode - RxPPA: The XRT79L71 will drive this output pin "High" whenever a programmable num- ber of bytes are available to be read from the RxFIFO.
K2	RxUClkO/ RxPClkO	0	Receive UTOPIA Interface Clock/Receive POS-PHY Interface Clock Out- put: This clock output signal is derived from an internal PLL.
L3	RxUClk/ RxPClk	Ι	Receive UTOPIA Interface Clock Input/Receive POS-PHY Interface Clock Input: The function of this input pin depends upon whether the XRT79L71 is operating in the ATM UNI or PPP Mode. ATM UNI or PPP Mode. ATM UNI Mode - RxUCIk: The byte (or word) data, on the Receive UTOPIA Data bus (RxUData[15:0]) is updated on the rising edge of this signal. The Receive UTOPIA Interface can be clocked at rates up to 50 MHz. PPP Mode - RxPCIk: This byte (or word) data, on the Receive POS-PHY Data Bus (RxPData[15:0]) is updated on the rising edge of this signal. The Receive POS-PHY Interface can be clocked at rates up to 50MHz.

XRT79L71 REV. P1.0.3 PRELIMINARY

PIN #	NAME	TYPE	DESCRIPTION
L2	RxPERR	0	Receive POS-PHY Interface - Error Indicator:
			This output pin indicates whether or not the Receive POS-PHY Interface has detected an error in the inbound PPP Packet.
			This output pin toggles "High" if the Receive Section of the XRT79L71 detects an FCS Error, an ABORT sequence or a Runt Packet.
			NOTE: This output pin is only valid if the XRT79L71 has been configured to operate in the PPP Mode.
K4	RxTSX/ RxPSOF	0	Receive - Start of Transfer/Receive - Start of PPP Packet in Chunk Mode: The function of this output pin depends upon whether the XRT79L71 has been configured to operate in the Packet Mode or Cell-Chunk Mode. Packet Mode - RxTSX:
			The XRT79L71 pulses this output pin "High" when an inband port address is present on the RxPData[7:0] bus. When this output pin is "High", the value of RxPData[7:0] is the address value of
			the RxFIFO to be selected. Subsequent read operations, from RxPData[15:0] will be from the RxFIFO corresponding to this inband address. Chunk Mode - RxPSOF:
			The XRT79L71 pulses this output pin "High" in order to indicate that the first byte (or word) of a given Packet is placed on the RxPData[15:0] pins.
			Note: This output pin is only active if the XRT79L71 has been configured to operate in the PPP Mode.
H4	RxUEN/ RxPEN	I	Receive UTOPIA Interface - Output Enable/Receive POS-PHY Interface - Output Enable:
			The function of this output pin depends upon whether the XRT79L71 has been configured to operate in the ATM UNI or PPP mode. ATM UNI Mode - $\overline{\mathbf{R} \mathbf{X} \mathbf{U} \mathbf{E} \mathbf{N}}$:
			This active-low input signal is used to control the drivers of the Receive UTOPIA Data Bus. When this signal is "High" (negated) then the Receive UTOPIA Data Bus is tri-stated. When this signal is asserted, then the contents of the byte or word that is at the front of the RxFIFO will be popped and placed on the Receive UTOPIA Data bus on the very next rising edge of RxUClk. PPP Mode - RxPEN:
			This active-low input signal is used to control the drivers of the Receive POS- PHY Data Bus. When this signal is "High" (negated) then the Receive POS- PHY Data Bus is tri-stated. When this signal is asserted, then the contents of the byte or word that is at the front of the RxFIFO will be popped and placed on the Receive POS-PHY Data bus on the very next rising edge of RxPClk.
H2	RxUSoC/ RxPSOP	0	Receive UTOPIA Interface - Start of Cell Indicator/Receive POS-PHY Inter- face - Start of Packet Indicator:
			The function of this output pin depends upon whether the XRT79L71 has been configured to operate in the ATM UNI or in the PPP Mode. ATM UNI Mode - RxUSoC:
			This output pin allows the ATM Layer Processor to determine the boundaries of the ATM cells that are output via the Receive UTOPIA Data bus. The Receive UTOPIA Interface block will assert this signal when the first byte (or word) of a new cell is present on the Receive UTOPIA Data Bus; RxUData[15:0]. PPP Mode - RxPSOP:
			This output pin allows the Link Layer Processor to determine the boundaries of the PPP packets that are output via the Receive POS-PHY Data Bus. The Receive POS-PHY Interface block will assert this signal when the first byte (or word) of a new packet is present on the Receive POS-PHY Data Bus, RxP-Data[15:0].

XRT79L71 *REV. P1.0.3*

PIN #	NAME	TYPE	DESCRIPTION
H3	RxUPrty/ RxPPrty	0	 Receive UTOPIA Interface - Parity Output pin/Receive POS-PHY Interface - Parity Output: The function of this output pin depends upon whether the XRT79L71 has been configured to operate in the ATM UNI or the PPP Modes. ATM UNI Mode - RxUPrty: The Receive UTOPIA interface block will compute the odd-parity value of each byte (or word) that it will place in the Receive UTOPIA Data Bus. This odd-parity value will be output on this pin, while the corresponding byte (or word) is present on the Receive UTOPIA Data Bus PPP Mode - RxPPrty: The Receive POS-PHY Interface block will compute the odd-parity value of each byte (or word) that it will place in the Receive POS-PHY Data Bus. This odd parity value will be output on this pin, which the corresponding byte (or word) is present on the Receive POS-PHY Interface block will compute the odd-parity value of each byte (or word) that it will place in the Receive POS-PHY Data Bus. This odd parity value will be output on this pin, which the corresponding byte (or word) is present on the Receive POS-PHY Data Bus.
КЗ	RxPEOP	0	 Receive POS-PHY Interface - End of Packet: The XRT79L71 drives this output pin "High" whenever the last byte of a given Packet is being output via the RxPData[15:0] data bus. Notes: This output pin is only valid when the XRT79L71 is configured to operate in the PPP Mode. This output pin is only valid when the Receive POS-PHY Interface - Read Enable Output pin.
N2	RxPDVAL	0	 Receive POS-PHY Interface Signal Valid Indicator: This output signal indicates whether or not the Receive POS-PHY Interface signals (e.g., PRData[15:0], RxPSOP, RxPEOP, RxPPrty, RxPERR) are valid. This output pin will be driven "High", when these signals are valid. Conversely, this output pin will be driven "Low" when these signals are NOT valid. Note: This output pin is only active if the XRT79L71 has been configured to operate in the PPP Mode.
J1 J2 J3 J4 K1	RxAddr_0 RxAddr_1 RxAddr_2 RxAddr_3 RxAddr_4	I	Receive UTOPIA Address Bus input MSB: These input pins functions as the Receive UTOPIA Address bus inputs. These input pins are only active when the Framer/UNI device is operating in the ATM UNI Mode. The Receive UTOPIA Address Bus input is sampled on the rising edge of the RxClk signal. The contents of this address bus are compared with the value stored in the Rx UT Address Register (Address = 0x6C). If these two values match, then the UNI will inform the ATM Layer Processor on whether or not it has any new ATM cells to be read from the RxFIFO by driving the RxClav output to the appropriate level. If these two address values do not match, then the UNI will not respond to the ATM Layer Processor and will keep its RxClav output signal tri-stated.

XRT79L71 REV. P1.0.3 PRELIMINARY

PIN #	NAME	TYPE	DESCRIPTION
G2	RxUData_0/	0	Receive UTOPIA Data Bus Input/Receive POS-PHY Data Bus Output pins:
	RxPData_0		The function of these output pins depends upon whether the XRT79L71 has
G1	RxUData_1/		been configured to operate in the ATM UNI or in the PPP Mode.
	RxPData_1		ATM UNI Mode - RxUData[15:0]:
F1	RxUData_2/		These output pins function as the Receive UTOPIA Data Bus. ATM cell data
	RxPData_2		that has been received from the Remote Terminal Equipment is output on the Receive UTOPIA Data Bus, where it can be read and processed by the ATM
G3	RxUData_3/		Layer Processor.
	RxPData_3		PPP Mode - RxPData[15:0]:
F2	RxUData_4/		These output pins function as the Receive POS-PHY Data Bus output pins.
	RxPData_4		PPP Packet data that has been received from the Remote Terminal Equipment
E1	RxUData_5/		is output on the Receive POS-PHY Data Bus, where it can be reads and pro-
	RxPData_5		cessed by the Link Layer Processor.
G4	RxUData_6/		
	RxPData_6		
F3	RxUData_7/		
	RxPData_7		
E2	RxUData_8/		
	RxPData_8		
D1	RxUData_9/		
	RxPData_9		
F4	RxUData_10/		
	RxPData_10		
E3	RxUData_11/		
	RxPData_11		
D2	RxUData_12/		
	RxPData_12		
C1	RxUData_13/		
	RxPData_13		
E4	RxUData_14/		
	RxPData_14		
D3	RxUData_15/ RxPData_15		
	KXFDala_15		
L1	RxMod	0	Receive PPP Data Bus - Modulus Indicator:
			The XRT79L71 will indicate the number of valid packet octets that are being
			read out of the RxPData[15:0] output pins.
			The XRT79L71 will drive this output pin "Low" when both bytes of the RxP-
			Data[15:0] data bus consists of valid packet data.
			Conversely, the XRT79L71 will drive this output pin "High" when only the upper byte of the RxPData[15:0] data bus consists of valid packet data.
			The Link Layer Processor is expected to validate all packet data that it reads out
			of the RxPData[15:0] output pins by also reading the state of this output pin.
			Note: This output pin is only active if the XRT79L71 has been configured to
			operate in the PPP Mode.

PIN #	ΝΑΜΕ	TYPE	DESCRIPTION				
TRANSM	TRANSMIT LINE SIDE SIGNALS						
R15	TxON	1	 Transmit Driver ON - Channel n: This input pin is used to either enable or disable the Transmit Output Driver of the XRT79L71. "Low" - Disables the XRT79L71 Transmit Output Driver. In this setting, the TTIP and TRING output pins will be tri-stated. "High" - Enables the XRT79L71 Transmit Output Driver. In this setting, the TTIP and TRING output pins will be enabled. Notes: Whenever the transmitters are turned off, the TTIP and TRING output pins will be tri-stated. These pins are internally pulled high. 				
P16 M16	DS3CLK E3CLK	I	Transmit Clock Input:These input pins function as the timing source for the XRT79L71 Transmit Section.Note:The user is expected to supply a 44.736MHz ± 20ppm clock signal (for DS3 applications) or a 34.368MHz ± 20 ppm clock signal (for E3 applications).				
T11	TTIP	0	 Transmit Output - Positive Polarity Signal: This output pin, along with the TRING output pin, function as the Transmit DS3/E3 output signal drivers for the XRT79L71. The user is expected to connect this signal and the TRING output signal to a 1:1 transformer. Whenever the Transmit Section of the XRT79L71 generates and transmits a positive-polarity pulse onto the line, this output pin will be pulsed to a "higher-voltage" than the TRING output pin. Conversely, whenever the Transmit Section of the XRT79L71 generates and transmit a negative-polarity pulse onto the line, this output pin will be pulsed to a "lower-voltage" than the TRING output pin. Note: This output pin will be tri-stated whenever the user sets the TxON input pin (or bit-field) to "0". 				
T10	TRING	0	 Transmit Output - Negative Polarity Signal: This output pin along with the TTIP output pin, functions as the Transmit DS3/E3 output signal drivers for the XRT79L71. The user is expected to connect this signal and the TTIP output signal to a 1:1 transformer. Whenever the Transmit Section of the XRT79L71 generates and transmits a positive-polarity pulse onto the line, this output pin will be pulsed to a "lower-voltage" than the TTIP output pin. Conversely, whenever the Transmit Section of the XRT79L71 generates and transmit a negative-polarity pulse onto the line, this output pin will be pulsed to a "higher-voltage" than the TTIP output pin. Note: This output pin will be tri-stated whenever the user sets the TxON input pin (or bit-field) to "0". 				

XP EXAR

PIN #	NAME	TYPE	DESCRIPTION
P10	MTIP	1	 Transmit Drive Monitor Input pin - Positive Polarity Input: This input pin along with MRING functions as the Transmit Drive Monitor Output (DMO) input monitoring pins. If the user wishes to (1) monitor the Transmit Output line signal and (2) to perform this monitoring externally, then the user MUST connect this particular pin to the TTIP output pin via a 274 ohm series resistor. Similarly, the user MUST also connect the MRING input pin to the TRING output pin via a 274 ohm series resistor. The MTIP and MRING input pins will continuously monitor the Transmit Output line signal via the TTIP and TRING output pins for bipolar activity. If these pins do not detect any bipolar activity for 128 bit periods, then the Transmit Drive Monitor circuit will drive the DMO output pin "High" in order to denote a possible fault condition in the Transmit Output Line signal path. <i>Notes:</i> Internal Monitoring is only available as an option if the user is operating the XRT79L71 in the Host Mode.
P11	MRING	Ι	 Transmit Drive Monitor Input pin - Negative Polarity Input: This input pin along with MTIP functions as the Transmit Drive Monitor Output (DMO) input monitoring pins. If the user wishes to (1) monitor the Transmit Output line signal and (2) to perform this monitoring externally, then the user MUST connect this particular input pin to the TRING output pin via a 274 ohm series resistor. Similarly, the user MUST also connect the MTIP input pin to the TTIP output pin via a 274 ohm series resistor. The MTIP and MRING input pins will continuously monitor the Transmit Output line signal via the TTIP and TRING output pins for bipolar activity. If these pins do not detect any bipolar activity for 128 bit periods, then the Transmit Drive Monitor circuit will drive the DMO output pin "High" in order to denote a possible fault condition in the Transmit Output Line signal path. Notes: Internal Monitoring is only available as an option if the user is operating the XRT79L71 in the Host Mode.

Pin #	ΝΑΜΕ	TYPE	DESCRIPTION					
RECEIVE	RECEIVE LINE SIDE SIGNALS							
R14	RTIP	I	Receive Input - Positive Polarity Signal:					
			This input pin, along with the RRING input pin, functions as the Receive DS3/E3 Line input signal receiver of the XRT79L71.					
			The user is expected to connect this signal and the RRING input signal to a 1:1 transformer.					
			Whenever the RTIP/RRING input pins are receiving a positive-polarity pulse within the incoming DS3 or E3 line signal, this input pin will be pulsed to a "higher-voltage" than the RRING input pin.					
			Conversely, whenever the RTIP/RRING input pins are receiving a negative-polar- ity pulse within the incoming DS3 or E3 line signal, this input pin will be pulsed to a "lower-voltage" than the RRING input pin.					

XRT79L71 *REV. P1.0.3*

PIN #	NAME	TYPE	DESCRIPTION
R13	RRING	I	Receive Input - Negative Polarity Signal:
			This input pin, along the RTIP input pin, functions as the Receive DS3/E3 Line input signal receiver for the XRT79L71.
			The user is expected to connect this signal and the RTIP input signal to a 1:1 transformer.
			Whenever the RTIP/RRING input pins are receiving a positive-polarity pulse within the incoming DS3 or E3 line signal, then this input pin will be pulsed to a "lower-voltage" than the RTIP input pin.
			Conversely, whenever the RTIP/RRING input pins are receiving a negative-polar- ity pulse within the incoming DS3 or E3 line signal, then this input pin will be pulsed to a "higher-voltage" than the RTIP input pin.
K16	CLKOUT	0	Receive (Recovered) Clock Output: This output pin functions as the Receive or recovered clock signal. All Receive (or recovered) data will output via the RTIP and RRING outputs upon the user- selectable edge of this clock signal.

Pin #	ΝΑΜΕ	TYPE	DESCRIPTION
VDD PIN	S		
G7			3.3V Power Supply Pins
G8			
G9			
G10			
K7			
K8			
K9			
K10			
H14			
N14			
R16	CLKVDD		3.3V Clock Power Supply Pin
T16	JAAVDD		3.3V Jitter Attenuator Analog Power Supply Pin
N13	OVDD		3.3V Output Power Supply Pin
R12	REFAVDD		3.3V Reference Analog Power Supply Pin
T13	RXAVDD		3.3V Receive Analog Power Supply Pin
N11	TXDVDD		3.3V Transmit Digital Power Supply Pin
T12	TXAVDD		3.3V Transmit Analog Power Supply Pin

XRT79L71 REV. P1.0.3 PRELIMINARY

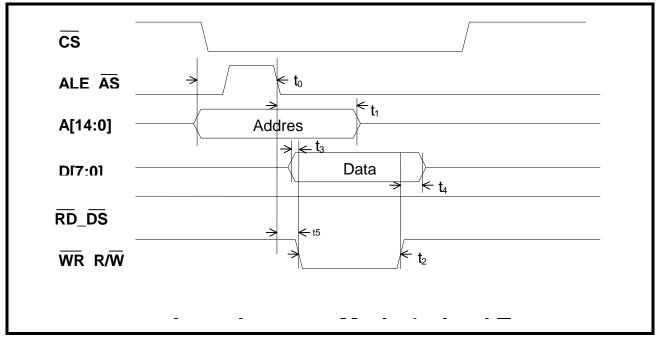
PIN #	NAME	TYPE	DESCRIPTION
GND PIN	S		
H7			Ground Pins
H8			
H9			
H10			
J7			
J8			
J9			
J10			
H15			
N15			
N16	CLKGND		3.3V Clock Ground Pin
T15	JAAGND		3.3V Jitter Attenuator Analog Ground Pin
M13	OGND		3.3V Output Ground Pin
P12	REFAGND		3.3V Reference Analog Ground Pin
T14	RXAGND		3.3V Receive Analog Ground Pin
N10	TXDGND		3.3V Transmit Digital Ground Pin
N12	TXAGND		3.3V Transmit Analog Ground Pin

PIN #	NAME	TYPE	DESCRIPTION			
ΝΟΤ COI	NOT CONNECTED PINS					
R11			No Connect Pin			

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

ELECTRICAL CHARACTERISTICS

TABLE 2: DC ELECTRICAL CHARACTERISTICSS


SYMBOL	PARAMETER	TEST COND	DITION	MIN	MAX	UNITS
VDDQ	I/O Supply Voltage			3.135	3.465	V
VIH	High-Level Input Voltage	VOUT ³ VOH(min)		2.0	VDD + 0.3	V
VIL	Low-Level Input Voltage	VOUT < VOL (max)		-0.3	0.3*VDD	V
VOH	High-Level Output Voltage	VDD = MIN VIN = VIH	IOH = -2mA	1.9		V
VOL	Low-Level Output Voltage	VDD = MIN VIN = VIL	IOL = 2mA		0.6	V
II	Input Current	VDD = MAX VIN = VDD or GND			±15	mA

AC ELECTRICAL CHARACTERISTIC INFORMATION

MICROPROCESSOR INTERFACE TIMING FOR REVISION A SILICON

MICROPROCESSOR INTERFACE TIMING - ASYNCHRONOUS INTEL MODE

Note: The values for "t0" through "t7", in this figure can be found in Table 3.

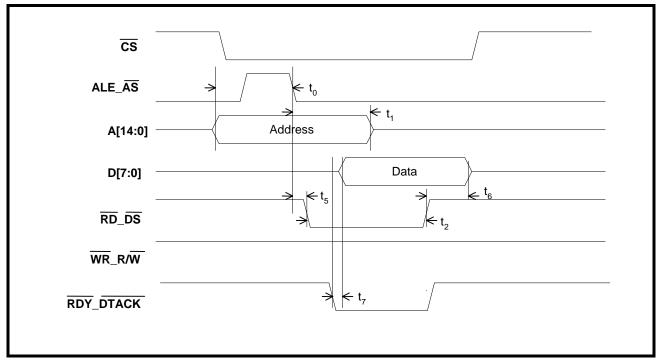


FIGURE 3. ASYNCHRONUS MODE 1 - INTEL TYPE PROGRAMMED I/O TIMING (READ CYCLE)

Note: The values for "t0" through "t7", in this figure can be found in Table 3.

TABLE 3: TIMING INFORMATION FOR THE MICROPROCESSOR INTERFACE, WHEN CONFIGURED TO OPERATE IN THE	
INTEL ASYNCHRONOUS MODE	

TIMING	DESCRIPTION	MIN.	TYP.	MAX.
tO	Address setup time to pALE low	4	-	-
t1	Address hold time from pALE low	4	-	-
t2	pRD_L, pWR_L pulse width	320	-	-
t3	Data setup time to pWR_L low	0	-	-
t4	Data hold time from pWR_L high	0	-	-
t5	pALE low to pRD_L, pWR_L low	5	-	-
t6	Data invalid from pRD_L high	4	-	-
t7	Data valid from pRDY_L low	-	-	0
t8	pRDY inactive from pRD_L inactive	3		9

XP EXAR

PRELIMINARY

XRT79L71 *REV. P1.0.3*

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

MICROPROCESSOR INTERFACE TIMING - ASYNCHRONOUS MOTOROLA (68K) MODE

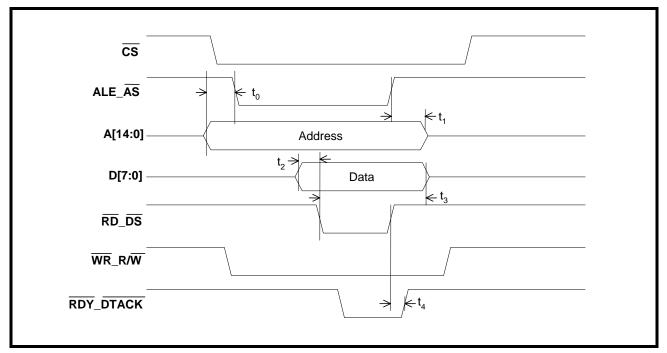
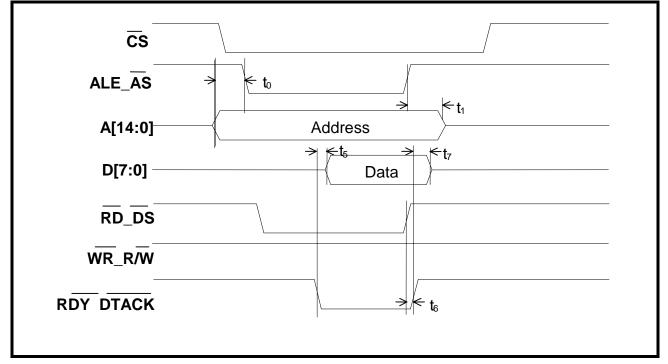



FIGURE 4. ASYNCHRONUS MODE 2 - MOTOROLA 68K PROGRAMMED I/O TIMING (WRITE CYCLE)

NOTE: The values for "t0" through "t7" can be found in Table 4.

NOTE: The values for "t0" through "t7" can be found in Table 4.

TABLE 4: TIMING INFORMATION FOR THE MICROPROCESSOR INTERFACE WHEN CONFIGURED TO OPERATE IN THE MOTOROLA (68K) ASYNCHRONOUS MODE

TIMING	DESCRIPTION	MIN.	Typ.	ΜΑΧ
t0	Address setup time to pALE low	6	-	-
t1	Address hold time to pALE high	6	-	-
t2	Data setup time to pDS_L low	0	-	-
t3	Data hold time to pDS_L low	160	-	-
t4	pDS_L high to pRDY_L high (Write Cycle)	-	-	16
t5	pRDY_L low to Data valid	-	-	15
t6	pDS_L high to pRDY_L high (Read Cycle)	-	-	16
t7	pRDY_L high to Data invalid	3	-	-

MICROPROCESSOR INTERFACE TIMING - POWER PC 403 SYNCHRONOUS MODE

FIGURE 6. SYNCHRONOUS MODE 3 - IBM POWERPC 403 INTERFACE TIMING (WRITE CYCLE)

Note: The value for "t0" through "t12" can be found in Table 5.

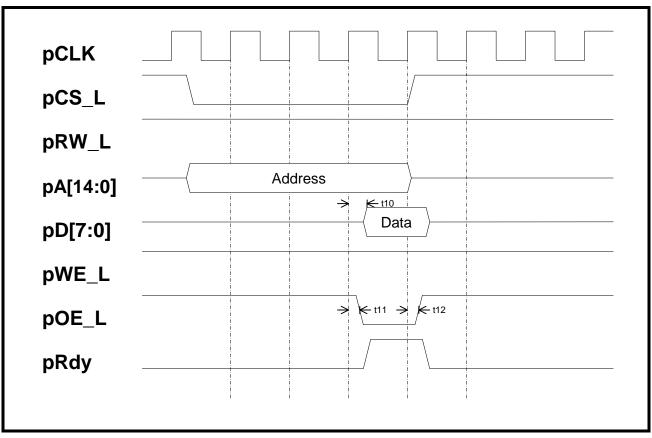


FIGURE 7. SYNCHRONOUS MODE 3 - IBM POWERPC 403 INTERFACE TIMING (READ CYCLE)

Note: The value for "t0" through "t12" can be found in Table 5.

TABLE 5: TIMING INFORMATION FOR THE MICROPROCESSOR INTERFACE, WHEN CONFIGURED TO OPERATE IN THE IBM POWER PC403 MODE

TIMING	DESCRIPTION	Min.	TYP.	MAX.
t0	pCS_L low to PCLK high	4	-	-
t1	pRW_L low to PCLK high	9	-	-
t2	Address setup time to PCLK high	4	-	-
t3	Address hold time from PCLK high	2	-	-
t4	Data setup time (WRITE cycle)	4	-	-
t5	Data hold time (WRITE cycle) from PCLK High	0	-	-
t6	pWE_L low to Clock high	4	-	-
t7	Clock high to pWE_L high from PCLK high	0	-	-
t8	Clock high to pRDY high	4.4	-	10.5
t9	Clock high to pRDY low	4.2	-	10.4
t10	Clock high to Data valid (READ cycle)	-	-	11

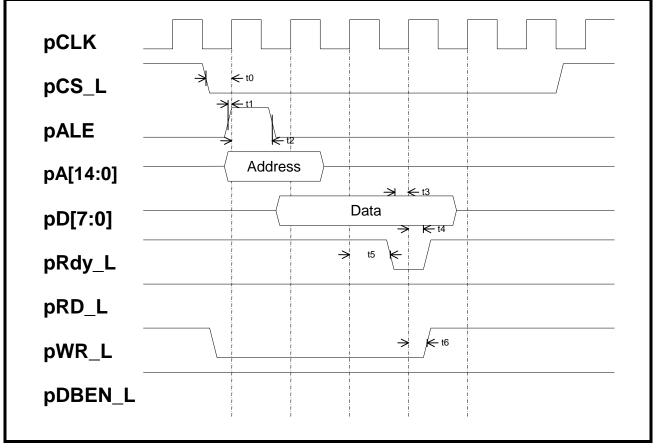

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TABLE 5: TIMING INFORMATION FOR THE MICROPROCESSOR INTERFACE, WHEN CONFIGURED TO OPERATE IN THE IBM POWER PC403 MODE

Test Conditions: TA = 25° C, VCC = $3.3V \pm 5\%$ and $2.5V \pm 5\%$, unless otherwise specified.					
TIMING	DESCRIPTION	Min.	Typ.	MAX.	
t11	Clock high to pOE_L low	11	-	-	
t12	Clock high to pOE_L high	1.5	-	4.1	

MICROPROCESSOR INTERFACE TIMING - IDT3051/52 MODE

FIGURE 8. SYNCHRONOUS MODE 4 - IDT 3051/52 INTERFACE TIMING (WRITE CYCLE)

Note: The values for "t0" through "t11" can be found in Table 6.

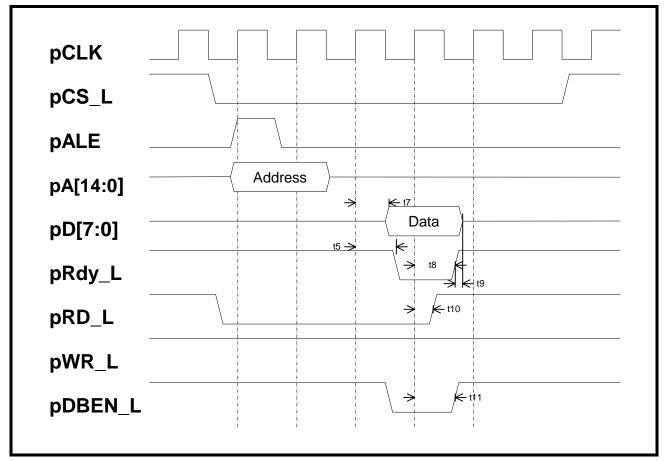


FIGURE 9. SYNCHRONOUS MODE 4 - IDT 3051/52 INTERFACE TIMING (READ CYCLE)

Note: The values for "t0" through "t11" can be found in Table 6.

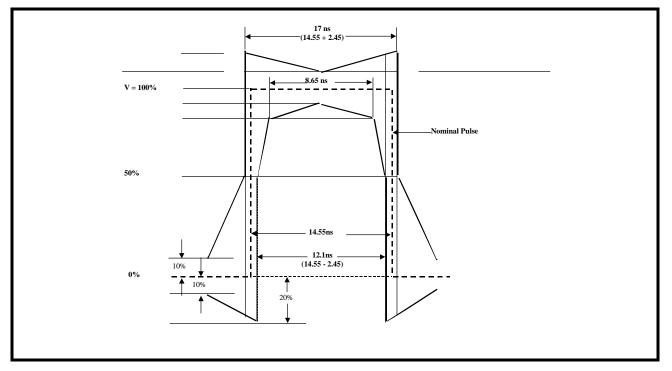
TABLE 6: TIMING INFORMATION FOR THE MICROPROCESSOR INTERFACE, WHEN CONFIGURED TO OPERATE IN THE	Ξ
IBM Power PC403 Mode	

TIMING	DESCRIPTION	Min.	TYP.	MAX.
t0	pCS_L low to Clock high	6	-	-
t1	pALE high to Clock high	1	-	-
t2	Clock high to pALE low	6	-	-
t3	Data setup time (WRITE cycle)	-	-	N/N
t4	Data hold time (WRITE cycle)	-	-	N/N
t5	Clock high to pRDY_L low	-	-	11
t6	Clock high to pWR_L high	6	-	-
t7	Clock high to Data valid (READ cycle)	-	-	N/N
t8	Clock high to pRDY_L high	-	-	11
t9	pRDY_L high to Data invalid	0	-	-

45

 TABLE 6: TIMING INFORMATION FOR THE MICROPROCESSOR INTERFACE, WHEN CONFIGURED TO OPERATE IN THE

 IBM Power PC403 Mode


Test Conditions: TA = 25° C, VCC = $3.3V \pm 5\%$ and $2.5V \pm 5\%$, unless otherwise specified.						
TIMING	DESCRIPTION	Min.	Түр.	MAX.		
t10	Clock high to pRD_L high	11	-	-		
t11	Clock high to pDBEN_L high	10	-	-		

DS3/E3 LIU INTERFACE - LINE SIDE ELECTRICAL CHARACTERISTIC INFORMATION

E3 LINE SIDE PARAMETERS

The XRT79L71 line output at the Transmit Output complies with the pulse template requirements as specified in ITU-T G.703 for 34.368Mbps operation. The pulse mask as specified in ITU-T G.703 for 34.368Mbps is shown below in Figure 10.

TABLE 7: E3 TRANSMITTER LINE SIDE OUTPUT AND RE	ECEIVER LINE SIDE INPUT SPECIFICATIONS
---	--

PARAMETER	MIN	ТҮР	MAX	UNITS				
TRANSMITTER LINE SIDE OUTPUT CHARACTERISTICS								
Transmit Output Pulse Amplitude (Measured at secondary of the transformer)	0.9	1.0	1.1	V _{pk}				
Transmit Output Pulse Amplitude Ratio	0.95	1.00	1.05					
Transmit Output Pulse Width	12.5	14.55	16.5	ns				
Transmit Intrinsic Jitter (without Jitter Attenuator in the Transmit path)		0.01	0.015	UI _{PP}				

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

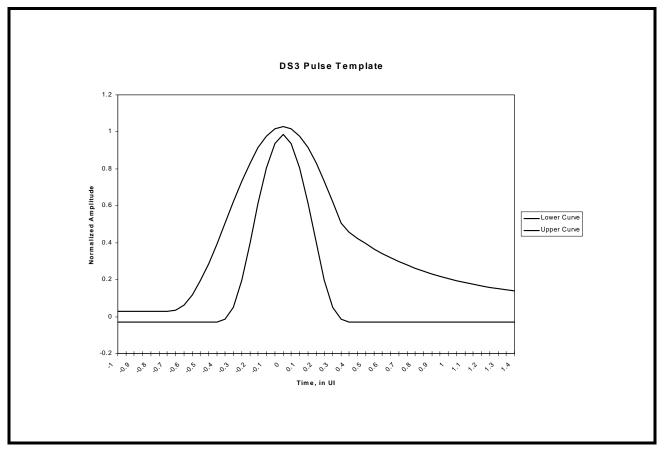

PARAMETER	MIN	ТҮР	MAX	UNITS			
Transmit Intrinsic Jitter (with Jitter Attenuator in the Transmit path)		0.02	0.03	UI _{PP}			
RECEIVER LINE SIDE INPUT CHARACTERISTICS							
Receiver Sensitivity (length of cable)	900	1200		feet			
Interference Margin	-20	-14		dB			
Jitter Tolerance @ Jitter Frequency 800KHz	0.15	0.28		UI _{PP}			
Signal level to Declare Loss of Signal			-35	dB			
Signal Level to Clear Loss of Signal	-15			dB			
Occurence of LOS to LOS Declaration Time	10		255	UI			
Termination of LOS to LOS Clearance Time	10		255	UI			

TABLE 7: E3 TRANSMITTER LINE SIDE OUTPUT AND RECEIVER LINE SIDE INPUT SPECIFICATIONS

DS3 LINE SIDE PARAMETERS

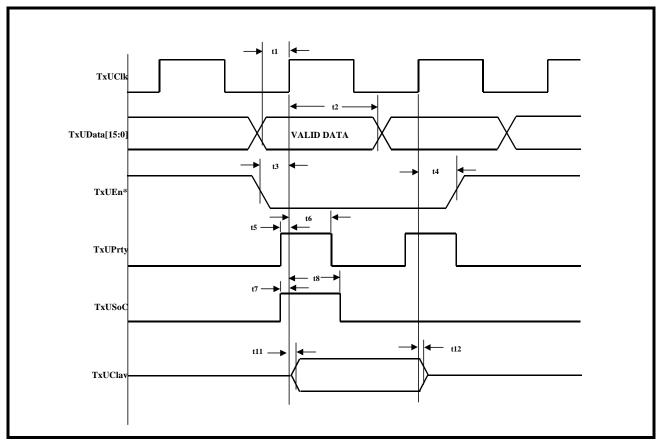
The XRT79L71 will output pulses that comply with the Isolated DSX-3 Pulse Template requirements per Bellcore GR-499-CORE. The pulse mask as specified in Bellcore GR-499-CORE is shown below in Figure 11. Additionally, the Equations that define both the "Upper" and "Lower" curves of the Pulse Template requirement is presented below in Table 8.

TABLE 8: DS3 PULSE MASK EQUATIONS

TIME IN UNIT INTERVALS	NORMALIZED AMPLITUDE							
LOWER CURVE								
-0.85 ≤ T ≤ -0.36	- 0.03							
$-0.36 \le T \le 0.36$	$0.5\left[1 + \sin\left\{\frac{\pi}{2}\left(1 + \frac{T}{0.18}\right)\right\}\right] - 0.03$							
$0.36 \le T \le 1.4$	- 0.03							
UPPE	R CURVE							
-0.85 ≤ T ≤ -0.68	0.03							
$-0.68 \le T \le 0.36$	$0.5 \left[1 + \sin \left\{ \frac{\pi}{2} \left(1 + \frac{T}{0.34} \right) \right\} \right] + 0.03$							
$0.36 \le T \le 1.4$	0.08 + 0.407 x e ^{-1.84[T-0.36]}							

TABLE 9: DS3 TRANSMITTER LINE SIDE OUTPUT AND RECEIVER LINE SIDE INPUT SPECIFICATIONS (GR-499)

PARAMETER	Min	Түр	ΜΑΧ	UNITS			
TRANSMITTER LINE SIDE OUTPUT CHA	RACTERISTICS			•			
Transmit Output Pulse Amplitude (measured with TxLEV = 0)	0.65	0.75	0.85	V _{pk}			
Transmit Output Pulse Amplitude (measured with TxLEV = 1)	0.9	1.0	1.1	V _{pk}			
Transmit Output Pulse Width	10.10	11.18	12.28	ns			
Transmit Output Pulse Amplitude Ratio	0.9	1.0	1.1				
Transmit Intrinsic Jitter (without Jitter Attenuator in Transmit path)		0.01	0.015	UI _{pp}			
Transmit Intrinsic Jitter (withJitter Attenuator in Transmit path)		0.02	0.04	UI _{pp}			
RECEIVER LINE SIDE INPUT CHARA	CTERISTICS		I				
Receiver Sensitivity (length of cable)	900	1100		feet			
Jitter Tolerance @ 400 KHz (Cat II)	0.15			UI _{pp}			
Signal Level to Declare Loss of Signal	Refer to Table 10						
Signal Level to Clear Loss of Signal		Refer to Table 10					


XP EXAR

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TRANSMIT UTOPIA INTERFACE

The purpose of the Transmit UTOPIA Interface block is to function as either a Standard UTOPIA Level 1, 2 or 3 Interface as it accepts ATM cell data from either an ATM Layer or ATM Adaptation Layer Processor, and routes this ATM cell data to the TxFIFO within the XRT79L71.

TABLE 10: TIMING INFORMATION FOR THE TRANSMIT UTOPIA INTERFACE BLOCK

SYMBOL	PARAMETER	Min.	Түр	MAX.	UNITS
t1	TxUData[15:0] to rising edge of TxUClk Setup Time	4			ns
t2	TxUData[15:0] Hold Time from rising edge of TxUClk	1			ns
t3	TxUTOPIA Write Enable Setup Time to rising edge of TxUClk	4			ns
t4	TxUTOPIA Write Enable Hold Time from rising edge of TxUClk	1			ns
t5	TxUPrty Setup Time to rising edge of TxUClk	4			ns
t6	TxUPrty Hold Time from rising edge of TxUClk	1			ns
t7	TxUSoC Setup Time to rising edge of TxUClk	4			ns
t8	TxUSoC Hold Time from rising edge of TxUClk	1			ns
t9	TxUAddr[4:0] Setup Time to rising edge of TxUClk	4			ns
t10	TxUAddr[4:0] Hold Time from rising edge of TxUClk	1			ns

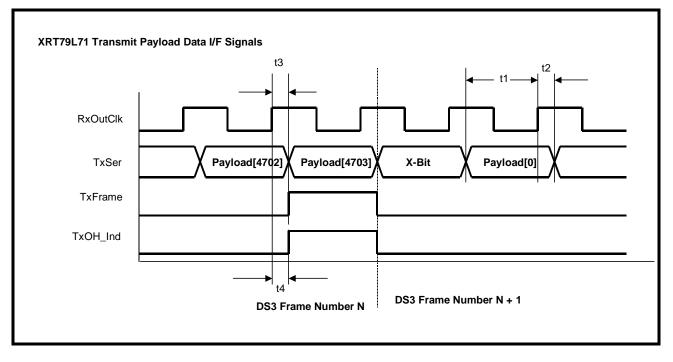
1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TABLE 10: TIMING INFORMATION FOR THE TRANSMIT UTOPIA INTERFACE BLOCK

SYMBOL	PARAMETER	MIN.	Түр	MAX.	UNITS
t11	TxUClav signal valid (not Hi-Z) from first TxUClk rising edge of valid and correct TxUAddr[4:0]	3.6		9.7	ns
t12	TxUClav signal Hi-Z from first TxUClk rising edge of different TxUAddr[4:0]	3.6		9.7	ns

TRANSMIT PAYLOAD DATA INPUT INTERFACE

TRANSMIT PAYLOAD DATA INPUT INTERFACE - TIMING REQUIREMENTS


TABLE 11: TIMING INFORMATION FO RTHE TRNASMIT PAYLOAD DATA INPUT INTERFACE BLOCK

YMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS	CONDITIONS
ansmit	Payload Data Input Interface - Loop-Timed/Serial Mo	ode (See	Figure 1	3)		
t ₁	Payload data (TxSer) set-up time to rising edge of RxOutClk	12			ns	
t ₂	Payload data (TxSer) hold time, from rising edge of RxOutClk	0			ns	
t ₃	RxOutClk to TxFrame output delay			5	ns	
t ₄	RxOutClk to TxOHInd output delay			6	ns	
ansmit	Payload Data Input Interface - Local Timed/Serial Me	ode (See	e Figure 1	14)	I	
t ₅	Payload data (TxSer) set-up time to rising edge of TxInClk	4			ns	
t ₆	Payload data (TxSer) hold time, from rising edge of TxInClk	0			ns	
t ₇	TxFrameRef set-up time to rising edge of TxInClk	2			ns	Framer IC is Frame Slave
t ₈	TxFrameRef hold-time, from rising edge of TxInClk	0			ns	Frame IC is Frame Slave
t ₉	TxInClk to TxOHInd output delay			15	ns	
t ₁₀	TxInClk to TxFrame output delay			13	ns	
ansmit	Payload Data Input Interface - Looped-Timed/Nibble	Mode (See Figu	re 15)		I
t ₁₁	TxNib set-up time to third rising edge of RxOutClk	30			ns	
t ₁₂	Payload Nibble hold time, from latching edge of RxOutClk	30			ns	
t ₁₃	TxNibClk to TxNibFrame output delay			25	ns	DS3 Applicatio
				31	ns	E3 Application
t _{13A}	Max Delay of Rising Edge of TxNibClk to Data Valid on TxNib[3:0]			20	ns	DS3 Applicatio
				27	ns	E3 Application

Test Conditions: TA = 25°C, VDD = 3.3V ± 5% unless otherwise specified SYMBOL TYP. MAX. UNITS CONDITIONS PARAMETER MIN. TxNib set-up time to third rising edge of TxInClk 20 **DS3** Applications t₁₄ ns 27 E3 Applications ns Payload Nibble hold time, from latching edge of 0 t₁₅ ns TxInClk TxFrameRef set-up time, to latching edge of TxInClk **DS3** Applications 20 t₁₆ ns 27 E3 Applications ns Framer IC is Frame Slave Framer IC is TxFrameRef hold time, from latching edge of TxNib-0 ns t₁₇ Frame Slave Clk TxNibClk to TxNibFrame output delay time 20 25 **DS3** Applications t₁₈ ns 31 E3 Applications ns

TABLE 11: TIMING INFORMATION FO RTHE TRNASMIT PAYLOAD DATA INPUT INTERFACE BLOCK

FIGURE 13. TIMING DIAGRAM FOR THE TRANSMIT PAYLOAD DATA INPUT INTERFACE WHEN THE XRT79L71 IS OPER-ATING IN BOTH THE DS3 AND LOOP-TIMING MODES

FIGURE 14. TIMING DIAGRAM FOR THE TRANSMIT PAYLOAD DATA INPUT INTERFACE WHEN THE XRT79L71 IS OPER-ATING IN BOTH THE DS3 AND LOCAL-TIMING MODES

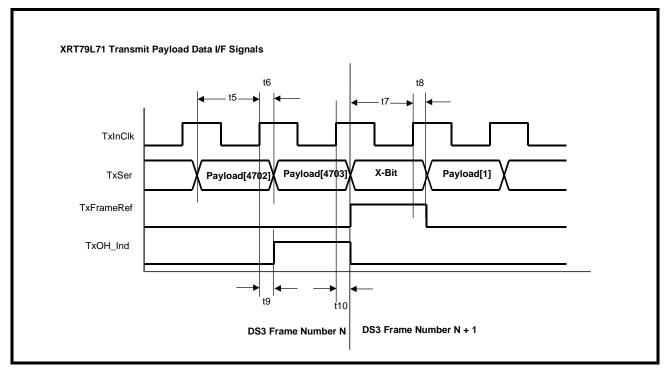


FIGURE 15. TIMING DIAGRAM FOR THE TRANSMIT PAYLOAD DATA INPUT INTERFACE WHEN THE XRT79L71 IS OPER-ATING IN BOTH THE DS3/NIBBLE-PARALLEL AND LOOP-TIMING MODES

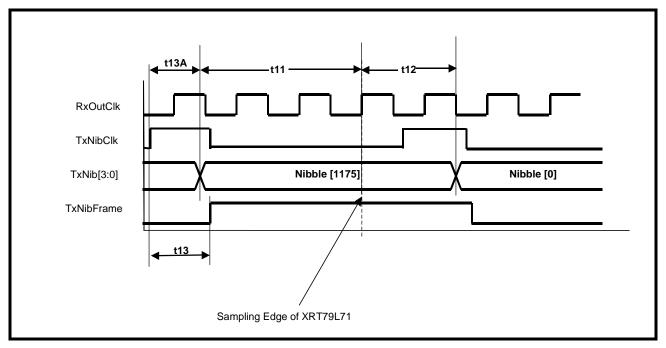
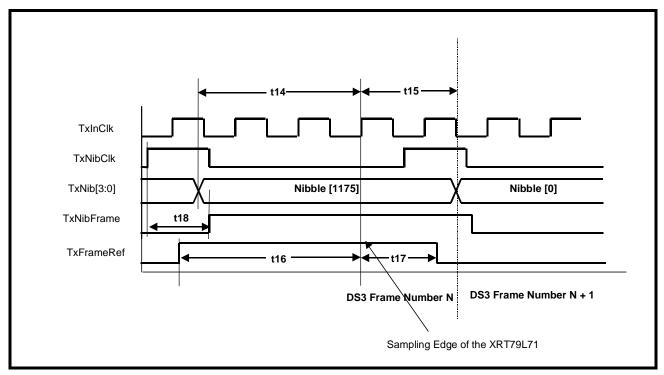
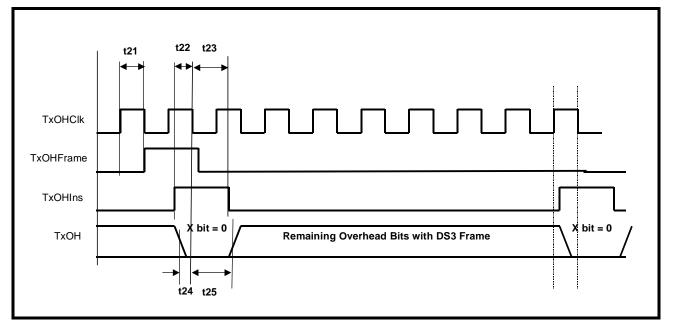



FIGURE 16. TIMING DIAGRAM FOR THE TRANSMIT PAYLOAD DATA INPUT INTERFACE WHEN THE XRT79L71 IS OPER-ATING IN BOTH THE DS3/NIBBLE-PARALLEL AND LOCAL-TIMING MODES

TRANSMIT OVERHEAD DATA INPUT INTERFACE

TRANSMIT OVERHEAD DATA INPUT INTERFACE - TIMING REQUIREMENTS

TABLE 12: TIMING INFORMATION FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE BLOCK


SYMBOL	PARAMETER	MIN.	TYP.	Max.	UNITS	CONDITIONS
Fransmit (Overhead Input Interface Timing - Method 1 (Figure	e 17)				
t ₂₁	TxOHClk to TxOHFrame output delay			111	ns	DS3 Applications
				0	ns	E3, ITU-T G.832 Applications
				0	ns	E3, ITU-T G.751 Applications
t ₂₂	TxOHIns set-up time, to falling edge of TxOHClk	194			ns	DS3 Applications
		305			ns	E3, ITU-T G.832 Applications
		17			ns	E3, ITU-T G.751 Applications
t ₂₃	TxOHIns hold time, from falling edge of TxOHClk	48			ns	DS3 Applications
		110			ns	E3, ITU-T G.832 Applications
		7			ns	E3, ITU-T G.751 Applications
t ₂₄	TxOH data set-up time, to falling edge of TxOHClk	194			ns	DS3 Applications
		305			ns	E3, ITU-T G.832 Applications
		17			ns	E3, ITU-T G.751 Applications
t ₂₅	TxOH data hold time, from falling edge of TxOHClk	48			ns	DS3 Applications
		110			ns	E3, ITU-T G.832 Applications
		7			ns	E3, ITU-T G.751 Applications

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

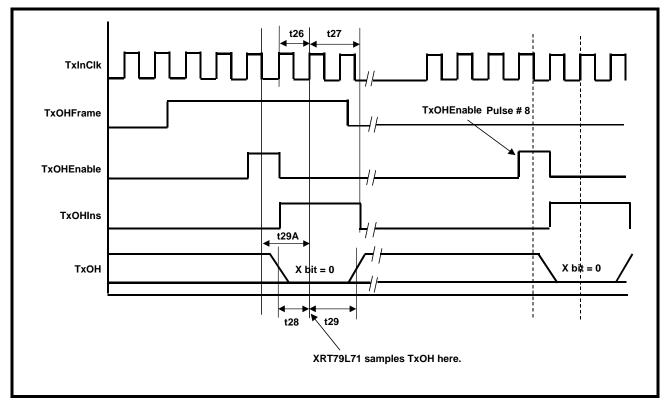
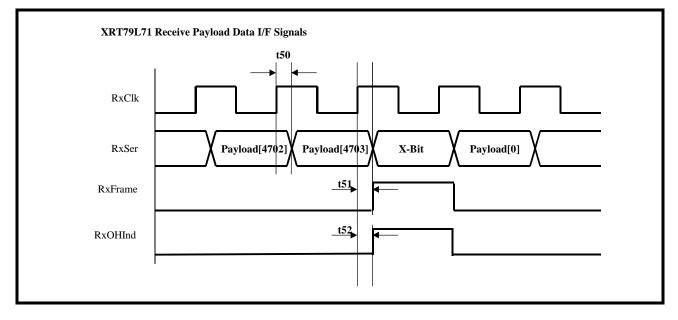
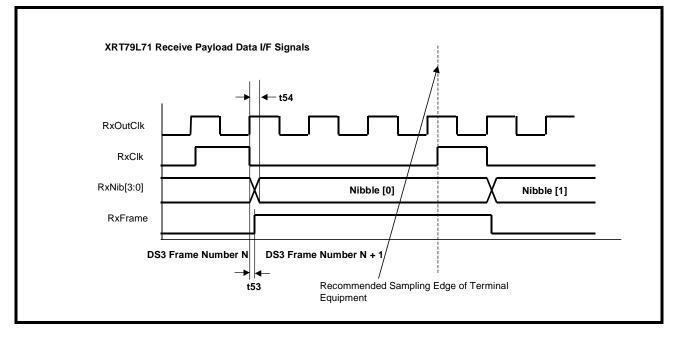

Test Cond	itions: TA = 25°C, VDD = $3.3V \pm 5\%$ unless otherw	ise speci	fied			
SYMBOL	PARAMETER	MIN.	Typ.	MAX.	Units	CONDITIONS
t ₂₆	TXOHIns to TxInClk (rising edge) set-up Time	254			ns	DS3 Applications
		72			ns	E3, ITU-T G.832 Applications
		15			ns	E3, ITU-T G.751 Applications
t ₂₇	TxInClk clock (rising edge) to TxOHIns hold-time	0			ns	DS3 Applications
		0			ns	E3, ITU-T G.832 Applications
		0			ns	E3, ITU-T G.751 Applications
t ₂₈	TXOH to TxInClk (rising edge) set-up Time	254			ns	DS3 Applications
		72			ns	E3, ITU-T G.832 Applications
		15			ns	E3, ITU-T G.751 Applications
t ₂₉	TxInClk clock (rising edge) to TxOH hold-time	0			ns	DS3 Applications
		0			ns	E3, ITU-T G.832 Applications
		0			ns	E3, ITU-T G.751 Applications
t _{29A}	TxOHEnable to TxOHIns/TxOH Delay	1			ns	

TABLE 12: TIMING INFORMATION FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE BLOCK

FIGURE 17. TIMING DIAGRAM FOR THE TRANSMIT OVERHEAD DATA INPUT INTERFACE (METHOD 1 ACCESS)


RECEIVE PAYLOAD DATA OUTPUT INTERFACE

RECEIVE PAYLOAD DATA OUTPUT INTERFACE - TIMING REQUIREMENTS


TABLE 13: TIMING INFORMATION FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE BLOCK

Test Conditions: TA = 25°C, VDD = $3.3V \pm 5\%$ unless otherwise specified									
SYMBOL	PARAMETER	Min.	Typ.	Max.	Units	CONDITIONS			
Receive Payload Data Output Interface Timing - Serial Mode Operation (See Figure 19)									
t ₅₀	Rising edge of RxClk to Payload Data (RxSer) out- put delay			13	ns	DS3 Applications			
				16	ns	E3 Applications			
t ₅₁	Rising edge of RxClk to RxFrame output delay			13	ns	DS3 Applications			
				16	ns	E3 Applications			
t ₅₂	Rising edge of RxClk to RxOHInd output delay.			13	ns	DS3 Applications			
				16	ns	E3 Applications			
Receive Payload Data Output Interface Timing - Nibble Mode Operation (see Figure 20)									
t ₅₃	Falling edge of RxClk to rising edge of RxFrame output delay			2.1	ns				
t ₅₄	Falling edge of RxClk to rising edge of RxNib[3:0] output delay			2	ns				

FIGURE 19. TIMING DIAGRAM FOR THE RECEIVE PAYLOAD DATA OUTPUT INTERFACE (SERIAL MODE)

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE OVERHEAD DATA OUTPUT INTERFACE

RECEIVE OVERHEAD DATA OUTPUT INTERFACE - TIMING REQUIREMENTS

Table 13, Timing Information for the Receive Overhead Data Output Interface Block

AC ELECTRICAL CHARACTERISTICS (CONT.)

Test Conditions: TA = 25°C, VDD = $3.3V \pm 5\%$ unless otherwise specified										
SYMBOL	PARAMETER	Min.	Typ.	Max.	Units	CONDITIONS				
Receive Overhead Data Output Interface Timing - Method 1 - Using RxOHClk (see Figure 17)										
t _{59A}	Falling edge of RxOHClk to RxOHFrame output	20		23	ns	DS3 Applications				
		25		0	ns	E3 Applications				
t _{59B}	Falling edge of RxOHClk to RxOH output delay	20		23	ns	DS3 Applications				
		25		0	ns	E3 Applications				
Receive Overhead Data Output Interface Timing - Method 2 - Using RxOHEnable (see Figure 18)										
t ₆₀	Rising edge of RxOutClk to rising edge of RxOHEnable delay.	2		9.4	ns					
t _{60A}	Rising edge of RxOHFrame to rising edge of RxOHEnable delay			88	ns	DS3 Applications				
				224	ns	E3, ITU-T G.832 Applications				
				28	ns	E3, ITU-T G.751 Applications				
t _{60B}	RxOH Data Valid to rising edge of RxOHEnable delay			88	ns	DS3 Applications				
				85	ns	E3, ITU-T G.832 Applications				
				28	ns	E3, ITU-T G.751 Applications				

FIGURE 21. TIMING DIAGRAM FOR THE RECEIVE OVERHEAD DATA OUTPUT INTERFACE (METHOD 1 - USING RXO-HCLK)

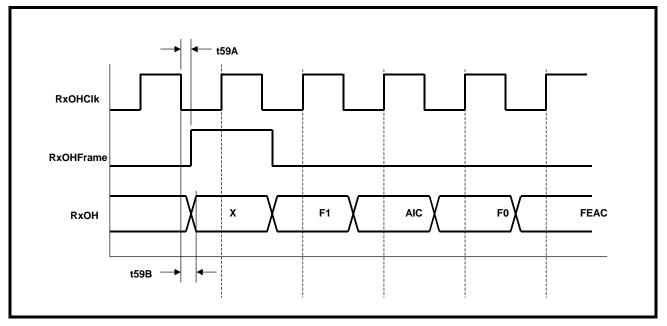
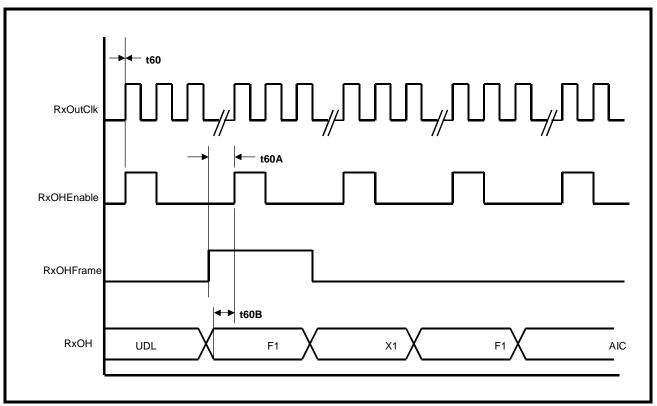
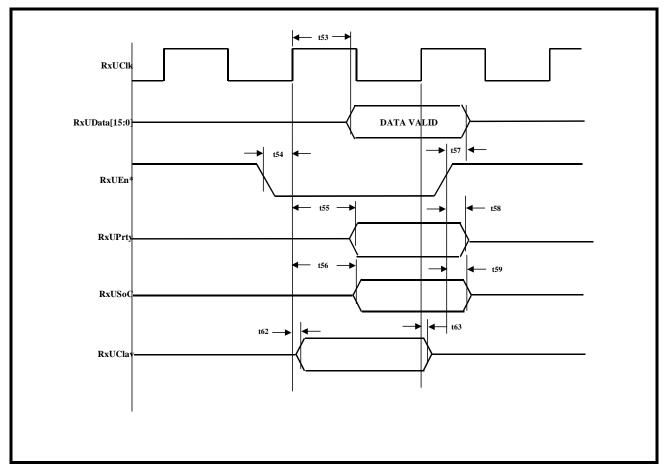



FIGURE 22. TIMING DIAGRAM FOR THE RECEIVE OVERHEAD DATA OUTPUT INTERFACE (METHOD 2 - USING RXO-HENABLE)

XP EXAR

PRELIMINARY

XRT79L71 *REV. P1.0.3*


1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE UTOPIA INTERFACE

RECEIVE UTOPIA INTERFACE

The purpose of the Receive UTOPIA Interface block is to function as either a Standard UTOPIA Level 1, 2 or 3 Interface as it outputs ATM cell data to either an ATM Layer or ATM Adaptation Layer Processor.

TABLE 14: TIMING INFORMATION FOR THE RECEIVE UTOPIA INTERFACE BLOCK

Symbol	PARAMETER	Min.	Түр	MAX.	UNITS
	Receive UTOPIA Interface Block (See Figure 22)				
t53	Delay time from rising edge of RxUClk to Data Valid at RxU- Data[15:0]	2.7		12	ns
t54	Rx UTOPIA Read Enable setup time to rising edge of RxUClk	4			ns
t55	Delay time from rising edge of RxUClk to valid RxUPrty bit	2.9		9.8	ns
t56	Delay time from rising edge of RxUClk to valid RxUSoC bit	3.5		9.7	ns
t57	Delay time from Read Enable false to Data Bus being tri-stated	1	11.5	16	ns
t58	Delay time from Read Enable false to RxUPrty bit being tri- stated	1	12	16	ns

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TABLE 14: TIMING INFORMATION FOR THE RECEIVE UTOPIA INTERFACE BLOCK

Symbol	PARAMETER	Min.	Түр	MAX.	Units
t59	Delay time from Read Enable false to RxUSoC bit being tri- stated	1	11.5	16	ns
t61	RxUAddr[4:0] Hold Time from rising edge of RxUClk	1			ns
t62	RxUClav signal valid (not Hi-Z) from first RxUClk rising edge of valid and correct RxUAddr[4:0]	2.5		8.6	ns
t63	RxUClav signal Hi-Z from first RxUClk rising edge of different RxUAddr[4:0].	2.5		8.6	ns
t58	Delay time from Read Enable false to RxUPrty bit being tri- stated	1	12	16	ns
t59	Delay time from Read Enable false to RxUSoC bit being tri- stated	1	11.5	16	ns
t60	RxUAddr[4:0] Setup Time to rising edge of RxUClk	4			ns
t61	RxUAddr[4:0] Hold Time from rising edge of RxUClk	1			ns
t62	RxUClav signal valid (not Hi-Z) from first RxUClk rising edge of valid and correct RxUAddr[4:0]	1	7.8	16	ns
t63	RxUClav signal Hi-Z from first RxUClk rising edge of different RxUAddr[4:0].	1	9.2	16	ns

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

REGISTER MAP OF THE XRT79L71

COMMONCONTROL REGISTERS OF THE XRT79L71

Address Location	REGISTER NAME	Түре	DEFAUL VALUE			
COMMON CONTROL REGISTERS						
0x0100	Operation Control Register - Byte 3	R/W	0x00			
0x0101	Operation Control Register - Byte 2	R/W	0x00			
0x0102	Operation Control Register - Byte 1	R/W	0x00			
0x0103	Operation Control Register - Byte 0	R/W	0x00			
0x0104	Device ID Register	R/W	?x??			
0x0105	Revision ID Register	R/W	?x??			
0x0106 - 0x0111	Reserved					
0x0112	Operation Block Interrupt Status Register - Byte 1	RO	0x00			
0x0113	Operation Block Interrupt Status Register - Byte 0	RO	0x00			
0x0114 - 0x0115	Reserved					
0x0116	Operation Block Interrupt Enable Register - Byte 1	R/W	0x00			
0x0117	Operation Block Interrupt Enable Register - Byte 0	R/W	0x00			
0x0118	Reserved					
0x0119	Channel Interrupt Indicator - Receive Cell Processor/PPP Processor Block	R/O	0x00			
0x011A - 0x011C	Reserved					
0x011D	Channel Interrupt Indicator - LIU/Jitter Attenuator Block	R/O	0x00			
0x011E - 0x0120	Reserved					
0x0121	Channel Interrupt Indicator - Transmit Cell Processor/PPP Processor Block	R/O	0x00			
0x0122 - 0x0126	Reserved					
0x0127	Channel Interrupt Indicator - DS3/E3 Framer Block - Byte 0	R/O	0x00			
0x0128 - 0x0146	Reserved					
0x0147	Operation General Purpose Input/Output Register	R/W	0x00			
0x0148 - 0x014A	Reserved					
0x014B	Operation General Purpose Input/Output Direction Register	R/W	0x00			
0x014C - 0x04FF	Reserved					
0x0501	Receive POS-PHY Control Register - Byte 1	R/W	0x00			
0x0502	Receive POS-PHY Control Register - Byte 0	R/W	0x00			
0x0503	Receive UTOPIA Control Register	R/W	0x00			
0x0504 - 0x0512	Reserved					

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

COMMONCONTROL REGISTERS OF THE XRT79L71

Address Location	REGISTER NAME	Түре	Defaul Value
	COMMON CONTROL REGISTERS		
0x0513	Receive UTOPIA Port Address Register		
0x0514 - 0x0516	Reserved		
0x0517	Receive UTOPIA Port Number Register	R/W	0x00
0x0518 - 0x0580	Reserved		
0x0581	Transmit POS-PHY Control Register - Byte 1	R/W	0x00
0x0582	Transmit POS-PHY Control Register - Byte 0	R/W	0x00
0x0583	Transmit UTOPIA Control Register	R/W	0x00
0x0584 - 0x0592	Reserved		
0x0593	Transmit UTOPIA Port Address Register	R/W	0x00
0x0594 - 0x0596	Reserved		
0x0597	Transmit UTOPIA Port Number Register	R/W	0x00

Address Location	REGISTER NAME	Түре	DEFAULT VALUE				
	CHANNEL CONTROL REGISTERS						
	CLEAR-CHANNEL FRAMER BLOCK REGISTERS						
0x1100	Operating Mode Register	R/W	0x2B				
0x1101	I/O Control Register	R/W	0xC0				
0x1102 - 0x1103	Reserved						
0x1104	Block Interrupt Enable Register	R/W	0x00				
0x1105	Block Interrupt Status Register	R/O	0x00				
0x1106 - 0x110B	Reserved						
0x110C	DS3 Test Register	R/W	0x00				
0x110D	Payload HDLC Control Register	R/W	0x00				
0x110E - 0x110F	Reserved						
0x1110	RxDS3 Configuration and Status RegisterRxE3 Configuration and Status Register # 1 (G.832 & G.751)	R/O	0x12				
0x1111	RxDS3 Status RegisterRxE3 Configuration and Status Register # 2 (G.832 & G.751)	R/O	0x00				
0x1112	RxDS3 Interrupt Enable RegisterRxE3 Interrupt Enable Register 1 (G.832 & G751)	R/W	0x00				
0x1113	RxDS3 Interrupt Status RegisterRxE3 Interrupt Enable Register # 2 (G.832 & G.751)	RUR	0x00				

XRT79L71 REV. P1.0.3

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

Address Location	REGISTER NAME	Түре	DEFAULT VALUE
	CHANNEL CONTROL REGISTERS		
	CLEAR-CHANNEL FRAMER BLOCK REGISTERS		
0x1114	RxDS3 Sync Detect RegisterRxE3 Interrupt Status Register # 1 (G.832 & G.751)	R/W & RUR	0x00
0x1115	RxE3 Interrupt Status Register # 2 (G.832 & G.751)	RUR	0x00
0x1116	Reserved		
0x1117	RxDS3 FEAC Interrupt Enable and Status Register	R/W & RUR	0x00
0x1118	RxE3 LAPD Control Register	R/W & RUR	0x00
0x1119	RxLAPD Status Register	R/O	0x00
0x111A	RxE3 NR Byte Register (G.832)RxE3 Service Bits Register (G.751)	R/O	0x00
0x111B	RxE3 GC Byte Register (G.832)	R/O	0x00
0x111C	RxE3 TTB Register # 0 (G.832)	R/O	0x00
0x111D	RxE3 TTB Register # 1 (G.832)	R/O	0x00
0x111E	RxE3 TTB Register # 2 (G.832)	R/O	0x00
0x111F	RxE3 TTB Register # 3 (G.832)	R/O	0x00
0x1120	RxE3 TTB Register # 4 (G.832)	R/O	0x00
0x1121	RxE3 TTB Register # 5 (G.832)	R/O	0x00
0x1122	RxE3 TTB Register # 6 (G.832)	R/O	0x00
0x1123	RxE3 TTB Register # 7 (G.832)	R/O	0x00
0x1124	RxE3 TTB Register # 8 (G.832)	R/O	0x00
0x1125	RxE3 TTB Register # 9 (G.832)	R/O	0x00
0x1126	RxE3 TTB Register # 10 (G.832)	R/O	0x00
0x1127	RxE3 TTB Register # 11 (G.832)	R/O	0x00
0x1128	RxE3 TTB Register # 12 (G.832)	R/O	0x00
0x1129	RxE3 TTB Register # 13 (G.832)	R/O	0x00
0x112A	RxE3 TTB Register # 14 (G.832)	R/O	0x00
0x112B	RxE3 TTB Register # 15 (G.832)	R/O	0x00
0x112C	RxE3 SSM Register (G.832)	R/O	0x00
0x112D - 0x112F	Reserved		
0x1130	Transmit DS3 Configuration RegisterTransmit E3 Configuration Register	R/W	0x07
0x1131	TxDS3 FEAC Configuration and Status Register	RUR & R/W	0x00

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

Address Location	REGISTER NAME	Түре	DEFAULT VALUE
	CHANNEL CONTROL REGISTERS		
	CLEAR-CHANNEL FRAMER BLOCK REGISTERS		
0x1132	TxDS3 FEAC Register	R/W	0x7E
0x1133	TxLAPD Configuration Register	R/O & R/ W	0x08
0x1134	TxLAPD Status and Interrupt Register	RUR & R/W	0x00
0x1135	TxDS3 M-Bit Mask RegisterTxE3 GC Byte Register (G.832)TxE3 Service Bits Register (G.751)	R/W	0x00
0x1136	TxDS3 F-Bit Mask Register # 1TxE3 MA Byte Register (G.832)	R/W	0x00
0x1137	TxDS3 F-Bit Mask Register # 2TxE3 NR Byte Register (G.832)	R/W	0x00
0x1138	TxDS3 F-Bit Mask Register # 3TxTTB Register # 0 (G.832)	R/W	0x00
0x1139	TxTTB Register # 1 (G.832)	R/W	0x00
0x113A	TxTTB Register # 2 (G.832)	R/W	0x00
0x113B	TxTTB Register # 3 (G.832)	R/W	0x00
0x113C	TxTTB Register # 4 (G.832)	R/W	0x00
0x113D	TxTTB Register # 5 (G.832)	R/W	0x00
0x113E	TxTTB Register # 6 (G.832)	R/W	0x00
0x113F	TxTTB Register # 7 (G.832)	R/W	0x00
0x1140	TxTTB Register # 8 (G.832)	R/W	0x00
0x1141	TxTTB Register # 9 (G.832)	R/W	0x00
0x1142	TxTTB Register # 10 (G.832)	R/W	0x00
0x1143	TxTTB Register # 11 (G.832)	R/W	0x00
0x1144	TxTTB Register # 12 (G.832)	R/W	0x00
0x1145	TxTTB Register # 13 (G.832)	R/W	0x00
0x1146	TxTTB Register # 14 (G.832)	R/W	0x00
0x1147	TxTTB Register # 15 (G.832)	R/W	0x00
0x1148	TxE3 FA1 Error Mask Register (G.832)TxE3 FAS Error Mask Register # 1 (G.751)	R/W	0x00
0x1149	TxE3 FA2 Error Mask Register (G.832)TxE3 FAS Error Mask Register # 2 (G.751)	R/W	0x00
0x114A	TxE3 BIP-8 Error Mask Register (G.832)TxE3 BIP-4 Error Mask Register (G.751)	R/W	0x00
0x114B	TxE3 SSM Register	R/W	0x00
0x114C - 0x114F	Reserved	R/O	0x00

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

Address Location	REGISTER NAME	Түре	DEFAULT VALUE
	CHANNEL CONTROL REGISTERS		
	CLEAR-CHANNEL FRAMER BLOCK REGISTERS		
0x1150	PMON Line Code Violation Count Register - MSB	RUR	0x00
0x1151	PMON Line Code Violation Count Register - LSB	RUR	0x00
0x1152	PMON Framing Bit/Byte Error Count Register - MSB	RUR	0x00
0x1153	PMON Framing Bit/Byte Error Count Register - LSB	RUR	0x00
0x1154	PMON P-Bit/BIP-8/BIP-4 Error Count Register - MSB	RUR	0x00
0x1155	PMON P-Bit/BIP-8/BIP-4 Error Count Register - LSB	RUR	0x00
0x1156	PMON FEBE Event Count Register - MSB	RUR	0x00
0x1157	PMON FEBE Event Count Register - LSB	RUR	0x00
0x1158	PMON CP-Bit Error Count Register - MSB	RUR	0x00
0x1159	PMON CP-Bit Error Count Register - LSB	RUR	0x00
0x115A	PMON PLCP BIP-8 Error Count Register - MSB	RUR	0x00
0x115B	PMON PLCP BIP-8 Error Count Register - LSB	RUR	0x00
0x115C	PMON PLCP Framing Byte Error Count Register - MSB	RUR	0x00
0x115D	PMON PLCP Framing Byte Error Count Register - LSB	RUR	0x00
0x115E	PMON PLCP FEBE Event Count Register - MSB	RUR	0x00
0x115F	PMON PLCP FEBE Event Count Register - LSB	RUR	0x00
0x1160 - 0x1167	Reserved		
0x1168	PRBS Error Count Register - MSB	RUR	0x00
0x1169	PRBS Error Count Register - LSB	RUR	0x00
0x116A - 0x116C	Reserved		
0x116D	One Second Error Status Register	R/O	0x00
0x116E	One Second Accumulator - LCV Count Register - MSB	R/O	0x00
0x116F	One Second Accumulator - LCV Count Register - LSB	R/O	0x00
0x1170	One Second Accumulator - P-Bit/BIP-8/BIP-4 Error Count Register - MSB	R/O	0x00
0x1171	One Second Accumulator - P-Bit/BIP-8/BIP-4 Error Count Register - LSB	R/O	0x00
0x1172	One Second Accumulator - CP Bit Error Count Register - MSB	R/O	0x00
0x1173	One Second Accumulator - CP Bit Error Count Register - LSB	R/O	0x00
0x1174 - 0x117F	Reserved		
0x1180	Line Interface Drive Register	R/W	0x08
0x1181	Line Interface Scan Register	R/O	0x00

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

CLEAR-CHANNEL FRAMER BLOCK REGISTERS

Address Location	REGISTER NAME	Түре	DEFAULT VALUE
	CHANNEL CONTROL REGISTERS	-	
	CLEAR-CHANNEL FRAMER BLOCK REGISTERS		
0x1182 - 0x118F	Reserved		
0x1190	RxPLCP Configuration & Status Register	R/O & R/ W	0x06
0x1191	RxPLCP Interrupt Enable Register	R/W	0x00
0x1192	RxPLCP Interrupt Status Register	RUR	0x00
0x1193 - 0x1197	Reserved		
0x1198	TxPLCP A1 Byte Error Mask Register	R/W	0x00
0x1199	TxPLCP A2 Byte Error Mask Register	R/W	0x00
0x119A	TxPLCP BIP-8 Byte Error Mask Register	R/W	0x00
0x119B	TxPLCP G1 Byte Register	R/W	0x00
0x119C - 0x12FF	Reserved		

LIU/JITTER ATTENUATOR CONTROL REGISTERS

Address Location	REGISTER NAME	Түре	DEFAULT VALUE
	CHANNEL CONTROL REGISTERS		
	LIU/JITTER ATTENUATOR CONTROL REGISTERS		
0x1300	LIU Transmit APS/Redundancy Control Register	R/W	0x00
0x1301	LIU Interrupt Enable Register	R/W	0x00
0x1302	LIU Interrupt Status Register	RUR	0x00
0x1303	LIU Alarm Status Register	R/O	0x00
0x1304	LIU Transmit Control Register	R/W	0x00
0x1305	LIU Receive Control Register	R/W	0x00
0x1306	LIU Channel Control Register	R/W	0x00
0x1307	Jitter Attenuator Control Register	R/W	0x00
0x1308	LIU Receive APS/Redundancy Control Register	R/W	0x00

XPEXAR

XRT79L71 *REV. P1.0.3*

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

Address Location	REGISTER NAME	Түре	DEFAULT VALUE
	CHANNEL CONTROL REGISTERS		
RECEI	VE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REG	ISTERS	
0x1700	Receive ATM Control - Byte 3	R/W	0x00
0x1701	Receive ATM Control - Byte 2	R/W	0x00
0x1702	Receive ATM Control - Byte 1	R/W	0x00
0x1703	Receive ATM Control - Byte 0Receive PPP Control Register	R/W	0x00
0x1704 - 0x1706	Reserved		
0x1707	Receive ATM Status Register	R/O	0x00
0x1708 - 0x1709	Reserved		
0x170A	Receive ATM Interrupt Status Register -Byte 1	RUR	0x00
0x170B	Receive ATM Interrupt Status Register - Byte 0Receive PPP Interrupt Status Register	RUR	0x00
0x170C - 0x170D	Reserved		
0x170E	Receive ATM Interrupt Enable Register - Byte 1	R/W	0x00
0x170F	Receive ATM Interrupt Enable Register - Byte 0Receive PPP Interrupt Enable Register	R/W	0x00
0x1710	Receive PPP Good Packet Count Register - Byte 3	RUR	0x00
0x1711	Receive PPP Good Packet Count Register - Byte 2	RUR	0x00
0x1712	Receive PPP Good Packet Count Register - Byte 1	RUR	0x00
0x1713	Receive ATM Cell Insertion/Extraction Memory Control RegisterReceive PPP Good Packet Count Register - Byte 0	R/O & R/ W	0x00
0x1714	Receive ATM Cell Insertion/Extraction Memory Data Register - Byte 3Receive PPP FCS Error Count Register - Byte 3	R/O & R/ W	0x00
0x1715	Receive ATM Cell Insertion/Extraction Memory Data Register - Byte 2Receive PPP FCS Error Count Register - Byte 2	R/O & R/ W	0x00
0x1716	Receive ATM Cell Insertion/Extraction Memory Data Register - Byte 1Receive PPP FCS Error Count Register - Byte 1	R/O & R/ W	0x00
0x1717	Receive ATM Cell Insertion/Extraction Memory Data Register - Byte 0Receive PPP FCS Error Count Register - Byte 0	R/O & R/ W	0x00
0x1718	Receive ATM Cell UDF Data Register - Byte 3Receive PPP Abort Count Register - Byte 3	R/W & RUR	0x00
0x1719	Receive ATM Cell UDF Data Register - Byte 2Receive PPP Abort Count Register - Byte 2	R/W & RUR	0x00
0x171A	Receive ATM Cell UDF Data Register - Byte 1Receive PPP Abort Count Register - Byte 1	R/W & RUR	0x00

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

Address Location	REGISTER NAME	Түре	DEFAULT VALUE
	CHANNEL CONTROL REGISTERS	•	
RECEI	VE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REG	ISTERS	
0x171B	Receive ATM Cell UDF Data Register - Byte 0Receive PPP Abort Count Register - Byte 0	R/W & RUR	0x00
0x171C	Receive PPP Runt Frame Count Register - Byte 3	RUR	0x00
0x171D	Receive PPP Runt Frame Count Register - Byte 2	RUR	0x00
0x171E	Receive PPP Runt Frame Count Register - Byte 1	RUR	0x00
0x171F	Receive PPP Runt Frame Count Register - Byte 0	RUR	0x00
0x1720	Receive ATM - Test Cell Header Byte Register - Byte 0	R/W	0x00
0x1721	Receive ATM - Test Cell Header Byte Register - Byte 1	R/W	0x00
0x1722	Receive ATM - Test Cell Header Byte Register - Byte 2	R/W	0x00
0x1723	Receive ATM - Test Cell Header Byte Register - Byte 3	R/W	0x00
0x1724	Receive ATM - Test Cell Error Count Register - Byte 3	RUR	0x00
0x1725	Receive ATM - Test Cell Error Count Register - Byte 2	RUR	0x00
0x1726	Receive ATM - Test Cell Error Count Register - Byte 1	RUR	0x00
0x1727	Receive ATM - Test Cell Error Count Register - Byte 0	RUR	0x00
0x1728	Receive ATM Cell Count Register - Byte 3	RUR	0x00
0x1729	Receive ATM Cell Count Register - Byte 2	RUR	0x00
0x172A	Receive ATM Cell Count Register - Byte 1	RUR	0x00
0x172B	Receive ATM Cell Count Register - Byte 0	RUR	0x00
0x172C	Receive ATM Cell - Discard Cell Count Register - Byte 3	RUR	0x00
0x172D	Receive ATM Cell - Discard Cell Count Register - Byte 2	RUR	0x00
0x172E	Receive ATM Cell - Discard Cell Count Register - Byte 1	RUR	0x00
0x172F	Receive ATM Cell - Discard Cell Count Register - Byte 0	RUR	0x00
0x1730	Receive ATM Correctable HEC Byte Error Count Register - Byte 3	RUR	0x00
0x1731	Receive ATM Correctable HEC Byte Error Count Register - Byte 2	RUR	0x00
0x1732	Receive ATM Correctable HEC Byte Error Count Register - Byte 1	RUR	0x00
0x1733	Receive ATM Correctable HEC Byte Error Count Register - Byte 0	RUR	0x00
0x1734	Receive ATM Uncorrectable HEC Byte Error Count Register - Byte 3	RUR	0x00
0x1735	Receive ATM Uncorrectable HEC Byte Error Count Register - Byte 2	RUR	0x00
0x1736	Receive ATM Uncorrectable HEC Byte Error Count Register - Byte 1	RUR	0x00
0x1737	Receive ATM Uncorrectable HEC Byte Error Count Register - Byte 0	RUR	0x00
0x1738 - 0x1742	Reserved		

XPEXAR PRE 1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

PRELIMINARY

XRT79L71 *REV.P1.0.3*

Address Location	ADDRESS LOCATION REGISTER NAME				
	CHANNEL CONTROL REGISTERS				
RECEI	VE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REG	ISTERS			
0x1743	Receive ATM - User Cell Filter # 0 - Filter Control Register	R/W	0x00		
0x1744	Receive ATM - User Cell Filter # 0 - Header Byte # 1 Pattern Register	R/W	0x00		
0x1745	Receive ATM - User Cell Filter # 0 - Header Byte # 2 Pattern Register	R/W	0x00		
0x1746	Receive ATM - User Cell Filter # 0 - Header Byte # 3 Pattern Register	R/W	0x00		
0x1747	Receive ATM - User Cell Filter # 0 - Header Byte # 4 Pattern Register	R/W	0x00		
0x1748	Receive ATM - User Cell Filter # 0 - Header Byte # 1 Check Register	R/W	0x00		
0x1749	Receive ATM - User Cell Filter # 0 - Header Byte # 2 Check Register	R/W	0x00		
0x174A	Receive ATM - User Cell Filter # 0 - Header Byte # 3 Check Register	R/W	0x00		
0x174B	Receive ATM - User Cell Filter # 0 - Header Byte # 4 Check Register	R/W	0x00		
0x174C	Receive ATM - User Cell Filter # 0 - Filtered Cell Count Register - Byte 3	RUR	0x00		
0x174D	Receive ATM - User Cell Filter # 0 - Filtered Cell Count Register - Byte 2	RUR	0x00		
0x174E	Receive ATM - User Cell Filter # 0 - Filtered Cell Count Register - Byte 1	RUR	0x00		
0x174F	Receive ATM - User Cell Filter # 0 - Filtered Cell Count Register - Byte 0	RUR	0x00		
0x1750 - 0x1752	Reserved				
0x1753	Receive ATM - User Cell Filter # 1 - Filter Control Register	R/W	0x00		
0x1754	Receive ATM - User Cell Filter # 1 - Header Byte # 1 Pattern Register	R/W	0x00		
0x1755	Receive ATM - User Cell Filter # 1 - Header Byte # 2 Pattern Register	R/W	0x00		
0x1756	Receive ATM - User Cell Filter # 1 - Header Byte # 3 Pattern Register	R/W	0x00		
0x1757	Receive ATM - User Cell Filter # 1 - Header Byte # 4 Pattern Register	R/W	0x00		
0x1758	Receive ATM - User Cell Filter # 1 - Header Byte # 1 Check Register	R/W	0x00		
0x1759	Receive ATM - User Cell Filter # 1 - Header Byte # 2 Check Register	R/W	0x00		
0x175A	Receive ATM - User Cell Filter # 1 - Header Byte # 3 Check Register	R/W	0x00		
0x175B	Receive ATM - User Cell Filter # 1 - Header Byte # 4 Check Register	R/W	0x00		
0x175C	Receive ATM - User Cell Filter # 1 - Filtered Cell Count Register - Byte 3	RUR	0x00		
0x175D	Receive ATM - User Cell Filter # 1 - Filtered Cell Count Register - Byte 2	RUR	0x00		
0x175E	Receive ATM - User Cell Filter # 1 - Filtered Cell Count Register - Byte 1	RUR	0x00		
0x175F	Receive ATM - User Cell Filter # 1 - Filtered Cell Count Register - Byte 0	RUR	0x00		
0x1760 - 0x1762	Reserved				
0x1763	Receive ATM - User Cell Filter # 2 - Filter Control Register	R/W	0x00		
0x1764	Receive ATM - User Cell Filter # 2 - Header Byte # 1 Pattern Register	R/W	0x00		

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

Address Location	Түре	DEFAULT VALUE					
	CHANNEL CONTROL REGISTERS						
RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS							
0x1765	Receive ATM - User Cell Filter # 2 - Header Byte # 2 Pattern Register	R/W	0x00				
0x1766	Receive ATM - User Cell Filter # 2 - Header Byte # 3 Pattern Register	R/W	0x00				
0x1767	Receive ATM - User Cell Filter # 2 - Header Byte # 4 Pattern Register	R/W	0x00				
0x1768	Receive ATM - User Cell Filter # 2 - Header Byte # 1 Check Register	R/W	0x00				
0x1769	Receive ATM - User Cell Filter # 2 - Header Byte # 2 Check Register	R/W	0x00				
0x176A	Receive ATM - User Cell Filter # 2 - Header Byte # 3 Check Register	R/W	0x00				
0x176B	Receive ATM - User Cell Filter # 2 - Header Byte # 4 Check Register	R/W	0x00				
0x176C	Receive ATM - User Cell Filter # 2 - Filtered Cell Count Register - Byte 3	RUR	0x00				
0x176D	Receive ATM - User Cell Filter # 2 - Filtered Cell Count Register - Byte 2	RUR	0x00				
0x176E	Receive ATM - User Cell Filter # 2 - Filtered Cell Count Register - Byte 1	RUR	0x00				
0x176F	Receive ATM - User Cell Filter # 2 - Filtered Cell Count Register - Byte 0	RUR	0x00				
0x1770 - 0x1772	Reserved						
0x1773	Receive ATM - User Cell Filter # 3 - Filter Control Register	R/W	0x00				
0x1774	Receive ATM - User Cell Filter # 3 - Header Byte # 1 Pattern Register	R/W	0x00				
0x1775	Receive ATM - User Cell Filter # 3 - Header Byte # 2 Pattern Register	R/W	0x00				
0x1776	Receive ATM - User Cell Filter # 3 - Header Byte # 3 Pattern Register	R/W	0x00				
0x1777	Receive ATM - User Cell Filter # 3 - Header Byte # 4 Pattern Register	R/W	0x00				
0x1778	Receive ATM - User Cell Filter # 3 - Header Byte # 1 Check Register	R/W	0x00				
0x1779	Receive ATM - User Cell Filter # 3 - Header Byte # 2 Check Register	R/W	0x00				
0x177A	Receive ATM - User Cell Filter # 3 - Header Byte # 3 Check Register	R/W	0x00				
0x177B	Receive ATM - User Cell Filter # 3 - Header Byte # 4 Check Register	R/W	0x00				
0x177C	Receive ATM - User Cell Filter # 3 - Filtered Cell Count Register - Byte 3	RUR	0x00				
0x177D	Receive ATM - User Cell Filter # 3 - Filtered Cell Count Register - Byte 2	RUR	0x00				
0x177E	Receive ATM - User Cell Filter # 3 - Filtered Cell Count Register - Byte 1	RUR	0x00				
0x177F	Receive ATM - User Cell Filter # 3 - Filtered Cell Count Register - Byte 0	RUR	0x00				
0x1780 - 0x1EFF	Reserved						
0x1F00	Transmit ATM Control Register - Byte 3	R/W	0x00				
0x1F01	Transmit ATM Control Register - Byte 2	R/W	0x00				
0x1F02	Transmit ATM Control Register - Byte 1	R/W	0x00				
0x1F03	Transmit ATM Control Register - Byte 0Transmit PPP Control Register - Byte 2	R/W	0x00				

XRT79L71 REV. P1.0.3

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

Address Location	Address Location Register Name		DEFAULT VALUE			
	CHANNEL CONTROL REGISTERS					
RECEI	VE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL RE	GISTERS				
0x1F04	Transmit ATM Status Register - Byte 3	R/O	0x00			
0x1F05	Transmit ATM Status Register - Byte 2	R/O	0x00			
0x1F06	Transmit ATM Status Register - Byte 1	R/O	0x00			
0x1F07	Transmit ATM Status Register - Byte 0	R/O	0x00			
0x1F08 - 0x1F0A	Reserved					
0x1F0B	Transmit ATM Cell Processor Interrupt Status RegisterTransmit PPP Interrupt Status Register	RUR	0x00			
0x1F0C - 0x1F0E	Reserved					
0x1F0F	Interrupt Enable Register					
0x1F10 - 0x1F12	Reserved					
0x1F13	0x1F13 Transmit ATM Cell Insertion/Extraction Memory Control Register					
0x1F14	Transmit ATM Cell Insertion/Extraction Data Register - Byte 3	R/O & R/ W	0x00			
0x1F15	Transmit ATM Cell Insertion/Extraction Data Register - Byte 2	R/O & R/ W	0x00			
0x1F16	Transmit ATM Cell Insertion/Extraction Data Register - Byte 1	R/O & R/ W	0x00			
0x1F17	Transmit ATM Cell Insertion/Extraction Data Register - Byte 0	R/O & R/ W	0x00			
0x1F18	Transmit ATM - Idle Cell Header Byte # 1 Register	R/W	0x00			
0x1F19	Transmit ATM - Idle Cell Header Byte # 2 Register	R/W	0x00			
0x1F1A	Transmit ATM - Idle Cell Header Byte # 3 Register	R/W	0x00			
0x1F1B	Transmit ATM - Idle Cell Header Byte # 4 Register	R/W	0x00			
0x1F1C - 0x1F1E	Reserved					
0x1F1F	Transmit ATM - Idle Cell Payload Byte Register	R/W	0x00			
0x1F20	Transmit ATM - Test Cell Header Byte # 1 Register	R/W	0x00			
0x1F21	Transmit ATM - Test Cell Header Byte # 2 Register	R/W	0x00			
0x1F22	Transmit ATM - Test Cell Header Byte # 3 Register	R/W	0x00			
0x1F23	Transmit ATM - Test Cell Header Byte # 4 Register	R/W	0x00			
0x1F24 - 0x1F27	Reserved					
0x1F28	Transmit ATM Cell Count Register - Byte 3	RUR	0x00			

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

Address Location	REGISTER NAME	Түре	DEFAULT VALUE				
	CHANNEL CONTROL REGISTERS						
RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS							
0x1F29	Transmit ATM Cell Count Register - Byte 2	RUR	0x00				
0x1F2A	Transmit ATM Cell Count Register - Byte 1	RUR	0x00				
0x1F2B	Transmit ATM Cell Count Register - Byte 0	RUR	0x00				
0x1F2C	Transmit ATM - Discarded Cell Count Register - Byte 3	RUR	0x00				
0x1F2D	Transmit ATM - Discarded Cell Count Register - Byte 2	RUR	0x00				
0x1F2E	Transmit ATM - Discarded Cell Count Register - Byte 1	RUR	0x00				
0x1F2F	Transmit ATM - Discarded Cell Count Register - Byte 0	RUR	0x00				
0x1F30	Transmit ATM HEC Byte Error Count Register - Byte 3	RUR	0x00				
0x1F31	Transmit ATM HEC Byte Error Count Register - Byte 2	RUR	0x00				
0x1F32	Transmit ATM HEC Byte Error Count Register - Byte 1	RUR	0x00				
0x1F33	Transmit ATM HEC Byte Error Count Register - Byte 0	RUR	0x00				
0x1F34	Transmit ATM Cell Processor - Parity Error Count Register - Byte 3	RUR	0x00				
0x1F35	Transmit ATM Cell Processor - Parity Error Count Register - Byte 2	RUR	0x00				
0x1F36	Transmit ATM Cell Processor - Parity Error Count Register - Byte 1	RUR	0x00				
0x1F37	Transmit ATM Cell Processor - Parity Error Count Register - Byte 0	RUR	0x00				
0x1F38 - 0x1F42	Reserved						
0x1F43	Transmit ATM - User Cell Filter # 0 - Filter Control Register	R/W	0x00				
0x1F44	Transmit ATM - User Cell Filter # 0 - Header Byte # 1 Pattern Register	R/W	0x00				
0x1F45	Transmit ATM - User Cell Filter # 0 - Header Byte # 2 Pattern Register	R/W	0x00				
0x1F46	Transmit ATM - User Cell Filter # 0 - Header Byte # 3 Pattern Register	R/W	0x00				
0x1F47	Transmit ATM - User Cell Filter # 0 - Header Byte # 4 Pattern Register	R/W	0x00				
0x1F48	Transmit ATM - User Cell Filter # 0 - Header Byte # 1 Check Register	R/W	0x00				
0x1F49	Transmit ATM - User Cell Filter # 0 - Header Byte # 2 Check Register	R/W	0x00				
0x1F4A	Transmit ATM - User Cell Filter # 0 - Header Byte # 3 Check Register	R/W	0x00				
0x1F4B	Transmit ATM - User Cell Filter # 0 - Header Byte # 4 Check Register	R/W	0x00				
0x1F4C	Transmit ATM - User Cell Filter # 0 - Filtered Cell Count Register - Byte 3	RUR	0x00				
0x1F4D	Transmit ATM - User Cell Filter # 0 - Filtered Cell Count Register - Byte 2	RUR	0x00				
0x1F4E	Transmit ATM - User Cell Filter # 0 - Filtered Cell Count Register - Byte 1	RUR	0x00				
0x1F4F	Transmit ATM - User Cell Filter # 0 - Filtered Cell Count Register - Byte 0	RUR	0x00				
0x1F50 - 0x1F52	Reserved						

XPEXAR PRE 1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

PRELIMINARY

XRT79L71 *REV.P1.0.3*

Address Location	Address Location Register Name		DEFAULT VALUE					
	CHANNEL CONTROL REGISTERS							
RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS								
0x1F53	Transmit ATM - User Cell Filter # 1 - Filter Control Register	R/W	0x00					
0x1F54	Transmit ATM - User Cell Filter # 1 - Header Byte # 1 Pattern Register	R/W	0x00					
0x1F55	Transmit ATM - User Cell Filter # 1 - Header Byte # 2 Pattern Register	R/W	0x00					
0x1F56	Transmit ATM - User Cell Filter # 1 - Header Byte # 3 Pattern Register	R/W	0x00					
0x1F57	Transmit ATM - User Cell Filter # 1 - Header Byte # 4 Pattern Register	R/W	0x00					
0x1F58	Transmit ATM - User Cell Filter # 1 - Header Byte # 1 Check Register	R/W	0x00					
0x1F59	Transmit ATM - User Cell Filter # 1 - Header Byte # 2 Check Register	R/W	0x00					
0x1F5A	Transmit ATM - User Cell Filter # 1 - Header Byte # 3 Check Register	R/W	0x00					
0x1F5B	Transmit ATM - User Cell Filter # 1 - Header Byte # 4 Check Register	R/W	0x00					
0x1F5C	Transmit ATM - User Cell Filter # 1 - Filtered Cell Count Register - Byte 3	RUR	0x00					
0x1F5D	Transmit ATM - User Cell Filter # 1 - Filtered Cell Count Register - Byte 2	RUR	0x00					
0x1F5E	Transmit ATM - User Cell Filter # 1 - Filtered Cell Count Register - Byte 1	RUR	0x00					
0x1F5F	Transmit ATM - User Cell Filter # 1 - Filtered Cell Count Register - Byte 0	RUR	0x00					
0x1F60 - 0x1F62	Reserved							
0x1F63	Transmit ATM - User Cell Filter # 2 - Filter Control Register	R/W	0x00					
0x1F64	Transmit ATM - User Cell Filter # 2 - Header Byte # 1 Pattern Register	R/W	0x00					
0x1F65	Transmit ATM - User Cell Filter # 2 - Header Byte # 2 Pattern Register	R/W	0x00					
0x1F66	Transmit ATM - User Cell Filter # 2 - Header Byte # 3 Pattern Register	R/W	0x00					
0x1F67	Transmit ATM - User Cell Filter # 2 - Header Byte # 4 Pattern Register	R/W	0x00					
0x1F68	Transmit ATM - User Cell Filter # 2 - Header Byte # 1 Check Register	R/W	0x00					
0x1F69	Transmit ATM - User Cell Filter # 2 - Header Byte # 2 Check Register	R/W	0x00					
0x1F6A	Transmit ATM - User Cell Filter # 2 - Header Byte # 3 Check Register	R/W	0x00					
0x1F6B	Transmit ATM - User Cell Filter # 2 - Header Byte # 4 Check Register	R/W	0x00					
0x1F6C	Transmit ATM - User Cell Filter # 2 - Filtered Cell Count Register - Byte 3	RUR	0x00					
0x1F6D	Transmit ATM - User Cell Filter # 2 - Filtered Cell Count Register - Byte 2	RUR	0x00					
0x1F6E	Transmit ATM - User Cell Filter # 2 - Filtered Cell Count Register - Byte 1	RUR	0x00					
0x1F6F	Transmit ATM - User Cell Filter # 2 - Filtered Cell Count Register - Byte 0	RUR	0x00					
0x1F70 - 0x1F72	Reserved							
0x1F73	Transmit ATM - User Cell Filter # 3 - Filter Control Register	R/W	0x00					
0x1F74	Transmit ATM - User Cell Filter # 3 - Header Byte # 1 Pattern Register	R/W	0x00					

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

Address Location	REGISTER NAME	Түре	Default Value				
	CHANNEL CONTROL REGISTERS						
RECEI	RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS						
0x1F75	Transmit ATM - User Cell Filter # 3 - Header Byte # 2 Pattern Register	R/W	0x00				
0x1F76	Transmit ATM - User Cell Filter # 3 - Header Byte # 3 Pattern Register	R/W	0x00				
0x1F77	Transmit ATM - User Cell Filter # 3 - Header Byte # 4 Pattern Register	R/W	0x00				
0x1F78	Transmit ATM - User Cell Filter # 3 - Header Byte # 1 Check Register	R/W	0x00				
0x1F79	Transmit ATM - User Cell Filter # 3 - Header Byte # 2 Check Register	R/W	0x00				
0x1F7A	Transmit ATM - User Cell Filter # 3 - Header Byte # 3 Check Register	R/W	0x00				
0x1F7B	Transmit ATM - User Cell Filter # 3 - Header Byte # 4 Check Register	R/W	0x00				
0x1F7C	Transmit ATM - User Cell Filter # 3 - Filtered Cell Count Register - Byte 3	RUR	0x00				
0x1F7D	Transmit ATM - User Cell Filter # 3 - Filtered Cell Count Register - Byte 2	RUR	0x00				
0x1F7E	Transmit ATM - User Cell Filter # 3 - Filtered Cell Count Register - Byte 1	RUR	0x00				
0x1F7F	Transmit ATM - User Cell Filter # 3 - Filtered Cell Count Register - Byte 0	RUR	0x00				
0x1F80 - 0x1FFF	Reserved						

OPERATION BLOCK INTERRUPT REGISTER BIT FORMATS

OPERATION CONTROL REGISTER - BYTE 3 (ADDRESS = 0X0100)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
Unused							
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	Nаме	Түре	DESCRIPTION			
7 - 6	Unused	R/O				
0	Configuration Control	R/W	 Configuration Control: This READ/WRITE bit-field permits the user to configure the XRT79L71 device to support any of the following configurations. ATM/PPP Clear Channel/HDLC The following table presents the relationship between the value written into these register bits and the corresponding Mode of operation. 			
			Configuration Control Mode			
			0 ATM/PPP			
			1 Clear Channel/HDLC			

OPERATION CONTROL REGISTER - BYTE 2 (ADDRESS = 0X0101)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
		Unused			Interrupt WC/INT*	Enable Interrupt Auto-Clear	Interrupt Enable
R/O	R/O	R/O	R/O	R/O	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 3	Unused	R/O	Please set to "0" for normal operation.
2	Interrupt Write to Clear/ RUR	R/W	 Interrupt - Write to Clear/RUR Select: This READ/WRITE bit-field permits the user to configure all of the "Source-Level" Interrupt Status bits (within the XRT79L71 device) to either be "Write to Clear" (WTC) or "Reset-upon-Read" (RUR) bits. 0 - Configures all "Source-Level" Interrupt Status register bits to function as "Reset-upon-Read" (RUR). 1 - Configures all "Source-Level" Interrupt Status register bits to function as "Write-to-Clear" (WTC).

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
1	Enable Interrupt Clear	R/W	 Enable Auto-Clear of Interrupts Select: This READ/WRITE bit-field permits the user to configure the XRT79L71 device to automatically disable all interrupts that are activated. 0 - Configures the chip to NOT automatically disable any Interrupts following their activation. 1 - Configures the chip to automatically disable all Interrupts following their activation.
0	Interrupt Enable	R/W	 Interrupt Enable: This READ/WRITE bit-field permits the user to configure the XRT79L71 device to generate interrupt requests to the Microprocessor. 0 - Configures the chip to NOT generate interrupt to the Microprocessor. All interrupts are disabled and the Microprocessor must poll the register bits. 1 - Configures the chip to generate interrupts the Microprocessor.

OPERATION CONTROL - LOOP-BACK CONTROL REGISTER (ADDRESS = 0X0102)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	
	Unused				Loop-back Control [3:0]			
R/O	R/O	R/O	R/O	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	Des	CRIPTION
7 - 4	Unused	R/O		
3 - 0	Loop-back Control [3:0]	R/W	XRT79L71 to operate in any o • Local Medium Loop-back • Remote Host Loop-back	s permit the user to configure the of the following loop-back modes. he contents of these bit-fields and Modes. Resulting Loop-back Mode Reserved Local Medium Loop-back Mode Remote Host Loop-back Mode Reserved

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

OPERATION CONTROL REGISTER - BYTE 0 (ADDRESS = 0X0103)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
Transmit UTOPIA PLL OFF	Receive UTOPIA PLL OFF		Reserved		PPP/ATM*	Reserved	Software RESET*
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7	Transmit UTOPIA PLL OFF	R/W	
6	Receive UTOPIA PLL OFF	R/W	
5 - 3	Unused	R/O	
2	PPP/ATM*	R/W	 PPP/ATM UNI Mode Select: This READ-WRITE bit-field permits the user to configure the XRT79L71 device to operate in either the ATM UNI or PPP Mode. If Bit 3 (Dual Bus), within the "Operation Control Register - Byte 3" is set to "0", then this bit-field will then dictate the operating mode of the XRT79L71 device. 0 - Configures the "Dedicated" UTOPIA/POS-PHY bus to operate in the UTOPIA (ATM) Mode. 1 - Configures the "Dedicated" UTOPIA/POS-PHY Bus to operate in the POS-PHY Mode. Note: This bit-field is ignored if Bit 3 (Dual-Bus) within the "Operation Control Register - Byte 3" is set to "1".
1	Reserved	R/O	
0	Software RESET	R/W	Software RESET: This READ-WRITE bit-field permits the user to reset the XRT79L71 device. 0 - Configure the XRT79L71 device into RESET mode. 1 - Normal operation.

DEVICE ID REGISTER (ADDRESS = 0X0104)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0				
	DEVICE_ID_VALUE [7:0]										
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O				
0	1	1	1	1	0	1	0				

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Device ID Value	R/O	Device ID Value: This READ-ONLY bit-field is set to the value "0x7A" and permits the user's software code to uniquely identify this device as the XRT79L71 device.

REVISION ID REGISTER (ADDRESS = 0X0105)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0			
Revision Number Value										
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O			
0	0	0	0	0	0	0	1			

BIT NUMBER	NAME	Түре	DESCRIPTION		
7 - 0	Revision Number Value	R/O	Revision Number Value: This READ-ONLY bit-field is set to the value that corresponds to its revision number. Revision A silicon will be set to the value "0x01". This register permits the user's software code to uniquely identify the revision number of the XRT79L71 device.		

OPERATION INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0X0112)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0	
	Unu	ised		DS3/E3 LIU/JA Block Interrupt Status	DS3/E3 Framer Block Interrupt Status	Unu	Unused	
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 4	Unused	R/O	
3	DS3/E3 LIU/JA Block Interrupt Status	R/O	 DS3/E3 LIU/JA Block Interrupt Status: This READ-ONLY bit-field indicates whether or not a "DS3/E3 LIU/JA Block" interrupt is awaiting service. 0 - No "DS3/E3 LIU/JA" block interrupt is awaiting service. 1 - At least one "DS3/E3 LIU/JA" block interrupt is awaiting service.
2	DS3/E3 Framer Block Interrupt Status	R/O	 DS3/E3 Framer Block Interrupt Status: This READ-ONLY bit-field indicates whether or not a "DS3/E3 Framer Block" interrupt is awaiting service. 0 - No "DS3/E3 Framer" block interrupt is awaiting service. 1 - At least one "DS3/E3 Framer" block interrupt is awaiting service.
1 - 0	Unused	R/O	

OPERATION INTERRUPT STATUS REGISTER - BYTE 0 (ADDRESS = 0X0113)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2 BIT 1		BIT 0
Receive UTOPIA/ POS-PHY Interface Block Interrupt Status	Unı	Unused		Transmit UTOPIA/ POS-PHY Interface Block Interrupt Status	Unused		Transmit ATM Cell/PPP Processor Block Interrupt Status
R/O	R/O	R/O	R/O	R/O	R/O R/O		R/O
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	Receive UTOPIA POS-PHY Interface Block Interrupt Status	R/O	 Receive UTOPIA/POS-PHY Interface Block Interrupt Status: This READ-ONLY bit-field indicates whether or not a "Receive UTOPIA/POS-PHY Interface" block interrupt is awaiting service. 0 - No "Receive UTOPIA/POS-PHY Interface" block interrupt is awaiting service. 1 - At least one "Receive UTOPIA/POS-PHY Interface" block interrupt is awaiting service.
6 -5	Unused	R/O	
4	Receive ATM Cell/PPP Processor Block Interrupt Status	R/O	 Receive ATM Cell/PPP Processor Block Interrupt Status: This READ-ONLY bit-field indicates whether or not a "Receive ATM Cell/PPP Processor Block" Interrupt is awaiting service. 0 - No "Receive ATM Cell/PPP Processor block" interrupt is awaiting service. 1 - At least one "Receive ATM Cell/PPP Processor" block interrupt is awaiting service.
3	Transmit UTOPIA POS-PHY Interface Block Interrupt Status		 Transmit UTOPIA/POS-PHY Interface Block Interrupt Status: This READ-ONLY bit-field indicates whether or not a "Transmit UTOPIA/POS-PHY Interface" block interrupt is awaiting service. 0 - No "Transmit UTOPIA/POS-PHY Interface" block interrupt is awaiting service. 1 - At least one "Transmit UTOPIA/POS-PHY Interface" block interrupt is awaiting service.
2 - 1	Unused	R/O	
0	Transmit ATM Cell/PPP Processor Block Interrupt Status	R/O	 Receive ATM Cell/PPP Processor Block Interrupt Status: This READ-ONLY bit-field indicates whether or not a "Receive ATM Cell/PPP Processor Block" Interrupt is awaiting service. 0 - No "Receive ATM Cell/PPP Processor block" interrupt is awaiting service. 1 - At least one "Receive ATM Cell/PPP Processor" block interrupt is awaiting service.

OPERATION INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0X0116)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	Віт 1	Віт 0
	Unu	ised		DS3/E3 LIU/JA Block Interrupt Enable	DS3/E3 Framer Block Interrupt Enable	Unu	ised
R/O	R/O	R/O	R/O	R/W	R/W	R/O	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 4	Unused		
3	DS3/E3 LIU/JA Block Interrupt Enable	R/W	 DS3/E3 LIU/JA Block Interrupt Enable: This READ/WRITE bit permit the user to either enable or disable the DS3/E3 LIU/JA Block for interrupt generation. If the user writes a "0" to this register bit and disables the "DS3/E3 LIU/JA Block" (for interrupt generation), then all "DS3/E3 LIU/JA Block" (for interrupt generation), then all "DS3/E3 LIU/JA Block" interrupts will be disabled for interrupt generation. If the user writes a "1" to this register bit, he/she will still need to enable the individual "DS3/E3 LIU/JA Block" interrupt(s) at the "Source Level" in order to enable that particular interrupt. 0 - Disable all "DS3/E3 LIU/JA Block" interrupts within the device. 1 - Enables the "DS3/E3 LIU/JA Block" at the "Block-Level".
2	DS3/E3 Framer Block Interrupt Enable	R/W	 DS3/E3 Framer Block Interrupt Enable: This READ/WRITE bit permits the user to either enable or disable the DS3/E3 Framer Block for interrupt generation. If the user writes a "0" to this register bit and disables the "DS3/E3 Framer Block" (for interrupt generation), then all "DS3/E3 Framer Block" interrupts will be disabled for interrupt generation. If the user writes a "1" to this register bit, he/she will still need to enable the individual "DS3/E3 Framer Block" interrupt(s) at the "Source Level" in order to enable that particular interrupt. 0 - Disable all "DS3/E3 Framer Block" interrupts within the device. 1 - Enables the "DS3/E3 Framer Block" at the "Block-Level".
1 - 0	Unused		

OPERATION INTERRUPT ENABLE REGISTER - BYTE 0 (ADDRESS = 0X0117)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Receive UTOPIA/ POS-PHY Interface Block Interrupt Enable	Unı	ısed	Receive ATM Cell/PPP Processor Block Interrupt Enable	Transmit UTOPIA/ POS-PHY Interface Block Interrupt Enable	,		Transmit ATM Cell/PPP Processor Block Interrupt Enable
R/W	R/O	R/O	R/W	R/W	R/O	R/O	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	Receive UTOPIA/POS-PHY Interface Block Interrupt Enable	R/W	Receive UTOPIA/POS-PHY Interface Block Interrupt Enable: This READ/WRITE bit permit the user to either enable or disable the Receive UTOPIA/POS-PHY Interface Block for interrupt gen- eration. If the user writes a "0" to this register bit and disables the "Receive UTOPIA/POS-PHY Interface Block" (for interrupt generation), then all "Receive UTOPIA/POS-PHY Interface Block" interrupts will be disabled for interrupt generation. If the user writes a "1" to this register bit, he/she will still need to enable the individual "Receive UTOPIA/POS-PHY Interface Block" interrupt(s) at the "Source Level" in order to enable that particular interrupt. 0 - Disable all "Receive UTOPIA/POS-PHY Interface Block" interrupts within the device. 1 - Enables the "Receive UTOPIA/POS-PHY Interface Block" at the "Block-Level".
6 - 5	Unused	R/O	
4	Receive ATM Cell/PPP Processor Block Interrupt Enable	R/W	Receive ATM Cell/PPP Processor Block Interrupt Enable: This READ/WRITE bit permit the user to either enable or disable the Receive ATM Cell/PPP Processor Block for interrupt genera- tion. If the user writes a "0" to this register bit and disables the "Receive ATM Cell/PPP Processor Block" (for interrupt genera- tion), then all "Receive ATM Cell/PPP Processor Block" inter- rupts will be disabled for interrupt generation. If the user writes a "1" to this register bit, he/she will still need to enable the individ- ual "Receive ATM Cell/PPP Processor Block" interrupt(s) at the "Source Level" in order to enable that particular interrupt. 0 - Disable all "Receive ATM Cell/PPP Processor Block" inter- rupts within the device. 1 - Enables the "Receive ATM Cell/PPP Processor Block" at the "Block-Level".

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
3	Transmit UTOPIA/POS-PHY Interface Block Interrupt Enable	R/W	Transmit UTOPIA/POS-PHY Interface Block Interrupt Enable: This READ/WRITE bit permit the user to either enable or disable the Transmit UTOPIA/POS-PHY Interface Block for interrupt generation. If the user writes a "0" to this register bit and dis- ables the "Transmit UTOPIA/POS-PHY Interface Block" (for interrupt generation), then all "Transmit UTOPIA/POS-PHY Inter- face Block" interrupts will be disabled for interrupt generation. If the user writes a "1" to this register bit, he/she will still need to enable the individual "Transmit UTOPIA/POS-PHY Interface Block" interrupt(s) at the "Source Level" in order to enable that particular interrupt. 0 - Disable all "Transmit UTOPIA/POS-PHY Interface Block" interrupts within the device. 1 - Enables the "Transmit UTOPIA/POS-PHY Interface Block" at the "Block-Level".
2 - 1	Unused	R/O	
0	Transmit ATM Cell/PPP Processor Block Interrupt Enable	R/W	Transmit ATM Cell/PPP Processor Block Interrupt Enable: This READ/WRITE bit permit the user to either enable or disable the Transmit ATM Cell/PPP Processor Block for interrupt genera- tion. If the user writes a "0" to this register bit and disables the "Transmit ATM Cell/PPP Processor Block" (for interrupt genera- tion), then all "Transmit ATM Cell/PPP Processor Block" inter- rupts will be disabled for interrupt generation. If the user writes a "1" to this register bit, he/she will still need to enable the individ- ual "Transmit ATM Cell/PPP Processor Block" interrupt(s) at the "Source Level" in order to enable that particular interrupt. 0 - Disable all "Transmit ATM Cell/PPP Processor Block" inter- rupts within the device. 1 - Enables the "Transmit ATM Cell/PPP Processor Block" at the "Block-Level".

CHANNEL INTERRUPT INDICATION REGISTERS

CHANNEL INTERRUPT INDICATOR - RECEIVE CELL PROCESSOR/PPP PROCESSOR BLOCK (ADDRESS = 0X0119)

Віт 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	Віт 0
	Unused						Receive Cell Processor Block Interrupt
	R/O						R/O
	0						0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 1	Unused	R/O	

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
0	Receive Cell Processor Block Interrupt - XRT79L71	R/O	 Receive Cell Processor Block Interrupt - XRT79L71: This READ/ONLY bit-field indicates whether or not the "Receive Cell Processor" block, associated with XRT79L71 is declaring an Interrupt, as described below. 0 - The Receive Cell Processor block, associated with XRT79L71 is NOT declaring an Interrupt. 1 - The Receive Cell Processor block, associated with XRT79L71 is currently declaring an interrupt.

CHANNEL INTERRUPT INDICATOR - LIU/JITTER ATTENUATOR BLOCK (ADDRESS = 0X011D)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
Unused							LIU/JA Block Interrupt
R/O							R/O
0							0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 1	Unused	R/O	
0	LIU/JA Block Interrupt - XRT79L71	R/O	 LIU/JA Block Interrupt - XRT79L71: This READ/ONLY bit-field indicates whether or not the "LIU/JA" block, associated with XRT79L71 is declaring an Interrupt, as described below. 0 - The LIU/JA block, associated with XRT79L71 is NOT declaring an Interrupt. 1 - The LIU/JA block, associated with XRT79L71 is currently declaring an interrupt.

CHANNEL INTERRUPT INDICATOR - TRANSMIT CELL PROCESSOR/PPP PROCESSOR BLOCK (ADDRESS = 0X0121)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
	Unused						Transmit Cell Processor Block Interrupt
	R/O					R/O	
			0				

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 1	Unused	R/O	

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
0	Transmit Cell Processor Block Interrupt - XRT79L71	R/O	 Transmit Cell Processor Block Interrupt - XRT79L71: This READ/ONLY bit-field indicates whether or not the "Transmit Cell Processor" block, associated with XRT79L71 is declaring an Interrupt, as described below. 0 - The Transmit Cell Processor block, associated with XRT79L71 is NOT declaring an Interrupt. 1 - The Transmit Cell Processor block, associated with XRT79L71 is currently declaring an interrupt.

CHANNEL INTERRUPT INDICATOR - DS3/E3 FRAMER BLOCK (ADDRESS = 0X0127)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0	
	Unused							
	R/O							
			0				0	

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 1	Unused	R/O	
0	DS3/E3 Framer Block Interrupt - XRT79L71	R/O	 DS3/E3 Framer Block Interrupt - XRT79L71: This READ/ONLY bit-field indicates whether or not the "DS3/E3 Framer" block, associated with XRT79L71 is declaring an Interrupt, as described below. 0 - The DS3/E3 Framer block, associated with XRT79L71 is NOT declaring an Interrupt. 1 - The DS3/E3 Framer block, associated with XRT79L71 is currently declaring an interrupt.

OPERATION GENERAL PURPOSE PIN DATA REGISTER (ADDRESS = 0X0147)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
	Սու	ised		General Purpose Data [3]	General Purpose Data [2]	General Purpose Data [1]	General Purpose Data [0]
	R	/0		R/W	R/W	R/W	R/W
	0				0	0	0

OPERATION GENERAL PURPOSE PIN DIRECTION CONTROL REGISTER (ADDRESS = 0X014B)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
	Unu	ised		General Purpose Pin Direction [3]	General Purpose Pin Direction [2]	General Purpose Pin Direction [1]	General Purpose Pin Direction [0]
	R/O				R/W	R/W	R/W
	0				0	0	0

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE UTOPIA INTERFACE BLOCK

This section presents the Register Description/Address Map of the control registers associated with the Receive UTOPIA/POS-PHY Interface block.

TABLE 15: RECEIVE UTOPIA/POS-PHY INTERFACE BLOCK - REGISTER/ADDRESS MAP

Address Location	REGISTER NAME	Түре	Default Value						
	RECEIVE UTOPIA/POS-PHY- CONTROL REGISTERS								
0x0501	Receive UTOPIA/POS-PHY Control Register - Byte 2	R/W	0x00						
0x0502	Receive UTOPIA/POS-PHY Control Register - Byte 1	R/W	0x00						
0x0503	Receive UTOPIA/POS-PHY Control Register - Byte 0	R/W	0x00						
0x0504 - 0x0512	Reserved	R/O	0x00						
0x0513	Receive UTOPIA Port Address Register	R/W	0x00						
0x0514 - 0x0516	Reserved	R/O	0x00						
0x0517	Receive UTOPIA Port Number Register	R/W	0x00						
0x0518 - 0x0580	Reserved	R/O	0x00						

RECEIVE UTOPIA/POS-PHY CONTROL REGISTER - BYTE 0 (ADDRESS = 0X0503)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0
UTOPIA Level 3 Disable	Multi-PHY Polling Enable	Back to Back Polling Enable	Direct Status Indication Enable	UTOPIA/POS-PHY Cell Size[1: Data Bus Width		ze[1:0]	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
1	1	0	0	1	1	1	1

BIT NUMBER	NAME	Түре	DESCRIPTION
7	UTOPIA Level 3 Disable	R/W	
6	Multi-PHY Polling Enable	R/W	 Multi-PHY Polling Enable: This READ/WRITE bit-field permits the user to either enable or disable Multi-PHY Polling for the Receive UTOPIA Interface block. If the user implements this feature (and configures the XRT79L71 device to operate in the Multi-PHY Mode) then the RxUClav output pin will be driven (either "high" or "low") based upon the fill-status of the Receive FIFO within the Channel that corresponds to the "Receive UTOPIA Address" that is currently being applied to the "RxUAddr[4:0]" input pins. If the user does not implement this feature (and then configures the XRT79L71 device to operate in the Single-PHY Mode), then the "RxUClav" output pin will unconditionally reflect the "Receive FIFO fill-status" for Channel 0. No attention will be paid to the address values placed upon the "RxUAddr[4:0]" input pins. 0 - Configures the Receive UTOPIA Interface block to operate in the Single-PHY Mode. 1 - Configures the Receive UTOPIA Interface block to operate in the Multi-PHY Mode.

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре			DESC	RIPTION	
5	Back-to-Back Polling Enable	R/W	 This READ/WRITE bit-field permits the user to configure the Receive UTOPIA Interface block to support "Back-to-Back Polling". Ordinarily, for Multi-PHY polling, the user is required to interleave all UTOPIA Address values (that are to be placed on the "RxU-Addr[4:0]" input pins) with the NULL Address (e.g., 0x1F). However, if the user configures the Receive UTOPIA Interface block to operate in the "UTOPIA Level 3" Mode, and if the user also enables "Back-to-Back Polling", then he/she does not need interleave the UTOPIA Addresses with the NULL Address. In this case, the user can simply apply a "back-to-back" stream of "relevant" UTOPIA Addresses to the "RxUAddr[4:0]" input pins, and the XRT79L71 device will respond by driving the RxUClav output pins to the appropriate states (depending upon the Receive FIFO fill-status). O - Disables "Back-to-Back" Polling. In this mode, the user must interleave all UTOPIA Addresses (that are to be applied to the "RxUAddr[4:0]" input pins) with the NULL Address. 1 - Enables "Back-to-Back" Polling. In this mode, the user does not need to interleave all UTOPIA Addresses (that are to be applied to the "RxUAddr[4:0]" input pins) with the NULL Address. Note: In order to configure the Receive UTOPIA Interface block to operate in the "Back-to-Back Polling" Mode, the user must also do the following. a. Configure the Receive UTOPIA Interface to operate in the "UTOPIA Level 3" Mode. This is accomplished by setting Bit 7 (UTOPIA Level 3 Disable) within this Register to "0". b. Configure the Receive UTOPIA Interface to support "Multi-PHY" Polling. This is accomplished by setting Bit 6 (Multi-PHY Polling Enable) within this register to "1". 				
4	Direct Status Indication Enable	R/W					
3-2	UTOPIA/POS-PHY Data Bus Width[1:0]	R/W	These R of the Re tionship I sponding	EAD/WRIT eccive UTO between the g widths of the bulated bel	E bit-fields PIA and PC e contents of the Receive ow. POS-PHY Bus	Width[1:0]: bermit the user to select th DS-PHY Data Buses. The of these bit-fields and the UTOPIA and POS-PHY UTOPIA/POS-PHY Data Bus Width Not Valid 8 bits 16 bits Not Valid	e rela- corre-

XRT79L71 *REV. P1.0.3*

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре				DESCRIPTION		
1 - 0	Cell Size[1:0]		These size of Interfa	Cell Size[1:0]: These two READ/WRITE bit-fields permit the user to specify the size of the ATM cell that will be handled by the Receive UTOPIA Interface blocks. The relationship between the contents of these bit-fields and the corresponding Cell Sizes are tabulated below.				
				Cell Si	ze[1:0]	Resulting Cell Size (Bytes)		
			0 0 52 bytes					
				0	1	53 bytes (Only valid for UTOPIA Level 1, and if the UTOPIA Data Bus Width is set to 8 bits)		
				1	0	54 bytes (Only valid for UTOPIA Levels 1 and 2)		
				1	1	56 bytes		
			Note:		A Data	bear in mind the UTOPIA Level and the Bus width selected, when selecting the		

RECEIVE UTOPIA PORT ADDRESS REGISTER (ADDRESS = 0X0513)

Віт 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	BIT 0	
Unused			Receive UTOPIA Port Address[4:0]					
R/O	R/O	R/O	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 5	Unused	R/O	
4 - 0	Receive UTOPIA Port Address[4:0]	R/W	 Receive UTOPIA Port Address[4:0]: These READ/WRITE register bits, along with the "Receive UTO-PIA Port Number[4:0]" bits (within the "Receive UTOPIA Port Number" Register (Address = 0x0517) permit the user to assign a unique Receive UTOPIA address to each of the XRT79L71 device. For UTOPIA Level 2/3 applications, the user can write in any value, ranging from 0x00 through 0x1E into this register. The Receive UTOPIA Address Assignment Procedure: In order to assign a UTOPIA Address to a given Channel (or Port) within the XRT79L71 device, the user must do the following. a. Write the value corresponding to a given XRT79L71 Channel into the "Receive UTOPIA Port Number" Register (Address = 0x0517). b. Write the corresponding UTOPIA Address value into this register. Once this "two-step" procedure has been executed, then the XRT79L71 Channel (as specified during step "a") will be assigned the "Receive UTOPIA Address" value (as specified during step "b").

RECEIVE UTOPIA PORT NUMBER REGISTER (ADDRESS = 0X0517)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	BIT 0	
	Unused			Receive UTOPIA Port Number[4:0]				
R/O	R/O	R/O	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 5	Unused	R/O	

XRT79L71 *REV. P1.0.3*

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	ΤΥΡΕ	DESCRIPTION
4 - 0	Receive UTOPIA Port Number[4:0]	R/W	 Receive UTOPIA Port Number[4:0]: These READ/WRITE register bits, along with the "Receive UTO-PIA Port Address[4:0]" bits (within the "Receive UTOPIA Port Address" Register (Address = 0x0513) permit the user to assign a unique Receive UTOPIA address to the XRT79L71 device. The Receive UTOPIA Address Assignment Procedure: In order to assign a UTOPIA Address to a given Channel (or Port) within the XRT79L71 device, the user must do the following. a. Write the value corresponding to a given XRT79L71 Channel into this register. b. Write the corresponding UTOPIA Address value into the "Receive UTOPIA Port Address" Register (Address = 0x0513). Once this "two-step" procedure has been executed, then the XRT79L71 Channel (as specified during step "a") will be assigned the "Receive UTOPIA Address" value (as specified during step "b").

TRANSMIT UTOPIA INTERFACE BLOCK

This section presents the Register Description/Address Map of the control registers associated with the Transmit UTOPIA/POS-PHY Interface blocks.

TABLE 16: TRANSMIT UTOPIA INTERFACE BLOCK - REGISTER/ADDRESS MAP

Address Location	REGISTER NAME	Түре	DEFAULT VALUE				
TRANSMIT UTOPIA/POS-PHY CONTROL REGISTERS							
0x0581	Transmit UTOPIA/POS-PHY Control Register - Byte 2	R/W	0x38				
0x0582	Transmit UTOPIA/POS-PHY Control Register - Byte 1	R/W	0x00				
0x0583	Transmit UTOPIA/POS-PHY Control Register - Byte 0	R/W	0x00				
0x0584 - 0x0592	Reserved	R/O	0x00				
0x0593	Transmit UTOPIA Port Address Register	R/W	0x00				
0x0594 - 0x0596	Reserved	R/O	0x00				
0x0597	Transmit UTOPIA Port Number Register	R/W	0x00				
0x0598 - 0x10FF	Reserved	R/O	0x00				

TRANSMIT UTOPIA/POS-PHY CONTROL REGISTER - BYTE 0 (ADDRESS = 0X0583)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	Віт 1	Віт 0
UTOPIA Level 3 Disable	Multi-PHY Polling Enable	Back to Back Polling Enable		UTOPIA/POS-PHY Data Bu Width		Cell Si	ze[1:0]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
1	1	0	0	1	1	1	1

BIT NUMBER	NAME	Түре	DESCRIPTION
7	UTOPIA Level 3 Disable	R/W	
6	Multi-PHY Polling Enable	R/W	Multi-PHY Polling Enable: This READ/WRITE bit-field permits the user to either enable or disable Multi-PHY Polling for the Transmit UTOPIA Interface block. If the user implements this feature (and configures the XRT79L71 device to operate in the Multi-PHY Mode) then the TxUClav output pin will be driven (either "high" or "low") based upon the fill-status of the Transmit FIFO within the Channel that corresponds to the "Transmit UTOPIA Address" that is currently being applied to the "TxUAddr[4:0]" input pins. If the user does not implement this feature (and then configures the XRT79L71 device to operate in the Single-PHY Mode), then the "TxUClav" output pin will unconditionally reflect the "Transmit FIFO fill-status" for Channel 0. No attention will be paid to the address values placed upon the "TxUAddr[4:0]" input pins. 0 - Configures the Transmit UTOPIA Interface block to operate in the Single-PHY Mode. 1 - Configures the Transmit UTOPIA Interface block to operate in the Multi-PHY Mode.

XRT79L71 *REV. P1.0.3*

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
5	Back-to-Back Polling Enable	R/W	 Back-to-Back Polling Enable: This READ/WRITE bit-field permits the user to configure the Transmit UTOPIA Interface block to support "Back-to-Back Polling". Ordinarily, for Multi-PHY polling, the user is required to interleave all UTOPIA Address values (that are to be placed on the "TxU-Addr[4:0]" input pins) with the NULL Address (e.g., 0x1F). However, if the user configures the Transmit UTOPIA Interface block to operate in the "UTOPIA Level 3" Mode, and if the user also enables "Back-to-Back Polling", then he/she does not need interleave the UTOPIA Addresses with the NULL Address. In this case, the user can simply apply a "back-to-back" stream of "relevant" UTOPIA Addresses to the "TxUAddr[4:0]" input pins, and the XRT79L71 device will respond by driving the TxUClav output pins to the appropriate states (depending upon the Transmit FIFO fill-status). 0 - Disables "Back-to-Back" Polling. In this mode, the user must interleave all UTOPIA Addresses (that are to be applied to the "TxUAddr[4:0]" input pins) with the NULL Address. 1 - Enables "Back-to-Back" Polling. In this mode, the user does not need to interleave all UTOPIA Addresses (that are to be applied to the "TxUAddr[4:0]" input pins) with the NULL Address. Note: In order to configure the Transmit UTOPIA Interface block to operate in the "Back-to-Back Polling" Mode, the user must also do the following. a. Configure the Transmit UTOPIA Interface to operate in the "UTOPIA Level 3" Mode. This is accomplished by setting Bit 7 (UTOPIA Level 3 Disable) within this Register to "0". b. Configure the Transmit UTOPIA Interface to support "Multi-PHY" Polling. This is accomplished by setting Bit 6 (Multi-PHY Polling Enable) within this register to "1".
4	Direct Status Indication Enable	R/W	
3 - 2	UTOPIA/POS-PHY Data Bus Width[1:0]	R/W	UTOPIA/POS-PHY Data Bus Width[1:0]:These READ/WRITE bit-fields permit the user to select the width of the Transmit UTOPIA and POS-PHY Data Buses. The rela- tionship between the contents of these bit-fields and the corre- sponding widths of the Transmit UTOPIA and POS-PHY Data Bus is tabulated below.UTOPIA/POS-PHY Data Bus UTOPIA/POS-PHY Data Bus Width 1:0]Data Bus UTOPIA/POS-PHY

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре				DESCRIPTION
1 - 0	Cell Size[1:0]	Cell Size[1:0]: These two READ/WRITE bit-fields permit the user to speci size of the ATM cell that will be handled by the Transmit UT Interface blocks. The relationship between the contents of bit-fields and the corresponding Cell Sizes are tabulated by				
			[Cell Si	ze[1:0]	Resulting Cell Size (Bytes)
				0	0	52 bytes
				0	1	53 bytes (Only valid for UTOPIA Level 1, and if the UTOPIA Data Bus Width is set to 8 bits)
				1	0	54 bytes (Only valid for UTOPIA Levels 1 and 2)
				1	1	56 bytes
			NOTE:		A Data	bear in mind the UTOPIA Level and the Bus width selected, when selecting the

XP EXAR

XRT79L71 *REV. P1.0.3*

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TRANSMIT UTOPIA PORT ADDRESS REGISTER (ADDRESS = 0X0593)

BIT 7	Віт 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	Віт 0	
Unused			Transmit UTOPIA Port Address[4:0]					
R/O	R/O	R/O	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 5	Unused	R/O	
4 - 0	Transmit UTOPIA Port Address[4:0]	R/W	 Transmit UTOPIA Port Address[4:0]: These READ/WRITE register bits, along with the "Transmit UTO-PIA Port Number[4:0]" bits (within the "Trasnmit UTOPIA Port Number" Register (Address = 0x0597) permit the user to assign a unique Transmit UTOPIA address the XRT79L71 device. For UTOPIA Level 2/3 applications, the user can write in any value, ranging from 0x00 through 0x1E into this register. The Transmit UTOPIA Address Assignment Procedure: In order to assign a UTOPIA Address to a given Channel (or Port) within the XRT79L71 device, the user must do the following. a. Write the value corresponding to a given XRT79L71 Channel into the "Transmit UTOPIA Port Number" Register (Address = 0x0597). b. Write the corresponding UTOPIA Address value into this register. Once this "two-step" procedure has been executed, then the XRT79L71 Channel (as specified during step "a") will be assigned the "Transmit UTOPIA Address" value (as specified during step "b").

TRANSMIT UTOPIA PORT NUMBER REGISTER (ADDRESS = 0X0597)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
	Unused			Transmit l	JTOPIA Port Nu	mber[4:0]	
R/O	R/O	R/O	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 5	Unused	R/O	

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
4 - 0	Transmit UTOPIA Port Number[4:0]	R/W	 Transmit UTOPIA Port Number[4:0]: These READ/WRITE register bits, along with the "Transmit UTO-PIA Port Address[4:0]" bits (within the "Transmit UTOPIA Port Address" Register (Address = 0x0593) permit the user to assign a unique Transmit UTOPIA address to each XRT79L71 device. The Transmit UTOPIA Address Assignment Procedure: In order to assign a UTOPIA Address to a given Channel (or Port) within the XRT79L71 device, the user must do the following. a. Write the value corresponding to a given XRT79L71 Channel into this register. b. Write the corresponding UTOPIA Address value into the "Transmit UTOPIA Port Address" Register (Address = 0x0593). Once this "two-step" procedure has been executed, then the XRT79L71 Channel (as specified during step "a") will be assigned the "Transmit UTOPIA Address" value (as specified during step "b").

LIU/JITTER ATTENUATOR CONTROL REGISTER BIT-FORMAT

LIU TRANSMIT APS/REDUNDANCY CONTROL REGISTER (ADDRESS = 0X1300)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
Unused							TxON
R/O	R/O	R/O	R/O	R/O	R/W	R/W	R/W
0	0	0	0	0	0	0	0

Bit Number	Nаме	Түре	DEFAULT VALUE	DESCRIPTION
7 - 1	Reserved	R/O	0	
0	TxON	R/W	0	 Transmit Section ON: This READ/WRITE bit-field permits the user to either turn on or turn off the Transmit Driver of XRT79L71. If the user turns on the Transmit Driver, then XRT79L71 will begin to transmit DS3 or E3 (on the line) via the TTIP and TRING output pins. Conversely, if the user turns off the Transmit Driver, then the TTIP and TRING output pins will be tri-stated. 0 - Shuts off the Transmit Driver associated with XRT79L71 and tri-states the TTIP and TRINGO output pins. 1 - Turns on (or enables) the Transmit Driver associated the XRT79L71. Note: If the user wishes to exercise software control over the state of the Transmit Driver of the XRT79L71, then it is imperative that the user pull the TxON (pin R15) to a logic "low" level.

LIU INTERRUPT ENABLE REGISTER (ADDRESS = 0X1301)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
	Unused				Change of LOL Condition Interrupt Enable	Change of LOS Condition Interrupt Enable	Change of DMO Condition Interrupt Enable
R/O	R/O	R/O	R/O	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

Bit Number	Nаме	Түре	DEFAULT VALUE	DESCRIPTION
7 - 4	Reserved	R/O	0	

PRELIMINARY

Bit Number	NAME	Түре	DEFAULT VALUE	DESCRIPTION
3	Change of FL Condition Interrupt Enable	R/W	0	 Change of FL (FIFO Limit Alarm) Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change of FL Condition" Interrupt. If the user enables this interrupt, then the XRT79L71 device will generate an interrupt any time any of the following events occur. Whenever the Jitter Attenuator (within XRT79L71) declares the FL (FIFO Limit Alarm) condition. Whenever the Jitter Attenuator (within XRT79L71) clears the FL (FIFO Limit Alarm) condition. Disables the "Change in FL Condition" Interrupt. Enables the "Change in FL Condition" Interrupt.
2	Change of LOL Condition Interrupt Enable	R/W	0	 Change of Receive LOL (Loss of Lock) Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change of Receive LOL Condition" Interrupt. If the user enables this interrupt, then the XRT79L71 device will generate an interrupt any time any of the following events occur. Whenever the Receive Section (within XRT79L71) declares the "Loss of Lock" Condition. Whenever the Receive Section (within XRT79L71) clears the "Loss of Lock" Condition. O - Disables the "Change in Receive LOL Condition" Interrupt. 1 - Enables the "Change in Receive LOL Condition" Interrupt.
1	Change of LOS Condition Interrupt Enable	R/W	0	 Change of the Receive LOS (Loss of Signal) Defect Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change of the Receive LOS Defect Condition" Interrupt. If the user enables this interrupt, then the XRT79L71 device will generate an interrupt any time any of the following events occur. Whenever the Receive Section (within XRT79L71) declares the LOS Defect Condition. Whenever the Receive Section (within XRT79L71) clears the LOS Defect condition. Disables the "Change in the LOS Defect Condition" Interrupt. Enables the "Change in the LOS Defect Condition" Inter- rupt.

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

Bit Number	ΝΑΜΕ	Түре	DEFAULT VALUE	DESCRIPTION
0	Change of DMO Condition Interrupt Enable	R/W	0	Change of Transmit DMO (Drive Monitor Output) Condi- tion Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change of Transmit DMO Condition" Interrupt. If the user enables this interrupt, then the XRT79L71 device will generate an interrupt any time any of the following events occur.
				 Whenever the Transmit Section toggles the DMO output pin (or bit-field) to "1".
				 Whenever the Transmit Section toggles the DMO output pin (or bit-field) to "0".
				0 - Disables the "Change in the DMO Condition" Interrupt.1 - Enables the "Change in the DMO Condition" Interrupt.

LIU INTERRUPT STATUS REGISTER (ADDRESS = 0X1302)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
Unused				Change of FL Condition Interrupt Status	Change of LOL Condition Interrupt Status	Change of LOS Condition Interrupt Status	Change of DMO Condition Interrupt Status
R/O	R/O	R/O	R/O	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

Bit Number	Nаме	Түре	Default Value	DESCRIPTION
7 - 4	Unused	R/O	0	
3	Change of FL Condition Interrupt Status	RUR	0	 Change of FL (FIFO Limit Alarm) Condition Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change of FL Condition" Interrupt has occurred since the last read of this register. 0 - Indicates that the "Change of FL Condition" Interrupt has NOT occurred since the last read of this register. 1 - Indicates that the "Change of FL Condition" Interrupt has occurred since the last read of this register. 1 - Indicates that the "Change of FL Condition" Interrupt has occurred since the last read of this register. NOTE: The user can determine the current state of the "FIFO Alarm condition" by reading out the contents of Bit 3 (FL Alarm Declared) within the "Alarm Status Register".

PRELIMINARY

Bit Number	NAME	Түре	DEFAULT VALUE	DESCRIPTION
2	Change of LOL Condi- tion Interrupt Status	RUR	0	 Change of Receive LOL (Loss of Lock) Condition Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change of Receive LOL Condition" Interrupt has occurred since the last read of this register. 0 - Indicates that the "Change of Receive LOL Condition" Interrupt has NOT occurred since the last read of this register. 1 - Indicates that the "Change of Receive LOL Condition" Interrupt has occurred since the last read of this register. 1 - Indicates that the "Change of Receive LOL Condition" Interrupt has occurred since the last read of this register. Note: The user can determine the current state of the "Receive LOL Defect condition" by reading out the contents of Bit 2 (Receive LOL Defect Declared) within the "Alarm Status Register".
1	Change of LOS Condi- tion Interrupt Status	RUR	0	 Change of Receive LOS (Loss of Signal) Defect Condition Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change of the Receive LOS Defect Condition" Interrupt has occurred since the last read of this register. 0 - Indicates that the "Change of the Receive LOS Defect Condition" Interrupt has NOT occurred since the last read of this register. 1 - Indicates that the "Change of the Receive LOS Defect Condition" Interrupt has occurred since the last read of this register. 1 - Indicates that the "Change of the Receive LOS Defect Condition" Interrupt has occurred since the last read of this register. NOTE: The user can determine the current state of the "Receive LOS Defect condition" by reading out the contents of Bit 1 (Receive LOS Defect Declared) within the "Alarm Status Register".
0	Change of DMO Condi- tion Interrupt Status	RUR	0	 Change of Transmit DMO (Drive Monitor Output) Condition Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change of the Transmit DMO Condition" Interrupt has occurred since the last read of this register. 0 - Indicates that the "Change of the Transmit DMO Condition" Interrupt has NOT occurred since the last read of this register. 1 - Indicates that the "Change of the Transmit DMO Condition" Interrupt has occurred since the last read of this register. 1 - Indicates that the "Change of the Transmit DMO Condition" Interrupt has occurred since the last read of this register. NOTE: The user can determine the current state of the "Transmit DMO Condition" by reading out the contents of Bit 0 (Transmit DMO Condition) within the "Alarm Status Register".

LIU ALARM STATUS REGISTER (ADDRESS = 0X1303)

Віт 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	Віт 0
Unused	Unused	Digital LOS Defect Declared	Analog LOS Defect Declared	FL (FIFO Limit) Alarm Declared	Receive LOL Defect Declared	Receive LOS Defect Declared	Transmit DMO Condition
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	0	0	0	0	0	0	0

Bit Number	Nаме	Түре	Default Value	DESCRIPTION
7 - 6	Unused	R/O	0	
5	Digital LOS Defect Declared	R/O	0	 Digital LOS Defect Declared: This READ-ONLY bit-field indicates whether or not the Digital LOS (Loss of Signal) detector is declaring the LOS Defect condition. For DS3 application, the Digital LOS Detector will declare the LOS Defect condition whenever it detects an absence of pulses (within the incoming DS3 data-stream) for 160 consecutive bit-periods. Further, (again for DS3 applications) the Digital LOS Detector will clear the LOS Defect condition whenever it determines that the pulse density (within the incoming DS3 signal) is at least 33%. 0 - Indicates that the Digital LOS Detector is NOT declaring the LOS Defect Condition. 1 - Indicates that the Digital LOS Detector is currently declaring the LOS Defect condition. <i>NOTES:</i> 1. LOS Detection (within each channel of the XRT79L71 device) is performed by both an Analog LOS Detector and a Digital LOS Detector. The LOS state of a given Channel is simply a WIRED-OR of the "LOS Defect Declare" states of these two detectors.2. 2. The current LOS Defect Condition (for the channel) can be determined by reading out the contents of Bit 1 (Receive LOS Defect Declared) within this register.

PRELIMINARY

Bit Number	Nаме	Түре	DEFAULT VALUE	DESCRIPTION
4	Analog LOS Defect Declared	R/O	0	 Analog LOS Defect Declared: This READ-ONLY bit-field indicates whether or not the Analog LOS (Loss of Signal) detector is declaring the LOS Defect condition. For DS3 application, the Analog LOS Detector will declare the LOS Defect condition whenever it determines that the amplitude of the pulses (within the incoming DS3 line signal) drops below a certain "Analog LOS Defect Declaration" threshold level. Conversely, (again for DS3 application) the Analog LOS Detector will clear the LOS Defect condition whenever it determines that the amplitude of the pulses (within the incoming DS3 line signal) has risen above a certain "Analog LOS Detector will clear the LOS Defect condition whenever it determines that the amplitude of the pulses (within the incoming DS3 line signal) has risen above a certain "Analog LOS Defect Clearance" threshold level. It should be noted that, in order to prevent "chattering" within the Analog LOS Detector output, there is some built-in hysteresis between the "Analog LOS Defect Declaration" and the "Analog LOS Defect Clearance" threshold levels. 0 - Indicates that the Analog LOS Detector is NOT declaring the LOS Defect Condition. 1 - Indicates that the Analog LOS Detector is currently declaring the LOS Defect condition. NOTES: LOS Detection (within each channel of the XRT79L71 device) is performed by both an Analog LOS Detectors. The current LOS Defect Condition (for the channel) can be determined by reading out the contents of Bit 1 (Receive LOS Defect Declared) within this register.

PRELIMINARY

XRT79L71 *REV. P1.0.3*

Bit Number	NAME	Түре	DEFAULT VALUE	DESCRIPTION
3	FL Alarm Declared	R/O	0	 FL (FIFO Limit) Alarm Declared: This READ-ONLY bit-field indicates whether or not the Jitter Attenuator block (within the XRT79L71 device) is currently declaring the FIFO Limit Alarm. The Jitter Attenuator block will declare the "FIFO Limit" Alarm anytime the "Jitter Attenuator" FIFO comes within two bit-periods of either overflowing or under-running. Conversely, the Jitter Attenuator block will clear the "FIFO Limit" Alarm anytime the "Jitter Attenuator block will clear the "FIFO Limit" Alarm anytime the "Jitter Attenuator" FIFO is NO longer within two bit-periods of either overflowing or under-running. Typically, this Alarm will only be declared whenever there is a very serious problem with timing or jitter in the system. 0 - Indicates that the Jitter Attenuator block (within the XRT79L71 device) is NOT currently declaring the "FIFO Limit" Alarm condition. 1 - Indicates that the Jitter Attenuator block (within the XRT79L71 device) is currently declaring the "FIFO Limit" Alarm condition. Note: This bit-field is only active if the Jitter Attenuator (within the XRT79L71 device) has been enabled.
2	Receive LOL Condition Declared	R/O	0	 Receive LOL (Loss of Lock) Condition Declared: This READ-ONLY bit-field indicates whether or not the Receive Section (within the XRT79L71 device) is currently declaring the LOL (Loss of Lock) condition. The Receive Section (of XRT79L71) will declare the LOL Condition, if any one of the following conditions is met. If the frequency of the Recovered Clock signal differs from that of the signal provided to the E3CLK input (for E3 applications) or the DS3CLK input (for DS3 applications) by 0.5% (or 5000ppm) or more. If the frequency of the Recovered Clock signal differs from the "line-rate" clock signal (for XRT79L71) that has been generated by the "SFM Clock Synthesizer" PLL (for SFM Mode Operation) by 0.5% (or 5000ppm) or more. Indicates that the Receive Section of XRT79L71 is NOT currently declaring the LOL Condition. Indicates that the Receive Section of XRT79L71 is cur- rently declaring the LOL Condition.

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

Bit Number	NAME	Түре	DEFAULT VALUE	DESCRIPTION
1	Receive LOS Defect Condition Declared	R/O	0	 Receive LOS (Loss of Signal) Defect Condition Declared: This READ-ONLY bit-field indicates whether or not the Receive Section (within the XRT79L71 device) is currently declaring the LOS defect condition. The Receive Section (of XRT79L71) will declare the LOS defect condition, if any one of the following conditions is met. If the Digital LOS Detector declares the LOS defect condition (for DS3 application). If the Analog LOS Detector declares the LOS defect condition (for DS3 application) If the "ITU-T G.775" LOS Detector declares the LOS defect condition (for E3 application). Indicates that the Receive Section is NOT currently declaring the LOS Defect Condition. Indicates that the Receive Section is currently declaring the LOS Defect condition.
0	Transmit DMO Condition Declared	R/O	0	 Transmit DMO (Drive Monitor Output) Condition Declared: This READ-ONLY bit-field indicates whether or not the Transmit Section is currently declaring the "DMO" Alarm condition. If configured accordingly, the Transmit Section will either internally or externally check the "Transmit Output" DS3/E3 Line signal for bipolar pulses via the TTIP and TRING out- put signals. If the Transmit Section were to detect no bipo- lar for 128 consecutive bit-periods, then it will declare the "Transmit DMO" Alarm condition. This particular alarm can be used to check for fault conditions on the "Transmit Output Line Signal" path. The Transmit Section will clear the "Transmit DMO" Alarm condition the instant that it detects some bipolar activity on the "Transmit Output Line" signal. 0 - Indicates that the Transmit Section of XRT79L71 is NOT currently declaring the "Transmit DMO Alarm" condition. 1 - Indicates that the Transmit Section of XRT79L71 is cur- rently declaring the "Transmit DMO Alarm" condition.

LIU TRANSMIT CONTROL REGISTER (ADDRESS = 0X1304)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
Unused		Internal Transmit Drive Monitor	Unused		TAOS	Unused	TxLEV
R/O	R/O	R/W	R/O	R/O	R/W	R/O	R/W
0	0	0	0	0	0	0	0

XP EXAR

PRELIMINARY

XRT79L71 REV. P1.0.3

Bit Number	NAME	Түре	Default Value	DESCRIPTION
7 - 6	Unused	R/O	0	
5	Internal Transmit Drive Monitor	R/W	0	Internal Transmit Drive Monitor Enable: This READ/WRITE bit-field permits the user to configure the Transmit Section of XRT79L71 to either internally or externally monitor the TTIP and TRING output pins for bipo- lar pulses, in order to determine whether to declare the "Transmit DMO" Alarm condition.
				If the user configures the Transmit Section to externally monitor the TTIP and TRING output pins (for bipolar pulses) then the user must make sure that he/she has connected the MTIP and MRING input pins to their corresponding TTIP and TRING output pins (via a 274 ohm series resistor). If the user configures the Transmit Section to internally monitor the TTIP and TRING output pins (for bipolar pulses) then the user does NOT need to make sure that the MTIP and MRING input pins are connected to the TTIP and TRING output pins (via series resistors). This monitoring will be performed right at the TTIP and TRING output pads. 0 - Configures the Transmit Drive Monitor to externally mon- itor the TTIP and TRING output pins for bipolar pulses. 1 - Configures the Transmit Drive Monitor to internally moni- tor the TTIP and TRING output pins for bipolar pulses.
4	Unused	R/O	0	
3	Unused	R/O	0	
2	TAOS	R/W	0	 Transmit All OneS Pattern - XRT79L71: This READ/WRITE bit-field permits the user to command the Transmit Section of XRT79L71 to generate and transmit an unframed, All Ones pattern via the DS3 or E3 line signal (to the remote terminal equipment). Whenever the user implements this configuration setting then the Transmit Section will ignore the data that it is accepting from the System-side equipment and overwrite this data with the "All Ones" Pattern. O - Configures the Transmit Section to transmit the data that it accepts from the "System-side" Interface. 1 - Configures the Transmit Section to generate and transmit the Unframed, All Ones pattern.
1	Unused	R/O	0	

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

Bit Number	NAME	Түре	DEFAULT VALUE	DESCRIPTION
0	TxLEV	R/W	0	 Transmit Line Build-Out Select - XRT79L71: This READ/WRITE bit-field permits the user to either enable or disable the "Transmit Line Build-Out (e.g., pulse-shaping) circuit within the corresponding channel. The user should set this bit-field to either "0" or to "1" based upon the following guidelines. 0 - If the cable length between the Transmit Output (of the corresponding Channel) and the DSX-3/STSX-1 location is 225 feet or less. 1 - If the cable length between the Transmit Output (of the corresponding Channel) and the DSX-3/STSX-1 location is 225 feet or more. The user must follow these guidelines in order to insure that the Transmit Section (of XRT79L71) will always generate a DS3 pulse that complies with the Isolated Pulse Template requirements per Bellcore GR-499-CORE. Note: This bit-field is ignored if the channel has been configured to operate in the E3 Mode.

LIU RECEIVE CONTROL REGISTER (ADDRESS = 0X1305)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
Unu	ised	Disable DLOS Detector	Disable ALOS Detector	Unused	LOSMUT Enable	Receive Monitor Mode Enable	Receive Equalizer Enable
R/O	R/O	R/W	R/W	R/O	R/W	R/W	R/W
0	0	0	0	0	0	0	0

Bit Number	Nаме	Түре	DEFAULT VALUE	DESCRIPTION
7 - 6	Unused	R/O	0	
5	Disable DLOS Detector	R/W	0	 Disable Digital LOS Detector - XRT79L71: This READ/WRITE bit-field permits the user to either enable or disable the Digital LOS (Loss of Signal) Detector within the XRT79L71 device, as described below. 0 - Enables the Digital LOS Detector within the XRT79L71 device. (NOTE: This is the default condition). 1 - Disables the Digital LOS Detector within the XRT79L71 device. Note: This bit-field is only active if XRT79L71 has been configured to operate in the DS3 Mode.

PRELIMINARY

XRT79L71 *REV. P1.0.3*

Bit Number	Nаме	Түре	Default Value	DESCRIPTION
4	Disable ALOS Detector	R/W	0	 Disable Analog LOS Detector - XRT79L71: This READ/WRITE bit-field permits the user to either enable or disable the Analog LOS (Loss of Signal) Detector within the XRT79L71 device, as described below. 0 - Enables the Analog LOS Detector within the XRT79L71 device. (NOTE: This is the default condition). 1 - Disables the Analog LOS Detector within the XRT79L71 device. NoTE: This bit-field is only active if XRT79L71 has been configured to operate in the DS3 Modes.
3	Unused	R/O	0	
2	LOSMUT Enable	R/W	0	 Muting upon LOS Enable - XRT79L71: This READ/WRITE bit-field permits the user to configure the Receive Section (within the XRT79L71 device) to automatically pull their corresponding Recovered Data Output pins (e.g., RPOS and RNEG) to GND anytime (and for the duration that) the Receive Section declares the LOS defect condition. In other words, this feature (if enabled) will cause the Receive Channel to automatically "mute" the Receive Section declares the LOS defect condition. 0 - Disables the "Muting upon LOS" feature. In this setting the Receive Section will NOT automatically mute the Recovered Data whenever it is declaring the LOS defect condition. 1 - Enables the "Muting upon LOS" feature. In this setting the Receive Section will automatically mute the Recovered Data whenever it is declaring the Receive Section will automatically mute the Receive Section will
1	Receive Monitor Mode Enable	R/W	0	 Receive Monitor Mode Enable - XRT79L71: This READ/WRITE bit-field permits the user to configure the Receive Section of XRT79L71 to operate in the "Receive Monitor" Mode. If the user configures the Receive Section to operate in the "Receive Monitor Mode", then it will be able to receive a nominal DSX-3/STSX-1 signal that has been attenuator by 20dB of flat loss along with 6dB of cable loss, in an error-free manner, and without declaring the LOS defect condition. 0 - Configures the corresponding channel to operate in the "Normal" Mode. 1 - Configure the corresponding channel to operate in the "Receive Monitor" Mode.

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

Bit Number	Nаме	Түре	Default Value	DESCRIPTION
0	Receive Equalizer Enable	R/W	0	 Receive Equalizer Enable - XRT79L71: This READ/WRITE register bit permits the user to either enable or disable the Receive Equalizer block within the Receive Section of XRT79L71, as listed below. 0 - Disables the Receive Equalizer within the corresponding channel. 1 - Enables the Receive Equalizer within the corresponding channel. Note: For virtually all applications, we recommend that the user set this bit-field to "1" and enable the Receive Equalizer.

LIU CHANNEL CONTROL REGISTER (ADDRESS = 0X1306)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	BIT 0
Unused	SFM Clock Out Enable	SFM Enable	RLB	LLB		Unused	
R/O	R/O	R/O	R/W	R/W	R/O	R/O	R/O
0	0	0	0	0	0	0	0

Bit Number	Nаме	Түре	DEFAULT VALUE	DESCRIPTION				
7	Unused	R/O	0					
6	SFM Clock Out Enable	R/W	0					
5	SFM Enable	R/W	0					
4	RLB	R/W	0	Loop-Back Select - RLB Bit:This READ/WRITE bit-field along with the correspondingLLB bit-field permits the user to configure the XRT79L71device into various loop-back modes.The relationship between the settings for this input pin, the corresponding LLB bit-field and the resulting Loop-backMode is presented below.LLBRLBLoop-back Mode00Normal (No Loop-back) Mode01Remote Loop-back Mode10Analog Local Loop-back Mode11Digital Local Loop-back Mode				
3	LLB	R/W	0	Loop-Back Select - LLB Bit-field: Please see the description (above) for RLB.				
2 - 0	Unused	R/O	0					

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

JITTER ATTENUATOR CONTROL REGISTER (ADDRESS = 0X1307)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	Віт 1	Віт 0
	Unu	ised		JA RESET	JA1	JA in Tx Path	JA0
R/O	R/O	R/O	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

Bit Number	ΝΑΜΕ	Түре	Default Value	DESCRIPTION	
7 - 4	Unused	R/O	0		
3	JA RESET	R/W	0	 Jitter Attenuator RESET: Writing a "0 to 1" transition within this bit-field will configurent the Jitter Attenuator (within the XRT79L71 device) to execute a RESET operation. Whenever the user executes a RESET operation, then all the following will occur. The "READ" and "WRITE" pointers (within the Jit Attenuator FIFO) will be reset to their default values. The contents of the Jitter Attenuator FIFO will be flusher <i>Note:</i> The user must follow up any "0 to 1" transition w the appropriate write operate to set this bit-fit back to "0", in order to resume normal operate with the Jitter Attenuator. 	e- Il of itter ned. <i>with</i> field
2	JA1 Ch	R/W	0	Jitter Attenuator Configuration Select Input - Bit 1:This READ/WRITE bit-field, along with Bit 0 (JA0) permit the user to do any of the following.• To enable or disable the Jitter Attenuator correspond to XRT79L71.• To select the FIFO Depth for the Jitter Attenuator wit the XRT79L71 device.The relationship between the settings of these two bit-fiel and the Enable/Disable States, and FIFO Depths is pre- sented below.JA0JA1Jitter Attenuator Mode 001FIFO Depth = 16 bits101111	ding ithin elds

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

Bit Number	ΝΑΜΕ	Түре	DEFAULT VALUE	DESCRIPTION
1	JA in Tx Path Ch	R/W	0	 Jitter Attenuator in Transmit/Receive Path Select Bit: This input pin permits the user to configure the Jitter Attenuator (within the XRT79L71 device) to operate in either the Transmit or Receive path, as described below. 0 - Configures the Jitter Attenuator (within the XRT79L71 device) to operate in the Receive Path. 1 - Configures the Jitter Attenuator (within the XRT79L71 device) to operate in the Transmit Path.
0	JA0 Ch	R/W	0	Jitter Attenuator Configuration Select Input - Bit 0: Please see the description for Bit 2 (JA1) within this Register.

LIU RECEIVE APS/REDUNDANCY CONTROL REGISTER (ADDRESS = 0X1308)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
	Unused						
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/W
0	0	0	0	0	0	0	0

Bit Number	Nаме	Түре	DEFAULT VALUE	DESCRIPTION
7 - 1	Reserved	R/O	0	
0	RxON	R/W	0	Receiver Section ON - XRT79L71: This READ/WRITE bit-field permits the user to either turn on or turn off the Receive Section of XRT79L71. If the user turns on the Receive Section, then XRT79L71 will begin to receive the incoming DS3 or E3 data-stream via the RTIP and RRING input pins. Conversely, if the user turns off the Receive Section, then the entire Receive Section (e.g., AGC and Receive Equal- izer Block, Clock Recovery PLL, etc) will be powered down. 0 - Shuts off the Receive Section of XRT79L71. 1 - Turns on the Receive Section of XRT79L71.

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

DS3/E3 FRAMER BLOCK REGISTERS

The register map for the DS3/E3 Framer Block is presented in the Table below. Additionally, a detailed description of each of the "DS3/E3 Framer" block registers is presented below.

OPERATING MODE REGISTER (DIRECT ADDRESS = 0X1100)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
Local Loop Back	IsDS3	Internal LOS Enable	RESET	Interrupt Enable RESET	Frame Format	TimRef	Sel[1:0]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	1	0	1	0	1	1

BIT NUMBER	Nаме	Түре			DESCRIPTION		
7	Local Loop Back	R/W	Framer Block Local Loop-back Mode: This READ/WRITE bit field configures the Frame Generator/ Frame Synchronizer blocks to operate in the Local Loop-back Mode. If the Frame Generator/Frame Synchronizer blocks are configured to operate in the Local Loop-back Mode, then the TxPOS, TxNEG and TxLineClk signal is internally looped back into the RxPOS, RxNEG and RxLineClk signals. 0 - Normal Operating Mode 1 - Local Loop-back Mode				
6	IsDS3	R/W Is DS3 Mode: This READ/WRITE bit-field, along with Bit 2 (Frame Format), permits the user to configure the Frame Generator/Frame Syn chronizer block to operate in the appropriate framing format. The relationship between the state of this bit-field, Bit 2 and th resulting framing format is presented below.				/n-	
				Bit 6 (IsDS3)	Bit 2 (Frame Format)	Framing Format	
				0	0	E3, ITU-T G.751	
				0	1	E3, ITU-T G.832	
				1	0	DS3, C-bit Parity	
				1	1	DS3, M13]
5	Internal LOS Enable	R/W	Thi the bloc 0 - 1 -	"Internal LOS Detect. Internal LOS Detect Internal LOS Detect Internal LOS Detect <i>TE: The Internal L</i> <i>is configured</i> <i>Channel is c</i>	t-field permits the ector", within the F ctor is disabled. ctor is enabled. .OS Detector only to operate in the configured to ope	user to enable or disa Frame Synchronizer functions if the Cha Dual-Rail Mode. In erate in the Single etector will be disable	nnel f the -Rail

PRELIMINARY

BIT NUMBER	NAME	Түре			DESCRIPTION			
4	RESET	R/W	A " RE res and ope	SET to the Char et to the frame, a d the Frame Sync eration. TE: For a Soft	n in this bit-field com nel. Once the user Il of the internal state chronizer block will e ware Reset, the co Il not be reset to the	execute e machi execute ntents	es a Software ines will be rea a "Reframe" of the Comm	set;
3	Interrupt Enable RESET	R/W	Thi Cha vati 0 - vati	annel to automat ion. Interrupts are No ion.	eset: bit-field permits the ically disable any inf DT automatically dis omatically disabled f	terrupt f	following its ac	cti- acti-
2	Frame Format	R/W	Thi use blo shij	er to configure the ck to operate in t	bit-field, along with E e Frame Generator/I he appropriate fram ate of this bit-field, E esented below.	Frame S ing forn	Synchronizer nat. The relat	ion-
				Bit 6 (IsDS3)	Bit 2 (Frame Format)	Fram	ing Format	
				0	0	E3, I	TU-T G.751	1
				0	1	E3, I	TU-T G.832	1
				1	0	DS3,	C-bit Parity	1
				1	1	D	S3, M13]
1 - 0	TimRefSel[1:0]	R/W	The the	timing source ar	elect: RITE bit-fields perm nd the framing-align ock, as presented be	ment sc		ooth
			1	۲im RefSel[1:0]	Timing Referen	ice	Framing Reference	
				00	Loop-Timing (Timin taken from the Fram Synchronizer block)	0	Asynchrono	us
				01	Transmit Clock Sou the Frame Generato		TxDS3FP Inp	out
				10	Transmit Clock Sou the Frame Generato		Asynchrono	us
				11	Transmit Clock Sou the Frame Generato		Asynchrono	us

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

I/O CONTROL REGISTER (DIRECT ADDRESS = 0X1101)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Disable TxLOC	LOC	Disable RxLOC	AMI/Zero Sup*	Single-Rail/ Dual-Rail	DS3/E3 CLK OUTInvert	DS3/E3 CLK INInvert	Reframe
R/W	R/O	R/W	R/W	R/O	R/W	R/W	R/W
1	0	1	0	1	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7	Disable TxLOC	R/W	 Disable Transmit Loss of Clock Feature: This READ/WRITE bit-field permits the user to either enable or disable the "Transmit Loss of Clock" feature. If this feature is enabled, then the DS3/E3 Framer block will enable some circuitry that will terminate the current READ or WRITE access (to the Microprocessor Interface), if a "Loss of Transmit (or Frame Generator) Clock Event were to occur. The intent behind this feature is to prevent any READ/WRITE accesses (to the DS3/E3 Framer block) from "hanging" in the event of a "Loss of Clock" event. 0 - Enables the "Transmit Loss of Clock" feature. 1 - Disables the "Transmit Loss of Clock" feature.
6	LOC	R/O	Loss of Clock Indicator: This READ-ONLY bit-field indicates that the Channel has experi- ences a Loss of Clock event.
5	Disable RxLOC	R/W	Disable Receive Loss of Clock Feature: This READ/WRITE bit-field permits the user to either enable or disable the "Receive Loss of Clock" feature. If this feature is enabled, then the DS3/E3 Framer block will enable some circuitry that will terminate the current READ or WRITE access (to the Microprocessor Interface), if a "Loss of Receiver (or Frame Synchronizer) Clock Event were to occur. The intent behind this feature is to prevent any READ/WRITE accesses (to the DS3/E3 Framer block) from "hanging" in the event of a "Loss of Clock" event. 0 - Enables the "Receive Loss of Clock" feature. 1 - Disables the "Receive Loss of Clock" feature.
4	Reserved		
3	Reserved		

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
2	DS3/E3 CLK_OUT Invert	R/W	 DS3/E3_CLK_OUT Invert: This READ/WRITE bit-field permits the user to configure the DS3/E3 Frame Generator block within the XRT79L71, to update the DS3/E3_DATA_OUT output pin upon either the rising or falling edge of DS3/E3_CLK_OUT. 0 - DS3/E3_DATA_OUT is updated upon the rising edge of DS3/E3_CIk_OUT. The user should insure that the LIU IC will sample "DS3/E3_DATA_OUT" upon the falling edge of "DS3/E3_CLK_OUT". 1 - DS3/E3_DATA_OUT is updated upon the falling edge of DS3/E3_CLK_OUT". 1 - DS3/E3_DATA_OUT is updated upon the falling edge of DS3/E3_CLK_OUT. The user should insure that the LIU IC will sample "DS3/E3_DATA_OUT" upon the falling edge of "DS3/E3_CLK_OUT". 1 - DS3/E3_DATA_OUT is updated upon the falling edge of DS3/E3_CLK_OUT. The user should insure that the LIU IC will sample "DS3/E3_DATA_OUT" upon the rising edge of "DS3/E3_CLK_OUT".
1	DS3/E3 CLK_IN Invert	R/W	DS3/E3_CLK_IN Invert: This READ/WRITE bit-field permits the user to configure the XRT79L71, to sample and latch the "DS3/E3_DATA_IN" input pin upon either the rising or falling edge of DS3/E3_CLK_IN. 0 - DS3/E3_DATA_IN is sampled upon the falling edge of DS3/ E3_CLK_IN. 1 - DS3/E3_DATA is sampled upon the rising edge of DS3/ E3_CLK_IN.NOTE: This bit-field is only active if the Primary Frame Synchronizer block has been configured to operate in the Ingress Path.
0	Reframe	R/W	 DS3/E3 Frame Synchronizer Block - Reframe Command: A "0" to "1" transition, within this bit-field commands the DS3/E3 Frame Synchronizer block to exit the Frame Maintenance Mode, and go back and enter the Frame Acquisition Mode. Note: The user should go back and set this bit-field to "0" following execution of the "Reframe" Command.

T - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BLOCK INTERRUPT ENABLE REGISTER (DIRECT ADDRESS = 0X1104)

Віт 7	Віт 6	Віт 5	BIT 5 BIT 4		BIT 2	BIT 1	BIT 0
DS3/E3 Frame Synch Block Interrupt Enable			Unused			DS3/E3Frame Generator- Block Interrupt Enable	One Second Interrupt
R/W	R/O	R/O	R/O	R/O	R/O	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	DS3/E3 Frame Synch Block Interrupt Enable	R/W	 DS3/E3 Frame Synchronizer Block Interrupt Enable: This READ/WRITE bit-field permits the user to enable or disable the Frame Synchronizer block for Interrupt Generation. If the user enables the Frame Synchronizer block (for Interrupt Generation) at the block level, the user still needs to enable the interrupts at the "Source" level, as well; in order for these interrupts to be enabled. However, if the user disables the Frame Synchronizer block (for Interrupt Generation) at the Block Level, then ALL Frame Synchronizer-related blocks are disabled. 0 - Frame Synchronizer block is Disabled for Interrupt Generation. 1 - Frame Synchronizer block is enabled (at the Block level) for Interrupt Generation.
6 - 2	Unused	R/O	
1	DS3/ E3FrameGeneratorBlockI nterrupt Enable	R/W	 DS3/E3 Frame Generator Block Interrupt Enable: This READ/WRITE bit-field permits the user to enable or disable the Frame Generator block for Interrupt Generation. If the user enables the Frame Generator block (for Interrupt Generation) at the block level, the user still needs to enable the interrupts at the "Source" level, as well; in order for these interrupts to be enabled. However, if the user disables the Frame Generator block (for Interrupt Generation) at the Block Level, then ALL Frame Generator-related blocks are disabled. 0 - Frame Generator block is Disabled for Interrupt Generation. 1 - Frame Generator block is Enabled (at the Block Level) for Interrupt Generation.
0	One Second Interrupt	R/W	 One Second Interrupt Enable: This READ/WRITE bit-field permits the user to enable or disable the One-Second Interrupt. If the user enables this interrupt, then the XRT79L71 will generate an interrupt at one second intervals. 0 - One Second Interrupt is disabled. 1 - One Second Interrupt is enabled.

BLOCK INTERRUPT STATUS REGISTER (DIRECT ADDRESS = 0X1105)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	Віт 1	Віт 0
DS3/E3 Frame Sync Block Interrupt Status			Unused		DS3/E3 Frame Generator Block Interrupt Status	One Second Interrupt	
R/O	R/O	R/O	R/O	R/O	R/O	R/O	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	DS3/E3 Frame Synch Block Interrupt Status	R/O	 DS3/E3 Frame Synchronizer Block Interrupt Status: This READ-ONLY bit-field indicates whether or not a "DS3/E3 Frame Synchronizer Block"-related interrupt is requesting interrupt service. 0 - The DS3/E3 Frame Synchronizer block is NOT requesting any interrupt service. 1 - The DS3/E3 Frame Synchronizer block is requesting interrupt service.
6 - 2	Unused	R/O	
1	DS3/E3 Frame Generator Block Interrupt Status	R/O	 DS3/E3 Frame Generator Block Interrupt Status: This READ-ONLY bit-field indicates whether or not a "DS3/E3 Frame Generator" -related interrupt is requesting interrupt service. 0 - The DS3/E3 Frame Generator block is NOT requesting any interrupt service. 1 - The DS3/E3 Frame Synchronizer block is requesting interrupt service.
0	One Second Interrupt Status	RUR	 One Second Interrupt Status: This RESET-upon-READ bit-field indicates whether or not a "One Second" Interrupt has occurred since the last read of this register. 0 - The One Second Interrupt has NOT occurred since the last read of this register. 1 - The One Second Interrupt has occurred since the last read of this register.

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TEST REGISTER (DIRECT ADDRESS = 0X110C)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
TxOHSrc	Unused		RxPRBS Lock	RxPRBS Enable	TxPRBS Enable	Unused	
R/W	R/O	R/O	R/O	R/W	R/W	R/O	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7	TxOHSrc	R/W	 Transmit Overhead Bit Source: This READ/WRITE bit-field permits the user to configure the Frame Generator to accept and insert overhead bits/bytes which are input via the "Payload Data Input Interface" block, as indicated below. 0 - Overhead bits/bytes are internally generated by the Frame Generator block. 1 - Overhead bits/byte data is accepted from the Payload Data Input Interface block.NOTE: This register bit applies to all framing formats that are supported by the Frame Generator block.
6 - 5	Unused	R/O	
4	RxPRBS Lock	R/O	 PRBS Lock Indicator: This READ-ONLY bit-field indicates whether or not the PRBS Receiver (within the Channel) has acquired "PRBS Lock" with the payload data of the incoming DS3 or E3 data stream. 0 - PRBS Receiver does not have PRBS Lock with the incoming data stream. 1 - PRBS Receiver does have PRBS Lock with the incoming data stream. Note: This bit-field is not valid if the PRBS Receiver is disabled, or if the Frame Synchronizer block is bypassed.
3	RxPRBS Enable	R/W	 Receive PRBS Enable: This READ/WRITE bit-field permits the user to either enable or disable the PRBS Receiver within the Frame Synchronizer block. Once the user enables the PRBS Receiver, then it will proceed to attempt to acquire and maintain pattern (or PRBS Lock) within the payload bits, within the incoming DS3 or E3 data stream. 0 - Disables the PRBS Receiver. 1 - Enables the PRBS Receiver. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
2	TxPRBS Enable	R/W	 Transmit PRBS Enable: This READ/WRITE bit-field permits the user to either enable or disable the PRBS Generator within the Frame Generator block. Once the user enables the PRBS Generator block, then it will proceed to insert a PRBS pattern into the payload bits, within the outbound DS3 or E3 data stream. 0 - Disables the PRBS Generator. 1 - Enables the PRBS Generator. Note: This bit-field is ignored if the Frame Generator block is by-passed.
1 - 0	Unused	R/O	

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE DS3 RELATED REGISTERS

RXDS3 CONFIGURATION AND STATUS REGISTER (DIRECT ADDRESS = 0X1110)

Віт 7	Віт 6	Віт 5	Віт 4	BIT 3	BIT 2	BIT 1	BIT 0
RxAIS	RxLOS	RxIdle	RxOOF	Unused	Framing with Valid P-Bits	F-SyncAlgo	M-SyncAlgo
R/O	R/O	R/O	R/O	R/O	R/W	R/W	R/W
0	0	0	1	0	1	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7	RxAIS	R/O	 Receive AIS Defect Indicator: This READ-ONLY bit-field indicates whether or not the Frame Synchronizer block is currently detecting the AIS pattern in its incoming path. 0 - Frame Synchronizer block is NOT currently detecting an AIS pattern in its incoming path. 1 - Frame Synchronizer block is currently detecting an AIS pattern in its incoming path.
6	RxLOS	R/O	 Receive LOS Defect Indicator: This READ-ONLY bit-field indicates whether or not the Frame Synchronizer block is currently detecting the LOS condition, in its incoming path. 0 - Frame Synchronizer block is NOT currently declaring an LOS condition in its incoming path. 1 - Frame Synchronizer block is currently detecting an LOS condition in its incoming path.
5	RxIdle	R/O	 Receive Idle Signal Indicator: This READ-ONLY bit-field indicates whether or not the Frame Synchronizer block is currently detecting the DS3 Idle pattern, in its incoming path. 0 - Frame Synchronizer block is NOT currently detecting the DS3 Idle Pattern, in its incoming path. 1 - Frame Synchronizer block is currently detecting the DS3 Idle Pattern in its incoming path.
4	RxOOF	R/O	 Receive OOF Defect Indicator: This READ-ONLY bit-field indicates whether or not the Frame Synchronizer block is currently declaring an OOF (Out of Frame) condition. 0 - Frame Synchronizer block is NOT currently declaring the OOF condition. 1 - Frame Synchronizer block is currently declaring the OOF condition.
3	Unused	R/O	

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
2	Framing with Valid P Bits	R/W	 Framing with Valid P-Bit Select: This READ/WRITE bit-field permits the user to choose between two different sets of DS3 Frame Acquisition/Maintenance criteria. 0 - Normal Framing Acquisition/Maintenance Criteria (without P-bit Checking)In this mode, the Frame Synchronizer block will declare the "In-frame" state, one it has successfully completed both the "F-Bit Search" and the "M-Bit Search" states. 1 - Framing Acquisition/Maintenance with P-bit CheckingIn this mode, the Frame Synchronizer block will (in addition to passing through the "F-Bit Search" and "M-Bit Search" states) also verify valid P-bits, prior to declaring the "In-Frame" state. <i>Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.</i>
1	F-Sync Algo	R/W	 F-Bit Search State Criteria Select: This READ/WRITE bit-field permits the user to choose between two different sets of DS3 Out of Frame (OOF) Declaration criteria. 0 - OOF is declared when 6 out of 15 F-bits are erred. 1 - OOF is declared when 3 out of 15 F-bits are erred.NOTE: This bit-field is ignored if the Frame Synchronizer block is bypassed.
0	M-Sync Algo	R/W	 M-Bit Search State Criteria Select: This READ/WRITE bit-field permits the user to choose between two different sets of DS3 Out of Frame (OOF) Declaration criteria. 0 - M-bit Errors do not result in the Frame Synchronizer declaring OOF. 1 - OOF is declared when all M-bits, within 3 out of 4 DS3 frames are in error.

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RXDS3 STATUS REGISTER (DIRECT ADDRESS = 0X1111)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	BIT 2	Віт 1	Віт 0
Unused		RxFERF	RxAIC	RxFEBE[2:0]			
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 5	Unused	R/O	
4	RxFERF	R/O	 Receive FERF (Far-End Receive Failure) Defect Indicator: This READ-ONLY bit-field indicates whether or not the Frame Synchronizer block is currently declaring a FERF condition. 0 - The Frame Synchronizer block is NOT currently declaring the FERF condition. 1 - The Frame Synchronizer block is currently declaring the FERF condition. Note: This bit-field is not valid if the Frame Synchronizer block has been by-passed.
3	RxAIC	R/O	 Receive AIC State: This READ-ONLY bit-field indicates the current state of the AIC bit-field within the incoming DS3 data-stream. 0 - Indicates that the Frame Synchronizer block has received at least 2 consecutive M-frames that have the AIC bit-field set to "0". 1 - Indicates that the Frame Synchronizer block has received at least 63 consecutive M-frames that have the AIC bit-field set to "1".
2 - 0	RxFEBE[2:0]	R/O	 Receive FEBE (Far-End Block Error) Value: These READ-ONLY bit-fields reflect the FEBE value within the most recently received DS3 frame. RxFEBE[2:0] = [1, 1, 1] indicates a normal condition. All other values for RxFEBE[2:0] indicates an erred condition at the remote terminal equipment. Notes: 1. This bit-field is not valid if the Frame Synchronizer block has been by-passed. This bit-field is not valid if the Frame Synchronizer block has been configured to operate in the M13 Framing format.

RXDS3 INTERRUPT ENABLE REGISTER (DIRECT ADDRESS = 0X1112)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	Віт 1	BIT 0
Detection of CP Bit Error Interrupt Enable	Change of LOS Condition Interrupt Enable	Change of AIS Condition Interrupt Enable	Change of Idle Condition Interrupt Enable	Change of FERF Condition Interrupt Enable	Change of AIC State Interrupt Enable	Change of OOF Condition Interrupt Enable	Detection of P-Bit Error Interrupt Enable
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	Detection of CP Bit Error Interrupt Enable	R/W	 Detection of CP-Bit Error Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Detection of CP-Bit Error" Interrupt, within the Channel. If the user enables this interrupt, then the Frame Synchronizer block will generate an interrupt anytime it detects CP bit errors. 0 - Disables the "Detection of CP Bit Error" Interrupt. 1 - Enables the "Detection of CP-Bit Error" Interrupt. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.
6	Change of LOS Condition Interrupt Enable	R/W	 Change in LOS Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change in LOS (Loss of Signal) Condition" Interrupt, within the Channel. If the user enables this interrupt, then the Frame Synchronizer block will generate an interrupt in response to either of the following conditions. The instant that the channel declares an LOS condition. The instant that the channel clears the LOS condition. Disables the "Change in LOS Condition" Interrupt. Enables the "Change in LOS Condition" Interrupt.
5	Change of AIS Condition Interrupt Enable	R/W	 Change in AIS Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change in AIS (Alarm Indication Signal) Condition" Interrupt, within the Channel. If the user enables this interrupt, then the Frame Synchronizer block will generate an interrupt in response to either of the following conditions. The instant that the channel declares an AIS condition. The instant that the channel clears the AIS condition. 0 - Disables the "Change in AIS Condition" Interrupt. 1 - Enables the "Change in AIS Condition" Interrupt. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
4	Change of Idle Condition Interrupt Enable	R/W	 Change in Idle Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change in Idle Condition" Interrupt, within the Channel. If the user enables this interrupt, then the Frame Synchronizer block will generate an interrupt in response to either of the following conditions. The instant that the channel detects the Idle condition. The instant that the channel ceases to detect the Idle condition. Disables the "Change in Idle Condition" Interrupt. Enables the "Change in Idle Condition" Interrupt.
			Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.
3	Change of FERF Condition Interrupt Enable	R/W	 Change in FERF Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change in FERF (Far-End Receive Failure) Condition" Interrupt, within the Channel. If the user enables this interrupt, then the Frame Synchronizer block will generate an interrupt in response to either of the following conditions. The instant that the channel declares an FERF condition. The instant that the channel clears the FERF condition. Disables the "Change in FERF Condition" Interrupt. Enables the "Change in FERF Condition" Interrupt. Enables the "Change in FERF Condition" Interrupt. Mote: This bit-field is ignored if the Frame Synchronizer block is by-passed.
2	Change of AIC State Interrupt Enable	R/W	Change in AIC State Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change in AIC State" Interrupt, within the Channel. If the user enables this interrupt, then the Frame Synchronizer block will generate an interrupt in response to it detecting a change in the AIC bit-field, within the incoming DS3 data stream. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.
1	Change of OOF Condition Interrupt Enable	R/W	 Change in OOF Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change in OOF (Out of Frame) Condition" Interrupt, within the Channel. If the user enables this interrupt, then the Frame Synchronizer block will generate an interrupt in response to either of the following conditions. The instant that the channel declares an OOF condition. The instant that the channel clears the OOF condition. Disables the "Change in OOF Condition" Interrupt. Enables the "Change in OOF Condition" Interrupt. Mote: This bit-field is ignored if the Frame Synchronizer block is by-passed.

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
0	Detection of P-Bit Error Interrupt Enable	R/W	 Detection of P-Bit Error Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Detection of CP-Bit Error" Interrupt, within the Channel. If the user enables this interrupt, then the Frame Synchronizer block will generate an interrupt anytime it detects CP bit errors. 0 - Disables the "Detection of CP Bit Error" Interrupt. 1 - Enables the "Detection of CP-Bit Error" Interrupt. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.

RXDS3 INTERRUPT STATUS REGISTER (DIRECT ADDRESS = 0X1113)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0
Detection of CP Bit Error Interrupt Status	Change of LOS Condition Interrupt Status	Change of AIS Condition Interrupt Status	Change of Idle Condition Interrupt Status	Change of FERF Condition Interrupt Status	Change of AIC State Interrupt Status	Change of OOF Condition Interrupt Status	Detection of P-Bit Error Interrupt Status
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	Detection of CP Bit Error Interrupt Status	RUR	 Detection of CP-Bit Error Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Detection of CP-Bit Error" Interrupt has occurred since the last read of this register. 0 - The "Detection of CP-Bit Error" Interrupt has not occurred since the last read of this register. 1 - The "Detection of CP-Bit Error" Interrupt has occurred since the last read of this register. 1 - The "Detection of CP-Bit Error" Interrupt has occurred since the last read of this register. Mote: This bit-field is ignored if the Frame Synchronizer block is by-passed.
6	Change of LOS Condition Interrupt Status	RUR	 Change in LOS Condition Interrupt Status: This RESET-upon-READ register indicates whether or not the "Change in LOS Condition" Interrupt has occurred since the last read of this register. 0 - The "Change in LOS Condition" Interrupt has not occurred since the last read of this register. 1 - The "Change in LOS Condition" Interrupt has occurred since the last read of this register. 1 - The "Change in LOS Condition" Interrupt has occurred since the last read of this register. 1 - The "Change in LOS Condition" Interrupt has occurred since the last read of this register. More: This bit-field is ignored if the Frame Synchronizer block is by-passed.
5	Change of AIS Condition Interrupt Status	RUR	 Change in AIS Condition Interrupt Status: This RESET-upon-READ register indicates whether or not the "Change in LOS Condition" Interrupt has occurred since the last read of this register. 0 - The "Change in LOS Condition" Interrupt has not occurred since the last read of this register. 1 - The "Change in LOS Condition" Interrupt has occurred since the last read of this register. 1 - The "Change in LOS Condition" Interrupt has occurred since the last read of this register. Mote: This bit-field is ignored if the Frame Synchronizer block is by-passed.

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
4	Change of Idle Condition Interrupt Status	RUR	 Change in Idle Condition Interrupt Status: This RESET-upon-READ register indicates whether or not the "Change in Idle Condition" interrupt has occurred since the last read of this register. 0 - The "Change in Idle Condition" Interrupt has not occurred since the last read of this register. 1 - The "Change in Idle Condition" Interrupt has occurred since the last read of this register. 1 - The "Change in Idle Condition" Interrupt has occurred since the last read of this register. 1 - The "Change in Idle Condition" Interrupt has occurred since the last read of this register. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.
3	Change of FERF Condi- tion Interrupt Status	RUR	 Change in FERF Condition Interrupt Status: This RESET-upon-READ register indicates whether or not the "Change in FERF Condition" Interrupt has occurred since the last read of this register. 0 - The "Change in FERF Condition" Interrupt has not occurred since the last read of this register. 1 - The "Change in FERF Condition" Interrupt has occurred since the last read of this register. 1 - The "Change in FERF Condition" Interrupt has occurred since the last read of this register. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.
2	Change of AIC State Interrupt Status	RUR	 Change in AIC State Interrupt Status: This RESET-upon-READ register bit indicates whether or not the "Change in AIC State" interrupt has occurred since the last read of this register. 0 - The "Change in AIC State" Interrupt has not occurred since the last read of this register. 1 - The "Change in AIC State" Interrupt has occurred since the last read of this register. Mote: This bit-field is ignored if the Frame Synchronizer block is by-passed.
1	Change of OOF Condi- tion Interrupt Status	RUR	 Change in OOF Condition Interrupt Status: This RESET-upon-READ register indicates whether or not the "Change in OOF Condition" Interrupt has occurred since the last read of this register. 0 - The "Change in OOF Condition" Interrupt has not occurred since the last read of this register. 1 - The "Change in OOF Condition" Interrupt has occurred since the last read of this register. 1 - The "Change in OOF Condition" Interrupt has occurred since the last read of this register. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.
0	Detection of P-Bit Error Interrupt Status	RUR	 Detection of P-Bit Error Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Detection of CP-Bit Error" Interrupt has occurred since the last read of this register. 0 - The "Detection of CP-Bit Error" Interrupt has not occurred since the last read of this register. 1 - The "Detection of CP-Bit Error" Interrupt has occurred since the last read of this register. 1 - The "Detection of CP-Bit Error" Interrupt has occurred since the last read of this register. More: This bit-field is ignored if the Frame Synchronizer block is by-passed.

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RXDS3 SYNC DETECT REGISTER (DIRECT ADDRESS = 0X1114)

Віт 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	Віт 0
Unused					P-Bit Correct	F Algorithm	One and Only
R/O	R/O	R/O	R/O	R/O	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 3	Unused	R/O	
2	P-Bit Correct	R/W	 P-Bit Correct: This READ/WRITE bit-field permits the user to enable or disable the "P-Bit Correct" feature within the DS3 Frame Synchronizer block. If the user enables this feature, then the DS3 Frame Synchronizer will automatically invert the state of any P-bits, whenever it detects "P-bit errors". 0 - Disables the "P-Bit Correct" feature. 1 - Enables the "P-Bit Correct" feature
1	F Algorithm	R/W	 F-Bit Search Algorithm Select: This READ/WRITE bit-field permits the user to select the "F-bit acquisition" criteria, when the Frame Synchronizer block is operating in the "F-Bit Search" state. 0 - Frame Synchronizer will move on to the "M-Bit Search" state, when it has properly located 10 consecutive F-bits. 1 - Frame Synchronizer will move on to the "M-Bit Search" state, when it has properly located 16 consecutive F-bits.
0	One and Only	R/W	 F-Bit Search/Mimic-Handling Algorithm Select: This READ/WRITE bit-field permits the user to select the "F-bit acquisition" criteria, when the Frame Synchronizer block is operating in the "F-Bit Search" state. 0 - Frame Synchronizer will move on to the "M-Bit Search" state, when it has properly located 10 (or 16) consecutive F-bits (as configured in Bit 1 of this register). 1 - Frame Synchronizer will move on to the "M-Bit Search" state, when (1) it has properly located 10 (or 16) consecutive F-bits; and (2) when it has located and identified only one viable "F-Bit Alignment" candidate. Note: If this bit is set to "1", then the Frame Synchronizer block will NOT transition into the "M-Bit Search" state, as long as at least two viable candidate set of bits appear to function as the F-bits.

RXDS3 FEAC REGISTER (DIRECT ADDRESS = 0X1116)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Unused		RxFEACCode[5:0]					
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	1	1	1	1	1	1	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	Unused	R/O	
6 - 1	RxFEAC_Code[5:0]	R/O	Receive FEAC Code Word: These READ-ONLY bit-fields contain the value of the most recently "validated" FEAC Code word.
0	Unused	R/O	

XPEXAR 1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RXDS3 FEAC INTERRUPT ENABLE/STATUS REGISTER (DIRECT ADDRESS = 0X1117)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	Віт 1	Віт 0
Unused		FEAC Valid	RxFEAC Remove Interrupt Enable	RxFEAC Remove Interrupt Status	RxFEAC Valid Interrupt Enable	RxFEAC Valid Interrupt Status	
R/O	R/O	R/O	R/O	R/W	RUR	R/W	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 5	Unused	R/O	Please set to "0" (the default value) for normal operation.
4	FEAC Valid	R/O	 FEAC Message Validation Indicator: This READ-ONLY bit-field indicates that the FEAC Code (which resides within the "RxDS3 FEAC" Register) has been validated by the Receive FEAC Controller. The Receive FEAC Controller will validate a FEAC codeword if it has received this codeword in 8 out of the last 10 FEAC Messages. Polled systems can monitor this bit-field, when checking for a newly validated FEAC codeword. 0 - FEAC Message is not (or no longer) validated. 1 - FEAC Message has been validated.
3	RxFEAC Remove Interrupt Enable	R/W	 FEAC Message Remove Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Receive FEAC Remove Interrupt". If the user enables this interrupt, then the Framer Synchronizer will generate an interrupt anytime the most recently validated FEAC Message has been removed. The Receive FEAC Controller will remove a validated FEAC codeword, if it has received a different codeword in 3 out of the last 10 FEAC Messages. 0 - Receive FEAC Remove Interrupt is disabled. 1 - Receive FEAC Remove Interrupt is enabled. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.
2	RxFEAC Remove Interrupt Status	RUR	 FEAC Message Remove Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "FEAC Message Remove Interrupt" has occurred since the last read of this register. 0 - FEAC Message Remove Interrupt has NOT occurred since the last read of this register. 1 - FEAC Message Remove Interrupt has occurred since the last read of this register.
1	RxFEAC Valid Interrupt Enable	R/W	 FEAC Message Validation Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the FEAC Message Validation Interrupt. If the user enables this interrupt, then the Frame Synchronizer block will generate an interrupt anytime a new FEAC Codeword has been validated by the Receive FEAC Controller. 0 - FEAC Message Validation Interrupt is NOT enabled. 1 - FEAC Message Validation Interrupt is enabled.

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
0	RxFEAC Valid Interrupt Status	RUR	 FEAC Message Validation Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "FEAC Message Validation" Interrupt has occurred since the last read of this register. 0 - FEAC Message Validation Interrupt has not occurred since the last read of this register. 1 - FEAC Message Validation Interrupt has occurred since the last read of this register.

RXDS3 LAPD CONTROL REGISTER (DIRECT ADDRESS = 0X1118)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
RxLAPDAny		Unused			RxLAPD Enable	RxLAPD Interrupt Enable	RxLAPD Interrupt Status
R/W	R/O	R/O	R/O	R/O	R/W	R/W	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	RxLAPD Any	R/W	 Receive LAPD - Any kind: This READ/WRITE bit-field permits the user to configure the LAPD Receiver to receive any kind of LAPD Message (or HDLC Message) with a size of 82 bytes or less. If the user implements this option, then the LAPD Receiver will be capable of receiving any kind of HDLC Message (with any value of header bytes). The only restriction is that the size of the HDLC Message must not exceed 82 bytes. 0 - Does not invoke this "Any Kind of HDLC Message" feature. In this case, the LAPD Receiver will only receive HDLC Messages that contains the Bellcore GR-499-CORE values for SAPI and TEI. 1 - Invokes this "Any Kind of HDLC Message" feature. In this case, the LAPD Receiver will be able to receive HDLC Messages that contain any header byte values. <i>Notes:</i> The user can determine the size (or byte-count) of the most recently received LAPD/PMDL Message, by reading the contents of the "RxLAPD Byte Count" Register (Direct Address = 0xNE84)
6 - 3	Unused	R/O	
2	RxLAPD Enable	R/W	 LAPD Receiver Enable: This READ/WRITE bit-field permits the user to either enable or disable the LAPD Receiver within the channel. If the user enables the LAPD Receiver, then it will immediately begin extracting out and monitoring the data (being carried via the "DL" bits) within the incoming DS3 data stream. 0 - Enables the LAPD Receiver. 1 - Disables the LAPD Receiver. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
1	RxLAPD Interrupt Enable	R/W	 Receive LAPD Message Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Receive LAPD Message" Interrupt. If the user enables this interrupt, then the channel will generate an interrupt, anytime the LAPD Receiver receives a new PMDL Message. 0 - Disables the "Receive LAPD Message" Interrupt. 1 - Enables the "Receive LAPD Message" Interrupt. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.
0	RxLAPD Interrupt Status	RUR	 Receive LAPD Message Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Receive LAPD Message" Interrupt has occurred since the last read of this register. 0 - "Receive LAPD Message" Interrupt has NOT occurred since the last read of this register. 1 - "Receive LAPD Message" Interrupt has occurred since the last read of this register. Mote: This bit-field is ignored if the Frame Synchronizer block is by-passed.

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RXDS3 LAPD STATUS REGISTER (DIRECT ADDRESS = 0X1119)

BIT 7	Віт 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Unused	RxABORT	RxLAPD	Type[1:0]	RxCRType	RxFCSError	End of Message	Flag Present
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	Nаме	Түре			Des	SCRIPTION			
7	Unused	R/O							
6	RxABORT	R/O	 Receive ABORT Sequence Indicator: This READ-ONLY bit-field indicates that the LAPD Receiver has received an ABORT sequence (e.g., a string of seven consecutive "0s"). 0 - LAPD Receiver has NOT received an ABORT sequence. 1 - LAPD Receiver has received an ABORT sequence. NOTE: Once the LAPD Receiver receives an ABORT sequence, it will set this bit-field "high", until it receives another LAPD Messages. 						
5 - 4	RxLAPDType[1:0]	R/O	Receive LAPD Message Type Indicator: These two READ-ONLY bits indicate the type of LAPD Message that is residing within the Receive LAPD Message buffer. The relationship between the content of these two bit-fields and the corresponding message type is presented below. RxLAPDType[1:0] Message Type						
				0	0	CL Path Identification			
				0	1	Idle Signal Identification			
				1	0	Test Signal Identification			
				1	1	ITU-T Path Identification			
3	RxCR Type	R/O	Received C/R Value: This READ-ONLY bit-field indicates the value of the C/R bit (within one of the header bytes) of the most recently received LAPD Message.						
2	RxFCS Error	R/O	 LAPD Message. Receive Frame Check Sequence (FCS) Error Indicator: This READ-ONLY bit-field indicates whether or not the most recently received LAPD Message frame contained an FCS error. 0 - The most recently received LAPD Message frame does not contain an FCS error. 1 - The most recently received LAPD Message frame does con- tain an FCS error. 						

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
1	End of Message	R/O	 End of Message Indicator: This READ-ONLY bit-field indicates whether or not the LAPD Receiver has received a complete LAPD Message. 0 - LAPD Receiver is currently receiving a LAPD Message, but has not received the complete message. 1 - LAPD Receiver has received a completed LAPD Message. Note: Once the LAPD Receiver sets this bit-field "high", this bit-field will remain high, until the LAPD Receiver begins to receive a new LAPD Message.
0	Flag Present	R/O	Receive Flag Sequence Indicator: This READ-ONLY bit-field indicates whether or not the LAPD Receiver is currently receiving the Flag Sequence (e.g., a contin- uous stream of 0x7E octets within the Data Link channel) .0 - LAPD Receiver is NOT currently receiving the Flag Sequence octet. 1 - LAPD Receiver is currently receiving the Flag Sequence octet.

RXDS3 PATTERN REGISTER (DIRECT ADDRESS = 0X112F)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	BIT 1	Віт 0
DS3 AIS- Unframed All Ones	DS3 AIS - Non Stuck Stuff	Unused	Receive LOS Pattern		Receive DS3 lo	dle Pattern[3:0]	
R/W	R/W	R/O	R/W	R/W	R/W	R/W	R/W
0	0	0	0	1	1	0	0

BIT NUMBER	Nаме	Түре	DESCRIPTION
7	DS3 AIS - Unframed All Ones	R/W	 DS3 AIS - Unframed All Ones - AIS Pattern: This READ/WRITE bit-field, (along with the "Non-Stuck-Stuff" bit) permits the user specify the "AIS Declaration" criteria for the DS3 Frame Synchronizer block, as described below. 0 - Configures the DS3 Frame Synchronizer block to declare an AIS condition, when receiving a DS3 signal carrying a "framed 1010" pattern. 1 - Configures the DS3 Frame Synchronizer block to declare an AIS condition, when receiving either an unframed, All Ones pattern or a "framed 1010" pattern.
6	DS3 AIS -Non-Stuck Stuff	R/W	 DS3 AIS -Non-Stuck-Stuff Option - AIS Pattern: This READ/WRITE bit-field (along with the "Unframed All Ones - AIS Pattern bit-field) permits the user to define the "AIS Declaration" criteria for the DS3 Frame Synchronizer block, as described below. 0 - Configures the DS3 Frame Synchronizer block to require that all "C" bits are set to "0" before it will declare an AIS condition. 1 - Configures the DS3 Frame Synchronizer block to NOT require that all "C" bits are set to "0" before it will declare an AIS condition. 1 - Configures the DS3 Frame Synchronizer block to NOT require that all "C" bits are set to "0" before it will declare an AIS condition.
5	Unused	R/O	
4	Receive LOS Pattern	R/W	 Receive LOS Pattern: This READ/WRITE bit-field permits the user to define the "LOS Declaration" criteria for the DS3 Frame Synchronizer block, as described below. 0 - Configures the DS3 Frame Synchronizer to declare an LOS condition if it receives a string of a specific length of consecutive zeros. 1 - Configures the DS3 Frame Synchronizer to declare an LOS condition if it receives a string (of a specific length) of consecutive zeros.

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
3 - 0	Receive Idle Pattern[3:0]	R/W	 Receive DS3 Idle Pattern: These READ/WRITE bit-fields permit the user to specify the pattern in which the DS3 Frame Synchronizer will recognize as the "DS3 Idle Pattern". Note: The Bellcore GR-499-CORE specified value for the Idle Pattern is a framed repeating "1, 1, 0, 0" pattern. Therefore, if the user wishes to configure the "DS3 Frame Synchronizer" to declare an "Idle Pattern" when it receives this pattern, then he/she write the value [1100] into these bit-fields.

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE E3, ITU-T G.751 RELATED REGISTERS

RXE3 CONFIGURATION AND STATUS REGISTER # 1 - G.751 (DIRECT ADDRESS = 0X1110)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
	Unused		RxFERF Algo	Unused		RxBIP-4 Enable	
R/O	R/O	R/O	R/W	R/O	R/O	R/O	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 5	Unused	R/O	
4	RxFERF Algo	R/W	Receive FERF Algorithm Select: This READ/WRITE bit-field permits the user to select the "Receive FERF Declaration" and "Clearance" criteria. 0 - Receive FERF is declared if the "A" bit-field (within the incoming E3 data-stream) is set to "1" for 3 consecutive frames. Receive FERF is cleared if the "A" bit-field is set to "0" for 3 consecutive frames. 1 - Receive FERF is declared if the "A" bit-field is set to "1" for 5 consecutive frames. 2 - Receive FERF is declared if the "A" bit-field is set to "1" for 5 consecutive frames.
3 - 1	Unused	R/O	
0	RxBIP4 Enable	R/W	 Enable BIP-4 Verification: This READ/WRITE bit-field permits the user to configure the Frame Synchronizer block to verify the BIP-4 value, within the incoming E3 data-stream. 0 - BIP-4 Verification is NOT performed. 1 - BIP-4 Verification is performed.

RXE3 CONFIGURATION AND STATUS REGISTER # 2 - G.751 (DIRECT ADDRESS = 0X1111)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	BIT 1	Віт 0
RxLOF Algo	RxLOF	RxOOF	RxLOS	RxAIS	Unused	RxFERF	
R/W	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	1	1	0	0	0	0	1

BIT NUMBER	NAME	Түре	DESCRIPTION
7	RxLOF Algo	R/W	 Receive Loss of Frame Declaration/Clearance Criteria Select: This READ/WRITE bit-field permits the user to select the Loss of Frame (LOF) Declaration and Clearance Criteria. 0 - LOF will be declared if the Frame Synchronizer block resides within the OOF (Out-of-Frame) state for 24 E3 frame periods. LOF will also be cleared once the Frame Synchronizer resides within the "In-Frame" state for 24 E3 frame period. 1 - LOF will be declared if the Frame Synchronizer block resides within the OOF state for 8 E3 frame periods. LOF will also be cleared once the Frame Synchronizer block resides within the OOF state for 8 E3 frame periods.
6	RxLOF	R/O	 Receive Loss of Frame Defect Indicator: This READ-ONLY bit-field indicates whether or not the Frame Synchronizer block is currently declaring the LOF condition. 0 - Frame Synchronizer is NOT declaring an LOF condition with the incoming data stream. 1 - Frame Synchronizer is currently declaring an LOF condition with the incoming data stream. Note: This bit-field is not valid if the Frame Synchronizer block is by-passed.
5	RxOOF	R/O	 Receive Out of Frame Defect Indicator: This READ-ONLY bit-field indicates whether or not the Frame Synchronizer block is currently declaring the OOF condition. 0 - Frame Synchronizer is NOT declaring an OOF condition with the incoming data stream. 1 - Frame Synchronizer is currently declaring an OOF condition with the incoming data stream. Note: This bit-field is not valid if the Frame Synchronizer block is by-passed.
4	RxLOS	R/O	 Receive Loss of Signal Defect Indicator: This READ-ONLY bit-field indicates whether or not the Frame Synchronizer block is currently declaring the LOS condition. 0 - Frame Synchronizer/Channel is NOT declaring an LOS condition in the incoming data stream. 1 - Frame Synchronizer/Channel is currently declaring an LOS condition in the incoming data stream.

XRT79L71 *REV. P1.0.3*

BIT NUMBER	NAME	Түре	DESCRIPTION
3	RxAIS	R/O	 Receive AIS Defect Indicator: This READ-ONLY bit-field indicates whether or not the Frame Synchronizer block is currently receiving an AIS signal within the incoming E3 data-stream or not. 0 - Frame Synchronizer block is NOT detecting an AIS pattern in the incoming data stream. 1 - Frame Synchronizer block is currently detecting an AIS pattern in the incoming data stream. Note: This bit-field is not valid if the Frame Synchronizer block is by-passed.
2 - 1	Unused	R/O	
0	RxFERF	R/O	 Receive FERF (Far-End-Receive Failure) Defect Indicator: This READ-ONLY bit-field indicates whether or not the Frame Synchronizer block is currently declaring a FERF condition or not. 0 - Frame Synchronizer block is NOT declaring the FERF condi- tion. 1 - Frame Synchronizer block is declaring the FERF condition. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.

RXE3 INTERRUPT ENABLE REGISTER # 1 - G.751 (DIRECT ADDRESS = 0X1112)

BIT 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0
	Unused		COFA Interrupt Enable	Change in OOF State Interrupt Enable	Change in LOF State Interrupt Enable	Change in LOS State Interrupt Enable	Change in AIS State Interrupt Enable
R/O	R/O	R/O	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 5	Unused	R/O	
4	COFA Interrupt Enable	R/W	Change of Framing Alignment Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change of Framing Alignment" Interrupt, within the Channel. If the user enables this interrupt, then the Frame Syn- chronizer block will generate an interrupt anytime it detects a Change in Frame Alignment (e.g., the FAS bits have appeared to move to a different location in the E3 data stream).
3	Change in OOF State Interrupt Enable	R/W	 Change in OOF Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change in OOF (Out of Frame) Condition" Interrupt, within the Channel. If the user enables this interrupt, then the Frame Synchronizer block will generate an interrupt in response to either of the following conditions. The instant that the channel declares an OOF condition. The instant that the channel clears the OOF condition. Disables the "Change in OOF Condition" Interrupt. Enables the "Change in OOF Condition" Interrupt. This bit-field is ignored if the Frame Synchronizer block is bypassed.
2	Change in LOF State Interrupt Enable	R/W	 Change in LOF Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change in LOF (Loss of Frame) Condition" Interrupt, within the Channel. If the user enables this interrupt, then the Frame Synchronizer block will generate an interrupt in response to either of the following conditions. The instant that the channel declares an LOF condition. The instant that the channel clears the LOF condition. Disables the "Change in LOF Condition" Interrupt. Enables the "Change in LOF Condition" Interrupt. Enables the "Change in LOF Condition" Interrupt. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.

XRT79L71 REV. P1.0.3

BIT NUMBER	NAME	Түре	DESCRIPTION
1	Change in LOS State Interrupt Enable	R/W	 Change in LOS Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change in LOS (Loss of Signal) Condition" Interrupt, within the Channel. If the user enables this interrupt, then the Frame Synchronizer block will generate an interrupt in response to either of the following conditions. The instant that the channel declares an LOS condition. The instant that the channel clears the LOS condition. Disables the "Change in LOS Condition" Interrupt. Enables the "Change in LOS Condition" Interrupt.
0	Change in AIS State Interrupt Enable	R/W	 Change in AIS Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change in AIS (Alarm Indication Signal) Condition" Interrupt, within the Channel. If the user enables this interrupt, then the Frame Synchronizer block will generate an interrupt in response to either of the following conditions. The instant that the channel declares an AIS condition. The instant that the channel clears the AIS condition. Disables the "Change in AIS Condition" Interrupt. Enables the "Change in AIS Condition" Interrupt. Enables the "Change in AIS Condition" Interrupt. Enables the "Change in AIS Condition" Interrupt.

RXE3 INTERRUPT ENABLE REGISTER # 2 - G.751 (DIRECT ADDRESS = 0X1113)

BIT 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0
	Unused			Change in FERF State Interrupt Enable	Detection of BIP-4 Error Interrupt Enable	Detection of FAS Bit Error Interrupt Enable	Reserved
R/O	R/O	R/O	R/O	R/W	R/W	R/W	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 4	Unused	R/O	Please set to "0" (the default value) for normal operation
3	Change in FERF State Interrupt Enable	R/W	 Change in FERF Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change in FERF Condition" Interrupt. If the user enables this interrupt, then the Frame Synchronizer block will generate an interrupt anytime the state of the FERF condition changes. 0 - Disables the "Change in FERF Condition" Interrupt. 1 - Enables the "Change in FERF Condition" Interrupt. Note: This bit-field is ignored anytime the Frame Synchronizer block is by-passed.
2	Detection of BIP-4 Error Interrupt Enable	R/W	 Detection of BIP-4 Error Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Detection of BIP-4 Error" Interrupt. If the user enables this interrupt, then the Frame Synchronizer block will generate an interrupt anytime it detects a BIP-4 error, within the incoming E3 data stream. O - Disables the "Detection of BIP-4 Error" Interrupt. 1 - Enables the "Detection of BIP-4 Error" Interrupt. Note: This bit-field is ignored anytime the Frame Synchronizer block is by-passed.
1	Detection of FAS Bit Error Interrupt Enable	R/W	 Detection of FAS (Framing Alignment Signal) Bit Error Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "FAS Bit Error" Interrupt. If the user enables this interrupt, then the Frame Synchronizer block will generate an interrupt anytime it detects an FAS error within the incoming E3 data stream. 0 - Disables the "Detection of FAS Bit Error" Interrupt. 1 - Enables the "Detection of FAS Bit Error" Interrupt. NOTE: This bit-field is ignored if the Frame Synchronizer block is by-passed.
0	Unused	R/O	Please set to "0" (the default value) for normal operation.

T - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RXE3 INTERRUPT STATUS REGISTER # 1 - G.751 (DIRECT ADDRESS = 0X1114)

Віт 7	BIT 6	Віт 5	Віт 4	BIT 3	BIT 2	BIT 1	Віт 0
	Unused		COFA Interrupt Status	Change in OOF State Interrupt Status	Change in LOF State Interrupt Status	Change in LOS State Interrupt Status	Change in AIS State Interrupt Status
R/O	R/O	R/O	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 5	Unused	R/O	
4	COFA Interrupt Status	RUR	 Change of Framing Alignment (COFA) Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change of Framing Alignment (COFA) interrupt has occurred since the last read of this register. 0 - The "COFA" Interrupt has NOT occurred since the last read of this register. 1 - The "COFA" Interrupt has occurred since the last read of this register.
3	Change in OOF State Interrupt Status	RUR	 Change of OOF (Out of Frame) Condition Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change of OOF Condition" Interrupt has occurred since the last read of this register. If this interrupt is enabled, then the DS3/E3 Framer block will generate an interrupt in response to either of the following condi- tion. Whenever the Frame Synchronizer block declares the OOF Condition. Whenever the Frame Synchronizer block clears the OOF Condition. Whenever the Frame Synchronizer block clears the OOF Condition. The "Change in OOF Condition" Interrupt has NOT occurred since the last read of this register. The "Change in OOF Condition" Interrupt has occurred since the last read of this register. Note: The user can obtain the current OOF state of the DS3/E3 Framer block by reading out the state of Bit 5 (RxOOF) within the "RxE3 Configuration and Status # 2 - G.751" (Direct Address = 0x1111).

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
2	Change in LOF State Interrupt Status	RUR	 Change of LOF (Loss of Frame) Condition Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change of LOF Condition" Interrupt has occurred since the last read of this register. If this interrupt is enabled, then the DS3/E3 Framer block will generate an interrupt in response to either of the following condi- tion. Whenever the Frame Synchronizer block declares the LOF Condition. Whenever the Frame Synchronizer block clears the LOF Condition. The "Change in LOF Condition" Interrupt has NOT occurred since the last read of this register. The "Change in LOF Condition" Interrupt has occurred since the last read of this register. Note: The user can obtain the current LOF state of the DS3/E3 Framer block by reading out the state of Bit 6 (RxLOF)
			within the "RxE3 Configuration and Status # 2 - G.751" (Direct Address = 0x1111).
1	Change in LOS State Interrupt Status	RUR	 Change of LOS (Loss of Signal) Condition Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change of LOS Condition" Interrupt has occurred since the last read of this register. If this interrupt is enabled, then the DS3/E3 Framer block will generate an interrupt in response to either of the following condi- tion. Whenever the Frame Synchronizer block declares the LOS Condition. Whenever the Frame Synchronizer block clears the LOS Condition. The "Change of LOS Condition" Interrupt has NOT occurred since the last read of this register. The "Change of LOS Condition" Interrupt has occurred since the last read of this register. The user can obtain the current LOS state of the DS3/E3 Framer block by reading out the state of Bit 4 (RxLOS) within the "RxE3 Configuration and Status # 2 - G.751" (Direct Address = 0x1111).

BIT NUMBER	NAME	Түре	DESCRIPTION
0	Change in AIS State Interrupt Status	RUR	 Change of AIS Condition Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change of AIS Condition" Interrupt has occurred since the last read of this register. If this interrupt is enabled, then the DS3/E3 Framer block will generate an interrupt in response to either of the following condi- tion. Whenever the Frame Synchronizer block declares the AIS Condition. Whenever the Frame Synchronizer block clears the AIS Condition. Whenever the Frame Synchronizer block clears the AIS Condition. The "Change of AIS Condition" Interrupt has NOT occurred since the last read of this register. The "Change of AIS Condition" Interrupt has occurred since the last read of this register. Note: The user can obtain the current AIS state of the DS3/E3 Framer block by reading out the state of Bit 3 (RxAIS) within the "RxE3 Configuration and Status # 2 - G.751" (Direct Address = 0x1111).

RXE3 INTERRUPT STATUS REGISTER # 2 - G.751 (DIRECT ADDRESS = 0X1115)

BIT 7	Віт 6	Віт 5	BIT 4	BIT 3	Віт 2	BIT 1	Віт 0
	Unused				Detection of BIP-4 Error Interrupt Status	Detection of FAS Bit Error Interrupt Status	Reserved
R/O	R/O	R/O	R/O	RUR	RUR	RUR	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 4	Unused	R/O	
3	Change of FERF Condi- tion Interrupt Status	RUR	 Change of FERF Condition Interrupt: This RESET-upon-READ bit-field indicates whether or not the "Change in FERF Condition" interrupt has occurred since the last read of this register. 0 - The "Change in FERF Condition" interrupt has NOT occurred since the last read of this register. 1 - The "Change in FERF Condition" interrupt has occurred since the last read of this register.
2	Detection of BIP-4 Error Interrupt Status	RUR	 Detection of BIP-4 Error Interrupt: This "RESET-upon-READ" bit-field indicates whether or not the "Detection of BIP-4 Error" interrupt has occurred since the last read of this register. 0 - The "Detection of BIP-4 Error" Interrupt has NOT occurred since the last read of this register. 1 - The "Detection of BIP-4 Error" Interrupt has occurred since the last read of this register.
1	Detection of FAS Bit Error Interrupt Status	RUR	 Detection of FAS Bit Error Interrupt: This "RESET-upon-READ" bit-field indicates whether or not the "Detection of FAS Bit Error" interrupt has occurred since the last read of this register. 0 - The "Detection of FAS Bit Error" Interrupt has NOT occurred since the last read of this register. 1 - The "Detection of FAS Bit Error" Interrupt has occurred since the last read of this register.
0	Unused	R/O	

RXE3 LAPD CONTROL REGISTER - G.751 (DIRECT ADDRESS = 0X1118)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	Віт 1	Віт 0
RxLAPD Any		Սու	ised	RxLAPD Enable	RxLAPD Interrupt Enable	RxLAPD Interrupt Status	
R/W	R/O	R/O	R/O	R/O	R/W	R/W	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	RxLAPD Any	R/W	 Receive LAPD - Any kind: This READ/WRITE bit-field permits the user to configure the LAPD Receiver to receive any kind of LAPD Message (or HDLC Message) with a size of 82 bytes or less. If the user implements this option, then the LAPD Receiver will be capable of receiving any kind of HDLC Message (with any value of header bytes). The only restriction is that the size of the HDLC Message must not exceed 82 bytes. 0 - Does not invoke this "Any Kind of HDLC Message" feature. In this case, the LAPD Receiver will only receive HDLC Messages that contains the Bellcore GR-499-CORE values for SAPI and TEI. 1 - Invokes this "Any Kind of HDLC Message" feature. In this case, the LAPD Receiver will be able to receive HDLC Messages that contain any header byte values. <i>Notes:</i> The user can determine the size (or byte count) of the most recently received LAPD/PMDL Message, by reading the contents of the "RxLAPD Byte Count" Register (Direct Address = 0x1184).
6 - 3	Unused	R/O	
2	RxLAPD Enable	R/W	 LAPD Receiver Enable: This READ/WRITE bit-field permits the user to either enable or disable the LAPD Receiver within the channel. If the user enables the LAPD Receiver, then it will immediately begin extracting out and monitoring the data (being carried via the "DL" bits) within the incoming DS3 data stream. 0 - Enables the LAPD Receiver. 1 - Disables the LAPD Receiver. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
1	RxLAPD Interrupt Enable	R/W	 Receive LAPD Message Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Receive LAPD Message" Interrupt. If the user enables this interrupt, then the channel will generate an interrupt, anytime the LAPD Receiver receives a new PMDL Message. 0 - Disables the "Receive LAPD Message" Interrupt. 1 - Enables the "Receive LAPD Message" Interrupt. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.
0	RxLAPD Interrupt Status	RUR	 Receive LAPD Message Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Receive LAPD Message" Interrupt has occurred since the last read of this register. 0 - "Receive LAPD Message" Interrupt has NOT occurred since the last read of this register. 1 - "Receive LAPD Message" Interrupt has occurred since the last read of this register. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.

RXE3 LAPD STATUS REGISTER - G.751 (DIRECT ADDRESS = 0X1119)

Віт 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Unused	RxABORT	RxLAPDType[1:0]		RxCR Type	RxFCS Error	End of Message	Flag Present
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре		DESCRIPTION					
7	Unused	R/O							
6	RxABORT	R/O	 Receive ABORT Sequence Indicator: This READ-ONLY bit-field indicates that the LAPD Receiver has received an ABORT sequence (e.g., a string of seven consecutive "0s"). 0 - LAPD Receiver has NOT received an ABORT sequence. 1 - LAPD Receiver has received an ABORT sequence. Note: Once the LAPD Receiver receives an ABORT sequence, it will set this bit-field "high", until it receives another LAPD Messages. 						
5 - 4	RxLAPDType[1:0]	R/O	Receive LAPD Message Type Indicator: These two READ-ONLY bits indicate the type of LAPD Message that is residing within the Receive LAPD Message buffer. The relationship between the content of these two bit-fields and the corresponding message type is presented below. RxLAPDType[1:0] Message Type				The		
				0	0	CL Path Identification			
				0	1	Idle Signal Identification			
				1	0	Test Signal Identification			
				1	1	ITU-T Path Identification			
3	RxCR Type	R/O	Received C/R Value: This READ-ONLY bit-field indicates the value of the C/R bit (within one of the header bytes) of the most recently received LAPD Message.						
2	RxFCS Error	R/O	 Receive Frame Check Sequence (FCS) Error Indicator: This READ-ONLY bit-field indicates whether or not the most recently received LAPD Message frame contained an FCS error. 0 - The most recently received LAPD Message frame does not contain an FCS error. 1 - The most recently received LAPD Message frame does contain an FCS error. 						

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
1	End of Message	R/O	 End of Message Indicator: This READ-ONLY bit-field indicates whether or not the LAPD Receiver has received a complete LAPD Message. 0 - LAPD Receiver is currently receiving a LAPD Message, but has not received the complete message. 1 - LAPD Receiver has received a completed LAPD Message. Note: Once the LAPD Receiver sets this bit-field "high", this bit-field will remain high, until the LAPD Receiver begins to receive a new LAPD Message.
0	Flag Present	R/O	 Receive Flag Sequence Indicator: This READ-ONLY bit-field indicates whether or not the LAPD Receiver is currently receiving the Flag Sequence (e.g., a continuous stream of 0x7E octets within the Data Link channel). 0 - LAPD Receiver is NOT currently receiving the Flag Sequence octet. 1 - LAPD Receiver is currently receiving the Flag Sequence octet.

RXE3 SERVICE BITS REGISTER - G.751 (DIRECT ADDRESS = 0X111A)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0
	Unused						RxN
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 2	Unused	R/O	
1	RxA	R/O	Received A Bit Value: This READ-ONLY bit-field reflects the value of the "A" bit, within the most recently received E3 frame.
0	RxN	R/O	Received N Bit Value: This READ-ONLY bit-field reflects the value of the "N" bit, within the most recently received E3 frames.

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE E3, ITU-T G.832 RELATED REGISTERS

RXE3 CONFIGURATION AND STATUS REGISTER # 1 - G.832 (DIRECT ADDRESS = 0X1110)

Віт 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
	RxPLDType[2:0]	RxFERF Algo.	RxTMark Algo	R>	PLDTypeExp[2	:0]
R/O	R/O	R/O	R/W	R/W	R/W	R/W	R/W
0	1	0	0	0	0	1	0

BIT NUMBER	Nаме	Түре	DESCRIPTION
7 - 5	RxPLDType[2:0]	R/O	Received PLD (Payload) Type[2:0]: These three READ-ONLY bit-fields reflect the value of the Pay- load Type bits, within the MA byte of the most recently received E3 frame.
4	RxFERF Algo	R/W	 Receive FERF Declaration/Clearance Algorithm: This READ/WRITE bit-field permits the user to select a "Receive FERF Declaration and Clearance" Algorithm, as indicated below. 0 - The Frame Synchronizer block will declare a FERF condition if it receives the FERF indicator in 3 consecutive E3 frames. Additionally, the Frame Synchronizer block will also clear the FERF condition if it no longer receives the FERF indicator for 3 consecutive E3 frames. 1 - The Frame Synchronizer block will declare a FERF condition if it receives the FERF indicator in 5 consecutive E3 frames. Additionally, the Frame Synchronizer block will also clear the FERF condition if it receives the FERF indicator in 5 consecutive E3 frames. Additionally, the Frame Synchronizer block will also clear the FERF condition if it no longer receives the FERF indicator for 5 consecutive E3 frames.
3	RxTMark Algo	R/W	 Receive Timing Marker Validation Algorithm: This READ/WRITE bit-field permits the user to select the "Receive Timing Marker Validation" algorithm, as indicated below. 0 - The Timing Marker will be validated if it is of the same state for three (3) consecutive E3 frames. 1 - The Timing Marker will be validated if it is of the same state for five (5) consecutive E3 frames.
2 - 0	RxPLDTypExp[2:0]	R/W	Receive PLD (Payload) Type - Expected: This READ/WRITE bit-field permits the user to specify the "expected value" for the Payload Type, within the MA bytes of each incoming E3 frame. If the Frame Synchronizer block receives a Payload Type that differs then what has been written into these register bits, then it will generate the "Payload Type Mismatch" Interrupt.

RXE3 CONFIGURATION AND STATUS REGISTER # 2 - G.832 (DIRECT ADDRESS = 0X1111)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0
RxLOF Algo	RxLOF	RxOOF	RxLOS	RxAIS	RxPLD Unstab	RxTMark	RxFERF
R/W	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	1	1	0	0	1	1	1

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7	RxLOF Algo	R/W	 Receive LOF (Loss of Frame) Declaration Algorithm: This READ/WRITE bit-field permits the user to select a "Receive LOF Declaration" Algorithm, as indicated below. 0 - The Frame Synchronizer will declare a Loss of Frame condition after it has resided within the "OOF" (Out of Frame) condition for 24 E3 frame periods. 1 - The Frame Synchronizer will declare a Loss of Frame condition after it has resided within the "OOF" condition for 8 E3 frame periods.
6	RxLOF	R/O	 Receive Loss of Frame Indicator: This READ-ONLY bit-field indicates whether or not the Frame Synchronizer is currently declaring a Loss of Frame condition, as indicated below. 0 - The Frame Synchronizer block is NOT currently declaring a Loss of Frame condition. 1 - The Frame Synchronizer block is currently declaring a Loss of Frame condition.
5	RxOOF	R/O	 Receive Out of Frame Indicator: This READ-ONLY bit-field indicates whether or not the Frame Synchronizer is currently declaring an Out of Frame (OOF) condition, as indicated below. 0 - The Frame Synchronizer block is NOT currently declaring an Out of Frame condition. 1 - The Frame Synchronizer block is currently declaring an Out of Frame condition. Note: The Frame Synchronizer block will declare an "OOF" condition if it detects FA1 or FA2 byte errors in four (4) consecutive "incoming" E3 frames.
4	RxLOS	R/O	 Receive Loss of Signal Indicator: This READ-ONLY bit-field indicates whether or not the Frame Synchronizer block is currently declaring an LOS (Loss of Signal) condition, as indicated below. 0 - The Frame Synchronizer block is NOT currently declaring an LOS condition. 1 - The Frame Synchronizer block is currently declaring an LOS condition.

XRT79L71 *REV. P1.0.3*

BIT NUMBER	NAME	Түре	DESCRIPTION
3	RxAIS	R/O	 Receive AIS Indicator: This READ-ONLY bit-field indicates whether or not the Frame Synchronizer block is currently detecting an AIS pattern, in the incoming E3 data stream; as indicated below. 0 - The Frame Synchronizer block is NOT currently detecting an AIS pattern in the incoming E3 data stream. 1 - The Frame Synchronizer block is currently detecting an AIS pattern in the incoming E3 data stream. Note: The Frame Synchronizer block will declare an "AIS" condition if it detects 7 or less "Os" within two consecutive "incoming" E3 frames.
2	RxPLD Unstab	R/O	 Receive Payload-Type Unstable Indicator: This READ-ONLY bit-field indicates whether or not the Payload Type (within the MA bytes of each incoming E3 frame) has been consistent in the last 5 frames, as indicated below. 0 - The Payload Type value has been consistent for at least 5 consecutive E3 frames. 1 - The Payload Type value has NOT been consistence for the last 5 E3 frames.
1	RxTMark	R/O	Received (Validated) Timing Marker: This READ-ONLY bit-field indicates the value of the most recently validated "Timing Marker".
0	RxFERF	R/O	 Receive FERF (Far-End-Receive Failure) Indicator: This READ-ONLY bit-field indicates whether or not the Frame Synchronizer is currently declaring a FERF condition, as indicated below. 0 - The Frame Synchronizer block is NOT currently declaring a FERF condition. 1 - The Frame Synchronizer block is currently declaring a FERF condition.

RXE3 INTERRUPT ENABLE REGISTER # 1 - G.832 (DIRECT ADDRESS = 0X1112)

BIT 7	BIT 6	Віт 5	Віт 4	BIT 3	Віт 2	BIT 1	Віт 0
Unused	Change in SSM MSG Interrupt Enable	Change in SSM OOS Interrupt Enable	COFA Interrupt Enable	Change in OOF State Interrupt Enable	Change in LOF State Interrupt Enable	Change in LOS State Interrupt Enable	Change in AIS State Interrupt Enable
R/O	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	Unused	R/O	
6	Change in SSM MSG Interrupt Enable	R/W	 Change of Synchronization Status Message (SSM) Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change in SSM Message" Interrupt, as indicated below. 0 - Disables the "Change in SSM Message" Interrupt. 1 - Enables the "Change of SSM Message" Interrupt. In this configuration, the Frame Synchronizer block will generate an interrupt anytime it receives a new (or different) SSM Message in the incoming E3 data-stream.
5	Change in SSM OOS State Interrupt Enable	R/W	 Change of SSM OOS (Out of Sequence) Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change of SSM OOS Condition" Interrupt, as indi- cated below. 0 - Disables the "Change of SSM OOS Condition" Interrupt. 1 - Enables the "Change of SSM OOS Condition" Interrupt. In this configuration, the Frame Synchronizer block will generate an interrupt under the following conditions. a. When the Frame Synchronizer block declares an SSM OOS condition. b. When the Frame Synchronizer block clears the SSM OOS condition.
4	COFA Interrupt Enable	R/W	 Change of Framing Alignment Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change of Framing Alignment" condition interrupt, as indicated below. 0 - Disables the "Change of Framing Alignment" Interrupt. 1 - Enables the "Change of Framing Alignment" Interrupt.

XRT79L71 *REV. P1.0.3*

BIT NUMBER	NAME	Түре	DESCRIPTION
3	Change in OOF State Interrupt Enable	R/W	 Change of OOF (Out of Frame) Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change of OOF Condition" Interrupt, as indicated below. 0 - Disables the "Change of OOF Condition" Interrupt. 1 - Enables the "Change of OOF Condition" Interrupt. In this configuration, the Frame Synchronizer block will generate an interrupt under the following conditions. a. When the Frame Synchronizer block declares an OOF condition. b. When the Frame Synchronizer block clears the OOF condition.
2	Change in LOF State Interrupt Enable	R/W	 Change of LOF (Loss of Frame) Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change of LOF Condition" Interrupt, as indicated below. 0 - Disables the "Change of LOF Condition" Interrupt. 1 - Enables the "Change of LOF Condition" Interrupt. In this con- figuration, the Frame Synchronizer block will generate an inter- rupt under the following conditions. a. When the Frame Synchronizer block declares an LOF condition. b. When the Frame Synchronizer block clears the LOF condition.
1	Change in LOS State Interrupt Enable	R/W	 Change of LOS (Loss of Signal) Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change of LOS Condition" Interrupt, as indicated below. 0 - Disables the "Change of LOS Condition" Interrupt. 1 - Enables the "Change of LOS Condition" Interrupt. In this configuration, the Frame Synchronizer block will generate an interrupt under the following conditions. a. When the Frame Synchronizer block declares an LOS condition. b. When the Frame Synchronizer block clears the LOS condition.
0	AIS Interrupt Enable	R/W	 Change of AIS (Alarm Indication Signal) Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change of AIS Condition" Interrupt, as indicated below. 0 - Disables the "Change of AIS Condition" Interrupt. 1 - Enables the "Change of AIS Condition" Interrupt. In this con- figuration, the Frame Synchronizer block will generate an inter- rupt under the following conditions. a. When the Frame Synchronizer block declares an AIS condition. b. When the Frame Synchronizer block clears the AIS condition.

RXE3 INTERRUPT ENABLE REGISTER # 2 - G.832 (DIRECT ADDRESS = 0X1113)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0
Unused	Change in RxTTB Message Interrupt Enable	Reserved	Detection of FEBE Event Interrupt Enable	Change in FERF State Interrupt Enable	Detection of BIP-8 Error Interrupt Enable	Detection of Framing Byte Error Interrupt Enable	RxPLD Mis Interrupt Enable
R/O	R/W	R/O	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7	Unused	R/O	
6	Change in RxTTB Message Interrupt Enable	R/W	 Change in Receive Trail-Trace Buffer Message Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Change in RxTTB Message" Interrupt, as indicated below. 0 - Disables the "Change in RxTTB Message" Interrupt. 1 - Enables the "Change in RxTTB Message" Interrupt. In this mode, the Frame Synchronizer block will generate an interrupt anytime it receives a different TTB message, then what it had been receiving.
5	Unused	R/W	
4	Detection of FEBE Event Interrupt Enable	R/W	 Detection of FEBE Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Detection of FEBE" Interrupt, as indicated below. 0 - Disables the "Detection of FEBE" Interrupt. 1 - Enables the "Detection of FEBE" Interrupt. In this mode, the Frame Synchronizer block will generate an interrupt anytime it detects a FEBE (Far-End Block Error) indicator in the incoming E3 data-stream.
3	Change in FERF State Interrupt Enable	R/W	 Change of FERF Condition Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the Change of FERF Condition Interrupt, as indicated below. 0 - Disables the "Change in FERF Condition" Interrupt. 1 - Enables the "Change in FERF Condition" Interrupt. In this mode, the Frame Synchronizer block will generate an interrupt, in response to either of the following conditions. a. When the Frame Synchronizer declares a FERF condition. b. When the Frame Synchronizer clears the FERF condition.

XRT79L71 *REV. P1.0.3*

BIT NUMBER	NAME	Түре	DESCRIPTION
2	Detection of BIP-8 Error Interrupt Enable	R/W	 Detection of BIP-8 Error Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Detection of BIP-8 Error" Interrupt, as indicated below. 0 - Disables the "Detection of BIP-8 Error" Interrupt. 1 - Enables the "Detection of BIP-8 Error" Interrupt. In this mode, the Frame Synchronizer block will generate an interrupt anytime it detects a BIP-8 error in the incoming E3 data-stream.
1	Detection of Framing Byte Error Interrupt Enable	R/W	 Detection of Framing Byte Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Detection of Framing Byte Error" Interrupt, as indicated below. 0 - Disables the "Detection of Framing Byte Error" Interrupt. 1 - Enables the "Detection of Framing Byte Error" Interrupt. In this mode, the Frame Synchronizer block will generate an interrupt anytime it detects a FA1 or FA2 byte error in the incoming E3 data stream.
0	RxPLD Mis Interrupt Enable		 Received Payload Type Mismatch Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Receive Payload Type Mismatch" interrupt, as indicated below. 0 - Disables the "Received Payload Type Mismatch" Interrupt. 1 - Enables the "Received Payload Type Mismatch" Interrupt. In this mode, the Frame Synchronizer block will generate an interrupt anytime it receives a "Payload Type" value (within the MA byte) that differs from that written into the "RxPLDExp[2:0]" bit-fields.

RXE3 INTERRUPT STATUS REGISTER # 1 - G.832 (DIRECT ADDRESS = 0X1114)

BIT 7	Віт 6	Віт 5	Віт 4	BIT 3	Віт 2	BIT 1	Віт 0
Unused	Change in SSM MSG Interrupt Status	Change in SSM OOS Interrupt Status	COFA Interrupt Status	Change in OOF State Interrupt Status	Change in LOF State Interrupt Status	Change in LOS State Interrupt Status	Change in AIS State Interrupt Status
R/O	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	Unused	R/O	
6	Change in SSM MSG Interrupt Status	RUR	 Change in SSM (Synchronization Status Message) Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change in SSM Message" Interrupt has occurred since the last read of this register. If this interrupt is enabled, then the DS3/E3 Framer block will generate an interrupt, anytime it detects a change in the "SSM[3:0]" value that it has received via the incoming E3 datastream. 0 - Indicates that the "Change in SSM Message" Interrupt has NOT occurred since the last read of this register. 1 - Indicates that the "Change in SSM Message" Interrupt has occurred since the last read of this register. 1 - Indicates that the "Change in SSM Message" Interrupt has occurred since the last read of this register. NoTE: The user can obtain the newly received value for "SSM" by reading out the contents of Bits 3 through 1 (RxSSM[3:0]) within the "RxE3 SSM Register - G.832" (Indirect Address =0xNE, 0x2C; Direct Address = 0x112C).
5	Change in SSM OOS State Interrupt Status	RUR	 Change in SSM OOS (Out of Sequence) State Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change in SSM OOS State" Interrupt has occurred since the last read of this register. If this interrupt is enabled, then the DS3/E3 Framer block will generate the "Change in SSM OOS State" Interrupt will response to the following events. When the DS3/E3 Frame Synchronizer block declares the SSM OOS Condition. When the DS3/E3 Frame Synchronizer block clears the SSM OOS condition. ONS condition. Indicates that the "Change in SSM OOS Condition" Interrupt has NOT occurred since the last read of this register. Indicates that the "Change in SSM OOS Condition" Interrupt has occurred since the last read of this register.

XRT79L71 *REV. P1.0.3*

BIT NUMBER	NAME	Түре	DESCRIPTION
4	COFA Interrupt Status	RUR	 COFA Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "COFA" (Change of Framing Alignment) Interrupt has occurred since the last read of this register. If this interrupt is enabled, then the DS3/E3 Framer block will generate an interrupt anytime it detects a new "Framing Alignment" with the incoming E3 data-stream. 0 - Indicates that the "COFA Interrupt" has not occurred since the last of this register. 1 - Indicates that the "COFA Interrupt" has occurred since the last read of this register.
3	Change in OOF State Interrupt Status	RUR	 Change in OOF (Out of Frame) State Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change in OOF State" Interrupt has occurred since the last read of this register.If this interrupt is enabled, then the DS3/E3 Framer block will generate the "Change in OOF State" Interrupt in response to the following events. When the DS3/E3 Frame Synchronizer block declares the "OOF Condition". When the DS3/E3 Frame Synchronizer block clears the "OOF Condition". Indicates that the "Change in OOF State Interrupt" has not occurred since the last of this register. I - Indicates that the "Change in OOF State Interrupt" has occurred since the last read of this register. I - Indicates that the "Change in OOF State Interrupt" has occurred since the last read of this register. I - Indicates that the "Change in OOF State Interrupt" has occurred since the last read of this register. I - Indicates that the "Change in OOF State Interrupt" has occurred since the last read of this register. I - Indicates that the "Change out the contents of Bit 5 (RxOOF) within the "RxE3 Configuration and Status Register # 2 - G.832" (Direct Address = 0x111).
2	Change in LOF State Interrupt Status	RUR	 Change in LOF (Loss of Frame) State Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change in LOF State" Interrupt has occurred since the last read of this register.If this interrupt is enabled, then the DS3/E3 Framer block will generate the "Change in LOF State" Interrupt will occur in response to the following events. When the DS3/E3 Frame Synchronizer block declares the "LOF Condition". When the DS3/E3 Frame Synchronizer block clears the "LOF Condition". Indicates that the "Change in LOF State Interrupt" has not occurred since the last of this register. I - Indicates that the "Change in LOF State Interrupt" has occurred since the last read of this register. Note: The user can determine the current state of the "AIS Condition" by reading out the contents of Bit 6 (RxLOF) within the "RxE3 Configuration and Status Register # 2 - G.832" (Direct Address = 0x1111).

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
1	Change in LOS State Interrupt Status	RUR	Change in LOS (Loss of Signal) State Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change in LOS State" Interrupt has occurred since the last read of this register. If this interrupt is enabled, then the DS3/E3 Framer block will generate the "Change in LOS State" Interrupt will occur in response to the following events.
			• When the DS3/E3 Frame Synchronizer block declares the "LOS Condition".
			• When the DS3/E3 Frame Synchronizer block clears the "LOS Condition".
			0 - Indicates that the "Change in LOS State Interrupt" has not occurred since the last of this register.
			1 - Indicates that the "Change in LOS State Interrupt" has occurred since the last read of this register.
			Note: The user can determine the current state of the "AIS Condition" by reading out the contents of Bit 4 (RxLOS) within the "RxE3 Configuration and Status Register # 2 - G.832" (Direct Address = 0x1111).
0	Change in AIS State Interrupt Status	RUR	Change in AIS State Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change in AIS State" Interrupt has occurred since the last read of this register.If this interrupt is enabled, then the DS3/E3 Framer block will generate the "Change in AIS State" Interrupt will occur in response to the following events.
			• When the DS3/E3 Frame Synchronizer block declares the "AIS Condition".
			• When the DS3/E3 Frame Synchronizer block clears the "AIS Condition".
			0 - Indicates that the "Change in AIS State Interrupt" has not occurred since the last of this register.
			1 - Indicates that the "Change in AIS State Interrupt" has occurred since the last read of this register.
			Note: The user can determine the current state of the "AIS Condition" by reading out the contents of Bit 3 (RxAIS) within the "RxE3 Configuration and Status Register # 2 - G.832" (Direct Address = 0x1111).

RXE3 INTERRUPT STATUS REGISTER # 2 - G.832 (DIRECT ADDRESS = 0X1115)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0
Unused	Change in RxTTB Message Interrupt Status	Reserved	Detection of FEBE Event Interrupt Status	Change in FERF State Interrupt Status	Detection of BIP-8 Error Interrupt Status	Detection of Framing Byte Error Interrupt Status	RxPLD Mis Interrupt Status
R/O	RUR	R/O	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	Unused	R/O	
6	Change in RxTTB Message Interrupt Status	RUR	 Change in Receive Trail-Trace Buffer Message Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change in RxTTB Message" Interrupt has occurred since the last read of this register. If this interrupt is enabled, then the DS3/E3 Framer block will generate an interrupt anytime it receives a Trail-Trace Buffer Message, that is different from that of the previously received message. 0 - Indicates that the "Change in Receive TTB Message" Interrupt has NOT occurred since the last read of this register. 1 - Indicates that the "Change in Receive TTB Message" Interrupt has occurred since the last read of this register. Note: The user can obtain the value of the most recently received TTB Message by reading out the contents of the "RxE3 TTB-0" through "RxE3 TTB-15" registers (Direct Address = 0x111C through 0x112B).
5	Unused	R/O	
4	Detection of FEBE Event Interrupt Status	RUR	 Detection of FEBE Event Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Detection of FEBE Event" Interrupt has occurred since the last read of this register. If this interrupt is enabled, then the DS3/E3 Framer block will generate an interrupt anytime is detects a FEBE event in the incoming E3 data-stream. 0 - Indicates that the "Detection of FEBE Event" Interrupt has NOT occurred since the last read of this register. 1 - Indicates that the "Detection of FEBE Event" Interrupt has occurred since the last read of this register.

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
3	Change in FERF State Interrupt Status	RUR	Change in FERF (Far-End Receive Failure) State Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change in FERF State" Interrupt has occurred since the last read of this register. If this interrupt is enabled, then the DS3/E3 Framer block will generate an interrupt in response to the follow- ing events.
			• When the Frame Synchronizer block declares the FERF condition.
			 When the Frame Synchronizer block clears the FERF condition.
			 0 - Indicates that the "Change in FERF State" Interrupt has NOT occurred since the last read of this register. 1 - Indicates that the "Change in FERF State" Interrupt has occurred since the last read of the register.
			Note: The user can obtain the state of the FERF condition, by reading out the contents of Bit 0 (RxFERF) within the "RxE3 Configuration and Status Register # 2 - G.832" (Direct Address = 0x1111).
2	Detection of BIP-8 Error Interrupt Status	RUR	Detection of BIP-8 Error Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Detection of BIP-8 Error" Interrupt has occurred since the last read of this register.
			If this interrupt is enabled, then the DS3/E3 Framer block will generate an interrupt anytime is detects a BIP-8 Error in the incoming E3 data-stream.
			 0 - Indicates that the "Detection of BIP-8 Error" Interrupt has NOT occurred since the last read of this register. 1 - Indicates that the "Detection of BIP-8 Error" Interrupt has occurred since the last read of this register.
1	Detection of Framing Byte Error Interrupt Status	RUR	 Detection of Framing Byte Error Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Detection of Framing Byte Error" Interrupt has occurred since the last read of this register. If this interrupt is enabled, then the DS3/E3 Framer block will generate an interrupt anytime is detects an error in either the FA1 or FA2 byte, within the incoming E3 data-stream. 0 - Indicates that the "Detection of Framing Byte Error" Interrupt has NOT occurred since the last read of this register. 1 - Indicates that the "Detection of Framing Byte Error" Interrupt has occurred since the last read of this register.

XRT79L71 *REV. P1.0.3*

BIT NUMBER	NAME	Түре	DESCRIPTION
0	Detection of PLD Type Mismatch Interrupt Status	RUR	 Detection of Payload Type Mismatch Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Detection of Payload Type Mismatch" Interrupt has occurred since the last read of this register. If this interrupt is enabled, then the DS3/E3 Framer block will generate an interrupt anytime it receives an E3 data-stream that contains a "RxPLDType[2:0]" that is different from the "RxPLD-TypeExp[2:0]" value. 0 - Indicates that the "Detection of Payload Type Mismatch" Interrupt has NOT occurred since the last read of this register. 1 - Indicates that the "Detection of Payload Type Mismatch" Interrupt has occurred since the last read of this register. NOTE: The user can obtain the contents of the most recently received Payload Type by reading out the contents of Bits 7 through 5 (RxPLDType[2:0]) within the "RxE3 Configuration and Status Register # 1 - G.832" (Direct Address = 0x1110).

RXE3 LAPD CONTROL REGISTER - G.832 (DIRECT ADDRESS = 0X1118)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0
RxLAPD Any		Unused		DL from NR Byte	RxLAPD Enable	RxLAPD Interrupt Enable	RxLAPD Interrupt Status
R/W	R/O	R/O	R/O	R/W	R/W	R/W	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	RxLAPD Any	R/W	 Receive LAPD - Any kind: This READ/WRITE bit-field permits the user to configure the LAPD Receiver to receive any kind of LAPD Message (or HDLC Message) with a size of 82 bytes or less. If the user implements this option, then the LAPD Receiver will be capable of receiving any kind of HDLC Message (with any value of header bytes). The only restriction is that the size of the HDLC Message must not exceed 82 bytes. 0 - Does not invoke this "Any Kind of HDLC Message" feature. In this case, the LAPD Receiver will only receive HDLC Messages that contains the Bellcore GR-499-CORE values for SAPI and TEI. 1-Invokes this "Any Kind of HDLC Message" feature. In this case, the LAPD Receiver will be able to receive HDLC Messages that contain any header byte values. <i>Notes:</i> The user can determine the size (or byte count) fo the most recently received LAPD/PMDL Message, by reading the contents of the "RxLAPD Byte Count" Register (Direct Address = 0x1184).
6 - 4	Unused	R/O	
3	DL from NR Byte	R/W	 PMDL in NR Byte Select: This READ/WRITE bit-field permits the user to configure the LAPD Receiver to extract out the PMDL data from the NR or GC byte, within the incoming E3 data stream. 0 - The LAPD Receiver will extract PMDL information from the GC byte, within the incoming E3 data stream. 1 - The LAPD Receiver will extract PMDL information from the NR byte, within the incoming E3 data stream. 1 - The LAPD Receiver will extract PMDL information from the NR byte, within the incoming E3 data stream. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.

XRT79L71 *REV. P1.0.3*

BIT NUMBER	NAME	Түре	DESCRIPTION
2	RxLAPD Enable	R/W	 LAPD Receiver Enable: This READ/WRITE bit-field permits the user to either enable or disable the LAPD Receiver within the channel. If the user enables the LAPD Receiver, then it will immediately begin extracting out and monitoring the data (being carried via the "DL" bits) within the incoming DS3 data stream. 0 - Enables the LAPD Receiver. 1 - Disables the LAPD Receiver. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.
1	RxLAPD Interrupt Enable	R/W	 Receive LAPD Message Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Receive LAPD Message" Interrupt. If the user enables this interrupt, then the channel will generate an interrupt, anytime the LAPD Receiver receives a new PMDL Message. 0 - Disables the "Receive LAPD Message" Interrupt. 1 - Enables the "Receive LAPD Message" Interrupt. Note: This bit-field is ignored if the Frame Synchronizer block is by-passed.
0	RxLAPD Interrupt Status	RUR	 Receive LAPD Message Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Receive LAPD Message" Interrupt has occurred since the last read of this register. 0 - "Receive LAPD Message" Interrupt has NOT occurred since the last read of this register. 1 - "Receive LAPD Message" Interrupt has occurred since the last read of this register. Mote: This bit-field is ignored if the Frame Synchronizer block is by-passed.

RXE3 LAPD STATUS REGISTER - G.832 (DIRECT ADDRESS = 0X1119)

BI⊺ 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Unused	RxABORT	RxLAPDType[1:0]		RxCR Type	RxFCS Error	End of Message	Flag Present
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре			Des	SCRIPTION		
7	Unused	R/O						
6	RxABORT	R/O	 Receive ABORT Sequence Indicator: This READ-ONLY bit-field indicates that the LAPD Receiver has received an ABORT sequence (e.g., a string of seven consecutive "0s"). 0 - LAPD Receiver has NOT received an ABORT sequence. 1 - LAPD Receiver has received an ABORT sequence. NOTE: Once the LAPD Receiver receives an ABORT sequence, <i>it will set this bit-field "high", until it receives another LAPD Messages.</i> 					
5 - 4	RxLAPDType[1:0]	R/O	Receive LAPD Message Type Indicator: These two READ-ONLY bits indicate the type of LAPD M that is residing within the Receive LAPD Message buffer relationship between the content of these two bit-fields a corresponding message type is presented below. RxLAPDType[1:0]				The	
				0	0	CL Path Identification		
				0	1	Idle Signal Identification		
				1	0	Test Signal Identification		
				1	1	ITU-T Path Identification		
3	RxCR Type	R/O	Received C/R Value: This READ-ONLY bit-field indicates the value of the C/R bit (within one of the header bytes) of the most recently received LAPD Message.					
2	RxFCS Error	R/O	 LAPD Message. Receive Frame Check Sequence (FCS) Error Indicator: This READ-ONLY bit-field indicates whether or not the most recently received LAPD Message frame contained an FCS error. 0 - The most recently received LAPD Message frame does not contain an FCS error. 1 - The most recently received LAPD Message frame does con- tain an FCS error. 					

XRT79L71 *REV. P1.0.3*

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
1	End of Message	R/O	 End of Message Indicator: This READ-ONLY bit-field indicates whether or not the LAPD Receiver has received a complete LAPD Message. 0 - LAPD Receiver is currently receiving a LAPD Message, but has not received the complete message. 1 - LAPD Receiver has received a completed LAPD Message. Note: Once the LAPD Receiver sets this bit-field "high", this bit-field will remain high, until the LAPD Receiver begins to receive a new LAPD Message.
0	Flag Present	R/O	 Receive Flag Sequence Indicator: This READ-ONLY bit-field indicates whether or not the LAPD Receiver is currently receiving the Flag Sequence (e.g., a continuous stream of 0x7E octets within the Data Link channel). 0 - LAPD Receiver is NOT currently receiving the Flag Sequence octet. 1 - LAPD Receiver is currently receiving the Flag Sequence octet.

RXE3 NR BYTE REGISTER - G.832 (DIRECT ADDRESS = 0X111A)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0				
	RxNR_Byte[7:0]										
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O				
0	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION		
7 - 0	RxNR_Byte[7:0]	R/O	Receive NR Byte Value: These READ-ONLY bit-fields contain the value of the NR byte, within the most recently received E3 frame.		

RXE3 GC BYTE REGISTER - G.832 (DIRECT ADDRESS = 0X111B)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0				
	RxGC_Byte[7:0]										
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O				
0	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION		
7 - 0	RxGC_Byte[7:0]	R/O	Receive GC Byte Value: These READ-ONLY bit-fields contain the value of the GC byte, within the most recently received E3 frame.		

RXE3 TTB-0 REGISTER - G.832 (DIRECT ADDRESS = 0X111C)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0				
	RxTTB_0[7:0]										
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O				
0	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	RxTTB_0[7:0]	R/O	Receive Trail-Trace Buffer Message - Byte 0: These READ-ONLY bit-fields contain the contents of Byte 0 (e.g., the "Marker" Byte), within the most recently received Trail- Trace Buffer" Message.

RXE3 TTB-1 REGISTER - G.832 (DIRECT ADDRESS = 0X111D)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
RxTTB_1[7:0]							
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	RxTTB_1[7:0]	R/O	Receive Trail-Trace Buffer Message - Byte 1: These READ-ONLY bit-fields contain the contents of Byte 1, within the most recently received Trail-Trace Buffer" Message.

RXE3 TTB-2 REGISTER - G.832 (DIRECT ADDRESS = 0X111E)

BIT 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
RxTTB_2[7:0]							
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	RxTTB_2[7:0]	R/O	Receive Trail-Trace Buffer Message - Byte 2: These READ-ONLY bit-fields contain the contents of Byte 2, within the most recently received Trail-Trace Buffer" Message.

RXE3 TTB-3 REGISTER - G.832 (DIRECT ADDRESS = 0X111F)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	BIT 0		
RxTTB_3[7:0]									
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O		
0	0	0	0	0	0	0	0		

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	RxTTB_3[7:0]	R/O	Receive Trail-Trace Buffer Message - Byte 3: These READ-ONLY bit-fields contain the contents of Byte 3, within the most recently received Trail-Trace Buffer" Message.

RXE3 TTB-4 REGISTER - G.832 (DIRECT ADDRESS = 0X1120)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0	
RxTTB_4[7:0]								
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	RxTTB_4[7:0]	R/O	Receive Trail-Trace Buffer Message - Byte 4: These READ-ONLY bit-fields contain the contents of Byte 4, within the most recently received Trail-Trace Buffer" Message.

RXE3 TTB-5 REGISTER - G.832 (DIRECT ADDRESS = 0X1121)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0		
	RxTTB_5[7:0]								
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	RxTTB_5[7:0]	R/O	Receive Trail-Trace Buffer Message - Byte 5: These READ-ONLY bit-fields contain the contents of Byte 5, within the most recently received Trail-Trace Buffer" Message.

RXE3 TTB-6 REGISTER - G.832 (DIRECT ADDRESS = 0X1122)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	Віт 1	Віт 0		
RxTTB_6[7:0]									
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	RxTTB_6[7:0]	R/O	Receive Trail-Trace Buffer Message - Byte 6: These READ-ONLY bit-fields contain the contents of Byte 6, within the most recently received Trail-Trace Buffer" Message.

RXE3 TTB-7 REGISTER - G.832 (DIRECT ADDRESS = 0X1123)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0	
RxTTB_7[7:0]								
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O	
0	0	0	0	0	0	0	0	

Bit Number	Name	Туре	Description
7 - 0	RxTTB_7[7:0]	R/O	Receive Trail-Trace Buffer Message - Byte 7: These READ-ONLY bit-fields contain the contents of Byte 7, within the most recently received Trail-Trace Buffer" Message.

RXE3 TTB-8 REGISTER - G.832 (DIRECT ADDRESS = 0X1124)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0	
RxTTB_8[7:0]								
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	RxTTB_8[7:0]	R/O	Receive Trail-Trace Buffer Message - Byte 8: These READ-ONLY bit-fields contain the contents of Byte 8, within the most recently received Trail-Trace Buffer" Message.

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RXE3 TTB-9 REGISTER - G.832 (DIRECT ADDRESS = 0X1125)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	BIT 1	Віт 0	
RxTTB_9[7:0]								
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	RxTTB_9[7:0]	R/O	Receive Trail-Trace Buffer Message - Byte 9: These READ-ONLY bit-fields contain the contents of Byte 9, within the most recently received Trail-Trace Buffer" Message.

RXE3 TTB-10 REGISTER - G.832 (DIRECT ADDRESS = 0X1126)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
RxTTB_10[7:0]							
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	RxTTB_10[7:0]	R/O	Receive Trail-Trace Buffer Message - Byte 10: These READ-ONLY bit-fields contain the contents of Byte 10, within the most recently received Trail-Trace Buffer" Message.

RXE3 TTB-11 REGISTER - G.832 (DIRECT ADDRESS = 0X1127)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0	
	RxTTB_11[7:0]							
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	RxTTB_11[7:0]	R/O	Receive Trail-Trace Buffer Message - Byte 11: These READ-ONLY bit-fields contain the contents of Byte 11, within the most recently received Trail-Trace Buffer" Message.

RXE3 TTB-12 REGISTER - G.832 (DIRECT ADDRESS = 0X1128)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	BIT 0	
RxTTB_12[7:0]								
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	RxTTB_12[7:0]	R/O	Receive Trail-Trace Buffer Message - Byte 12: These READ-ONLY bit-fields contain the contents of Byte 12, within the most recently received Trail-Trace Buffer" Message.

RXE3 TTB-13 REGISTER - G.832 (DIRECT ADDRESS = 0X1129)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
RxTTB_13[7:0]							
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	RxTTB_13[7:0]	R/O	Receive Trail-Trace Buffer Message - Byte 13: These READ-ONLY bit-fields contain the contents of Byte 13, within the most recently received Trail-Trace Buffer" Message.

RXE3 TTB-14 REGISTER - G.832 (DIRECT ADDRESS = 0X112A)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
RxTTB_14[7:0]							
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	RxTTB_14[7:0]	R/O	Receive Trail-Trace Buffer Message - Byte 14: These READ-ONLY bit-fields contain the contents of Byte 14, within the most recently received Trail-Trace Buffer" Message.

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RXE3 TTB-15 REGISTER - G.832 (DIRECT ADDRESS = 0X112B)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0		
RxTTB_15[7:0]									
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O		
0	0	0	0	0	0	0	0		

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	RxTTB_15[7:0]	R/O	Receive Trail-Trace Buffer Message - Byte 15: These READ-ONLY bit-fields contain the contents of Byte 15, within the most recently received Trail-Trace Buffer" Message.

RXE3 SSM REGISTER - G.832 (DIRECT ADDRESS = 0X112C)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0	
RxSSM Enable	MF[1:0]		Reserved	RxSSM[3:0]				
R/W	R/O	R/O	R/O	R/O	R/O	R/O	R/O	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7	RxSSM Enable	R/W	 Receive SSM Enable: This READ/WRITE bit-field permits the user to configure the Frame Synchronizer block to operate in either the "Old ITU-T G.832 Framing" format or in the "New ITU-T G.832 Framing" format. 0 - Configures the Frame Synchronizer block to support the "Pre October 1998" version of the E3, ITU-T G.832 Framing format. 1 - Configures the Frame Synchronizer block to support the "October 1998" version of the E3, ITU-T G.832 framing format.
6 - 5	MF[1:0]	R/O	 Multi-Frame Identification: These READ-ONLY bit-fields reflect the current frame number, within the Received Multi-Frame. Note: These bit-fields are only active if the DS3/E3 Frame Synchronizer block is active, and if Bit 7 (RxSSM Enable) of this register is set to "1".
4	Unused	R/O	
3 - 0	RxSSM[3:0]	R/O	 Receive Synchronization Status Message[3:0]: These READ-ONLY bit-fields reflect the content of the "SSM" bits, within the most recently received SSM Multiframe. Note: These bit-fields are only active if the DS3/E3 Frame Synchronizer block is active, and if Bit 7 (RxSSM Enable) of this register is set to "1".

TRANSMIT DS3 RELATED REGISTERS

TXDS3 CONFIGURATION REGISTER (DIRECT ADDRESS = 0X1130)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0
Tx Yellow Alarm	Tx X-Bits	TxIdle	TxAIS	TxLOS	TxFERF upon LOS	TxFERF upon OOF	TxFERF upon AIS
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	1	1	1

BIT NUMBER	NAME	Түре	DESCRIPTION			
7	Tx Yellow Alarm	R/W	 Transmit Yellow Alarm (FERF) indicator: This READ/WRITE bit-field permits the user to force the Frame Generator block to transmit the FERF condition by setting both the X-bits (within each outbound DS3 frame) to "0". 0 - "X" bits are set to the appropriate value, depending upon receive conditions (as detected by the Frame Synchronizer block). 1 - "X" bits are forced to "0" and the FERF indicator is transmit ted to the remote terminal equipment. 			
6	Tx X-Bits	R/W	Force X bits to "1": This READ/WRITE bit-field permits the user to force the Frame Generator block to set the X-bits (within each outbound DS3 frame) to "1". 0 - "X" bits are set to the appropriate value, depending upon receive conditions (as detected by the Frame Synchronizer block). 1 - "X" bits are forced to "1".			
5	TxIdle	R/W	 Transmit DS3 Idle Signal: This READ/WRITE bit-field permits the user to force the Frame Generator block to transmit an Idle signal condition to the remote terminal equipment. 0 - Normal traffic is generated and transmitted by the Frame Generator block. 1 - Frame Generator block transmits the DS3 Idle Pattern. Notes: This bit-field is ignored if "TxAIS" or "TxLOS" bit-fields are set to "1". The exact pattern that the Frame Generator transmits (whenever this bit-field is set to "1") depends upon the contents within Bits 3 through 0 (Tx_Idle_Pattern[3:0]) within the "Transmit DS3 Pattern" Register (Direct Address = 0x114C). 			

XRT79L71 *REV. P1.0.3*

BIT NUMBER	NAME	Түре	DESCRIPTION
4	TxAIS	R/W	 Transmit AIS Pattern: This READ/WRITE bit-field permits the user to force the Frame Generator block to transmit an AIS signal condition to the remote terminal equipment. 0 - Normal traffic is generated and transmitted by the Frame Generator block. 1 - Frame Generator block transmits the DS3 AIS Pattern. NOTES: This bit-field is ignored if the "TxLOS" bit-field is set to "1". When this bit-field is set to "1", it will transmit either a "Framed, repeating 1, 0, 1, 0," pattern, or an "Unframed, All-Ones" pattern, depending upon the state of Bit 7 (TxAIS Unframed All Ones), within the "Transmit DS3 Pattern Register (Direct Address = 0x114C).
3	TxLOS	R/W	 Transmit LOS Pattern: This READ/WRITE bit-field permits the user to force the Frame Generator block to transmit an LOS signal condition to the remote terminal equipment. 0 - Normal traffic is generated and transmitted by the Frame Generator block. 1 - Frame Generator block transmits the LOS (e.g., All Zeros) Pattern. Notes: This bit-field is ignored if "TxAIS" or "TxLOS" are set to "1". When this bit-field is set to "1", it will transmit either an "All Zeros" pattern, or an "All Ones" pattern; depending upon the state of Bit 4 (TxLOS Pattern) within the "Transmit DS3 Pattern Register (Direct Address =0x114C).
2	TxFERF upon LOS	R/W	 Transmit FERF upon Detection of LOS: This READ/WRITE bit-field permits the user to configure the Frame Generator block to automatically transmit the FERF indicator, anytime the Frame Synchronizer block declares an LOS condition. 0 - Frame Generator block will NOT automatically transmit the FERF indicator, upon the Frame Synchronizer detecting an LOS condition. 1 - Frame Generator block will automatically transmit the FERF indicator upon the Frame Synchronizer detecting an LOS condition.

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
1	TxFERF upon OOF	R/W	 Transmit FERF upon Detection of OOF: This READ/WRITE bit-field permits the user to configure the Frame Generator block to automatically transmit the FERF indicator, anytime the Frame Synchronizer block declares an OOF condition. 0 - Frame Generator block will NOT automatically transmit the FERF indicator, upon the Frame Synchronizer detecting an OOF condition. 1 - Frame Generator block will automatically transmit the FERF
			indicator upon the Frame Synchronizer detecting an OOF condi- tion.
0	TxFERF upon AIS	R/W	 Transmit FERF upon Detection of AIS: This READ/WRITE bit-field permits the user to configure the Frame Generator block to automatically transmit the FERF indicator, anytime the Frame Synchronizer block declares an AIS condition. 0 - Frame Generator block will NOT automatically transmit the FERF indicator, upon the Frame Synchronizer detecting an AIS condition.
			1 - Frame Generator block will automatically transmit the FERF indicator upon the Frame Synchronizer detecting an AIS condition.

XPEXAR

TXDS3 FEAC CONFIGURATION AND STATUS REGISTER (DIRECT ADDRESS = 0X1131)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	BIT 0
Unused		TxFEAC Interrupt Enable	TxFEAC Interrupt Status	TxFEAC Enable	TxFEAC Go	TxFEAC Busy	
R/O	R/O	R/O	R/W	RUR	R/W	R/W	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 5	Unused	R/O	Please set to "0" for normal operation.
4	TxFEAC Interrupt Enable	R/W	 Transmit FEAC Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Transmit FEAC" Interrupt. If the user enables this interrupt, then the Frame Generator will generate an interrupt, once it has completed its 10th transmission of a given FEAC Message to the remote terminal equipment. 0 - Transmit FEAC Interrupt is disabled. The Frame Generator block will NOT generate an interrupt after it has completed its 10th transmission of a given FEAC Message. 1 - Transmit FEAC Interrupt is enabled. The Frame Generator block will generate an interrupt after it has completed its 10th transmission of a given FEAC Message.
3	TxFEAC Interrupt Status	RUR	 Transmit FEAC Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Transmit FEAC Interrupt" has occurred since the last read of this register. 0 - The Transmit FEAC Interrupt has NOT occurred since the last read of this register. 1 - The Transmit FEAC Interrupt has occurred since the last read of this register.
2	TxFEAC Enable	R/W	 Transmit FEAC Controller Enable: This READ/WRITE bit-field permits the user to either enable or disable the Transmit FEAC Controller, within the Frame Generator block. 0 - Disables the Transmit FEAC Controller. 1 - Enables the Transmit FEAC Controller.
1	TxFEAC Go	R/W	 Transmit FEAC Message Command: A "0" to "1" transition, within this bit-field configures the Transmit FEAC Controller to begin its transmission of the FEAC Message (which consists of the FEAC code, as specified within the "TxDS3 FEAC" Register). NOTE: The user is advised to perform a write operation that resets this bit-field back to "0", following execution of the command to transmit a FEAC Message.

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
0	TxFEAC Busy	R/O	 Transmit FEAC Controller BUSY Indicator: This READ-ONLY bit-field indicates whether or not the Transmit FEAC Controller is currently busy transmitting a FEAC Message to the remote terminal. 0 - Transmit FEAC Controller is NOT busy. 1 - Transmit FEAC Controller is currently transmitting the FEAC Message to the remote terminal.

TXDS3 FEAC REGISTER (DIRECT ADDRESS = 0X1132)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
Unused	TxFEACCode[5:0]						
R/O	R/W	R/W	R/W	R/W	R/W	R/W	R/O
0	1	1	1	1	1	1	0

BIT NUMBER	Nаме	Түре	DESCRIPTION
7	Unused	R/O	
6 - 1	TxFEACCode[5:0]	R/W	 Transmit FEAC Code Word[5:0] These six (6) READ/WRITE bit-fields permit the user to specify the FEAC Code word that the Transmit FEAC Processor (within the Frame Generator block) should transmit to the remote terminal equipment. Once the user enables the "Transmit FEAC Controller" and commands it to begin its transmission, the Transmit FEAC Controller will then (1) encapsulate this six-bit code word into a 16-bit structure, (2) proceed to transmit this 16-bit structure 10 times, repeatedly, and then halt. Note: These bit-fields are ignored if the user does not enable and use the Transmit FEAC Controller.
0	Unused	R/O	

TXDS3 LAPD CONFIGURATION REGISTER (DIRECT ADDRESS = 0X1133)

Віт 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
TxLAPD Any	Unused			Auto Retransmit	Reserved	TxLAPD Message Length	TxLAPD Enable
R/W	R/O	R/O	R/O	R/W	R/O	R/W	R/W
0	0	0	0	1	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7	TxLAPD Any	R/W	 Transmit LAPD - Any kind: This READ/WRITE bit-field permits the user to configure the LAPD Transmitter to transmit any kind of LAPD Message (or HDLC Message) with a size of 82 byte or less. If the user implements this option, then the LAPD Transmitter will be capable of transmitting any kind of HDLC frame (with any value of header bytes). The only restriction is that the size of the HDLC frame must not exceed 82 bytes. 0 - Does not invoke this "Any Kind of HDLC Message" feature. In this case, the LAPD Transmitter will only transmit HDLC Messages that contains the Bellcore GR-499-CORE values for SAPI and TEI. 1 - Invokes this "Any Kind of HDLC Message" feature. In this case, the LAPD Transmitter will be able to transmit HDLC Messages that contain any header byte values. Note: If the user invokes the "Any Kind of HDLC Message" feature, then he/she must indicate the size of the information payload (in terms of bytes) within the "Transmit LAPD Byte Count" Register (Direct Address =0x1183).
6 - 4	Unused	R/O	
3	Auto Retransmit	R/W	 Auto-Retransmit of LAPD Message: This READ/WRITE bit-field permits the user to configure the LAPD Transmitter to transmit PMDL messages, repeatedly at one-second intervals. Once the user enables this feature, and then commands the LAPD Transmitter to transmit a given PMDL Message; the LAPD Transmitter will then proceed to transmit this PMDL Message (based upon the contents within the Transmit LAPD Message Buffer) repeatedly at one second intervals. 0 - Disables the Auto-Retransmit Feature. In this case, the PMDL Message will only be transmitted once, afterwards the LAPD Transmitter will proceed to transmit a continuous stream of Flag Sequence octets (0x7E) via the DL bits, within each output DS3 frame. No more PMDL Messages will be transmitted until the user commands another transmission. 1 - Enables the Auto-Retransmit Feature.In this case, the LAPD Transmitter will transmit LAPD Buffer) repeatedly at one-second intervals.
2	Reserved	R/O	

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
1	TxLAPD Message Length	R/W	 Transmit LAPD Message Length Select: This READ/WRITE bit-field permits the user to specify the length of the payload data within the outbound LAPD/PMDL Message, as indicated below. 0 - Configures the LAPD Transmitter to transmit a LAPD/PMDL message that has a payload data size of 76 bytes. 1 - Configures the LAPD Transmitter to transmit a LAPD/PMDL message that has a payload data size of 82 bytes.
0	TxLAPD Enable	R/W	LAPD Transmitter Enable: This READ/WRITE bit-field permits the user to enable the LAPD Transmitter, within the channel. Once the user enables the LAPD Transmitter, it will immediately begin transmitting the Flag Sequence octet (0x7E) to the remote terminal via the outbound "DL" bits, within each DS3 data stream. The LAPD Transmitter will continue to do this until the user commands the LAPD Trans- mitter to transmit a PMDL Message. 0 - Disables the LAPD Transmitter. 1 - Enables the LAPD Transmitter.

TXDS3 LAPD STATUS/INTERRUPT REGISTER (DIRECT ADDRESS = 0X1134)

Віт 7	BIT 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	BIT 0
Unused				TxDL Start	TxDL Busy	TxLAPD Interrupt Enable	TxLAPD Interrupt Status
R/O	R/O	R/O	R/O	R/W	R/O	R/W	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 4	Unused	R/O	
3	TxDL Start	R/W	 Transmit LAPD Message Command: A "0" to "1" transition, within this bit-field commands the LAPD Transmitter to begin the following activities: Reading out the contents of the Transmit LAPD Message Buffer. Zero-Stuffing of this data FCS Calculation and Insertion Fragmentation of this composite PMDL Message, and insertion into the "DL" bit-fields, within each outbound DS3 frame.
2	TxDL Busy	R/O	 Transmit LAPD Controller Busy Indicator: This "READ-ONLY" bit-field indicates whether or not the Transmit LAPD Controller is currently busy transmitting a PMDL Message to the remote terminal equipment. The user can continuously poll this bit-field in order to check for completion of transmission of the LAPD/PMDL Message. 0 - LAPD Transmitter is NOT busy transmitting a PMDL Message. 1 - LAPD Transmitter is currently busy transmitting a PMDL Message.
1	TxLAPD Interrupt Enable	R/W	 Transmit LAPD Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Transmit LAPD Interrupt". If the user enables this interrupt, then the channel will generate an interrupt anytime the LAPD Transmitter has completed its transmission of a given LAPD/PMDL Message to the remote terminal. 0 - Disables Transmit LAPD Interrupt. 1 - Enables Transmit LAPD Interrupt.
0	TxLAPD Interrupt Status	RUR	 Transmit LAPD Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Transmit LAPD Interrupt" has occurred since the last read of this register. 0 - Transmit LAPD Interrupt has NOT occurred since the last read of this register. 1 - Transmit LAPD Interrupt has occurred since the last read of this register.

TXDS3 M-BIT MASK REGISTER (DIRECT ADDRESS = 0X1135)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	Віт 1	Віт 0
TxFEBEDat[2:0]		FEBE Register Enable	Tx P-Bit Error	Bit Error TxM_Bit_Mask[2:0]		:0]	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DECRIPTION
7 - 5	TxFEBEDat[2:0]	R/W	Transmit FEBE Value: These READ/WRITE bit-fields, along with "FEBE Register Enable" permit the user to configure the Frame Generator block to transmit FEBE values (to the remote terminal) based upon the contents of these bit-fields. If the user sets the "FEBE Register Enable" bit-field to "1", then the Frame Generator block will write the contents of these bit- fields into the FEBE bits, within each outbound DS3 frame.If the user sets the "FEBE Register Enable" bit-field to "0" then these register bits will be ignored.
4	FEBE Register Enable	R/W	 Transmit FEBE (by Software) Enable: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit FEBE values (to the remote terminal) per register setting via the "TxFEBEDat[2:0]" bit-field. This option provides the user with software control over the "outbound" FEBE values, within the DS3 data stream. 0 - Configures the Frame Generator block to transmit FEBE values based upon receive conditions, as determined by the companion Frame Synchronizer block. 1 - Configures the Frame Generator block to write the contents of the "TxFEBEDat[2:0]" bit-fields into the FEBE bits, within each "outbound" DS3 frame.
3	Tx P-Bit Error	R/W	 Transmit P-Bit Error: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with erred P-bits, as indicated below. 0 - DS3 frames with correct P-bits are generated and transmitted to the remote terminal equipment. 1 - DS3 frames with erred P-bits are generated and transmitted to the remote terminal equipment.
2 - 0	TxM_Bit_Mask[2:0]	R/W	Transmit M-Bit Error: These READ/WRITE bit-fields permit the user to configure the Frame Generator block to transmit DS3 frames with erred M-bits. These three (3) bit-fields correspond to the three M-bits, within each outbound DS3 frame. The Frame Generator block will per- form an XOR operation with the contents of these bit-fields and the value of the three M-bits. The results of this calculation will be written back into the M-bit positions within each outbound DS3 frame. The user should set these bit-fields to "0, 0, 0" for normal (e.g., un-erred) operation.

TXDS3 F-BIT MASK # 1 REGISTER (DIRECT ADDRESS = 0X1136)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	Віт 2	Віт 1	BIT 0
Unused		F_BitMask[27]/ UDL Bit #9 (C73)	F_Bit Mask [26]/ UDL Bit #8 (C72)	F_Bit Mask [25]/ UDL Bit #7 (C71)	F_Bit Mask [24]		
R/O	R/O	R/O	R/O	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 4	Unused	R/O	
3	F Bit Mask[27]/UDL Bit #9 (C73)	R/W	 Transmit F-Bit Error - Bit 28/UDL Bit #9 (C73): The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Indirect Address =0xNE, 0x0C; Direct Address = 0x110C) is set to "1" or "0". If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 28: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 28th F-bit, within a given outbound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 28th F-bit. The results of this calculation will be written back into the 28th F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation. If "TxOHSrc" = 1 - Insert Enable for UDL Bit #9 or C73 bit: This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "UDL Bit #9 (or C73)" bit-fields, within the outbound DS3 data-stream. 0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field. 1 - Configures the Frame Generator to NOT externally accept and insert data into this overhead bit-field.

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
2	F Bit Mask [26]/UDL Bit #8 (C72)	R/W	Transmit F-Bit Error - Bit 27/UDL Bit #8 (C72): The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = 0x110C) is set to "1" or "0".
			If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 27:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit.
			This F-bit corresponds with the 27th F-bit, within a given out- bound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 27th F-bit. The results of this calculation will be written back into the 27th F-bit position, within each outbound DS3 frame.
			The user should set this bit-field to "0" for normal (e.g., un-erred) operation.
			If "TxOHSrc" = 1 - Insert Enable for UDL Bit #8 or C72 bit:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "UDL Bit #8 (or C72)" bit-fields, within the outbound DS3 data-stream.
			0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field.
			1 - Configures the Frame Generator to NOT externally accept and insert data into this overhead bit-field.
1	F Bit Mask [25]/UDL	R/W	Transmit F-Bit Error - Bit 26/UDL Bit #7 (C71):
	Bit #7 (C71)		The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = $0x110C$) is set to "1" or "0".
			If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 26:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 26th F-bit, within a given out- bound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 26th F-bit. The results of this calculation will be written back into the 26th F-bit position, within each outbound DS3 frame.
			The user should set this bit-field to "0" for normal (e.g., un-erred) operation. If "TxOHSrc" = 1 - Insert Enable for UDL Bit #7 or C71 bit:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "UDL Bit #7 (or C71)" bit-fields, within the out- bound DS3 data-stream.
			0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field.
			1 - Configures the Frame Generator to NOT externally accept and insert data into this overhead bit-field.

XRT79L71 *REV. P1.0.3*

BIT NUMBER	NAME	Түре	DESCRIPTION
0	F Bit Mask [24]	R/W	 Transmit F-Bit Error - Bit 25: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 25th F-bit, within a given outbound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 25th F-bit. The results of this calculation will be written back into the 25th F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation. Note: This bit-field is ignored if Bit 7 (TxOHSrc), within the "Test Register (Direct Address = 0x110C) is set to the "1".

TXDS3 F-BIT MASK # 2 REGISTER (DIRECT ADDRESS = 0X1137)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0
F_Bit Mask [23]/UDL Bit# 6 (C63)	F_Bit Mask [22]/UDL Bit# 5 (C62)	F_Bit Mask [21]/UDL Bit # 4 (C61)	F_Bit Mask [20]	F_Bit Mask [19]/DL Bit # 3 (C53)	F_Bit Mask [18]/DL Bit # 2 (C52)	F_Bit Mask [17]/DL Bit# 1 (C51)	F_Bit Mask [16]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
BIT NUMBER 7	NAME F Bit Mask[23]/UDL Bit # 6 (C63)	TYPE R/W	Transmit F-Bit Error - Bit 24/UDL Bit # 6 (C63): The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = 0x110C) is set to "1" or "0". If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 24: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 24th F-bit, within a given outbound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the
			 24th F-bit. The results of this calculation will be written back into the 24th F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation. If "TxOHSrc" = 1 - Insert Enable for UDL Bit # 6 or C63 bit: This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "UDL Bit # 6 (or C63)" bit-fields, within the outbound DS3 data-stream. 0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field. 1- Configures the Frame Generator to NOT externally accept and insert data into this overhead bit-field.

XRT79L71 *REV. P1.0.3*

BIT NUMBER	NAME	Түре	DESCRIPTION
6	F Bit Mask [22]/UDL Bit # 5 (C62)	R/W	Transmit F-Bit Error - Bit 23/UDL Bit # 5 (C62): The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = 0x110C) is set to "1" or "0". If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 23: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 23rd F-bit, within a given out- bound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 020rd F bit.
			 23rd F-bit. The results of this calculation will be written back into the 23rd F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation. If "TxOHSrc" = 1 - Insert Enable for UDL Bit # 5 or C62 bit: This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "UDL Bit # 5 (or C62)" bit-fields, within the outbound DS3 data-stream. 0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field. 1- Configures the Frame Generator to NOT externally accept and insert data into this overhead bit-field.
5	F Bit Mask [21]/UDL Bit # 4 (C61)	R/W	 Transmit F-Bit Error - Bit 22/UDL Bit # 4 (C61): The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = 0x110C) is set to "1" or "0". If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 22: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 22nd F-bit, within a given outbound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 22nd F-bit. The results of this calculation will be written back into the 22nd F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation. If "TxOHSrc" = 1 - Insert Enable for UDL Bit # 4 or C61 bit: This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "UDL Bit # 4 (or C61)" bit-fields, within the outbound DS3 data-stream. 0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field.

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
4	F Bit Mask [20]	R/W	Transmit F-Bit Error - Bit 21: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 21st F-bit, within a given out- bound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 21st F-bit. The results of this calculation will be written back into the 21st F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation.
3	F Bit Mask [19]/DL Bit # 3 (C53)	R/W	 Transmit F-Bit Error - Bit 20/DL Bit # 3 (C53): The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = 0x110C) is set to "1" or "0". If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 20: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 20th F-bit, within a given outbound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 20th F-bit. The results of this calculation will be written back into the 20th F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation. If "TxOHSrc" = 1 - Insert Enable for DL Bit # 3 or C53 bit: This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "DL Bit # 3 (or C53)" bit-fields, within the outbound DS3 data-stream. 0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field.

XRT79L71 *REV. P1.0.3*

BIT NUMBER	NAME	Түре	DESCRIPTION
2	F Bit Mask [18]/DL Bit # 2 (C52)	R/W	Transmit F-Bit Error - Bit 19/DL Bit # 2 (C52): The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = 0x110C) is set to "1" or "0". If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 19:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 19th F-bit, within a given out- bound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 19th F-bit. The results of this calculation will be written back into the 19th F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred)
			operation. If "TxOHSrc" = 1 - Insert Enable for DL Bit # 2 or C52 bit: This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "DL Bit # 2 (or C52)" bit-fields, within the out- bound DS3 data-stream.
			 0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field. 1 - Configures the Frame Generator to NOT externally accept and insert data into this overhead bit-field.
1	F Bit Mask [17]/DL Bit # 1	R/W	Transmit F-Bit Error - Bit 18/DL Bit # 1 (C51):
	(C51)		The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = $0x110C$) is set to "1" or "0".
			If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 18:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit.
			This F-bit corresponds with the 18th F-bit, within a given out- bound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 18th F-bit. The results of this calculation will be written back into the 18th F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation.
			If "TxOHSrc" = 1 - Insert Enable for DL Bit # 1 or C51 bit:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "DL Bit # 1 (or C51)" bit-fields, within the outbound DS3 data-stream.
			0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field.
			1- Configures the Frame Generator to NOT externally accept and insert data into this overhead bit-field.

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
0	F Bit Mask [16]	R/W	Transmit F-Bit Error - Bit 17: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 17th F-bit, within a given out- bound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 17th F-bit. The results of this calculation will be written back into the 17th F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation.

T - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TXDS3 F-BIT MASK # 3 REGISTER (DIRECT ADDRESS = 0X1138)

Віт 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	BIT 0
F_Bit Mask [15]/FEBE Bit #3 (C43)	F_Bit Mask [14]/FEBE Bit #2 (C42)	F_Bit Mask [13]/FEBE Bit #1 (C41)	F_Bit Mask [12]	F_Bit Mask [11]/CP Bit #3(C33)	F_Bit Mask [10]/CP Bit #2(C32)	F_Bit Mask [9]/CP Bit #1(C31)	F_Bit Mask [8]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	F Bit Mask[15]/FEBE Bit # 3 (C43)	R/W	 Transmit F-Bit Error - Bit 16/FEBE Bit # 3 (C43): The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = 0x110C) is set to "1" or "0". If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 16: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 16th F-bit, within a given outbound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 16th F-bit. The results of this calculation will be written back into the 16th F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation. If "TxOHSrc" = 1 - Insert Enable for FEBE Bit # 3 or C43 bit: This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "FEBE Bit # 3 (or C43)" bit-fields, within the outbound DS3 data-stream. 0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field.

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
6	F Bit Mask [14]/FEBE Bit # 2 (C42)	R/W	Transmit F-Bit Error - Bit 15/FEBE Bit # 2 (C42): The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = 0x110C) is set to "1" or "0".
			If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 15:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit.
			This F-bit corresponds with the 15th F-bit, within a given out- bound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 15th F-bit. The results of this calculation will be written back into the 15th F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred)
			operation. If "TxOHSrc" = 1 - Insert Enable for FEBE Bit # 2 or C42 bit:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "FEBE Bit # 2 (or C42)" bit-fields, within the out- bound DS3 data-stream.
			0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field.
			1- Configures the Frame Generator to NOT externally accept and insert data into this overhead bit-field.
5	F Bit Mask [13]/FEBE Bit	R/W	Transmit F-Bit Error - Bit 14/FEBE Bit # 1 C41):
	1 (C41)		The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = $0x110C$) is set to "1" or "0".
			If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 14:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit.
			This F-bit corresponds with the 14th F-bit, within a given out- bound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 14th F-bit. The results of this calculation will be written back into the 14th F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation.
			If "TxOHSrc" = 1 - Insert Enable for FEBE Bit # 1 or C41 bit:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "FEBE Bit # 1 (or C41)" bit-fields, within the outbound DS3 data-stream.
			0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field.
			1- Configures the Frame Generator to NOT externally accept and insert data into this overhead bit-field.

XRT79L71 *REV. P1.0.3*

BIT NUMBER	NAME	Түре	DESCRIPTION
4	F Bit Mask [12]	R/W	Transmit F-Bit Error - Bit 13: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 13th F-bit, within a given out- bound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 13th F-bit. The results of this calculation will be written back into the 13th F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation.
3	F Bit Mask [11]/CP Bit # 3 (C33)	R/W	 Transmit F-Bit Error - Bit 12/CP Bit # 3 (C33): The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = 0x110C) is set to "1" or "0". If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 12: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 12th F-bit, within a given outbound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 12th F-bit. The results of this calculation will be written back into the 12th F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation. If "TxOHSrc" = 1 - Insert Enable for CP Bit # 3 or C33 bit: This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "CP Bit # 3 (or C33)" bit-fields, within the outbound DS3 data-stream. 0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field.

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
2	F Bit Mask [10]/CP Bit # 2 (C32)	R/W	Transmit F-Bit Error - Bit 11/CP Bit # 2 (C32): The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = 0x110C) is set to "1" or "0".
			If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 11:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit.
			This F-bit corresponds with the 11th F-bit, within a given out- bound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 11th F-bit. The results of this calculation will be written back into the 11th F-bit position, within each outbound DS3 frame.
			The user should set this bit-field to "0" for normal (e.g., un-erred) operation.
			If "TxOHSrc" = 1 - Insert Enable for CP Bit # 2 or C32 bit:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "CP Bit # 2 (or C32)" bit-fields, within the outbound DS3 data-stream.
			0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field.
			1- Configures the Frame Generator to NOT externally accept and insert data into this overhead bit-field.
1	F Bit Mask [9]/CP	R/W	Transmit F-Bit Error - Bit 10/CP Bit # 1 (C31):
	Bit # 1 (C31)		The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = $0x110C$) is set to "1" or "0".
			If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 10:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit.
			This F-bit corresponds with the 10th F-bit, within a given out- bound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 10th F-bit. The results of this calculation will be written back into the 10th F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred)
			operation.
			If "TxOHSrc" = 1 - Insert Enable for CP Bit # 1 or C31 bit: This READAWRITE bit-field permits the user to configure the
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "CP Bit # 1 (or C31)" bit-fields, within the out- bound DS3 data-stream.
			0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field.
			1- Configures the Frame Generator to NOT externally accept and insert data into this overhead bit-field.

XRT79L71 *REV. P1.0.3*

BIT NUMBER	NAME	Түре	DESCRIPTION
0	F Bit Mask [8]	R/W	Transmit F-Bit Error - Bit 9: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 9th F-bit, within a given outbound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 9th F- bit. The results of this calculation will be written back into the 9th F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation.

TXDS3 F-BIT MASK # 4 REGISTER (DIRECT ADDRESS = 0X1139)

Віт 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	BIT 0
F_Bit Mask [7]/UDL Bit # 3 (C23)	F_Bit Mask [6]/UDL Bit # 2 (C22)	F_Bit Mask [5]/UDL Bit # 1 (C21)	F_Bit Mask [4]/X Bit # 2	F_Bit Mask [3]/FEAC Bit (C13)	F_Bit Mask [2]/NA Bit (C12)	F_Bit Mask [1]/AIC Bit (C11)	F_Bit Mask [0]/X Bit # 1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	F Bit Mask[7]/UDL Bit # 3 (C23)	R/W	 Transmit F-Bit Error - Bit 8/UDL Bit # 3 (C23): The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = 0x110C) is set to "1" or "0". If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 8: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 8th F-bit, within a given outbound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 8th F-bit. The results of this calculation will be written back into the 8th F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation. If "TxOHSrc" = 1 - Insert Enable for UDL Bit # 3 or C23 bit: This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "UDL Bit # 3 (or C23)" bit-fields, within the outbound DS3 data-stream. 0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field.

BIT NUMBER	NAME	Түре	DESCRIPTION
6	F Bit Mask [6]/UDL Bit # 2 (C22)	R/W	 Transmit F-Bit Error - Bit 7/UDL Bit # 2 (C22): The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = 0x110C) is set to "1" or "0". If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 7: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 7th F-bit, within a given outbound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 7th F-bit. The results of this calculation will be written back into the 7th F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation. If "TxOHSrc" = 1 - Insert Enable for UDL Bit # 2 or C22 bit: This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and
5	F Bit Mask [5]/UDL	R/W	 insert it into the "UDL Bit # 2 (or C22)" bit-fields, within the outbound DS3 data-stream. 0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field. 1- Configures the Frame Generator to NOT externally accept and insert data into this overhead bit-field.
5	Bit # 1 (C21)		 Transmit F-Bit Error - Bit 6/UDL Bit # 1 (C21): The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = 0x110C) is set to "1" or "0". If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 6: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 6th F-bit, within a given outbound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 6th F-bit. The results of this calculation will be written back into the 6th F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation. If "TxOHSrc" = 1 - Insert Enable for UDL Bit # 1 or C21 bit: This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "UDL Bit # 1 (or C21)" bit-field, within the outbound DS3 data-stream. 0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field. 1 - Configures the Frame Generator to NOT externally accept and insert data into this overhead bit-field.

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
4	F Bit Mask [4]/X Bit # 2	R/W	Transmit F-Bit Error - Bit 5/X Bit # 2: The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = 0x110C)
			is set to "1" or "0".
			If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 5:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit.
			This F-bit corresponds with the 5th F-bit, within a given outbound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 5th F-bit. The results of this calculation will be written back into the 5th F-bit position, within each outbound DS3 frame.
			The user should set this bit-field to "0" for normal (e.g., un-erred) operation.
			If "TxOHSrc" = 1 - Insert Enable for X Bit # 2:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "X-Bit # 2" bit-field, within the outbound DS3 data-stream.
			0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field.
			1- Configures the Frame Generator to NOT externally accept and insert data into this overhead bit-field.
3	F Bit Mask [3]/FEAC	R/W	Transmit F-Bit Error - Bit 4/FEAC Bit (C13):
	Bit (C13)		The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = $0x110C$) is set to "1" or "0".
			If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 4:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit.
			This F-bit corresponds with the 4th F-bit, within a given outbound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 4th F-bit. The results of this calculation will be written back into the 4th F-bit position, within each outbound DS3 frame.
			The user should set this bit-field to "0" for normal (e.g., un-erred) operation.
			If "TxOHSrc" = 1 - Insert Enable for FEAC or C13 bit: This READ/WRITE bit-field permits the user to configure the
			Frame Generator block to externally accept an overhead bit and insert it into the "FEAC (or C13)" bit-field, within the outbound DS3 data-stream.
			0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field.
			1- Configures the Frame Generator to NOT externally accept and insert data into this overhead bit-field.

XRT79L71 *REV. P1.0.3*

BIT NUMBER	NAME	Түре	DESCRIPTION
2	F Bit Mask [2]/NA Bit (C12)	R/W	Transmit F-Bit Error - Bit 3/NA Bit (C12): The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = 0x110C)
			 is set to "1" or "0". If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 3: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 3rd F-bit, within a given outbound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 3rd F-bit. The results of this calculation will be written back into the 3rd F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation. If "TxOHSrc" = 1 - Insert Enable for NA or C12 bit: This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "NA (or C12)" bit-field, within the outbound DS3 data-stream. 0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field. 1 - Configures the Frame Generator to NOT externally accept
			and insert data into this overhead bit-field.
1	F Bit Mask [1]/AIC Bit (C11)	R/W	 Transmit F-Bit Error - Bit 2/AIC Bit (C11): The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = 0x110C) is set to "1" or "0". If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 2: This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit. This F-bit corresponds with the 2nd F-bit, within a given outbound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 2nd F-bit. The results of this calculation will be written back into the 2nd F-bit position, within each outbound DS3 frame. The user should set this bit-field to "0" for normal (e.g., un-erred) operation. If "TxOHSrc" = 1 - Insert Enable for AIC or C11 bit: This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "AIC (or C11)" bit-field, within the outbound DS3 data-stream. 0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field. 1 - Configures the Frame Generator to NOT externally accept and insert data into this overhead bit-field.

PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
0	F Bit Mask [0]/X Bit # 1	R/W	Transmit F-Bit Error - Bit 1/X Bit # 1:
			The exact function of this register bit depends upon whether Bit 7 (TxOHSrc), within the "Test Register" (Direct Address = $0x110C$) is set to "1" or "0".
			If "TxOHSrc" = 0 - Transmit F-Bit Error - Bit 1:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to transmit DS3 frames with an erred F bit.
			This F-bit corresponds with the 1st F-bit, within a given outbound DS3 frame. The Frame Generator block will perform an XOR operation with the contents of this bit-field and value of the 1st F-bit. The results of this calculation will be written back into the 1st F-bit position, within each outbound DS3 frame.
			The user should set this bit-field to "0" for normal (e.g., un-erred) operation.
			If "TxOHSrc" = 1 - Insert Enable for X Bit # 1:
			This READ/WRITE bit-field permits the user to configure the Frame Generator block to externally accept an overhead bit and insert it into the "X-Bit # 1" bit-field, within the outbound DS3 data-stream.
			0 - Configures the Frame Generator to externally accept and insert data into this overhead bit-field.
			1- Configures the Frame Generator to NOT externally accept and insert data into this overhead bit-field.

T - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TRANSMIT DS3 PATTERN REGISTER (DIRECT ADDRESS = 0X114C)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	BIT 2	Віт 1	BIT 0
TxAIS - Unframed All Ones	DS3 AIS Non-Stuck Stuff	Unused	TxLOS Pattern	Transmit_Idle_Pattern[3:0]			
R/W	R/W	R/O	R/W	R/W	R/W	R/W	R/W
0	0	0	0	1	1	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	TxAIS - Unframed All Ones	R/W	 Transmit AIS - Unframed All Ones: This READ/WRITE bit-field permits the user to configure the "Frame Generator" block to transmit either of the following pattern, anytime it is configured to transmit an AIS signal. 1. A "Framed, repeating 1, 0, 1, 0 pattern (per Bellcore GR-499-CORE) or 2. An "Unframed All Ones" pattern. 0 - Configures the Frame Generator to transmit the "Framed, Repeating 1, 0, 1, 0, pattern; whenever it is configured to transmit an AIS pattern. 1- Configures the Frame Generator to transmit an "Unframed, All-Ones" pattern, whenever it is configured to transmit an AIS signal.
6	DS3 AIS-Non-Stuck Stuff	R/W	 DS3 AIS - Non-Stuck Stuff Option - AIS Pattern: This READ/WRITE bit-field (along with the "TxAIS - Unframed All Ones" bit-field) permit the user to define the type of AIS datastream that the DS3 Frame Generator block will transmit, as described below. 0 - Configures the DS3 Frame Generator block to force all of the "C" bits to "0", when it is configured to transmit a Framed AIS signal. 1 - Configures the DS3 Frame Generator block to NOT force all of the "C" bits to "0", when it is configured to transmit an Framed AIS signal. 1 - Configures the DS3 Frame Generator block to NOT force all of the "C" bits to "0", when it is configured to transmit an Framed AIS signal. In this case, the "C" bits can be used to transport FEAC or PMDL messages. Note: This bit-field is ignored if the DS3 Frame Generator block has been configured to transmit an "Unframed - All Ones" type of AIS signal.
5	Unused	R/W	
4	TxLOS Pattern	R/W	 Transmit LOS Pattern: This READ/WRITE bit-field permits the user to configure the "Frame Generator" block to transmit either an "All Zeros" or an "All Ones" pattern, anytime it is configured to transmit an "LOS Pattern". 0 - Configures the Frame Generator to transmit an "All Zeros" pattern, whenever it is configured to transmit an LOS pattern. 1 - Configures the Frame Generator to transmit an "All Ones" pattern, whenever it is configured to transmit an "All Ones" pattern.

PRELIMINARY

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
3 - 0	Tx_Idle Pattern[3:0]	R/W	Transmit Idle Pattern:These READ/WRITE bit-fields permit the user to specify the typeof pattern the Frame Generator should send, whenever it istransmitting the "DS3 Idle" pattern.Note: Setting these bit-fields to "[1, 1, 0, 0] configure the FrameGenerator block to transmit a "Framed, repeating "1, 1,0, 0," pattern (per Bellcore GR-499-CORE)requirements.

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TRANSMIT E3, ITU-T G.751 RELATED REGISTERS

TXE3 CONFIGURATION REGISTER - G.751 (DIRECT ADDRESS = 0X1130)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	Віт 1	BIT 0
TxBIP-4 Enable	TxASrc	Sel[1:0]	TxNSrcSel[1:0]		TxAIS Enable	TxLOS Enable	TxFAS Source Sel
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре			DESCRIPTION	
7	TxBIP-4 Enable	R/W	 Transmit BIP-4 Enable: This READ/WRITE bit-field permits the user to configure the Frame Generator block to do the following: a. Compute the BIP-4 value over a given E3 frame. b. Insert this BIP-4 value into the last nibble-field within the very next E3 frame.0 - Does not configure this option. In this case, the last nibble (of each "outbound" E3 frame) will contain payload data.1 - Configures the Frame Generator block to compute and insert the BIP-4 value. 			
6 - 5	TxASrcSel[1:0]	R/W	Transmit A Bit Source Select[1:0]: These two READ/WRITE bit-fields permit the user to specify th source or type of data that is being carried via the "A" bits, withi each "outbound" E3 data stream, as indicated below.			
			TxASrc	Sel[1:0]	Resulting Source of A Bit	
			0	0	The "TxA" bit-field, within the "TxE3 Service Bit" register (Direct Address = 0x1135)	
			0	1	Not Valid - Do not use.	
			1	0	The "A" bit is sourced via the "Payload Data Input Interface" block. This is discussed in greater detail in Section	
			1	1	The Companion Frame Synchronizer block. In this case, the A bit will transmit the FEBE indicator to the remote terminal equipment. The A bit will be set to "1" when the companion Frame Synchronizer detects a BIP-4 error, and will be set to "0" when the Frame Synchronizer detects un- erred E3 frames.	
4 - 3	TxNSrcSel[1:0]	R/W	Transmit N Bit Source Select[1:0]: These two READ/WRITE bit-fields permit the user to specify the source or type of data that is being carried via the "N" bits, within each "outbound" E3 data stream, as indicated below.			

PRELIMINARY

4 - 3	TxNSrcSel[1:0]	R/W	These two source or t	READ/W	rce Select[1:0]: RITE bit-fields permit the user to specify the a that is being carried via the "N" bits, within data stream, as indicated below.
			TxNSrc	Sel[1:0]	Resulting Source of N Bit
			0	0	The "TxN" bit-field, within the "TxE3 Service Bit" register (Direct Nddress = 0x1135)
			0	1	Not Valid - Do not use.
			1	0	The LAPD TransmitterIn this case, the N bit will function as the LAPD/PMDL channel.
			1	1	The "N" bit is sourced via the "Payload Data Input Interface" block. This is discussed in greater detail in Section
2	TxAIS Enable	R/W	Transmit A	AIS Indica	ator
			 This READ/WRITE bit-field permits the user to (by software cortrol) force the Frame Generator to generate and transmit the AIS indicator to the remote terminal equipment. 0 - Does not configure the Frame Generator to generate and transmit the AIS indicator. 1 - Configures the Frame Generator to generate and transmit the AIS indicator. In this case, the Frame Generator will force all bits (within the "outbound" E3 data stream) to an "All Ones" pattern 		
					is ignored if the Frame Generator has been o transmit the LOS pattern.
1	TxLOS Enable	R/W	 Transmit LOS (Pattern) Enable: This READ/WRITE bit-field permits the user to (by software control) force the Frame Generator block to transmit the LOS (Loss of Signal) pattern to the remote terminal equipment. 0 - Does not configure the Frame Generator block to generate and transmit the LOS pattern. 1 - Configures the Frame Generator block to generate and transmit the LOS pattern. In this case, the Frame Generator block will force all bits (within the "outbound" E3 data stream) to an "All Zeros" pattern. 		
0	TxFAS Source Sel	R/W	 Transmit FAS Source Select: This READ/WRITE bit-field permits the user to specify the source of the FAS (Framing Alignment Signal), to be used in the "outbound" E3 data-stream, as indicated below. 0 - FAS bits are inserted internally by the Frame Generator block 1 - FAS bits are sourced by the "Payload Data Input Interface" block. This is discussed in greater detail in Section 		

TXE3 LAPD CONFIGURATION REGISTER - G.751 (DIRECT ADDRESS = 0X1133)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Unused			Auto Retransmit	Reserved	TxLAPD Message Length	TxLAPD Enable	
R/O	R/O	R/O	R/O	R/W	R/O	R/W	R/W
0	0	0	0	1	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 4	Unused	R/O	
3	Auto Retransmit	R/W	 Auto-Retransmit of LAPD Message: This READ/WRITE bit-field permits the user to configure the LAPD Transmitter to transmit PMDL messages, repeatedly at one-second intervals. Once the user enables this feature, and then commands the LAPD Transmitter to transmit a given PMDL Message; the LAPD Transmitter will then proceed to transmit this PMDL Message (based upon the contents within the Transmit LAPD Message (based upon the contents within the Transmit LAPD Message Buffer) repeatedly at one second intervals. 0 - Disables the Auto-Retransmit Feature. In this case, the PMDL Message will only be transmitted once, afterwards the LAPD Transmitter will proceed to transmit a continuous stream of Flag Sequence octets (0x7E) via the DL bits, within each output DS3 frame. No more PMDL Messages will be transmitted until the user commands another transmission. 1 - Enables the Auto-Retransmit Feature. In this case, the LAPD Transmitter will transmit PMDL messages (based upon the con- tents within the Transmit LAPD Buffer) repeatedly at one-second intervals. Note: This bit-field is ignored if the LAPD Transmitter is disabled.
2	Reserved	R/O	
1	TxLAPD Message Length	R/W	 Transmit LAPD Message Length Select: This READ/WRITE bit-field permits the user to specify the length of the payload data within the outbound LAPD/PMDL Message, as indicated below. 0 - Configures the LAPD Transmitter to transmit a LAPD/PMDL message that has a payload data size of 76 bytes. 1 - Configures the LAPD Transmitter to transmit a LAPD/PMDL message that has a payload data size of 82 bytes.
0	TxLAPD Enable	R/W	LAPD Transmitter Enable: This READ/WRITE bit-field permits the user to enable the LAPD Transmitter, within the channel. Once the user enables the LAPD Transmitter, it will immediately begin transmitting the Flag Sequence octet (0x7E) to the remote terminal via the outbound "DL" bits, within each DS3 data stream. The LAPD Transmitter will continue to do this until the user commands the LAPD Trans- mitter to transmit a PMDL Message. 0 - Disables the LAPD Transmitter. 1 - Enables the LAPD Transmitter.

TXE3 LAPD STATUS/INTERRUPT REGISTER - G.751 (DIRECT ADDRESS = 0X1134)

Віт 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	Віт 0
Unused				TxDL Start	TxDL Busy	TxLAPD Interrupt Enable	TxLAPD Interrupt Status
R/O	R/O	R/O	R/O	R/W	R/O	R/W	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 4	Unused	R/O	
3	TxDL Start	R/W	 Transmit LAPD Message Command: A "0" to "1" transition, within this bit-field commands the LAPD Transmitter to begin the following activities: Reading out the contents of the Transmit LAPD Message Buffer. Zero-Stuffing of this data FCS Calculation and Insertion Fragmentation of this composite PMDL Message, and insertion into the "DL" bit-fields, within each outbound DS3 frame.
2	TxDL Busy	R/O	 Transmit LAPD Controller Busy Indicator: This "READ-ONLY" bit-field indicates whether or not the Transmit LAPD Controller is currently busy transmitting a PMDL Message to the remote terminal equipment. The user can continuously poll this bit-field in order to check for completion of transmission of the LAPD/PMDL Message. 0 - LAPD Transmitter is NOT busy transmitting a PMDL Message. 1 - LAPD Transmitter is currently busy transmitting a PMDL Message.
1	TxLAPD Interrupt Enable	R/W	 Transmit LAPD Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Transmit LAPD Interrupt". If the user enables this interrupt, then the channel will generate an interrupt anytime the LAPD Transmitter has completed its transmission of a given LAPD/PMDL Message to the remote terminal. 0 - Disables Transmit LAPD Interrupt. 1 - Enables Transmit LAPD Interrupt.
0	TxLAPD Interrupt Status	RUR	 Transmit LAPD Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Transmit LAPD Interrupt" has occurred since the last read of this register. 0 - Transmit LAPD Interrupt has NOT occurred since the last read of this register. 1 - Transmit LAPD Interrupt has occurred since the last read of this register.

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TXE3 SERVICE BITS REGISTER - G.751 (DIRECT ADDRESS = 0X1135)

Віт 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	Віт 0
Unused						TxA	TxN
R/O	R/O	R/O	R/O	R/O	R/O	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 2	Unused	R/O	
1	ТхА	R/W	 Transmit A Bit: This READ/WRITE bit-field permits the user to control the state of the "A" bit, within each "outbound" E3 frame, as indicated below. 0 - Forces each A bit (within the "outbound" E3 frame) to "0". 1 - Forces each A bit (within the "outbound" E3 frame) to "1". Note: This bit-field is only valid if the Frame Generator block has been configured to use this bit-field as the source of the "A" bit (e.g., if "TxASrcSel[1:0] = "0, 0").
0	TxN	R/W	 Transmit N Bit: This READ/WRITE bit-field permits the user to control the state of the "N" bit, within each "outbound" E3 frame, as indicated below. 0 - Forces each N bit (within the "outbound" E3 frame) to "0". 1 - Forces each N bit (within the "outbound" E3 frame) to "1". NOTE: This bit-field is only valid if the Frame Generator block has been configured to use this bit-field as the source of the "N" bit (e.g., if "TxNSrcSel[1:0] = "0, 0").

TXE3 FAS ERROR MASK UPPER REGISTER - G.751 (INDIRECT ADDRESS =0XNE, 0X48; DIRECT ADDRESS = 0X1148)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	Віт 2	BIT 1	BIT 0
	Unused			TxFAS_	Error_Mask_Up	oper[4:0]	
R/O	R/O	R/O	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 5	Unused	R/O	
4 - 0	TxFAS_Error_Mask_ Upper[4:0]	R/W	 TxFAS Error Mask Upper[4:0]: These READ/WRITE bit-fields permit the user to insert bit errors into the upper five bits, within the FAS (Framing Alignment Signal), within the outbound E3 data stream. The Frame Generator will perform an XOR operation with the contents of these FAS bits, and this register. The results of this calculation will be inserted into the upper 5 FAS bit positions within the "outbound" E3 data stream. For each bit-field (within this register) that is set to "1", the corresponding bit, within the FAS will be in error. Note: For normal operation, the user should set this register to 0x00.

TXE3 FAS ERROR MASK LOWER REGISTER - G.751 (INDIRECT ADDRESS =0XNE, 0X49; DIRECT ADDRESS = 0X1149)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0		
Unused			TxFAS_Error_Mask_Lower[4:0]						
R/O	R/O	R/O	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	Nаме	Түре	DESCRIPTION
7 - 5	Unused	R/O	
4 - 0	TxFAS_Error_Mask_ Lower[4:0]	R/W	 TxFAS Error Mask Lower[4:0]: These READ/WRITE bit-fields permit the user to insert bit errors into the lower five bits, within the FAS (Framing Alignment Signal), within the outbound E3 data stream. The Frame Generator will perform an XOR operation with the contents of these FAS bits, and this register. The results of this calculation will be inserted into the lower 5 FAS bit positions within the "outbound" E3 data stream. For each bit-field (within this register) that is set to "1", the corresponding bit, within the FAS will be in error. NOTE: For normal operation, the user should set this register to 0x00.

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TXE3 BIP-4 MASK REGISTER - G.751 (DIRECT ADDRESS = 0X114A)

Віт 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	Віт 0
	Unused			T	<pre>dBIP-4_Mask[3:</pre>	0]	
R/O	R/O	R/O	R/O	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 4	Unused	R/O	
3 - 0	TxBIP-4_Mask_[3:0]	R/W	 TxBIP-4 Error Mask[3:0]: These READ/WRITE bit-fields permit the user to insert bit errors into the BIP-4 bits, within the outbound E3 data stream. The Frame Generator will perform an XOR operation with the contents of the BIP-4 bits, and this register. The results of this calculation will be inserted into the BIP-4 bit positions within the "outbound" E3 data stream. For each bit-field (within this register) that is set to "1", the corresponding bit, within the BIP-4 will be in error. Note: For normal operation, the user should set this register to 0x00.

TRANSMIT E3, ITU-T G.832 RELATED REGISTERS

TXE3 CONFIGURATION REGISTER - G.832 (DIRECT ADDRESS = 0X1130)

Віт 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	Віт 0
	Unused		TxDL in NR	Reserved	TxAIS Enable	TxLOS Enable	TxMA Rx
R/O	R/O	R/O	R/W	R/O	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 5	Unused	R/O	
4	TxDL in NR	R/W	 Transmit DL (Data Link Channel) in NR Byte: This READ/WRITE bit-field permits the user to configure the Frame Generator to use either the NR or the GC byte as the LAPD/PMDL channel. 0 - Configures the Frame Generator to transmit all "outbound" LAPD/PMDL Messages via the GC byte. 1 - Configures the Frame Generator to transmit all "outbound" LAPD/PMDL Messages via the NR byte.
3	Unused	R/O	
2	TxAIS Enable	R/W	 Transmit AIS Indicator: This READ/WRITE bit-field permits the user to (by software control) force the Frame Generator to generate and transmit the AIS indicator to the remote terminal equipment. 0 - Does not configure the Frame Generator to generate and transmit the AIS indicator. 1 - Configures the Frame Generator to generate and transmit the AIS indicator. In this case, the Frame Generator will force all bits (within the "outbound" E3 data stream) to an "All Ones" pattern. Note: This bit-field is ignored if the Frame Generator has been configured to transmit the LOS pattern.
1	TxLOS Enable	R/W	 Transmit LOS (Pattern) Enable: This READ/WRITE bit-field permits the user to (by software control) force the Frame Generator block to transmit the LOS (Loss of Signal) pattern to the remote terminal equipment. 0 - Does not configure the Frame Generator block to generate and transmit the LOS pattern. 1 - Configures the Frame Generator block to generate and transmit the LOS pattern. In this case, the Frame Generator block will force all bits (within the "outbound" E3 data stream) to an "All Zeros" pattern.

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
0	TxMA Rx	R/W	 Transmit MA Byte from Receiver (Frame Synchronizer) Select: This READ/WRITE bit-field permits the user to configure the Frame Generator block to use either the Frame Synchronizer block or the "Tx MA Byte" Register as the source of the FERF and FEBE bit-fields (within the MA byte-field of the "outbound" E3 data stream); as indicated below. 0 - Configures the Frame Generator to read in the contents of the "Tx MA Byte" register (Direct Address = 0x1136), and write it into the "MA" byte-field within each "outbound" E3 frame. NOTE: This option permits the user to send FERF and FEBE indicators, under software control. 1 - Configures the Frame Generator to set the FERF and FEBE bit-fields to values, based upon conditions detected by the companion Frame Synchronizer block.

TXE3 LAPD CONFIGURATION REGISTER - G.832 (DIRECT ADDRESS = 0X1133)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0
Unused				Auto Retransmit	Reserved	TxLAPD Message Length	TxLAPD Enable
R/O	R/O	R/O	R/O	R/W	R/O	R/W	R/W
0	0	0	0	1	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 4	Unused	R/O	
3	Auto Retransmit	R/W	 Auto-Retransmit of LAPD Message: This READ/WRITE bit-field permits the user to configure the LAPD Transmitter to transmit PMDL messages, repeatedly at one-second intervals. Once the user enables this feature, and then commands the LAPD Transmitter to transmit a given PMDL Message; the LAPD Transmitter will then proceed to transmit this PMDL Message (based upon the contents within the Transmit LAPD Message (based upon the contents within the Transmit LAPD Message will only be transmitted once, afterwards the PMDL Message will only be transmitted once, afterwards the LAPD Transmitter will proceed to transmit a continuous stream of Flag Sequence octets (0x7E) via the DL bits, within each output DS3 frame. No more PMDL Messages will be transmitted until the user commands another transmission. 1 - Enables the Auto-Retransmit Feature. In this case, the LAPD Transmitter will transmit PMDL messages (based upon the contents within the Transmit LAPD Buffer) repeatedly at one-second intervals. Mote: This bit-field is ignored if the LAPD Transmitter is disabled.
2	Reserved	R/O	
1	TxLAPD Message Length	R/W	 Transmit LAPD Message Length Select: This READ/WRITE bit-field permits the user to specify the length of the payload data within the outbound LAPD/PMDL Message, as indicated below. 0 - Configures the LAPD Transmitter to transmit a LAPD/PMDL message that has a payload data size of 76 bytes. 1 - Configures the LAPD Transmitter to transmit a LAPD/PMDL message that has a payload data size of 82 bytes.
0	TxLAPD Enable	R/W	 LAPD Transmitter Enable: This READ/WRITE bit-field permits the user to enable the LAPD Transmitter, within the channel. Once the user enables the LAPD Transmitter, it will immediately begin transmitting the Flag Sequence octet (0x7E) to the remote terminal via the outbound "DL" bits, within each DS3 data stream. The LAPD Transmitter will continue to do this until the user commands the LAPD Transmitter to transmit a PMDL Message. 0 - Disables the LAPD Transmitter. 1 - Enables the LAPD Transmitter.

TXE3 LAPD STATUS/INTERRUPT REGISTER - G.832 (DIRECT ADDRESS = 0X1134)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0
Unused				TxDL Start	TxDL Busy	TxLAPD Interrupt Enable	TxLAPD Interrupt Status
R/O	R/O	R/O	R/O	R/W	R/O	R/W	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 4	Unused	R/O	
3	TxDL Start	R/W	 Transmit LAPD Message Command: A "0" to "1" transition, within this bit-field commands the LAPD Transmitter to begin the following activities: Reading out the contents of the Transmit LAPD Message Buffer. Zero-Stuffing of this data FCS Calculation and Insertion Fragmentation of this composite PMDL Message, and insertion into the "DL" bit-fields, within each outbound DS3 frame.
2	TxDL Busy	R/O	 Transmit LAPD Controller Busy Indicator: This "READ-ONLY" bit-field indicates whether or not the Transmit LAPD Controller is currently busy transmitting a PMDL Message to the remote terminal equipment. The user can continuously poll this bit-field in order to check for completion of transmission of the LAPD/PMDL Message. 0 - LAPD Transmitter is NOT busy transmitting a PMDL Message. 1 - LAPD Transmitter is currently busy transmitting a PMDL Message.
1	TxLAPD Interrupt Enable	R/W	 Transmit LAPD Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Transmit LAPD Interrupt". If the user enables this interrupt, then the channel will generate an interrupt anytime the LAPD Transmitter has completed its transmission of a given LAPD/PMDL Message to the remote terminal. 0 - Disables Transmit LAPD Interrupt. 1 - Enables Transmit LAPD Interrupt.
0	TxLAPD Interrupt Status	RUR	 Transmit LAPD Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Transmit LAPD Interrupt" has occurred since the last read of this register. 0 - Transmit LAPD Interrupt has NOT occurred since the last read of this register. 1 - Transmit LAPD Interrupt has occurred since the last read of this register.

TXE3 GC BYTE REGISTER - G.832 (DIRECT ADDRESS = 0X1135)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	Віт 1	Віт 0				
	TxGC_Byte[7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	TxGC_Byte[7:0]	R/W	 Transmit GC Byte: This READ/WRITE bit-field permits the user to specify the contents of the GC byte, within the "outbound" E3 data stream. The Frame Generator block will load the contents of this register in the GC byte-field, within each outbound E3 frame. Note: This register is ignored if the GC byte is configured to be the "LAPD/PMDL" channel.

TXE3 MA BYTE REGISTER - G.832 (DIRECT ADDRESS = 0X1136)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0				
	TxMA Byte[7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	1	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	TxMA_Byte[7:0]	R/W	 Transmit MA Byte: This READ/WRITE bit-field permits the user to specify the contents of the MA byte, within the "outbound" E3 data stream. The Frame Generator block will load the contents of this register in the MA byte-field, within each outbound E3 frame. NOTES: This register is ignored if the "Transmit MA Byte - from Receiver" option is selected (e.g., by setting "TxMA Rx = 1"). This feature permits the user to transmit FERF and FEBE indicators upon software command.

TXE3 NR BYTE REGISTER - G.832 (DIRECT ADDRESS = 0X1137)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0				
	TxNR_Byte[7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	TxNR_Byte[7:0]	R/W	 Transmit NR Byte: This READ/WRITE bit-field permits the user to specify the contents of the NR byte, within the "outbound" E3 data stream. The Frame Generator block will load the contents of this register in the NR byte-field, within each outbound E3 frame. Note: This register is ignored if the NR byte is configured to be the "LAPD/PMDL" channel.

TXE3 TTB-0 REGISTER - G.832 (DIRECT ADDRESS = 0X1138)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0				
	TxTTB_Byte_0										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
1	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	TxTTB_Byte_0[7:0]	R/W	Transmit TTB (Trail-Trace Buffer) Byte 0: These READ/WRITE bits permit the user to specify the contents of "Trail-Trace Buffer Byte 0" within the outbound E3 data stream. By default, the MSB (Most Significant Bit) of this register bit will be set to "1" in order to permit the remote terminal to be able to identify this particular byte, as being the first byte of the "Trail- Trace Buffer" Message.

TXE3 TTB-1 REGISTER - G.832 (DIRECT ADDRESS = 0X1139)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0				
	TxTTB_Byte_1										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION		
7 - 0	TxTTB_Byte_1[7:0]	R/W	Transmit TTB (Trail-Trace Buffer) Byte 1: These READ/WRITE bits permit the user to specify the contents of "Trail-Trace Buffer Byte 1" within the outbound E3 data stream.		

TXE3 TTB-2 REGISTER - G.832 (DIRECT ADDRESS = 0X113A)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	BIT 0				
	TxTTB_Byte_2										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	TxTTB_Byte_2[7:0]	R/W	Transmit TTB (Trail-Trace Buffer) Byte 2: These READ/WRITE bits permit the user to specify the contents of "Trail-Trace Buffer Byte 2" within the outbound E3 data stream.

TXE3 TTB-3 REGISTER - G.832 (DIRECT ADDRESS = 0X113B)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0				
	TxTTB_Byte_3										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION			
7 - 0	TxTTB_Byte_3[7:0]	R/W	Transmit TTB (Trail-Trace Buffer) Byte 3: These READ/WRITE bits permit the user to specify the contents of "Trail-Trace Buffer Byte 3" within the outbound E3 data stream.			

TXE3 TTB-4 REGISTER - G.832 (DIRECT ADDRESS = 0X113C)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0			
TxTTB_Byte_4										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION			
7 - 0	TxTTB_Byte_4[7:0]	R/W	Transmit TTB (Trail-Trace Buffer) Byte 4: These READ/WRITE bits permit the user to specify the contents of "Trail-Trace Buffer Byte 4" within the outbound E3 data stream.			

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TXE3 TTB-5 REGISTER - G.832 (DIRECT ADDRESS = 0X113D)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0				
	TxTTB_Byte_5										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0	0	0				

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION			
7 - 0	TxTTB_Byte_5[7:0]	R/W	Transmit TTB (Trail-Trace Buffer) Byte 5: These READ/WRITE bits permit the user to specify the contents of "Trail-Trace Buffer Byte 5" within the outbound E3 data stream.			

TXE3 TTB-6 REGISTER - G.832 (DIRECT ADDRESS = 0X113E)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0			
TxTTB_Byte_6										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION		
7 - 0	TxTTB_Byte_6[7:0]	R/W	Transmit TTB (Trail-Trace Buffer) Byte 6: These READ/WRITE bits permit the user to specify the contents of "Trail-Trace Buffer Byte 6" within the outbound E3 data stream.		

TXE3 TTB-7 REGISTER - G.832 (DIRECT ADDRESS = 0X113F)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0				
	TxTTB_Byte_7										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION			
7 - 0	TxTTB_Byte_7[7:0]	R/W	Transmit TTB (Trail-Trace Buffer) Byte 7: These READ/WRITE bits permit the user to specify the contents of "Trail-Trace Buffer Byte 7" within the outbound E3 data stream.			

TXE3 TTB-8 REGISTER - G.832 (DIRECT ADDRESS = 0X1140)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	BIT 0				
	TxTTB_Byte_8										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	TxTTB_Byte_8[7:0]	R/W	Transmit TTB (Trail-Trace Buffer) Byte 8: These READ/WRITE bits permit the user to specify the contents of "Trail-Trace Buffer Byte 8" within the outbound E3 data stream.

TXE3 TTB-9 REGISTER - G.832 (DIRECT ADDRESS = 0X1141)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0				
	TxTTB_Byte_9										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION			
7 - 0	TxTTB_Byte_9[7:0]	R/W	Transmit TTB (Trail-Trace Buffer) Byte 9: These READ/WRITE bits permit the user to specify the contents of "Trail-Trace Buffer Byte 9" within the outbound E3 data stream.			

TXE3 TTB-10 REGISTER - G.832 (DIRECT ADDRESS = 0X1142)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0				
	TxTTB_Byte_10										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	TxTTB_Byte_10[7:0]	R/W	Transmit TTB (Trail-Trace Buffer) Byte 10: These READ/WRITE bits permit the user to specify the contents of "Trail-Trace Buffer Byte 10" within the outbound E3 data stream.

TXE3 TTB-11 REGISTER - G.832 (DIRECT ADDRESS = 0X1143)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0			
TxTTB_Byte_11										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	TxTTB_Byte_11[7:0]	R/W	Transmit TTB (Trail-Trace Buffer) Byte 11: These READ/WRITE bits permit the user to specify the contents of "Trail-Trace Buffer Byte 11" within the outbound E3 data stream.

TXE3 TTB-12 REGISTER - G.832 (DIRECT ADDRESS = 0X1144)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0				
	TxTTB_Byte_12										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	TxTTB_Byte_12[7:0]	R/W	Transmit TTB (Trail-Trace Buffer) Byte 12: These READ/WRITE bits permit the user to specify the contents of "Trail-Trace Buffer Byte 12" within the outbound E3 data stream.

TXE3 TTB-13 REGISTER - G.832 (DIRECT ADDRESS = 0X1145)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0				
	TxTTB_Byte_13										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	TxTTB_Byte_13[7:0]	R/W	Transmit TTB (Trail-Trace Buffer) Byte 13: These READ/WRITE bits permit the user to specify the contents of "Trail-Trace Buffer Byte 13" within the outbound E3 data stream.

TXE3 TTB-14 REGISTER - G.832 (DIRECT ADDRESS = 0X1146)

Віт 7	Віт 6	Віт 5	Віт 4	BIT 3	BIT 2	Віт 1	Віт 0				
	TxTTB_Byte_14										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0	0	0				

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	TxTTB_Byte_14[7:0]	R/W	Transmit TTB (Trail-Trace Buffer) Byte 14: These READ/WRITE bits permit the user to specify the contents of "Trail-Trace Buffer Byte 14" within the outbound E3 data stream.

TXE3 TTB-15 REGISTER - G.832 (DIRECT ADDRESS = 0X1147)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0				
	TxTTB_Byte_15										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	TxTTB_Byte_15[7:0]	R/W	Transmit TTB (Trail-Trace Buffer) Byte 15: These READ/WRITE bits permit the user to specify the contents of "Trail-Trace Buffer Byte 15" within the outbound E3 data stream.

TXE3 FA1 ERROR MASK REGISTER - G.832 (DIRECT ADDRESS = 0X1148)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0				
	TxFA1_Mask_Byte[7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	TxFA1_Mask_Byte[7:0]	R/W	 TxFA1 Error Mask Byte[7:0]: These READ/WRITE bit-fields permit the user to insert bit errors into the FA1 bytes, within the outbound E3 data stream. The Frame Generator will perform an XOR operation with the contents of the FA1 byte, and this register. The results of this calculation will be inserted into the FA1 byte position within the "outbound" E3 data stream. For each bit-field (within this register) that is set to "1", the corresponding bit, within the FA1 byte will be in error. NOTE: For normal operation, the user should set this register to 0x00.

TXE3 FA2 ERROR MASK REGISTER - G.832 (DIRECT ADDRESS = 0X1149)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	Віт 0			
TxFA2_Mask_Byte[7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	TxFA2_Mask_Byte[7:0]	R/W	 TxFA2 Error Mask Byte[7:0]: These READ/WRITE bit-fields permit the user to insert bit errors into the FA2 bytes, within the outbound E3 data stream. The Frame Generator will perform an XOR operation with the contents of the FA2 byte, and this register. The results of this calculation will be inserted into the FA2 byte position within the "outbound" E3 data stream. For each bit-field (within this register) that is set to "1", the corresponding bit, within the FA2 byte will be in error. Note: For normal operation, the user should set this register to 0x00.

TXE3 BIP-8 ERROR MASK REGISTER - G.832 (DIRECT ADDRESS = 0X114A)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0			
TxBIP-8_Mask_Byte[7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	TxBIP-8_Mask_Byte[7:0]	R/W	 TxBIP-8 (B1) Error Mask[7:0]: These READ/WRITE bit-fields permit the user to insert bit errors into the B1 bytes, within the outbound E3 data stream. The Frame Generator will perform an XOR operation with the contents of the B1 byte, and this register. The results of this calculation will be inserted into the B1 byte position within the "outbound" E3 data stream. For each bit-field (within this register) that is set to "1", the corresponding bit, within the B1 byte will be in error. NOTE: For normal operation, the user should set this register to 0x00.

TXE3 SSM REGISTER - G.832 (DIRECT ADDRESS = 0X114B)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0	
TxSSM Enable	Unused			TxSSM[3:0]				
R/W	R/O	R/O	R/O	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

XRT79L71 REV. P1.0.3 PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
7	TxSSM Enable	R/W	Transmit SSM Enable: This READ/WRITE bit-field permits the user to configure the Frame Generator block to operate in either the "Old ITU-T G.832 Framing" format or in the "New ITU-T G.832 Framing" format. 0 - Configures the Frame Generator block to support the "Pre October 1998" version of the E3, ITU-T G.832 framing format. 1 - Configures the Frame Generator block to support the "Octo- ber 1998" version of the E3, ITU-T G.832 framing format.
6 - 4	Unused	R/O	
3 - 0	TxSSM[3:0]	R/W	 Transmit Synchronization Status Message[3:0]: These READ/WRITE bit-fields permit the user to exercise software control over the contents of the "SSM" bits, within the MA byte of the "outbound" E3 data-stream. Note: These bit-fields are only active if the DS3/E3 Frame Generator block is active, and if Bit 7 (TxSSM Enable) of this register is set to "1".

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

PERFORMANCE MONITOR REGISTERS

PMON EXCESSIVE ZERO COUNT REGISTERS - MSB (DIRECT ADDRESS = 0X114E)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0			
PMON_EXZ_Count_Upper_Byte[7:0]										
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR			
0	0	0	0	0	0	0	0			

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	PMON_EXZ_Count_ Upper_Byte[7:0]	RUR	 Performance Monitor - Excessive Zero Event Count - Upper Byte: These RESET-upon-READ bits, along with that within the "PMON Excessive Zero Count Register - LSB" combine to reflect the cumulative number of instances that a string of three or more consecutive zeros (for DS3 applications) or four or more consecutive zeros (for E3 applications) has been detected by the "Primary Frame Synchronizer" block since the last read of this register. This register contains the Most Significant byte of this 16-bit expression. Note: This register is only valid if the Primary Frame Synchronizer block has been configured to operate in the Ingress Path.

PMON EXCESSIVE ZERO COUNT REGISTERS - LSB (DIRECT ADDRESS = 0X114F)

Віт 7	Віт 6	Віт 5	BIT 5 BIT 4		Віт 2	Віт 1	Віт 0			
PMON_EXZ_Count_Lower_Byte[7:0]										
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	PMON_EXZ_Count_ Upper_Byte[7:0]	RUR	 Performance Monitor - Excessive Zero Event Count - Lower Byte: These RESET-upon-READ bits, along with that within the "PMON Excessive Zero Count Register - MSB" combine to reflect the cumulative number of instances that a string of three or more consecutive zeros (for DS3 applications) or four or more consecutive zeros (for E3 applications) has been detected by the "Primary Frame Synchronizer" block since the last read of this register. This register contains the Least Significant byte of this 16-bit expression. NOTE: This register is only valid if the Primary Frame Synchronizer block has been configured to operate in the Ingress Path.

PMON LINE CODE VIOLATION COUNT REGISTERS - MSB (DIRECT ADDRESS = 0X1150)

Віт 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	BIT 0		
PMON_LCV_Count_Upper_Byte[7:0]									
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	PMON LCV Count Upper Byte[7:0]	RUR	 Performance Monitor- Line Code Violation Count Register - Upper Byte: These RESET-upon-READ bits along with that within the "PMON Line Code Violation Count - LSB" combine to reflect the cumula- tive number of Line Code Violations that have been detected by the Primary Frame Synchronizer block, since the last read of this register. This register contains the Most Significant byte of this 16-bit expression. Note: This register is only valid if the Primary Frame Synchronizer block has been configured to operate in the Ingress Path.

PMON LINE CODE VIOLATION COUNT REGISTERS - LSB (DIRECT ADDRESS = 0X1151)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0			
PMON_LCV_Count_Lower_Byte[7:0]										
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION			
7 - 0	PMON LCV Count Lower Byte[7:0]	RUR	 Performance Monitor- Line Code Violation Count Register - Lower Byte: These RESET-upon-READ bits along with that within the "PMON Line Code Violation Count - MSB" combine to reflect the cumula- tive number of Line Code Violations that have been detected by the Primary Frame Synchronizer block, since the last read of this register. This register contains the Least Significant byte of this 16-bit expression. Note: This register is only valid if the Primary Frame Synchronizer block has been configured to operate in the Ingress Path. 			

PMON FRAMING BIT/BYTE ERROR COUNT REGISTER - MSB (DIRECT ADDRESS = 0X1152)

BIT 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0			
PMON_Framing_Bit/Byte_Error_Count_Upper_Byte[7:0]										
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	PMON_Framing Bit/Byte Error_Count_Upper Byte[7:0]	RUR	 Performance Monitor - Framing Bit/Byte Error Count - Upper Byte: These RESET-upon-READ bits, along with that within the "PMON Framing Bit/Byte Error Count Register - LSB" combine to reflect the cumulative number of Framing bit (or byte) errors that have been detected by the Primary Frame Synchronizer block, since the last read of this register. This register contains the Most Significant byte of this 16-bit expression. <i>NoTES:</i> For DS3 applications, this register will increment for each F or M bit error detected. For E3, ITU-T G.751 applications, this register will increment for each FAS error detected. For E3, ITU-T G.832 applications, this register will increment for each FA1 or FA2 byte error detected.

PMON FRAMING BIT/BYTE ERROR COUNT REGISTER - LSB (DIRECT ADDRESS = 0X1153)

Віт 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	Віт 0			
PMON_Framing_Bit/Byte_Error_Count_Lower_Byte[7:0]										
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	PMON_Framing Bit/Byte Error_Count_Lower Byte[7:0]	RUR	 Performance Monitor - Framing Bit/Byte Error Count - Lower Byte: These RESET-upon-READ bits, along with that within the "PMON Framing Bit/Byte Error Count Register - MSB" combine to reflect the cumulative number of Framing bit (or byte) errors that have been detected by the Primary Frame Synchronizer block, since the last read of this register. This register contains the Least Significant byte of this 16-bit expression. <i>NoTES:</i> For DS3 applications, this register will increment for each F or M bit error detected. For E3, ITU-T G.751 applications, this register will increment for each FAS error detected. For E3, ITU-T G.832 applications, this register will increment for each FA1 or FA2 byte error detected.

PMON PARITY/P-BIT ERROR COUNT REGISTER - MSB (DIRECT ADDRESS = 0X1154)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0			
PMON_Parity_Error_Count_Upper_Byte[7:0]										
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	PMON_P-Bit/Parity Bit Error_Count_Upper Byte[7:0]	RUR	 Performance Monitor - P Bit/Parity Bit Error Count - Upper Byte: These RESET-upon-READ bits, along with that within the "PMON P-Bit/Parity Bit Error Count Register - LSB" combine to reflect the cumulative number of P bit errors (for DS3 applications) or BIP-8/BIP-4 errors (for E3 applications) that have been detected by the Primary Frame Synchronizer block, since the last read of this register. This register contains the Most Significant byte of this 16-bit expression. Note: These register bits are not active if the Primary Frame Synchronizer block has been by-passed.

PMON PARITY/P-BIT ERROR COUNT REGISTER - LSB (DIRECT ADDRESS = 0X1155)

Віт 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	Віт 0			
PMON_Parity_Error_Count_Lower_Byte[7:0]										
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	PMON_P-Bit/Parity Bit Error_Count_Lower Byte[7:0]	RUR	 Performance Monitor - P Bit/Parity Bit Error Count - Lower Byte: These RESET-upon-READ bits, along with that within the "PMON P-Bit/Parity Bit Error Count Register - MSB" combine to reflect the cumulative number of P bit errors (for DS3 applica- tions) or BIP-8/BIP-4 errors (for E3 applications) that have been detected by the Primary Frame Synchronizer block, since the last read of this register. This register contains the Least Significant byte of this 16-bit expression. Note: These register bits are not active if the Primary Frame Synchronizer block has been by-passed.

PMON FEBE EVENT COUNT REGISTER - MSB (DIRECT ADDRESS = 0X1156)

Віт 7	Віт 6	Віт 5	Віт 5 Віт 4		Віт 2	Віт 1	Віт 0			
PMON_FEBE_Event_Count_Upper_Byte[7:0]										
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	PMON_FEBE Event_Count_Upper Byte[7:0]	RUR	 Performance Monitor - FEBE Event Count - Upper Byte: These RESET-upon-READ bits, along with that within the "PMON FEBE Event Count Register - LSB" combine to reflect the cumulative number of "erred" FEBE events that have been detected by the Primary Frame Synchronizer block, since the last read of this register. This register contains the Most Significant byte of this 16-bit expression. Note: These register bits are not active if the Primary Frame Synchronizer block has been by-passed.

PMON FEBE EVENT COUNT REGISTER - LSB (DIRECT ADDRESS = 0X1157)

Віт 7	BIT 6	BIT 5 BIT 4		Віт 3	BIT 2	BIT 1	Віт 0			
PMON_FEBE_Event_Count_Lower_Byte[7:0]										
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR			
0	0	0	0	0	0	0	0			

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	PMON_FEBE Event_Count_Lower Byte[7:0]	RUR	 Performance Monitor - FEBE Event Count - Lower Byte: These RESET-upon-READ bits, along with that within the "PMON FEBE Event Count Register - MSB" combine to reflect the cumulative number of "erred" FEBE events that have been detected by the Primary Frame Synchronizer block, since the last read of this register. This register contains the Least Significant byte of this 16-bit expression. Note: These register bits are not active if the Primary Frame Synchronizer block has been by-passed.

PMON CP-BIT ERROR COUNT REGISTER - MSB (DIRECT ADDRESS = 0X1158)

Віт 7	Віт 6	Віт 5	BIT 5 BIT 4		Віт 2	BIT 1	Віт 0				
PMON_CP-Bit_Error_Count_Upper_Byte[7:0]											
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR				
0	0	0	0	0	0	0	0				

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	PMON_CP-Bit Error_Count_Upper Byte[7:0]	RUR	 Performance Monitor - CP Bit Error Count - Upper Byte: These RESET-upon-READ bits, along with that within the "PMON CP-Bit Error Count Register - LSB" combine to reflect the cumulative number of CP bit errors that have been detected by the Primary Frame Synchronizer block, since the last read of this register. This register contains the Most Significant byte of this 16-bit expression. Note: These register bits are not active if the Primary Frame Synchronizer block has been by-passed, or if the Frame
			Synchronizer has not been configured to operate in the DS3 C-Bit Parity Framing format.

PMON CP-BIT ERROR COUNT REGISTER - LSB (DIRECT ADDRESS = 0X1159)

Віт 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	Віт 0			
PMON_CP-Bit_Error_Count_Lower_Byte[7:0]										
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	PMON_CP-Bit Error_Count_Lower Byte[7:0]	RUR	 Performance Monitor - CP Bit Error Count - Lower Byte: These RESET-upon-READ bits, along with that within the "PMON CP-Bit Error Count Register - MSB" combine to reflect the cumulative number of CP bit errors that have been detected by the Primary Frame Synchronizer block, since the last read of this register. This register contains the Least Significant byte of this 16-bit expression. Note: These register bits are not active if the Primary Frame Synchronizer block has been by-passed, or if the Frame Synchronizer has not been configured to operate in the DS3 C-Bit Parity Framing Format.

PRBS ERROR COUNT REGISTER - MSB (DIRECT ADDRESS = 0X1168)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0			
PRBS_Error_Count_Upper_Byte[7:0]										
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION			
7 - 0	PRBS Error_Count_Upper Byte[7:0]	RUR	 PRBS Error Count - Upper Byte: These RESET-upon-READ bits, along with that within the "PRBS Error Count Register - LSB" combine to reflect the cumulative number of PRBS bit errors that have been detected by the Primary Frame Synchronizer block, since the last read of this register. This register contains the Most Significant byte of this 16-bit expression. Note: These register bits are not active if the Primary Frame Synchronizer block has been by-passed, and if the PRBS Receiver has not been enabled. 			

PRBS ERROR COUNT REGISTER - LSB (DIRECT ADDRESS = 0X1169)

Віт 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	Віт 1	Віт 0			
PRBS_Error_Count_Lower_Byte[7:0]										
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	PRBS Error_Count_Lower Byte[7:0]	RUR	 PRBS Error Count - Lower Byte: These RESET-upon-READ bits, along with that within the "PRBS Error Count Register - MSB" combine to reflect the cumulative number of PRBS bit errors that have been detected by the Primary Frame Synchronizer block, since the last read of this register. This register contains the Least Significant byte of this 16-bit expression. Note: These register bits are not active if the Primary Frame Synchronizer block has been by-passed, and if the PRBS Receiver has not been enabled.

PMON HOLDING REGISTER (DIRECT ADDRESS = 0X116C)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0			
PMON_Hold_Value[7:0]										
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O			
0	0	0	0	0	0	0	0			

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	PMON Holding Value	R/O	 PMON Holding Value: These READ-ONLY bit-fields were specifically allocated to support READ operations to the PMON (Performance Monitor) Registers, within the DS3/E3 Framer blocks. Since the PMON Register (within the DS3/E3 Framer block) are 16-bit registers. Therefore, given that the bi-directional data bus of the XRT79L71 is only 8-bits wide, it will require two read operations in order to read out the entire 16 bit content of these registers. The other thing to note is that the PMON Registers (within the DS3/E3 Framer blocks) are RESET-upon-READ type registers. As consequence, the entire 16-bit contents of a given PMON Register will be cleared to "0x0000" immediately after the user has executed the first (of two) read operations to this register. In order to avoid losing the contents of the other byte, the contents of the "un-read" byte is automatically loaded into this register. Hence, once the user reads a register, from a given PMON Register, he/she is suppose to obtain the contents of the other byte, by reading the contents of this register.

ONE SECOND ERROR STATUS REGISTER (DIRECT ADDRESS = 0X116D)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
		Unu	Errored Second	Severe Errored Second			
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 2	Unused	R/O	
1	Errored Second	R/O	 Errored Second Indicator: This READ-ONLY bit-field indicates whether or not the DS3/E3 Framer block has declared the last one-second accumulation period as a "Errored Second". The DS3/E3 Framer block will declare a "errored second" if it detects any of the following events. For DS3 Applications P-Bit Errors CP Bit Errors Framing Bit (F or M bit) Errors For E3 Applications BIP-4/BIP-8 Errors FAS or Framing Byte (FA1, FA2) Errors - Indicates that the DS3/E3 Framer block has NOT declared the last one-second accumulation period as being an errored second. 1 - Indicates that the DS3/E3 Framer block has declared the last one-second accumulation period as being an errored second. Note: This bit-field is only active if the Primary Frame Synchronizer block is enabled.
0	Severely Errored Second	R/O	 Severely Errored Second Indicator: This READ-ONLY bit-field indicates whether or not the DS3/E3 Framer block has declared the last one second accumulation period as being a "Severely Errored Second". The DS3/E3 Framer block will declare a given second as being a "severely errored" second if it determines that the BER (Bit Error Rate) during this "one-second accumulation" period is greater than 10-3 errors/second. 0 - Indicates that the DS3/E3 Framer block has not declared the last one-second accumulation period as being a "severely- errored" second. 1 - Indicates that the DS3/E3 Framer block has declared the last one-second accumulation period as being a "severely- errored" second. 1 - Indicates that the DS3/E3 Framer block has declared the last one-second accumulation period as being a "severely- errored" second. 1 - Indicates that the DS3/E3 Framer block has declared the last one-second accumulation period as being a "severely- errored" second. Note: This bit-field is only active if the Primary Frame Synchronizer block is enabled.

ONE SECOND - LCV COUNT ACCUMULATOR REGISTER - MSB (DIRECT ADDRESS = 0X116E)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0		
One_Second_LCV_Count_Accum_MSB[7:0]									
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O		
0	0	0	0	0	0	0	0		

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	One_Second_LCV_ Count Accum_LSB[7:0]	R/O	 One Second LCV Count Accumulator Register - MSB: These READ-ONLY bits, along with that within the "One Second LCV Count Accumulator Register - MSB" combine to reflect the cumulative number of "Line Code Violations" that have been detected by the Frame Synchronizer block, in the last "one second" accumulation period. This register contains the Most Significant byte of this 16-bit expression. Note: This register is only valid if the Primary Frame Synchronizer block has been configured to operate in the Ingress Path.

ONE SECOND - LCV COUNT ACCUMULATOR REGISTER - LSB (DIRECT ADDRESS = 0X116F)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0			
One_Second_LCV_Count_Accum_LSB[7:0]										
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION				
7 - 0	One_Second_LCV_ Count Accum_LSB[7:0]	R/O	 One Second LCV Count Accumulator Register - LSB: These READ-ONLY bits, along with that within the "One Second LCV Count Accumulator Register - LSB" combine to reflect the cumulative number of "Line Code Violations" that have been detected by the Frame Synchronizer block, in the last "one second" accumulation period. This register contains the Least Significant byte of this 16-bit expression. Note: This register is only valid if the Primary Frame Synchronizer block has been configured to operate in the Ingress Path. 				

ONE SECOND - PARITY ERROR ACCUMULATOR REGISTER - MSB (DIRECT ADDRESS = 0X1170)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0			
One_Second_Parity_Error_Accum_MSB[7:0]										
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	One_Second_Parity Error Accum_MSB[7:0]	R/O	 One Second Parity Error Accumulator Register - MSB: These READ-ONLY bits, along with that within the "One Second Parity Error Accumulator Register - LSB" combine to reflect the cumulative number of "Parity Errors" that have been detected by the Frame Synchronizer block, in the last "one second" accumu- lation period. This register contains the Most Significant byte of this 16-bit expression. NOTES: For DS3 applications, the register will reflect the number of P-bit errors, detected within the last "one second" accumulation period. .For E3, ITU-T G.751 applications, this register will reflect the number of BIP-4 errors, detected within the last "one second" accumulation period.3 For E3, ITU-T G.832 applications, this register will reflect the number of BIP-8 (B1 Byte) errors detected within the last "one second" accumulation period.

ONE SECOND - PARITY ERROR ACCUMULATOR REGISTER - LSB (DIRECT ADDRESS = 0X1171)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	BIT 0		
One_Second_Parity_Error_Accum_LSB[7:0]									
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O		
0	0	0	0	0	0	0	0		

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	One_Second_Parity Error Accum_LSB[7:0]	R/O	 One Second Parity Error Accumulator Register - LSB: These READ-ONLY bits, along with that within the "One Second Parity Error Accumulator Register - MSB" combine to reflect the cumulative number of "Parity Errors" that have been detected by the Frame Synchronizer block, in the last "one second" accumu- lation period. This register contains the Least Significant byte of this 16-bit expression. <i>Notes:</i> For DS3 applications, the register will reflect the number of P-bit errors, detected within the last "one second" accumulation period. For E3, ITU-T G.751 applications, this register will reflect the number of BIP-4 errors, detected within the last "one second" accumulation period For E3, ITU-T G.832 applications, this register will reflect the number of BIP-8 (B1 Byte) errors detected within the last "one second" accumulation period.

ONE SECOND - CP BIT ERROR ACCUMULATOR REGISTER - MSB (DIRECT ADDRESS = 0X1172)

Віт 7	BIT 6	BIT 5	BIT 4	Віт 3	Віт 2	BIT 1	BIT 0			
One_Second_CP_Bit_Error_Accum_MSB[7:0]										
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	One_Second_CP Bit Error Accum_MSB[7:0]	R/O	 One Second CP Bit Error Accumulator Register - MSB: These READ-ONLY bits, along with that within the "One Second CP-Bit Error Accumulator Register - LSB" combine to reflect the cumulative number of "CP Bit Errors" that have been detected by the Frame Synchronizer block, in the last "one second" accumulation period. This register contains the Most Significant byte of this 16-bit expression. Note: This register is inactive if the Frame Synchronizer block is "by-passed" or if the Frame Synchronizer block has not been configured to operate in the DS3, C-Bit Parity framing format.

ONE SECOND - CP BIT ERROR ACCUMULATOR REGISTER - LSB (DIRECT ADDRESS = 0X1173)

Віт 7	BIT 6	Віт 5	BIT 5 BIT 4		BIT 2	BIT 1	Віт 0			
One_Second_CP_Bit_Error_Accum_LSB[7:0]										
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	One_Second_CP Bit Error Accum_LSB[7:0]	R/O	 One Second CP Bit Error Accumulator Register - LSB: These READ-ONLY bits, along with that within the "One Second CP-Bit Error Accumulator Register - MSB" combine to reflect the cumulative number of "CP Bit Errors" that have been detected by the Frame Synchronizer block, in the last "one second" accumulation period. This register contains the Least Significant byte of this 16-bit expression. Note: This register is inactive if the Frame Synchronizer block is "by-passed" or if the Frame Synchronizer block has not been configured to operate in the DS3, C-Bit Parity framing format.

GENERAL PURPOSE I/O PIN CONTROL REGISTERS

LINE INTERFACE DRIVE REGISTER (DIRECT ADDRESS = 0X1180)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	Віт 2	BIT 1	BIT 0
Internal Remote Loop-back	Unused	REQB Output Pin	TAOS Output Pin	ENCODIS Output Pin	TxLEV Output Pin	RLOOP Output Pin	LLOOP Output Pin
R/W	R/O	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	1	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	Internal Remote Loop-back	R/W	 Internal Remote Loop-back Mode: This READ/WRITE bit-field permits the user to configure the DS3/E3 Framer block to operate in the "Remote Loop-back" Mode. If the user enables this feature, then the Receive Input of the Primary Frame Synchronizer block will automatically be routed to the Transmit Output of the Frame Generator block. 0 - Disables the Remote Loop-back Mode. 1 - Enables the Remote Loop-back Mode. Note: This feature is only available if both the Frame Generator and the Primary Frame Synchronizer blocks are enabled.
6	Unused	R/O	
5	REQB Output Pin	R/W	 REQB Output Pin control: This READ/WRITE bit-field permits the user to control the state of the "REQB" output pin. This output pin can be used to function as a General Purpose Output pin. 0 - Commands this output pin to toggle and stay "LOW". 1 - Commands this output pin to toggle and stay "HIGH".
4	TAOS Output Pin	R/W	 TAOS Output Pin control: This READ/WRITE bit-field permits the user to control the state of the "TAOS" output pin. This output pin can be used to function as a General Purpose Output pin. 0 - Commands this output pin to toggle and stay "LOW". 1 - Commands this output pin to toggle and stay "HIGH".
3	ENCODIS Output Pin	R/W	 ENCODIS Output Pin control: This READ/WRITE bit-field permits the user to control the state of the "ENCODIS" output pin. This output pin can be used to function as a General Purpose Output pin. 0 - Commands this output pin to toggle and stay "LOW". 1 - Commands this output pin to toggle and stay "HIGH".
2	TxLEV Output Pin	R/W	 TxLEV Output Pin control: This READ/WRITE bit-field permits the user to control the state of the "TxLEV" output pin. This output pin can be used to function as a General Purpose Output pin. 0 - Commands this output pin to toggle and stay "LOW". 1 - Commands this output pin to toggle and stay "HIGH".

PRELIMINARY

XRT79L71 *REV. P1.0.3*

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
1	RLOOP Output Pin	R/W	 RLOOP Output Pin control: This READ/WRITE bit-field permits the user to control the state of the "RLOOP" output pin. This output pin can be used to function as a General Purpose Output pin. 0 - Commands this output pin to toggle and stay "LOW". 1 - Commands this output pin to toggle and stay "HIGH".
0	LLOOP Output Pin	R/W	 LLOOP Output Pin control: This READ/WRITE bit-field permits the user to control the state of the "LLOOP" output pin. This output pin can be used to function as a General Purpose Output pin. 0 - Commands this output pin to toggle and stay "LOW". 1 - Commands this output pin to toggle and stay "HIGH".

LINE INTERFACE SCAN REGISTER (DIRECT ADDRESS = 0X1181)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
		Unused	DMO Input Pin	RLOL Input Pin	RLOS Input Pin		
R/O	R/O	R/O	R/O	R/O	R/O	R/0	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 3	Unused	R/O	
2	DMO Input Pin	R/O	 DMO Input Pin: This READ-ONLY bit-field reflects the state of the "DMO" input pin, as described below. 0 - The DMO input pin is pulled to the logic "LOW" state. 1 - The DMO input pin is pulled to the logic "HIGH" state. Note: The DMO input pin can function as a "General Purpose" Input pin.
1	RLOL Input Pin	R/O	 RLOL Input Pin: This READ-ONLY bit-field reflects the state of the "RLOL" input pin, as described below. 0 - The RLOL input pin is pulled to the logic "LOW" state. 1 - The RLOL input pin is pulled to the logic "HIGH" state. Note: The RLOL input pin can function as a "General Purpose" Input pin.
0	RLOS Input Pin	R/O	 RLOS Input Pin: This READ-ONLY bit-field reflects the state of the "RLOS" input pin, as described below. 0 - The RLOS input pin is pulled to the logic "LOW" state. 1 - The RLOS input pin is pulled to the logic "HIGH" state. NOTE: The RLOS input pin cannot function as a "General Purpose" Input pin. Pulling the RLOS input pin "HIGH" will cause the corresponding Channel to declare an LOS (Loss of Signal)

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

LAPD CONTROLLER BYTE COUNT REGISTERS

TXLAPD BYTE COUNT REGISTER (DIRECT ADDRESS = 0X1183)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	
TxLAPD_MESSAGE_SIZE[7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	TxLAPD_MESSAGE_ SIZE[7:0]	R/W	Transmit LAPD Message Size: These READ/WRITE bit-fields permit the user to specify the size of the information payload (in terms of bytes) within the very next outbound LAPD/PMDL Message, whenever Bit 7 (TxLAPD Any) within the "Transmit Tx LAPD Configuration" Register has been set to "1".

RXLAPD BYTE COUNT REGISTER (DIRECT ADDRESS = 0X1184)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0	
RxLAPD_MESSAGE_SIZE[7:0]								
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	RxLAPD_MESSAGE_ SIZE[7:0]	R/O	Receive LAPD Message Size: These READ-ONLY bit-fields indicate the size of the most recently received LAPD/PMDL Message, whenever Bit 7 (RxLAPD Any) within the "Rx LAPD Control" Register; has been set to "1".The contents of these register bits, reflects the Received LAPD Message size, in terms of bytes.

RECEIVE DS3/E3 INTERRUPT STATUS REGISTER - SECONDARY FRAME SYNCHRONIZER BLOCK (DIRECT ADDRESS = 0X11F9)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0
Unused	Change of LOS Condition Interrupt Status	Change of AIS Condition Interrupt Status	Change of DS3 Idle Condition Interrupt Status	Unused		Change of OOF Condition Interrupt Status	Unused
R/O	RUR	RUR	RUR	R/O	R/O	RUR	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	Unused	R/O	
6	Change of LOS Condition Interrupt Status	RUR	 Change of LOS Condition Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change of LOS Condition" Interrupt (per the Secondary Frame Synchronizer block) has occurred since the last read of this register. 0 - Indicates that the "Change of LOS Condition" Interrupt (per the Secondary Frame Synchronizer block) has NOT occurred since the last read of this register. 1 - Indicates that the "Change of LOS Condition" Interrupt (per the Secondary Frame Synchronizer block) has NOT occurred since the last read of this register. 1 - Indicates that the "Change of LOS Condition" Interrupt (per the Secondary Frame Synchronizer block) has occurred since the last read of this register. NOTE: The user can determine the current state of "LOS" (per the Secondary Frame Synchronizer" block) by reading out the state of Bit 6 (Secondary Frame Synchronizer - LOS Defect Declared) within the Receive DS3/E3 Status
			Register - Secondary Frame Synchronizer block" register (Direct Address = 0x11F1).
5	Change of AIS Condition Interrupt Status	RUR	 Change of AIS Condition Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change of AIS Condition" Interrupt (per the Secondary Frame Synchronizer block) has occurred since the last read of this register. 0 - Indicates that the "Change of AIS Condition" Interrupt (per the Secondary Frame Synchronizer block) has NOT occurred since the last read of this register. 1 - Indicates that the "Change of AIS Condition" Interrupt (per the Secondary Frame Synchronizer block) has NOT occurred since the last read of this register. 1 - Indicates that the "Change of AIS Condition" Interrupt (per the Secondary Frame Synchronizer block) has occurred since the last read of this register. Note: The user can determine the current state of "LOS" (per the Secondary Frame Synchronizer block)
			NOTE: The user can determine the current state of "LOS" (per the Secondary Frame Synchronizer" block) by reading out the state of Bit 7 (Secondary Frame Synchronizer - AIS Defect Declared) within the Receive DS3/E3 Status Register - Secondary Frame Synchronizer block" register (Direct Address = 0x11F1).

PRELIMINARY

XRT79L71 *REV. P1.0.3*

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
4	Change of DS3 Idle Condition Interrupt Status	RUR	 Change of DS3 Idle Condition Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change of DS3 Idle Condition" Interrupt (per the Secondary Frame Synchronizer block) has occurred since the last read of this register. 0 - Indicates that the "Change of DS3 Idle Condition" Interrupt (per the Secondary Frame Synchronizer block) has NOT occurred since the last read of this register. 1 - Indicates that the "Change of DS3 Idle Condition" Interrupt (per the Secondary Frame Synchronizer block) has NOT occurred since the last read of this register. 1 - Indicates that the "Change of DS3 Idle Condition" Interrupt (per the Secondary Frame Synchronizer block) has occurred since the last read of this register. Note: The user can determine the current "DS3 Idle" staet (per the Secondary Frame Synchronizer" block) by reading out the state of Bit 5 (Secondary Frame Synchronizer - DS3 Idle Pattern Detected) within the Receive DS3/E3 Status Register - Secondary Frame Synchronizer block" register (Direct Address = 0x11F1).
3 - 2	Unused	R/O	
1	Change of OOF Condition Interrupt Status	RUR	 Change of OOF Condition Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Change of OOF Condition" Interrupt (per the Secondary Frame Synchronizer block) has occurred since the last read of this register. 0 - Indicates that the "Change of OOF Condition" Interrupt (per the Secondary Frame Synchronizer block) has NOT occurred since the last read of this register. 1 - Indicates that the "Change of OOF Condition" Interrupt (per the Secondary Frame Synchronizer block) has NOT occurred since the last read of this register. 1 - Indicates that the "Change of OOF Condition" Interrupt (per the Secondary Frame Synchronizer block) has occurred since the last read of this register. NOTE: The user can determine the current state of "LOS" (per the Secondary Frame Synchronizer" block) by reading out the state of Bit 4 (Secondary Frame Synchronizer - OOF Defect Declared) within the Receive DS3/E3 Status Register - Secondary Frame Synchronizer block" register (Direct Address = 0x11F1).
0	Unused	R/O	

THE RECEIVE ATM CELL PROCESSOR BLOCK

This section presents the Register Description/Address Map of the control registers associated with the Receive ATM Cell Processor block.

Address Location	REGISTER NAME	Түре	DEFAULT VALUE				
RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS							
0x1700	Receive ATM Control - Receive ATM Control Register - Byte 3	R/W	0x00				
0x1701	Receive ATM Control - Receive ATM Control Register - Byte 2	R/W	0x00				
0x1702	Receive ATM Control - Receive ATM Control Register - Byte 1	R/W	0x00				
0x1703	Receive ATM Cell/PPP Control - Receive ATM Control Register - Byte 0	R/W	0x00				
0x1704 - 0x1706	Reserved	R/O	0x00				
0x1707	Receive ATM Status Register1	R/O	0x00				
0x1708 - 0x1709	Reserved	R/O	0x00				
0x170A	Receive ATM Interrupt Status Register - Byte 1	RUR	0x00				
0x170B	Receive ATM Cell/PPP Processor Interrupt Status Register - Byte 0	RUR	0x00				
0x170C - 0x170D	Reserved	R/O	0x00				
0x170E	Receive ATM Cell Processor Block Interrupt Enable Register - Byte 1	R/W	0x00				
0x170F	Receive ATM Cell/PPP Processor Block Interrupt Enable Register - Byte 0		0x00				
0x1710	Receive PPP Processor - Receive Good PPP Packet Count Register - Byte 3	RUR	0x00				
0x1711	Receive PPP Processor - Receive Good PPP Packet Count Register - Byte 2	RUR	0x00				
0x1712	Receive PPP Processor - Receive Good PPP Packet Count Register - Byte 1	RUR	0x00				
0x1713	Receive ATM Cell Insertion/Extraction Memory Control Register Receive PPP Processor - Receive Good PPP Packet Count Register - Byte 0	R/W or RUR	0x00				
0x1714	Receive ATM Cell Insertion/Extraction Memory Data Register - Byte 3 Receive PPP Processor - Receive FCS Error Count Register - Byte 3	R/W or RUR	0x00				
0x1715	Receive ATM Cell Insertion/Extraction Memory Data Register - Byte 2 Receive PPP Processor - Receive FCS Error Count Register - Byte 2	R/W or RUR	0x00				
0x1716	0x1716 Receive ATM Cell Insertion/Extraction Memory Data Register - Byte 1 Receive PPP Processor - Receive FCS Error Count Register - Byte 1		0x00				
0x1717	0x1717 Receive ATM Cell Insertion/Extraction Memory Data Register - Byte 0 Receive PPP Processor - Receive FCS Error Count Register - Byte 0		0x00				
0x1718	Receive ATM Programmable User Defined Field Register - Byte 3 Receive PPP Processor - Receive ABORT Count Register - Byte 3	R/W or RUR	0x00				
0x1719	Receive ATM Programmable User Defined Field Register - Byte 2 Receive PPP Processor - Receive ABORT Count Register - Byte 2	R/W or RUR	0x00				

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TABLE 17: RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK - REGISTER/ADDRESS MAP

Address Location	REGISTER NAME	Түре	DEFAULT VALUE		
I	RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTER	S			
0x171A	Receive ATM Programmable User Defined Field Register - Byte 1 Receive PPP Processor - Receive ABORT Count Register - Byte 1	R/W or RUR	0x00		
0x171B	B Receive ATM Programmable User Defined Field Register - Byte 0 Receive PPP Processor - Receive ABORT Count Register - Byte 0				
0x171C	Receive PPP Processor - Receive RUNT PPP Count Register - Byte 3	RUR	0x00		
0x171D	Receive PPP Processor - Receive RUNT PPP Count Register - Byte 2	RUR	0x00		
0x171E	Receive PPP Processor - Receive RUNT PPP Count Register - Byte 1	RUR	0x00		
0x171F	Receive PPP Processor - Receive RUNT PPP Count Register - Byte 0	RUR	0x00		
0x1720	Receive ATM Controller - Test Cell Header - Byte 1	R/W	0x00		
0x1721	Receive ATM Controller - Test Cell Header - Byte 2	R/W	0x00		
0x1722	Receive ATM Controller - Test Cell Header - Byte 3	R/W	0x00		
0x1723	Receive ATM Controller - Test Cell Header - Byte 4	R/W	0x00		
0x1724	Receive ATM Controller - Test Cell Error Counter - Byte 3	RUR	0x00		
0x1725	Receive ATM Controller - Test Cell Error Counter - Byte 2	RUR	0x00		
0x1726	Receive ATM Controller - Test Cell Error Counter - Byte 1	RUR	0x00		
0x1727	Receive ATM Controller - Test Cell Error Counter - Byte 0	RUR	0x00		
0x1728	Receive ATM Controller - Receive ATM Cell Count - Byte 3	RUR	0x00		
0x1729	Receive ATM Controller - Receive ATM Cell Count - Byte 2	RUR	0x00		
0x172A	Receive ATM Controller - Receive ATM Cell Count - Byte 1	RUR	0x00		
0x172B	Receive ATM Controller - Receive ATM Cell Count - Byte 0	RUR	0x00		
0x172C	Receive ATM Controller - Receive ATM Discard Cell Count - Byte 3	RUR	0x00		
0x172D	Receive ATM Controller - Receive ATM Discard Cell Count - Byte 2	RUR	0x00		
0x172E	Receive ATM Controller - Receive ATM Discard Cell Count - Byte 1	RUR	0x00		
0x172F	Receive ATM Controller - Receive ATM Discard Cell Count - Byte 0	RUR	0x00		
0x1730	Receive ATM Controller - Receive ATM Correctable HEC Cell Counter - Byte 3	RUR	0x00		
0x1731	Receive ATM Controller - Receive ATM Correctable HEC Cell Counter - Byte 2	RUR	0x00		
0x1732	Receive ATM Controller - Receive ATM Correctable HEC Cell Counter - Byte 1	RUR	0x00		
0x1733	Receive ATM Controller - Receive ATM Correctable HEC Cell Counter - Byte 0	RUR	0x00		
0x1734	Receive ATM Controller - Receive ATM Uncorrectable HEC Cell Counter - Byte 3	RUR	0x00		

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TABLE 17: RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK - REGISTER/ADDRESS MAP

Address Location	REGISTER NAME	Түре	DEFAULT VALUE				
RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS							
0x1735	Receive ATM Controller - Receive ATM Uncorrectable HEC Cell Counter - Byte 2	RUR	0x00				
0x1736	Receive ATM Controller - Receive ATM Uncorrectable HEC Cell Counter - Byte 1	RUR	0x00				
0x1737	Receive ATM Controller - Receive ATM Uncorrectable HEC Cell Counter - Byte 0	RUR	0x00				
0x1738 - 0x1742	Reserved	R/O	0x00				
0x1743	Receive ATM Controller - Receive ATM Filter # 0 Control Register	R/W	0x00				
0x1744	Receive ATM Controller - Receive ATM Filter # 0 Pattern - Header Byte 1	R/W	0x00				
0x1745	Receive ATM Controller - Receive ATM Filter # 0 Pattern - Header Byte 2	R/W	0x00				
0x1746	Receive ATM Controller - Receive ATM Filter # 0 Pattern - Header Byte 3	R/W	0x00				
0x1747	Receive ATM Controller - Receive ATM Filter # 0 Pattern - Header Byte 4	R/W	0x00				
0x1748	Receive ATM Controller - Receive ATM Filter # 0 Check - Header Byte 1	R/W	0x00				
0x1749	Receive ATM Controller - Receive ATM Filter # 0 Check - Header Byte 2	R/W	0x00				
0x174A	Receive ATM Controller - Receive ATM Filter # 0 Check - Header Byte 3	R/W	0x00				
0x174B	Receive ATM Controller - Receive ATM Filter # 0 Check - Header Byte 4	R/W	0x00				
0x174C	Receive ATM Controller - Filter # 0 - Filtered Cell Count Register - Byte 3	R/W	0x00				
0x174D	Receive ATM Controller - Filter # 0 - Filtered Cell Count Register - Byte 2	R/W	0x00				
0x174E	Receive ATM Controller - Filter # 0 - Filtered Cell Count Register - Byte 1	R/W	0x00				
0x174F	Receive ATM Controller - Filter # 0 - Filtered Cell Count Register - Byte 0	R/W	0x00				
0x1750 - 0x1752	Reserved	R/O	0x00				
0x1753	Receive ATM Controller - Receive ATM Filter # 1 Control Register	R/W	0x00				
0x1754	Receive ATM Controller - Receive ATM Filter # 1 Pattern - Header Byte 1	R/W	0x00				
0x1755	Receive ATM Controller - Receive ATM Filter # 1 Pattern - Header Byte 2	R/W	0x00				
0x1756	Receive ATM Controller - Receive ATM Filter # 1 Pattern - Header Byte 3	R/W	0x00				
0x1757	Receive ATM Controller - Receive ATM Filter # 1 Pattern - Header Byte 4	R/W	0x00				
0x1758	Receive ATM Controller - Receive ATM Filter # 1 Check - Header Byte 1	R/W	0x00				
0x1759	Receive ATM Controller - Receive ATM Filter # 1 Check - Header Byte 2	R/W	0x00				
0x175A	Receive ATM Controller - Receive ATM Filter # 1 Check - Header Byte 3	R/W	0x00				
0x175B	Receive ATM Controller - Receive ATM Filter # 1 Check - Header Byte 4	R/W	0x00				
0x175C	Receive ATM Controller - Filter # 1 - Filtered Cell Count Register - Byte 3	R/W	0x00				
0x175D	Receive ATM Controller - Filter # 1 - Filtered Cell Count Register - Byte 2	R/W	0x00				

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TABLE 17: RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK - REGISTER/ADDRESS MAP

Address Location	REGISTER NAME	Түре	DEFAULT VALUE				
RECEIVE ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS							
0x175E	Receive ATM Controller - Filter # 1 - Filtered Cell Count Register - Byte 1	R/W	0x00				
0x175F	Receive ATM Controller - Filter # 1 - Filtered Cell Count Register - Byte 0	R/W	0x00				
0x1760 - 0x1762	Reserved	R/O	0x00				
0x1763	Receive ATM Controller - Receive ATM Filter # 2 Control Register	R/W	0x00				
0x1764	Receive ATM Controller - Receive ATM Filter # 2 Pattern - Header Byte 1	R/W	0x00				
0x1765	Receive ATM Controller - Receive ATM Filter # 2 Pattern - Header Byte 2	R/W	0x00				
0x1766	Receive ATM Controller - Receive ATM Filter # 2 Pattern - Header Byte 3	R/W	0x00				
0x1767	Receive ATM Controller - Receive ATM Filter # 2 Pattern - Header Byte 4	R/W	0x00				
0x1768	Receive ATM Controller - Receive ATM Filter # 2 Check - Header Byte 1	R/W	0x00				
0x1769	Receive ATM Controller - Receive ATM Filter # 2 Check - Header Byte 2	R/W	0x00				
0x176A	Receive ATM Controller - Receive ATM Filter # 2 Check - Header Byte 3	R/W	0x00				
0x176B	Receive ATM Controller - Receive ATM Filter # 2 Check - Header Byte 4	R/W	0x00				
0x176C	Receive ATM Controller - Filter # 2 - Filtered Cell Count Register - Byte 3	R/W	0x00				
0x176D	Receive ATM Controller - Filter # 2 - Filtered Cell Count Register - Byte 2	R/W	0x00				
0x176E	Receive ATM Controller - Filter # 2 - Filtered Cell Count Register - Byte 1	R/W	0x00				
0x176F	Receive ATM Controller - Filter # 2 - Filtered Cell Count Register - Byte 0	R/W	0x00				
0x1770 - 0x1772	Reserved	R/O	0x00				
0x1773	Receive ATM Controller - Receive ATM Filter # 3 Control Register	R/W	0x00				
0x1774	Receive ATM Controller - Receive ATM Filter # 3 Pattern - Header Byte 1	R/W	0x00				
0x1775	Receive ATM Controller - Receive ATM Filter # 3 Pattern - Header Byte 2	R/W	0x00				
0x1776	Receive ATM Controller - Receive ATM Filter # 3 Pattern - Header Byte 3	R/W	0x00				
0x1777	Receive ATM Controller - Receive ATM Filter # 3 Pattern - Header Byte 4	R/W	0x00				
0x1778	Receive ATM Controller - Receive ATM Filter # 3 Check - Header Byte 1	R/W	0x00				
0x1779	Receive ATM Controller - Receive ATM Filter # 3 Check - Header Byte 2	R/W	0x00				
0x177A	Receive ATM Controller - Receive ATM Filter # 3 Check - Header Byte 3	R/W	0x00				
0x177B	Receive ATM Controller - Receive ATM Filter # 3 Check - Header Byte 4	R/W	0x00				
0x177C	Receive ATM Controller - Filter # 3 - Filtered Cell Count Register - Byte 3		0x00				
0x177D	Receive ATM Controller - Filter # 3 - Filtered Cell Count Register - Byte 2	R/W	0x00				
0x177E	Receive ATM Controller - Filter # 3 - Filtered Cell Count Register - Byte 1	R/W	0x00				
0x177F	Receive ATM Controller - Filter # 3 - Filtered Cell Count Register - Byte 0	R/W	0x00				
0x1780 - 0x1901	Reserved	R/O	0x00				

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CONTROL REGISTER - BYTE 3 (ADDRESS = 0X1700)

Віт 7	Віт 6	Віт 5	BIT 4	BIT 3	Віт 2	BIT 1	Віт 0

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CONTROL REGISTER - BYTE 2 (ADDRESS = 0X1701)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	Віт 1	BIT 0
		Unu	Receive ATM Cell Processor Enable	Test Cell Receiver Mode Enable			
R/O	R/O	R/O	R/O	R/O	R/O	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 2	Unused	R/O	
1	Receive ATM Cell Pro- cessor Enable	R/W	Receive ATM Cell Processor Block Enable: This READ/WRITE bit-field permits the user to either enable or disable the Receive ATM Cell Processor block. If the user wishes to operate a given Channel in the ATM Mode, then he/ she must enable the Receive ATM Cell Processor block. 0 - Disables the Receive ATM Cell Processor block. 1 - Enables the Receive ATM Cell Processor block.
0	Test Cell Receiver Mode Enable	R/W	 Test Cell Receiver Mode Enable: This READ/WRITE bit-field permits the user to enable the Test Cell Receiver (within the Receive ATM Cell Processor block). The user must implement this configuration option in order to perform diagnostic operations with Test Cells. 0 - Disables the Test Cell Receiver. 1 - Enables the Test Cell Receiver. Note: For normal operation, the user should set this bit-field to "1".

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CONTROL REGISTER - BYTE 1 (ADDRESS = 0X1702)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
	Unused		GFC Extrac- tion Enable	HEC Byte Correction Enable	Uncorrect- able HEC Byte Error Discard	COSET Poly- nomial Addi- tion	Regenerate HEC Byte Enable
R/O	R/O	R/O	R/W	R/W	R/W	R/W	R/W
0	0	0	0	1	0	1	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 5	Unused	R/O	
4	GFC Extraction Enable	R/W	 GFC (Generic Flow Control) Extraction Enable: This READ/WRITE bit-field permits the user to configure the Receive ATM Cell Processor block to output the contents of the GFC Nibble (within each incoming ATM Cell) via the Receive GFC Value Output port. 0 - Configures the Receive ATM Cell Processor block to NOT output the contents of the GFC Nibble (within each incoming ATM cell) via the Receive GFC Value Output port. 1 - Configures the Receive ATM Cell Processor block to output the contents of the GFC Nibble (within each incoming ATM cell) via the Receive ATM Cell Processor block to output the contents of the GFC Value Output port. 1 - Configures the Receive ATM Cell Processor block to output the contents of the GFC Nibble (within each incoming ATM cell) via the Receive GFC Value Output port.
3	HEC Byte Correction Enable	R/W	 HEC Byte Correction Enable: This READ/WRITE bit-field permits the user to enable "Correction Mode" operation for the Receive ATM Cell Processor block. If the user implements this configuration option, then the Receive ATM Cell Processor block will transition into either the "Correction Mode" or the "Detection Mode" (as "Receive Conditions" warrant). If the Receive ATM Cell Processor block is operating in the "Correction Mode" then it will correct any cells that contain "Single-Bit" Header byte errors. In contrast, if the Receive ATM Cell Processor block is operating in the "Detection Mode", then it will unconditionally discard any cells that contain Header byte errors (Single-Bit or Multi-Bit errors). If the user does not implement this feature, then the Receive ATM Cell Processor block will only be capable of operating in the "Detection Mode". 0 - Disables the "Correction Mode". In this setting, the Receive ATM Cell Processor block will only operate in the "Detection Mode". 1 - Enables the "Correction Mode". In this setting, the Receive ATM Cell Processor block will only operate in the "Detection Mode".

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
2	Uncorrectable HEC Byte Discard	R/W	Uncorrectable HEC Byte Discard: This READ/WRITE bit-field permits the user to configure the Receive ATM Cell Processor block to either automatically dis- card all incoming ATM cells that contain "uncorrectable" HEC byte errors. If the user implements this feature, then the Receive ATM Cell Processor block will automatically discard any cells that fit into any one of the following categories.
			ATM cells that contain multi-bit HEC byte errors.
			• ATM cells that contain single-bit HEC byte errors, while the Receive ATM Cell Processor block is operating in the "Detection Mode".
			If the user does NOT implement this feature, then the Receive ATM Cell Processor block will NOT discard any cells that fit into any one of the above-mentioned categories. These cells (along with un-erred or cells with "correctable" HEC byte errors) will be retains for further processing. 0 - Configures the Receive ATM Cell Processor block to retain
			ALL ATM cells (even those with "uncorrectable" HEC byte errors) for further processing.
			1 - Configures the Receive ATM Cell Processor block to auto- matically discard all incoming ATM cells that contain "uncorrect- able" HEC byte errors. All remaining cells will be retained for further processing.
1	COSET Polynomial Addi-	R/W	COSET Polynomial Addition:
	tion		This READ/WRITE bit-field permits the user to configure the Receive ATM Cell Processor block to account for the fact that the HEC bytes (within the incoming ATM cell traffic) also include the Modulo-2 addition of the Coset Polynomial (e.g., $x^{A} + x^{A} + x^{2} + 1$), when performing HEC Byte Verification.
			0 - Configures the Receive ATM Cell Processor block to NOT account for the Coset Polynomial within the HEC bytes of the incoming ATM cells.
			1 - Configures the Receive ATM Cell Processor block to account for the Coset Polynomial within the HEC bytes of the incoming ATM cells.
0	Regenerate HEC Byte Enable	R/W	Regenerate HEC Byte Enable: This READ/WRITE bit-field permits the user to configure the Receive ATM Cell Processor block to automatically re-compute and insert a new HEC byte into each incoming ATM cell that con- tains an uncorrectable HEC byte.
			0 - Does not configure the Receive ATM Cell Processor block to compute and insert a new HEC byte into ATM cells that contains an "uncorrectable" HEC byte error.
			1 - Configures the Receive ATM Cell Processor block to compute and insert a new HEC byte into any incoming ATM cell that con- tains an "uncorrectable" HEC byte error.
			Note: If the user wishes to implement this feature, then he/she must disable the "Uncorrectable HEC Byte Discard" feature, by setting Bit 2 (Uncorrectable HEC Byte Discard) within this register, to "0".

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

XP EXAR

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CONTROL REGISTER - BYTE 0 (ADDRESS = 0X1703)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
HEC Byte Insert into UDF1 Enable	HEC Status into UDF2 Enable	HEC Byte Correction Threshold[1:0]		Receive UTO- PIA Parity - ODD	Unused		Descramble Enable
R/W	R/W	R/W	R/W	R/W	R/O	R/O	R/W
1	1	0	0	1	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	HEC Byte Insert into UDF1	R/W	 HEC Byte Insert into UDF1 Enable: This READ/WRITE bit-field permits the user to configure the Receive ATM Cell Processor block to compute and insert the HEC byte into the UDF1 byte position, within each cell it routes to the Receive FIFO (and then to the Receive UTOPIA Interface). 0 - Configures the Receive ATM Cell Processor block to NOT compute the HEC byte and insert it into the UDF1 byte position, within each cell that it routes the Receive FIFO. 1 - Configures the Receive ATM Cell Processor block to compute the HEC byte and insert it into the UDF1 byte position, within each cell that it routes the Receive FIFO. 1 - Configures the Receive ATM Cell Processor block to compute the HEC byte and insert it into the UDF1 byte position, within each cell that it routes to the Receive FIFO. NOTE: This bit-field is only valid if the Receive UTOPIA Interface has been configured to handle 54 or 56 byte cells. As a consequence, the user must set Bits 1 and 0 (Cell Sizes[1:0]) within the Receive UTOPIA/POS-PHY Control Register (Address = 0x0503) to either [1, 0] or [1, 1].

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	C	DESCRIPTION	
6	HEC Status into UDF2 Enable	R/W	te Enable: permits the user to configure the or block to insert the "HEC Byte Sta- 2 byte position, within each cell that it (and then to the Receive UTOPIA configuration option, then the Receive vill insert some values into the UDF2 HEC Byte Verification" results on this cell.		
			HEC Byte Status Value	Corresponding HEC Byte Verification Results	
			0x00	Error Free HEC Byte Value	
			0xFF	Uncorrectable HEC Byte Value	
			0xAA	Correctable HEC Byte Value	
			insert the "HEC Byte Statu: ATM cell that it routes to the 1 - Configures the Receive the "HEC Byte Status" value that it routes to the Receive Note: This bit-field is only	ATM Cell Processor block to insert e into the UDF2 byte of each ATM cell	
5 - 4	5 - 4 HEC Byte Correction R/W Threshold[1:0]		HEC Byte Correction Threshold[1:0]:These two READ/WRITE bit-fields permit the user to define the "HEC Byte Correction" Threshold for the Receive ATM Cell Processor block. The "HE Byte Correction" threshold is defined as the minimum number consecutive un-erred (no HEC byte errors) cells that the Receiv ATM Cell Processor must receive before it will transition from th "Detection Mode" into the "Correction Mode".The relationship between the value of these bit-fields and the corresponding "HEC Byte Correction" thresholds is tabulated below.		
			HEC Byte Correction Threshold[1:0]	HEC Byte Correction Threshold	
			00	1 ATM Cell with a valid HEC Byte	
			01	2 consecutive ATM Cells each with a valid HEC Byte	
			10	4 consecutive ATM Cells each with a valid HEC Byte	
			11	8 consecutive ATM cells, each with a valid HEC byte	

PRELIMINARY

XRT79L71 *REV. P1.0.3*

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
3	Receive UTOPIA Parity - ODD	R/W	 Receive UTOPIA Parity Value - ODD Parity: This READ/WRITE bit-field permits the user to configure the Receive ATM Cell Processor block to compute either the EVEN or ODD parity value for each byte (or 16-bit word) within each cell that it processes. Each of these parity value will ultimately be output via the "RxUPrty" output pin (on the Receive UTOPIA Bus) coincident to when the corresponding byte (of ATM cell data) is output via the Receive UTOPIA Data Bus (RxU-Data[15:0]). 0 - Configures the Receive ATM Cell Processor block to compute the EVEN Parity value of each byte (or 16-bit word) of ATM cell data that it processes. 1 - Configures the Receive ATM Cell Processor block to compute the ODD Parity value of each byte of ATM cell data that is processes.
2 - 1	Unused	R/O	
0	Descramble Enable		 De-Scramble Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Cell De-Scrambler" within the Receive ATM Cell Processor Block. 0 - Disables the Cell De-Scrambler. 1 - Enables the Cell De-Scrambler.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM STATUS REGISTER (ADDRESS = 0X1707)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	Віт 0
Unused				PRBS Lock Indicator	Cell Delineation Status[1:0]		LCD Defect Declared
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	0	0	0	0	0	0	0

BIT NUMBERS	ΝΑΜΕ	Түре	DESCRIPTION
7 - 4	Unused	R/O	
3	PRBS Lock Indicator	R/O	 Test Cell - PRBS Lock Indicator: This READ-ONLY bit-field indicates whether or not the "Test Cell Receiver" is declaring a "PRBS Lock" condition within the payload data within the incoming Test Cell data-stream. 0 - Indicates that the Test Cell Receiver is NOT declaring the PRBS Lock condition. 1 - Indicates that the Test Cell Receiver is currently declaring the PRBS Lock condition. Note: This bit-field is only valid if the Test Cell Receiver has been enabled.

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBERS	NAME	Түре		D	ESCRIPTION
2 - 1	Cell Delineation Sta- tus[1:0]	R/O	O Cell Delineation Status[1:0]: These two READ-ONLY bit-fields indicate the current state (within the Cell Delineation State Machine) that the Receive Cell Processor block is currently operating in. The relations between the contents of these bit-fields and the correspond "Cell Delineation State Machine" state that the Receive ATM Processor block is operating in, is tabulated below.		
				Cell Delineation Status[1:0]	State of Receive ATM Cell Processor Block
				00	SYNC State
				01	PRE-SYNC State
				10	Not Valid
				11	HUNT State
0	LCD Defect Declared	R/O	This ATM cond the cess "Ce 0 - I dec 1 - I	I Cell Processor block is dition. The Receive ATM LCD defect condition an sor block is NOT operation Il Delineation" State Mac ndicates that the Receive laring the LCD Defect Co	Addicates whether or not the Receive currently declaring the LCD defect A Cell Processor block will declare ytime that the Receive ATM Cell Pro ng in the SYNC State, within the chine. ATM Cell Processor block is NOT ondition. A ATM Cell Processor block is cur-

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM INTERRUPT STATUS REGISTER - BYTE 1 (ADDRESS = 0X170A)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
	Receive Cell Extraction Interrupt Status						
R/O	R/O	R/O	R/O	R/O	R/O	R/O	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 1	Unused	R/O	

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
0	Receive Cell Extraction Interrupt Status	RUR	 Receive Cell Extraction Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Receive Cell Extraction" Interrupt has occurred since the last read of this register. The Receive ATM Cell Processor block will generate the "Receive Cell Extraction" Interrupt anytime it receives an incoming ATM cell (from traffic) and loads an ATM cell into the "Extraction Memory" Buffer. O - Indicates that the "Receive Cell Extraction" Interrupt has NOT occurred since the last read of this register. 1 - Indicates that the "Receive Cell Extraction" Interrupt has occurred since the last read of this register.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM INTERRUPT STATUS REGISTER - BYTE 0 (ADDRESS = 0X170B)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
Receive Cell Insertion Interrupt Status	Receive FIFO Overflow Interrupt Status	Receive Cell Extraction Memory Overflow Interrupt Status	Receive Cell Insertion Memory Overflow Interrupt Status	Detection of Correctable HEC Byte Error Interrupt Status	Detection of Uncorrect- able HEC Byte Error Interrupt Status	Clearance of LCD Interrupt Status	Declaration of LCD Interrupt Status
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	Receive Cell Insertion Interrupt Status	RUR	 Receive Cell Insertion Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Receive Cell Insertion" Interrupt has occurred since the last read of this register. The Receive ATM Cell Processor block will generate the "Receive Cell Insertion" Interrupt anytime a cell (residing in the Receive Cell Insertion Buffer) is read out of the "Receive Cell Insertion Buffer) is read out of the "Receive Cell Insertion Buffer and is loaded into the incoming ATM cell traffic. 0 - Indicates that the "Receive Cell Insertion" Interrupt has NOT occurred since the last read of this register. 1 - Indicates that the "Receive Cell Insertion" Interrupt has occurred since the last read of this register.
6	Receive FIFO Overflow Interrupt Status	RUR	Receive FIFO Overflow Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Receive FIFO Overflow" Interrupt has occurred since the last read of this register.

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
5	Receive Cell Extraction Memory Overflow Inter- rupt Status	RUR	 Receive Cell Extraction Memory Overflow Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Receive Cell Extraction Memory Overflow" Interrupt has occurred since the last read of this register. The Receive ATM Cell Processor block will generate this inter- rupt anytime an overflow event has occurred in the "Receive Cell Extraction Memory" Buffer. 0 - Indicates that the Receive ATM Cell Processor block has NOT declared the "Receive Cell Extraction Memory Overflow" Interrupt since the last read of this register. 1 - Indicates that the Receive ATM Cell Processor block has declared the "Receive Cell Extraction Memory Overflow" interrupt since the last read of this register.
4	Receive Cell Insertion Memory Overflow Inter- rupt Status	RUR	 Receive Cell Insertion Memory Overflow Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Receive Cell Insertion Memory Overflow" Interrupt has occurred since the last read of this register. The Receive ATM Cell Processor block will generate this inter- rupt anytime an overflow event has occurred in the "Receive Cell Insertion Memory" Buffer. 0 - Indicates that the Receive ATM Cell Processor block has NOT declared the "Receive Cell Insertion Memory Overflow" interrupt since the last read of this register. 1 - Indicates that the Receive ATM Cell Processor block has declared the "Receive Cell Insertion Memory Overflow" interrupt since the last read of this register.
3	Detection of Correctable HEC Byte Error Interrupt Status	RUR	 Detection of Correctable HEC Byte Error Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Receive ATM Cell Processor block" has declared the "Detection of Correctable HEC Byte Error" interrupt since the last read of this register. The Receive ATM Cell Processor block will generate this inter- rupt anytime it has received an ATM cell that contains a "correct- able" HEC byte error. 0 - Indicates that the Receive ATM Cell Processor block has NOT declared the "Detection of Correctable HEC Byte Error" Interrupt since the last read of this register. 1 - Indicates that the Receive ATM Cell Processor block has declared the "Detection of Correctable HEC Byte Error" Interrupt since the last read of this register.

PRELIMINARY

XRT79L71 *REV. P1.0.3*

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
2	Detection of Uncorrect- able HEC Byte Error Interrupt Status	RUR	 Detection of Uncorrectable HEC Byte Error Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Receive ATM Cell Processor block" has declared the "Detection of Uncorrectable HEC Byte Error" Interrupt since the last read of this register. The Receive ATM Cell Processor block will generate this inter- rupt anytime it has received an ATM cell that contains an "uncor- rectable" HEC byte error. 0 - Indicates that the Receive ATM Cell Processor block has NOT declared the "Detection of Uncorrectable HEC Byte Error" interrupt since the last read of this register. 1 - Indicates that the Receive ATM Cell Processor block has declared the "Detection of Uncorrectable HEC Byte Error" interrupt since the last read of this register.
1	Clearance of LCD Interrupt Status	RUR	 Clearance of LCD (Loss of Cell Delineation) Defect Condition Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the Receive ATM Cell Processor block has cleared the LCD Defect condition since the last read of this register. NOTE: If the Receive ATM Cell Processor block clears the LCD Defect, then this means that the Receive ATM Cell Processor block is currently properly delineating ATM cells that it receives from the Receive DS3/E3 Framer. O - Indicates that the Receive ATM Cell Processor block has NOT cleared the LCD Defect since the last read of this register. 1 - Indicates that the Receive ATM Cell Processor block has cleared the LCD Defect since the last read of this register.
0	Declaration of LCD Interrupt Status	RUR	 Declaration of LCD (Loss of Cell Delineation) Defect Condition Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the Receive ATM Cell Processor block has declared the LCD Defect condition since the last read of this register. Note: If the Receive ATM Cell Processor block declares the LCD Defect, then this means that the Receive ATM Cell Processor block is NOT currently delineation ATM cells that it receives from the Receive DS3/E3 Framer. Indicates that the Receive ATM Cell Processor block has NOT declared the LCD Defect since the last read of this register.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM INTERRUPT ENABLE REGISTER - BYTE 1 (ADDRESS = 0X170E)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
			Unused				Receive Cell Extraction Interrupt Enable
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/W
0	0	0	0	0	0	0	0

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 1	Unused	R/O	
0	Receive Cell Extraction Interrupt Enable	R/W	Receive Cell Extraction Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Receive Cell Extraction" Interrupt. If the user enables this interrupt, then the Receive ATM Cell Pro- cessor block will generate the "Receive Cell Extraction" Interrupt anytime it receives an incoming ATM cell (from traffic) and loads an ATM cell into the "Extraction Memory" Buffer. 0 - Disables the "Receive Cell Extraction" Interrupt. 1 - Enables the "Receive Cell Extraction" Interrupt.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM INTERRUPT ENABLE REGISTER - BYTE 0 (ADDRESS = 0X170F)

BIT 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	BIT 0
Receive Cell Insertion Interrupt Enable	Receive FIFO Overflow Interrupt Enable	Receive Cell Extraction Memory Overflow Interrupt Enable	Receive Cell Insertion Memory Overflow Interrupt Enable	Detection of Correctable HEC Byte Error Inter- rupt Enable	Detection of Uncorrect- able HEC Byte Error Interrupt Enable	OCD?	LCD?
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	Receive Cell Insertion Interrupt Enable	R/W	Receive Cell Insertion Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Receive Cell Insertion" Interrupt. If the user enables this feature, then the Receive ATM Cell Pro- cessor block will generate the "Receive Cell Insertion" Interrupt anytime a cell (residing in the "Receive Cell Insertion" Buffer) is read out of the "Receive Cell Insertion" Buffer and is loaded into the incoming ATM cell traffic. 0 - Disables the Receive Cell Insertion Interrupt. 1 - Enables the Receive Cell Insertion Interrupt
6	Receive FIFO Overflow Interrupt Enable	R/W	Receive FIFO Overflow Interrupt Enable:
5	Receive Cell Extraction Memory Overflow Inter- rupt Enable	R/W	 Receive Cell Extraction Memory Overflow Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Receive Cell Extraction Memory Overflow" Interrupt. If the user enables this interrupt, then the Receive ATM Cell Processor block will generate an interrupt any time an overflow event has occurred in the "Receive Cell Extraction Memory" buffer. 0 - Disables the Receive Cell Extraction Memory Overflow Interrupt. 1 - Enables the Receive Cell Extraction Memory Overflow Interrupt.

PRELIMINARY

XRT79L71 *REV. P1.0.3*

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
4	Receive Cell Insertion Memory Overflow Inter- rupt Enable	R/W	 Receive Cell Insertion Memory Overflow Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Receive Cell Insertion Memory Overflow" Interrupt. If the user enables this interrupt, then the Receive ATM Cell Processor block will generate an interrupt any time an overflow event has occurred in the "Receive Cell Insertion Memory" buffer. O - Disables the Receive Cell Insertion Memory Overflow Interrupt. 1 - Enables the Receive Cell Insertion Memory Overflow Interrupt.
3	Detection of Correctable HEC Byte Error Interrupt Enable	R/W	 Detection of Correctable HEC Byte Error Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Detection of Correctable HEC Byte Error Interrupt" within the Receive ATM Cell Processor block. If the user enables this interrupt, then the Receive ATM Cell Processor block will generate an interrupt each time it receives an ATM cell (in incoming traffic) that contains a "correctable" HEC Byte error. 0 - Disables the "Detection of Correctable HEC Byte Error" Interrupt. 1 - Enables the "Detection of Correctable HEC Byte Error" Interrupt.
2	Detection of Uncorrect- able HEC Byte Error Interrupt Enable	R/W	 Detection of Uncorrectable HEC Byte Error Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Detection of Uncorrectable HEC Byte Error" Inter- rupt within the Receive ATM Cell Processor block. If the user enables this interrupt, then the Receive ATM Cell Pro- cessor block will generate an interrupt each time it receives an ATM cell (in incoming traffic) that contains an "uncorrectable" HEC Byte error. 0 - Disables the "Detection of Uncorrectable HEC Byte Error" Interrupt. 1 - Enables the "Detection of Uncorrectable HEC Byte Error" Interrupt.
1	OCD?	R/W	
0	LCD	R/W	

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELL INSERTION/EXTRACTION MEMORY CONTROL REGISTER (ADDRESS = 0X1713)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
	Unused		Receive Cell Extraction Memory RESET*	Receive Cell Extraction Memory CLAV	Receive Cell Insertion Memory RESET*	Receive Cell Insertion Memory ROOM	Receive Cell Insertion Memory WSOC
R/O	R/O	R/O	R/W	R/O	R/W	R/O	W/O
0	0	0	1	0	1	0	0

PRELIMINARY

XP EXAR

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 5	Unused	R/O	
4	Receive Cell Extrac- tion Memory RESET*	R/W	 Receive Cell Extraction Memory RESET*: This READ/WRITE bit-field permits the user to perform a RESET operation to the Receive Cell Extraction Memory. If the user writes a "1-to-0 transition" into this bit-field, then the following events will occur. a. All of the contents of the Receive Cell Extraction Memory will be flushed.
			 b. All READ and WRITE pointers will be reset to their default positions. Note: Following this RESET event, the user must write the value "1" into this bit-field in order to enable normal operation within the Receive Cell Extraction Memory
3	Receive Cell Extrac- tion CLAV	R/O	 Receive Cell Extraction Memory - Cell Available Indicator: This READ-ONLY bit-field indicates whether or not there is at least ATM cell of data (residing within the Receive Cell Extraction Memory) that needs to be read out via the Microprocessor Interface. 0 - Indicates that the Receive Cell Extraction Memory is empty and contains no ATM cell data. 1 - Indicates that the Receive Cell Extraction Memory contains at least one ATM cell of data that needs to be read out. Note: The user should validate each ATM cell that is being read out from the Receive Cell Extraction memory by checking the state of this bit-field prior to reading out the contents of any ATM cell data residing within the Receive Cell Extraction Memory.
2	Receive Cell Insertion Memory RESET*	R/W	 Receive Cell Insertion Memory RESET*: This READ/WRITE bit-field permits the user to perform a RESET operation to the Receive Cell Insertion Memory. If the user writes a "1-to-0 transition" into this bit-field, then the following events will occur. a. All of the contents of the Receive Cell Insertion Memory will be flushed. b. All READ and WRITE pointers will be reset to their default positions. Note: Following this RESET event, the user must write the value "1" into this bit-field in order to enable normal operation of the Receive Cell Insertion Memory.

PRELIMINARY

XRT79L71 REV. P1.0.3

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
1	Receive Cell Insertion Memory ROOM	R/O	 Receive Cell Insertion Memory - ROOM Indicator: This READ-ONLY bit-field indicates whether or not there is room (e.g., empty space) available for the contents of another ATM cell to be written into the Receive Cell Insertion Memory. 0 - Indicates that the Receive Cell Insertion Memory does not contain enough empty space to receive another ATM cell via the Microprocessor Interface. 1 - Indicates that the Receive Cell Insertion Memory does contain enough empty space to receive another ATM cell via the Microprocessor Interface. NOTE: The user should verify that the Receive Cell Insertion Memory has sufficient empty space to accept another ATM cell of data (via the Microprocessor Interface) by polling the state of this bit-field prior to writing each cell into the Receive Cell Insertion Memory.
0	Receive Cell Insertion Memory WSOC	W/O	Receive Cell Insertion Memory - Write SOC (Start of Cell): Whenever the user is writing the contents of an ATM cell into the Receive Cell Insertion Memory, then he/she is suppose to identify/des- ignate the very first byte of this ATM cell by setting this bit-field to "1". Whenever the user does this, then the Receive Cell Insertion Memory will "know" that the next octet that is written into the "Receive ATM Cell Processor Block - Receive Cell Insertion/Extraction Memory Data Reg- ister - Byte 3 (Address = 0x1714) is designated as the first byte of the ATM cell currently being written into the Receive Cell Insertion Memory. This bit-field must be set to "0" during all other WRITE operations to the Receive ATM Cell Processor - Receive Cell Insertion/Extraction Memory Data Register.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 3 (ADDRESS = 0X1714)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	BIT 0	
	Receive Cell Insertion/Extraction Memory Data[31:24]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER NAME TYPE	DESCRIPTION
BIT NUMBER NAME TYPE 7 - 0 Receive Cell Insertion/ Extraction Memory Data[31:24] R/W ////////////////////////////////////	 DESCRIPTION Receive Cell Insertion/Extraction Memory Data[31:24]: These READ/WRITE bit-fields, along with that in the "Receive ATM Cell Processor Block -Receive Cell Insertion/Extraction Memory Data - Bytes 2 through 0" support the following functions. a. They function as the address location, for which the user to write the contents of an "outbound" ATM cell into the Receive Cell Insertion Memory, via the Microprocessor Interface. b. They function as the address location, for which the user to read out the contents of an "inbound" ATM cell from the Receive Cell Extraction Memory, via the Microprocessor Interface. NOTES: If the user performs a WRITE operation to this (and the other three address locations), then he/she is writing ATM cell data into the Receive Cell Insertion Memory. If the user performs a READ operation to this (and the other three address locations), then he/she is reading ATM cell data from the Receive Cell Extraction Memory. If the user performs a READ operation to these address locations, he/she must start by writing in or reading out the first byte (of this "4-byte" word) of a given ATM cell, into' from this particular address location. Next, the user must perform the READ/WRITE operation (with the second of this "4-byte" word) to the "Receive ATM Cell Processor Block -Receive Cell Insertion/Extraction Memory - Byte 2 register. Afterwards, the user must perform a READ/WRITE operation (with the furth of this "4-byte" word) to the "Receive ATM Cell Insertion/Extraction Memory - Byte 2 register. Afterwards, the user must perform a READ/WRITE operation (with the fourth of this "4-byte" word) to the "Receive ATM Cell Insertion/Extraction Memory - Byte 1 register. Finally, the user must perform a READ/WRITE operation (with the furth of this "4-byte" word) to the "Receive ATM Cell Insertion/Extraction Memory - Byte 0 register. When reading

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 2 (ADDRESS = 0X1715)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0			
	Receive Cell Insertion/Extraction Memory Data[23:16]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7-0	Receive Cell Insertion/ Extraction Memory Data[23:16]	R/W	 Receive Cell Insertion/Extraction Memory Data[31:24]: These READ/WRITE bit-fields, along with that in the "Receive ATM Cell Processor Block- Receive Cell Insertion/Extraction Memory Data- Bytes 3, and Bytes 1, 0" support the following functions.a. They function as the address location for which the user to write the contents of an "outbound" ATM cell into the Receive Cell Insertion Memory, via the Microprocessor Interface. They function as the address location, for which the user to read out the contents of an "inbound" ATM cell from the Receive Cell Extraction Memory, via the Microprocessor Interface. <i>Notes:</i> If the user performs a WRITE operation to this (and the other three address locations), then he/she is writing ATM cell data into the Receive Cell Insertion Memory. If the user performs a READ operation to this (and the other three address locations, then he/she is reading ATM cell data from the Receive Cell Extraction Memory. READ and WRITE operations must be performed in a "32- bit" (4-byte "chunk) manner. Hence, whenever the user performs a READ/WRITE operation to these address locations, he/she must start by writing in or reading out the first byte (of this "4-byte" chunk) of a given ATM cell into/ from the "Receive ATM Cell Processor Block - Receive Cell Insertion/Extraction Memory - Byte 3. Next, the user must perform a READ/WRITE operation (with the second of this "4-byte" words) to this particular address location. Afterwards, the user must perform a READ/WRITE operation (with the third of this "4-byte" word) to the "Receive ATM Cell Processor Block - Receive Cell Insertion/Extraction Memory - Byte 1" register. Finally, the user must perform a READ/WRITE operation (with the fourth of this "4-byte" word) to the "Receive Cell Insertion/Extraction Memory - Byte 1" register. Finally, the user must perform a READ/WRITE operation (with the fourth of this "4-byte" word) to the "Receive Cell Insertion/Extraction Memory

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 1 (ADDRESS = 0X1716)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0			
	Receive Cell Insertion/Extraction Memory Data[15:8]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive Cell Insertion/ Extraction Memory Data[15:8]	R/W	 Receive Cell Insertion/Extraction Memory Data[15:8]: These READ/WRITE bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive Cell Insertion/Extraction Memory Data - Bytes 3, 2 and 0" support the following functions. a. They function as the address location, for which the user to write the contents of an "outbound" ATM cell into the Receive Cell Insertion Memory, via the Microprocessor Interface. b. They function as the address location, for which the user to read out the contents of an "inbound" ATM cell from the Receive Cell Extraction Memory, via the Microprocessor Interface.
			NOTES: 1. If the user performs a WRITE operation to this (and the
			other three address locations), then he/she is writing ATM cell data into the Receive Cell Insertion Memory.
			 If the user performs a READ operation to this (and the other three address locations, then he/she is reading ATM cell data from the Receive Cell Extraction Memory.
			3. READ and WRITE operations must be performed in a "32-bit" (4-byte "word") manner. Hence, whenever the user performs a READ/WRITE operation to these address locations, he/she must start by writing in or reading out the first byte (of this "4-byte" word) of a given ATM cell, into/from the "Receive ATM Cell Processor Block - Receive Cell Insertion/Extraction Memory - Byte 3 register. Next, the user must perform a READ/WRITE operation (with the second of this "4-byte" word) to the "Receive ATM Cell Processor Block - Receive Cell Processor Block - Receive Cell Insertion/Extraction Memory - Byte 2 register. Afterwards, the user must perform a READ/WRITE operation (with the third of this "4-byte" word) to this register. Finally, the user must perform a READ/WRITE operation (with the fourth of this "4-byte" word) to the "Receive ATM Cell Processor Block - Receive Cell Insertion/Extraction/Extraction Memory - Byte 0. When reading out (writing in) the next four bytes of a given ATM cell, the user must repeat this process with a READ or WRITE operation to the "Receive ATM Cell Processor Block - Receive Cell Insertion/Extraction Memory - Byte 3, and so on.
			 Whenever the user is writing cell data into the Receive Cell Insertion Memory, the size of the Cell is always 56 bytes. Whenever the user is reading cell data from the Receive
			5. Whenever the user is reading cell data from the Receive Cell Extraction Memory, the size of the Cell is always 56 bytes.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 0 (ADDRESS = 0X1717)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	Віт 1	BIT 0		
Receive Cell Insertion/Extraction Memory Data[7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive Cell Inser- tion/Extraction Mem- ory Data[7:0]	R/W	 Receive Cell Insertion/Extraction Memory Data[7:0]: These READ/WRITE bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive Cell Insertion/Extraction Memory Data - Bytes 3 through 1" support the following functions a. They function as the address location, for which the user to write the contents of an "outbound" ATM cell into the Receive Cell Insertion Memory, via the Microprocessor Interface. b. They function as the address location, for which the user to read out the contents of an "inbound" ATM cell from the Receive Cell Extraction Memory, via the Microprocessor
			Receive Cell Extraction Memory, via the Microprocessor Interface.
			NOTES:
			 If the user performs a WRITE operation to this (and the other three address locations), then he/she is writing ATM cell data into the Receive Cell Insertion Memory.
			2. If the user performs a READ operation to this (and the other three address locations), then he/she is writing ATM cell data into the Receive Cell Insertion Memory.
			3. READ and WRITE operations must be performed in a "32-bit" (4-byte "word") manner. Hence, whenever the user performs a READ/WRITE operation to these address locations, he/she must start by writing in or reading out the first byte (of this "4-byte" word) of a given ATM cell, into/from the "Receive ATM Cell Processor Block - Receive Cell Insertion/Extraction Memory - Byte 3 register. Next, the user must perform a READ/WRITE operation (with the second of this "4-byte" word) to the "Receive ATM Cell Processor block - Receive Cell Insertion/Extraction Memory - Byte 2 register. Afterwards, the user must perform a READ/WRITE operation Memory - Byte 2 register. Afterwards, the user must perform a READ/WRITE operation (with the third of this "4-byte" word) to the "Receive Cell Insertion/Extraction Memory - Byte 2 register. Afterwards, the user must perform a READ/WRITE operation (with the third of this "4-byte" word) to the "Receive ATM Cell Processor Block - Receive Cell Insertion/Extraction Memory Byte 1" register. Finally, the user must perform a READ/WRITE operation (with the fourth of this "4-byte" word) to the "Receive ATM Cell Processor Block - Receive Cell Insertion/Extraction Memory - Byte 0. When reading out (writing in) the next four bytes of a given ATM cell, the user must repeat this process with a READ or WRITE operation, to the "Receive ATM Cell Processor Block - Receive Cell Insertion/Extraction Memory - Byte 3, and so on.
			4. Whenever the user is writing cell data into the Receive Cell Insertion Memory, the size of the Cell is always 56 bytes.
			5. Whenever the user is reading cell data from the Receive Cell Extraction Memory, the size of the Cell is always 56 bytes.

RECEIVE ATM CELL PROCESSOR BLOCK - UDF1 BYTE VALUE REGISTER (ADDRESS = 0X1718)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0			
	Receive UDF1 Byte[7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION	
7 - 0	Receive UDF1 Byte[7:0]	R/W	Receive UDF1 Byte[7:0]: These READ/WRITE bit-fields permit the user to specify the value of the UDF1 byte, within any ATM Cell data that is written to the Receive FIFO and is ultimately output via the Receive UTOPIA Interface block. Note: These register bits are only valid if the Receive UTOPIA Interface has been configured to operate in the UTOPIA Level 3 Mode, and if the Cell Size (as processed via the Receive UTOPIA Interface") is configured to be 56 bytes.	

RECEIVE ATM CELL PROCESSOR BLOCK - UDF2 BYTE VALUE REGISTER (ADDRESS = 0X1719)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	Віт 0			
	Receive UDF2 Byte[7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive UDF2 Byte[7:0]	R/W	 Receive UDF2 Byte[7:0]: These READ/WRITE bit-fields permit the user to specify the value of the UDF2 byte, within any ATM Cell data that is written to the Receive FIFO and is ultimately output via the Receive UTOPIA Interface block. Note: These register bits are only valid if the Receive UTOPIA Interface has been configured to operate in the UTOPIA Level 3 Mode, and if the Cell Size (as processed via the Receive UTOPIA Interface") is configured to be 56 bytes.

RECEIVE ATM CELL PROCESSOR BLOCK - UDF3 BYTE VALUE REGISTER (ADDRESS = 0X171A)

BIT 7	Віт 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0			
	Receive UDF3 Byte[7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive UDF3 Byte[7:0]	R/W	 Receive UDF3 Byte[7:0]: These READ/WRITE bit-fields permit the user to specify the value of the UDF3 byte, within any ATM Cell data that is written to the Receive FIFO and is ultimately output via the Receive UTOPIA Interface block. Note: These register bits are only valid if the Receive UTOPIA Interface has been configured to operate in the UTOPIA Level 3 Mode, and if the Cell Size (as processed via the Receive UTOPIA Interface") is configured to be 56 bytes.

RECEIVE ATM CELL PROCESSOR BLOCK - UDF4 BYTE VALUE REGISTER (ADDRESS = 0X171B)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0			
	Receive UDF4 Byte[7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive UDF4 Byte[7:0]	R/W	 Receive UDF4 Byte[7:0]: These READ/WRITE bit-fields permit the user to specify the value of the UDF4 byte, within any ATM Cell data that is written to the Receive FIFO and is ultimately output via the Receive UTOPIA Interface block. Note: These register bits are only valid if the Receive UTOPIA Interface has been configured to operate in the UTOPIA Level 3 Mode, and if the Cell Size (as processed via the Receive UTOPIA Interface") is configured to be 56 bytes.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE TEST CELL HEADER BYTE - BYTE 1 (ADDRESS = 0X1720)

BIT 7	BIT 6	Віт 5	Віт 4	Віт 3	Віт 2	BIT 1	BIT 0	
Receive Test Cell Header Byte 1[7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive Test Cell Header Byte 1 [7:0]	R/W	Receive Test Cell Header Byte 1:These READ/WRITE register bits along with that in "ReceiveATM Cell Processor Block - Receive Test Cell Header Byte -Bytes 2 through 4" permit the user to define the header bytes oftest cells that are being generated by the "Transmit Test Cell"Generator. These cells also permit the Receive Test CellReceiver to identify the test cells within the incoming ATM celldata stream.This particular register byte permits the user to define the contents of Header byte # 1.NOTE: These register bits are only valid if the Receive Test CellReceiver has been enabled.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE TEST CELL HEADER BYTE - BYTE 2 (ADDRESS = 0X1721)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0			
	Receive Test Cell Header Byte 2[7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive Test Cell Header Byte 2 [7:0]	R/W	 Receive Test Cell Header Byte 2: These READ/WRITE register bits along with that in "Receive ATM Cell Processor Block - Receive Test Cell Header Byte - Bytes 1, Bytes 3 and 4" permit the user to define the header bytes of test cells that are being generated by the "Transmit Test Cell" Generator. These cells also permit the Receive Test Cell Receiver to identify the test cells within the incoming ATM cell data stream. This particular register byte permits the user to define the contents of Header byte # 2. Note: These register bits are only valid if the Receive Test Cell Receiver has been enabled.

XPEXAR

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE TEST CELL HEADER BYTE - BYTE 3 (ADDRESS = 0X1722)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	
Receive Test Cell Header Byte 3[7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER	Nаме	Түре	DESCRIPTION
7 - 0	Receive Test Cell Header Byte 3 [7:0]	R/W	 Receive Test Cell Header Byte 3: These READ/WRITE register bits along with that in "Receive ATM Cell Processor Block - Receive Test Cell Header Byte - Bytes 1, 2 and 4" permit the user to define the header bytes of test cells that are being generated by the "Transmit Test Cell" Generator. These cells also permit the Receive Test Cell Receiver to identify the test cells within the incoming ATM cell data stream. This particular register byte permits the user to define the contents of Header byte # 3. NOTE: These register bits are only valid if the Receive Test Cell Receiver has been enabled.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE TEST CELL HEADER BYTE - BYTE 4 (ADDRESS = 0X1723)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0			
	Receive Test Cell Header Byte 4[7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	ΤΥΡΕ	DESCRIPTION
7 - 0	Receive Test Cell Header Byte 4 [7:0]	R/W	Receive Test Cell Header Byte 4: These READ/WRITE register bits along with that in "Receive ATM Cell Processor Block - Receive Test Cell Header Byte - Bytes 1 through 3" permit the user to define the header bytes of test cells that are being generated by the "Transmit Test Cell" Generator. These cells also permit the Receive Test Cell Receiver to identify the test cells within the incoming ATM cell data stream. This particular register byte permits the user to define the con- tents of Header byte # 4. Note: These register bits are only valid if the Receive Test Cell Receiver has been enabled.

RECEIVE ATM CELL PROCESSOR BLOCK - TEST CELL ERROR COUNT REGISTERS - BYTE 3 (ADDRESS = 0X1724)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	Віт 2	BIT 1	BIT 0	
Test Cell Error Count[31:24]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Test Cell Error Count[31:24]	RUR	 Test Cell Error Count[31:24]: These RESET-upon-READ bit-fields along with that within the "Receive ATM Cell Processor Block - Test Cell Error Count Registers - Bytes 2 through 0" contains the 32-bit expression for the number of Test Cell Bit Errors that have been detected (by the Test Cell Receiver) since the last read of these registers. More specifically, these register bits reflect the number of bit errors that have been detected within the PRBS data that is transported via the Payload Bytes of these Test Cells, since the last read of these registers. This particular register byte contains the MSB (Most Significant Byte) of this 32-bit value for the number of Test Cell Bit Errors. Notes: This register byte is only valid if the "Test Cell Receiver" has been enabled. If the number of Test Cell Error Bits reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

XPEXAR PRE 1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE ATM CELL PROCESSOR BLOCK - TEST CELL ERROR COUNT REGISTERS - BYTE 2 (ADDRESS = 0X1725)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0
Test Cell Error Count[23:16]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Test Cell Error Count[23:16]	RUR	 Test Cell Error Count[23:16]: These RESET-upon-READ bit-fields along with that within the "Receive ATM Cell Processor Block - Test Cell Error Count Reg- isters - Bytes 3, 1 and 0" contains the 32-bit expression for the number of Test Cell Bit Errors that have been detected (by the Test Cell Receiver) since the last read of these registers. More specifically, these register bits reflect the number of bit errors that have been detected within the PRBS data that is transported via the Payload Bytes of these Test Cells, since the last read of these registers. NoTES: 1. This register byte is only valid if the "Test Cell Receiver" has been enabled. 2. If the number of Test Cell Error Bits reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - TEST CELL ERROR COUNT REGISTERS - BYTE 1 (ADDRESS = 0X1726)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	BIT 0	
	Test Cell Error Count[15:8]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION	
7 - 0	Test Cell Error Count[15:8]	RUR	These RESET-upon-READ bit-fields along with that within the "Receive ATM Cell Processor Block - Test Cell Error Count Reg- isters - Bytes 3, 2 and 0" contains the 32-bit expression for the number of Test Cell Bit Errors that have been detected (by the Test Cell Receiver) since the last read of these registers. More specifically, these register bits reflect the number of bit errors that have been detected within the PRBS data that is transported via the Payload Bytes of these Test Cells, since the last read of these registers.	
			 NOTES: This register byte is only valid if the "Test Cell Receiver" has been enabled. If the number of Test Cell Error Bits reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000"). 	

XP EXAR

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE ATM CELL PROCESSOR BLOCK - TEST CELL ERROR COUNT REGISTERS - BYTE 0 (ADDRESS = 0X1727)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Test Cell Error Count[7:0]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Test Cell Error Count[7:0]	RUR	Test Cell Error Count[7:0]: These RESET-upon-READ bit-fields along with that within the "Receive ATM Cell Processor Block - Test Cell Error Count Reg- isters - Bytes 3, through 1" contains the 32-bit expression for the number of Test Cell Bit Errors that have been detected (by the Test Cell Receiver) since the last read of these registers. More specifically, these register bits reflect the number of bit errors that have been detected within the PRBS data that is transported via the Payload Bytes of these Test Cells, since the last read of these registers. This particular register byte contains the LSB (Least Significant Byte) of this 32-bit value for the number of Test Cell Bit Errors.
			 NOTES: This register byte is only valid if the "Test Cell Receiver" has been enabled. If the number of Test Cell Error Bits reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELL COUNT REGISTER - BYTE 3 (ADDRESS = 0X1728)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	Віт 2	BIT 1	BIT 0		
	Receive ATM Cell Count[31:24]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive ATM Cell Count[31:24]	RUR	 Receive ATM Cell Count [31:24]: These RESET-upon-READ bit-fields, along with that within the "Receive ATM Cell Processor Block - Receive ATM Cell Count Registers - Bytes 2 through 0" contain the 32-bit expression for the number of cells that has been received by the Receive FIFO (e.g., where it can be read out via the Receive UTOPIA Interface Block) since the last read of these registers. This particular register byte contains the MSB (Most Significant Byte) of this 32-bit value for the number of Received ATM cells. <i>Notes:</i> 1. The contents within these register bytes do not include Idle Cells, and Cells that have been discarded due to uncorrectable HEC byte errors, or those cells that have been discarded via the User Cell Filter. 2. If the number of Received ATM Cells reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

XP EXAR

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELL COUNT REGISTER - BYTE 2 (ADDRESS = 0X1729)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Receive ATM Cell Count[23:16]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive ATM Cell Count[23:16]	RUR	 Receive ATM Cell Count [23:16]: These RESET-upon-READ bit-fields, along with that within the "Receive ATM Cell Processor Block - Receive ATM Cell Count Registers - Bytes 3, 1 and 0" contain the 32-bit expression for the number of cells that has been received by the Receive FIFO (e.g., where it can be read out via the Receive UTOPIA Interface Block) since the last read of these registers. <i>Notes:</i> The contents within these register bytes do not include Idle Cells, and Cells that have been discarded due to uncorrectable HEC byte errors, or those cells that have been discarded via the User Cell Filter.2 If the number of Received ATM Cells reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELL COUNT REGISTER - BYTE 1 (ADDRESS = 0X172A)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0	
Receive ATM Cell Count[15:8]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Receive ATM Cell Count[15:8]	RUR	 Receive ATM Cell Count [15:8]: These RESET-upon-READ bit-fields, along with that within the "Receive ATM Cell Processor Block - Receive ATM Cell Count Registers - Bytes 3, 2 and 0" contain the 32-bit expression for the number of cells that has been received by the Receive FIFO (e.g., where it can be read out via the Receive UTOPIA Interface Block) since the last read of these registers. <i>Notes:</i> 1. The contents within these register bytes do not include Idle Cells, and Cells that have been discarded due to uncorrectable HEC byte errors, or those cells that have been discarded via the User Cell Filter. 2. If the number of Received ATM Cells reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

XPEXAR PRE 1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELL COUNT REGISTER - BYTE 0 (ADDRESS = 0X172B)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	Віт 2	BIT 1	BIT 0
Receive ATM Cell Count[7:0]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive ATM Cell Count[7:0]	RUR	 Receive ATM Cell Count [7:0]: These RESET-upon-READ bit-fields, along with that within the "Receive ATM Cell Processor Block - Receive ATM Cell Count Registers - Bytes 3 through 1" contain the 32-bit expression for the number of cells that has been received by the Receive FIFO (e.g., where it can be read out via the Receive UTOPIA Interface Block) since the last read of these registers. This particular register bytes contains the LSB (Least Significant Byte) of this 32-bit value for the number of Received ATM cells. <i>Notes:</i> 1. The contents within these register bytes do not include Idle Cells, and Cells that have been discarded due to uncorrectable HEC byte errors, or those cells that have been discarded via the User Cell Filter. 2. f the number of Received ATM Cells reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE DISCARDED ATM CELL COUNT - BYTE 3 (ADDRESS = 0X172C)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Receive - Discarded ATM Cell Count[31:24]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive -Discard ATM Cell Count[31:24]	RUR	 Receive - Discarded ATM Cell Count[31:24]: These RESET-upon-READ bit-fields, along with that within the "Receive ATM Cell Processor Block - Receive Discarded ATM Cell Count - Bytes 2 through 0" registers contain the 32-bit expression for the number of cells that have been discarded since the last read of these registers. This particular register byte contains the MSB (Most Significant Byte) of this 32-bit value for the number of Received ATM cells. <i>Notes:</i> The contents within these register bytes do not include Idle Cells that have been discarded due to Idle Cell Filtering. The contents within these register bytes do include those cells that have been discarded due to Idle Cell Filtering. The contents within these register bytes do include those cells that have been discarded due to Idle Cell Filtering. If the number of Discarded ATM Cells reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to

XPEXAR PRE 1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE DISCARDED ATM CELL COUNT - BYTE 2 (ADDRESS = 0X172D)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Receive - Discarded ATM Cell Count[23:16]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive -Discard ATM Cell Count[23:16]	RUR	Receive - Discarded ATM Cell Count[23:16]: These RESET-upon-READ bit-fields, along with that within the "Receive ATM Cell Processor Block - Receive Discarded ATM Cell Count - Bytes 3, 1 and 0" registers contain the 32-bit expres- sion for the number of cells that have been discarded since the last read of these registers.
			Notes:
			 The contents within these register bytes do not include Idle Cells that have been discarded due to Idle Cell Filtering.
			 The contents within these register bytes do include those cells that have been discarded due to "uncorrectable HEC byte errors", User Cell Filtering, or improper writes into the Receive FIFO.
			 If the number of Discarded ATM Cells reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE DISCARDED ATM CELL COUNT - BYTE 1 (ADDRESS = 0X172E)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	Віт 0
Receive - Discarded ATM Cell Count[15:8]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive -Discard ATM Cell Count[15:8]	RUR	Receive - Discarded ATM Cell Count[15:8]: These RESET-upon-READ bit-fields, along with that within the "Receive ATM Cell Processor Block - Receive Discarded ATM Cell Count - Bytes 3, 2 and 0" registers contain the 32-bit expres- sion for the number of cells that have been discarded since the last read of these registers.
			Notes:
			 The contents within these register bytes do not include Idle Cells that have been discarded due to Idle Cell Filtering.2
			 The contents within these register bytes do include those cells that have been discarded due to "uncorrectable HEC byte errors", User Cell Filtering, or improper writes into the Receive FIFO.3
			3. f the number of Discarded ATM Cells reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

T - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE DISCARDED ATM CELL COUNT - BYTE 0 (ADDRESS = 0X172F)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	Віт 2	BIT 1	BIT 0
Receive - Discarded ATM Cell Count[7:0]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	Nаме	Түре	DESCRIPTION
7 - 0	Receive -Discard ATM Cell Count[7:0]	RUR	 Receive - Discarded ATM Cell Count[7:0]: These RESET-upon-READ bit-fields, along with that within the "Receive ATM Cell Processor Block - Receive Discarded ATM Cell Count - Bytes 3 through 1" registers contain the 32-bit expression for the number of cells that have been discarded since the last read of these registers. This particular register byte contains the LSB (Least Significant Byte) of this 32-bit value for the number of Received ATM cells. <i>Notes:</i> The contents within these register bytes do not include Idle Cells that have been discarded due to Idle Cell Filtering. The contents within these register bytes do include those cells that have been discarded due to "uncorrectable HEC byte errors", User Cell Filtering, or improper writes into the Receive FIFO.3 If the number of Discarded ATM Cells reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELLS WITH CORRECTABLE HEC BYTE ERROR COUNT REGISTER - BYTE 3 (ADDRESS = 0X1730)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	Віт 2	BIT 1	BIT 0
Received Cells with Correctable HEC Byte Error Count[31:24]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Received Cells with Cor- rectable HEC Byte Error Count[31:24]	RUR	Received Cells with Correctable HEC Byte ErrorCount[31:24]:These RESET-upon-READ bit-fields, along with that within the"Receive ATM Cell Processor Block - Receive Cells with Correct-able HEC Byte Error Count - Bytes 2 through 0" registers containthe 32-bit expression for the number of cells (containing "correct-able" HEC byte errors) that have been received since the lastread of these registers.This particular register byte contains the MSB (Most SignificantByte) of this 32-bit value for the number of Received ATM cellswith Correctable HEC Byte Errors.Note: If the number of cells with "Correctable HEC Byte Errors"reaches the value "0xFFFFFFF" then these registerswill saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELLS WITH CORRECTABLE HEC BYTE ERROR COUNT REGISTER - BYTE 2 (ADDRESS = 0X1731)

Віт 7	Віт 6	Віт 5	Віт 5 Віт 4		Віт 2	Віт 1	Віт 0		
	Received Cells with Correctable HEC Byte Error Count[23:16]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Received Cells with Cor- rectable HEC Byte Error Count[23:16]	RUR	Received Cells with Correctable HEC Byte Error Count[23:16]: These RESET-upon-READ bit-fields, along with that within the "Receive ATM Cell Processor Block - Receive Cells with Correct- able HEC Byte Error Count - Bytes 3, 1 and 0" registers contain the 32-bit expression for the number of cells (containing "correct- able" HEC byte errors) that have been received since the last read of these registers. NOTE: If the number of cells with "Correctable HEC Byte Errors" reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELLS WITH CORRECTABLE HEC BYTE ERROR COUNT REGISTER - BYTE 1 (ADDRESS = 0X1732)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Received Cells with Correctable HEC Byte Error Count[15:8]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Received Cells with Cor- rectable HEC Byte Error Count[15:8]	RUR	Received Cells with Correctable HEC Byte ErrorCount[15:8]:These RESET-upon-READ bit-fields, along with that within the"Receive ATM Cell Processor Block - Receive Cells with Correct-able HEC Byte Error Count - Bytes 3, 2 and 0" registers containthe 32-bit expression for the number of cells (containing "correct-able HEC Byte Errors) that have been received since the lastread of these registers.NOTE: If the number of cells with "Correctable HEC Byte Errors"reaches the value "0xFFFFFFF" then these registerswill saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELLS WITH CORRECTABLE HEC BYTE ERROR COUNT REGISTER - BYTE 0 (ADDRESS = 0X1733)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0		
Received Cells with Correctable HEC Byte Error Count[7:0]									
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Received Cells with Cor- rectable HEC Byte Error Count[7:0]	RUR	 Received Cells with Correctable HEC Byte Error Count[7:0]: These RESET-upon-READ bit-fields, along with that within the "Receive ATM Cell Processor Block - Receive Cells with Correct- able HEC Byte Error Count - Bytes 3 through 1" registers contain the 32-bit expression for the number of cells (containing "correct- able" HEC byte errors) that have been received since the last read of these registers. This particular register byte contains the LSB (Least Significant Byte) of this 32-bit value for the number of Received ATM cells with Correctable HEC Byte Errors. Note: If the number of cells with "Correctable HEC Byte Errors" reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELLS WITH UNCORRECTABLE HEC BYTE ERROR COUNT REGISTER - BYTE 3 (ADDRESS = 0X1734)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	
Received Cells with Uncorrectable HEC Byte Error Count[31:24]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Received Cells with Uncorrectable HEC Byte Error Count[31:24]	RUR	Received Cells with Uncorrectable HEC Byte Error Count[31:24]: These RESET-upon-READ bit-fields, along with that within the "Receive ATM Cell Processor Block - Receive Cells with Uncor- rectable HEC Byte Error Count - Bytes 2 through 0" registers contain the 32-bit expression for the number of cells (containing "Uncorrectable" HEC byte errors) that have been received since the last read of these registers. This particular register byte contains the MSB (Most Significant Byte) of this 32-bit value for the number of Received ATM cells with Uncorrectable HEC Byte Errors. Note: If the number of cells with "Uncorrectable HEC Byte Errors" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELLS WITH UNCORRECTABLE HEC BYTE ERROR COUNT REGISTER - BYTE 2 (ADDRESS = 0X1735)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0		
	Received Cells with Uncorrectable HEC Byte Error Count[23:16]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Received Cells with Uncorrectable HEC Byte Error Count[23:16]	RUR	Received Cells with Uncorrectable HEC Byte Error Count[23:16]: These RESET-upon-READ bit-fields, along with that within the "Receive ATM Cell Processor Block - Receive Cells with Uncor- rectable HEC Byte Error Count - Bytes 3, 1 and 0" registers con- tain the 32-bit expression for the number of cells (containing "Uncorrectable" HEC byte errors) that have been received since the last read of these registers. Note: If the number of cells with "Uncorrectable HEC Byte Errors" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELLS WITH UNCORRECTABLE HEC BYTE ERROR COUNT REGISTER - BYTE 1 (ADDRESS = 0X1736)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0	
Received Cells with Uncorrectable HEC Byte Error Count[15:8]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Received Cells with Uncorrectable HEC Byte Error Count[15:8]	RUR	Received Cells with Uncorrectable HEC Byte Error Count[15:8]: These RESET-upon-READ bit-fields, along with that within the "Receive ATM Cell Processor Block - Receive Cells with Uncor- rectable HEC Byte Error Count - Bytes 3, 2 and 0" registers con- tain the 32-bit expression for the number of cells (containing "Uncorrectable" HEC byte errors) that have been received since the last read of these registers.
			NOTE: If the number of cells with "Uncorrectable HEC Byte Errors" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE ATM CELLS WITH UNCORRECTABLE HEC BYTE ERROR COUNT REGISTER - BYTE 0 (ADDRESS = 0X1737)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0		
	Received Cells with Uncorrectable HEC Byte Error Count[7:0]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
BIT NUMBER 7 - 0	NAME Received Cells with Uncorrectable HEC Byte Error Count[7:0]	TYPE	DESCRIPTION Received Cells with Uncorrectable HEC Byte Error Count[7:0]: These RESET-upon-READ bit-fields, along with that within the "Receive ATM Cell Processor Block - Receive Cells with Uncor- rectable HEC Byte Error Count - Bytes 3 through 1" registers contain the 32-bit expression for the number of cells (containing "Uncorrectable" HEC byte errors) that have been received since the last read of these registers. This particular register byte contains the LSB (Least Significant Byte) of this 32-bit value for the number of Received ATM cells with Uncorrectable HEC Byte Errors. NOTE: If the number of cells with "Uncorrectable HEC Byte Errors" reaches the value "0xFFFFFFF" then these
			registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER CONTROL - FILTER 0 (ADDRESS = 0X1743)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	Віт 2	BIT 1	BIT 0
Unused			Receive User Cell Filter # 0 Enable	Copy Cell Enable	Discard Cell Enable	Filter if Pat- tern Match	
R/O	R/O	R/O	R/O	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 4	Unused	R/O	
3	Receive User Cell Filter # 0 Enable	R/W	 Receive User Cell Filter # 0 - Enable: This READ/WRITE bit-field permits the user to either enable or disable Receive User Cell Filter # 0. If the user enables Receive User Cell Filter # 0, then User Cell Filter # 0 will function per the configuration settings in Bits 2 through 0, within this register. If the user disables Receive User Cell Filter # 0, then User Cell Filter # 0 then all cells that are applied to the input of Receive User Cell Filter # 0 will pass through to the output of Receive User Cell Filter # 0. 0 - Disables Receive User Cell Filter # 0. 1 - Enables Receive User Cell Filter # 0.
2	Copy Cell Enable	R/W	 Copy Cell Enable - Receive User Cell Filter # 0: This READ/WRITE bit-field permits the user to either configure Receive User Cell Filter # 0 (within the Receive ATM Cell Pro- cessor Block) to copy all cells that have header byte patterns that comply with the "user-defined" criteria, per Receive User Cell Fil- ter # 0, or to NOT copy any of these cells. If the user configures Receive User Cell Filter # 0 to copy all cells complying with a certain "header-byte" pattern, then a copy (or replicate) of this "compliant" ATM cell will be routed to the Receive Cell Extraction Buffer. If the user configures Receive User Cell Filter # 0 to NOT copy all cells complying with a certain "header-byte" pattern, then NO copies (or replicates) of these "compliant" ATM cells will be made nor will any be routed to the Receive Cell Extraction Buffer. 0 - Configures Receive User Cell Filter # 0 to NOT copy any cells that have header byte patterns which are compliant with the "user-defined" filtering criteria. 1 - Configures Receive User Cell Filter # 0 to copy any cells that have header byte patterns that are compliant with the "user- defined" filtering criteria, and to route these copies (of cells) to the Receive Cell Extraction Buffer. Note: This bit-field is only active if "Receive User Cell Filter # 0" has been enabled.

PRELIMINARY

XRT79L71 REV. P1.0.3

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
1	Discard Cell Enable	R/W	Discard Cell Enable - Receive User Cell Filter # 0:
			This READ/WRITE bit-field permits the user to either configure Receive User Cell Filter # 0 (within the Receive ATM Cell Pro- cessor Block) to discard all cells that have header byte patterns that comply with the "user-defined" criteria, per Receive User Cell Filter # 0, or NOT discard any of these cells.
			If the user configures Receive User Cell Filter # 0 to NOT discard any cells that is compliant with a certain "header-byte" pattern, then the cell will be retained for further processing.
			0 - Configures Receive User Cell Filter # 0 to NOT discard any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria.
			1 - Configures Receive User Cell Filter # 0 to discard any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria.
			Note: This bit-field is only active if "Receive User Cell Filter # 0" has been enabled.
0	Filter if Pattern Match	R/W	 Filter if Pattern Match - Receive User Cell Filter # 0: This READ/WRITE bit-field permits the user to either configure Receive User Cell Filter # 0 to filter (based upon the configura- tion settings for Bits 1 and 2, in this register) ATM cells with header bytes that match the "user-defined" header byte patterns, or to filter ATM cells with header bytes that do NOT match the "user-defined" header byte patterns. 0 - Configures Receive User Cell Filter # 0 to filter user cells that do NOT match the header byte patterns (as defined in the " " registers). 1 - Configures Receive User Cell Filter # 0 to filter user cells that do match the header byte patterns (as defined in the " " regis-
			ters). Note: This bit-field is only active if "Receive User Cell Filter # 0" has been enabled.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - PATTERN REGISTER -HEADER BYTE 1 (ADDRESS = 0X1744)

BIT 7	Віт 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	BIT 0			
Receive User Cell Filter # 0 - Pattern Register - Byte 1 [7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive User Cell Filter # 0 - Pattern Register - Header Byte 1	R/W	Receive User Cell Filter # 0 - Pattern Register - Header Byte 1: The User Cell filtering criteria (for Receive User Cell Filter # 0) is defined based upon the contents of 9 read/write registers. These registers are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Check Registers" and the "Receive ATM Cell Processor Block - Receive User Cell Fil- ter # 0 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter # 0 - Check Register - Header Byte 1" permits the user to define the User Cell Filtering cri- teria for "Octet # 1" of the incoming User Cell. The user will write the header byte pattern (for Octet 1) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Check Register - Header Byte 1" bernits the user to define the User Cell Filtering cri- teria for "Octet # 1" of the incoming User Cell. The user will write the header byte pattern (for Octet 1) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Check Register - Header Byte 1" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - PATTERN REGISTER -HEADER BYTE 2 (ADDRESS = 0X1745)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0			
Receive User Cell Filter # 0 - Pattern Register - Byte 2 [7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive User Cell Filter # 0 - Pattern Register - Header Byte 2	R/W	Receive User Cell Filter # 0 - Pattern Register - Header Byte 2: The User Cell filtering criteria (for Receive User Cell Filter # 0) is defined based upon the contents of 9 read/write registers. These registers are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Check Registers" and the "Receive ATM Cell Processor Block - Receive User Cell Fil- ter # 0 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter # 0 - Check Register - Header Byte 2" permits the user to define the User Cell Filtering cri- teria for "Octet # 2" of the incoming User Cell. The user will write the header byte pattern (for Octet 2) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Check Register 2" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - PATTERN REGISTER -HEADER BYTE 3 (ADDRESS = 0X1746)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0			
Receive User Cell Filter # 0 - Pattern Register - Byte 3 [7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive User Cell Filter # 0 - Pattern Register - Header Byte 3	R/W	Receive User Cell Filter # 0 - Pattern Register - Header Byte 3: The User Cell filtering criteria (for Receive User Cell Filter # 0) is defined based upon the contents of 9 read/write registers. These registers are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Check Registers" and the "Receive ATM Cell Processor Block - Receive User Cell Fil- ter # 0 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter # 0 - Check Register - Header Byte 3" permits the user to define the User Cell Filtering cri- teria for "Octet # 3" of the incoming User Cell. The user will write the header byte pattern (for Octet 3) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Receive ATM Cell Proces- sor Block - Receive User Cell Filter # 0 - Check Register - Header Byte 3" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - PATTERN REGISTER -HEADER BYTE 4 (ADDRESS = 0X1747)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0			
Receive User Cell Filter # 0 - Pattern Register - Byte 4 [7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	Nаме	Түре	DESCRIPTION
7 - 0	Receive User Cell Filter # 0 - Pattern Register - Header Byte 4	R/W	Receive User Cell Filter # 0 - Pattern Register - Header Byte 4: The User Cell filtering criteria (for Receive User Cell Filter # 0) is defined based upon the contents of 9 read/write registers. These registers are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Check Registers" and the "Receive ATM Cell Processor Block - Receive User Cell Fil- ter # 0 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter # 0 - Check Register - Header Byte 4" permits the user to define the User Cell Filtering cri- teria for "Octet # 4" of the incoming User Cell. The user will write the header byte pattern (for Octet 4) that he/she wishes to use as part of the "User Cell Filter # 0 - Check Register . The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Check Register . The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Check Register . The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Check Register - Header Byte 4" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - CHECK REGISTER -BYTE 1 (ADDRESS = 0X1748)

BIT 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0			
Receive User Cell Filter # 0 - Check Register - Byte 1 [7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	Nаме	Түре	DESCRIPTION
7 - 0	Receive User Cell Filter # 0 - Check Register - Header Byte 1	R/W	Receive User Cell Filter # 0 - Check Register - Header Byte 1: The User Cell filtering criteria (for Receive User Cell Filter # 0) is defined based upon the contents of 9 read/write registers. These registers are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Check Registers" and the "Receive ATM Cell Processor Block - Receive User Cell Fil- ter # 0 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter # 0 - Pattern Register - Header Byte 1" permits the user to define the User Cell Filtering cri- teria for "Octet # 1" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 1" of the incoming user cell (in the Receive ATM Cell Processor Block) are to be checked against the corresponding bit- fields within the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Register - Header Byte 1" by the User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the Receive User Cell Filter to check and compare the corresponding bit in "Octet # 1" (of the incoming user cell) with the corresponding bit in "Octet # 1" (of the incoming user cell) with the corresponding bit in "Octet # 1" (of the incoming user cell) with the corresponding bit in "Octet # 1" (of the incoming user cell) with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Register - Header Byte 1". Writing a "0" to a particular bit-field in this register causes the Receive User Cell Filter to treat the corresponding bit within "Octet # 1" (in the incoming user cell) as a "don't care" (e.g., to forgo the com- parison between the corresponding bit in "Octet # 1" of the incoming user cell with the corresponding bit-field in the "Receive ATM Cell Pro

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

XPEXAR

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - CHECK REGISTER -BYTE 2 (ADDRESS = 0X1749)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0			
Receive User Cell Filter # 0 - Check Register - Byte 2 [7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive User Cell Filter # 0 - Check Register - Header Byte 2	R/W	Receive User Cell Filter # 0 - Check Register - Header Byte 2: The User Cell filtering criteria (for Receive User Cell Filter # 0) is defined based upon the contents of 9 read/write registers. These registers are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Check Registers" and the "Receive ATM Cell Processor Block - Receive User Cell Fil- ter # 0 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter # 0 - Pattern Register - Header Byte 2" permits the user to define the User Cell Filtering cri- teria for "Octet # 2" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 2" of the incoming user cell (in the Receive ATM Cell Processor Block) are to be checked against the corresponding bit- fields within the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Register - Header Byte 2" by the User Cell Filter, when determine whether to "filter" a given User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the Receive User Cell Filter to check and compare the corresponding bit in "Octet # 2" (of the incoming user cell) with the corresponding bit in "Octet # 2" (of the incoming user cell) with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Register - Header Byte 2". Writing a "0" to a particular bit-field in this register causes the Receive User Cell Filter to treat the corresponding bit within "Octet # 2" (in the incoming user cell) as a "don't care" (e.g., to forgo the com- parison between the corresponding bit in "Octet # 2" of the incoming user cell with the corresponding bit-field in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Register - Header Byte 2"

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - CHECK REGISTER -BYTE 3 (ADDRESS = 0X174A)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	Віт 1	BIT 0		
Receive User Cell Filter # 0 - Check Register - Byte 3 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	Nаме	Түре	DESCRIPTION
7 - 0	Receive User Cell Filter # 0 - Check Register - Header Byte 3	R/W	Receive User Cell Filter # 0 - Check Register - Header Byte 3: The User Cell filtering criteria (for Receive User Cell Filter # 0) is defined based upon the contents of 9 read/write registers. These registers are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Check Registers" and the "Receive ATM Cell Processor Block - Receive User Cell Fil- ter # 0 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter # 0 - Pattern Register - Header Byte 3" permits the user to define the User Cell Filtering cri- teria for "Octet # 3" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 3" of the incoming user cell (in the Receive ATM Cell Processor Block) are to be checked against the corresponding bit- fields within the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Register - Header Byte 3" by the User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the Receive User Cell Filter to check and compare the corresponding bit in "Octet # 3" (of the incoming user cell) with the corresponding bit in "Octet # 3" (of the incoming user cell) with the corresponding bit in "Octet # 3" (of the incoming user cell) with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Register - Header Byte 3". Writing a "0" to a particular bit-field in this register causes the Receive User Cell Filter to treat the corresponding bit within "Octet # 3" (in the incoming user cell) as a "don't care" (e.g., to forgo the com- parison between the corresponding bit in "Octet # 3" of the incoming user cell with the corresponding bit-field in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Register - Heade

T - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - CHECK REGISTER -BYTE 4 (ADDRESS = 0X174B)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0		
Receive User Cell Filter # 0 - Check Register - Byte 4 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive User Cell Filter # 0 - Check Register - Header Byte 4	R/W	Receive User Cell Filter # 0 - Check Register - Header Byte 4: The User Cell filtering criteria (for Receive User Cell Filter # 0) is defined based upon the contents of 9 read/write registers. These registers are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Check Registers" and the "Receive ATM Cell Processor Block - Receive User Cell Fil- ter # 0 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter # 0 - Pattern Register - Header Byte 4" permits the user to define the User Cell Filtering cri- teria for "Octet # 4" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 4" of the incoming user cell (in the Receive ATM Cell Processor Block) are to be checked against the corresponding bit- fields within the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Register - Header Byte 4" by the User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the Receive User Cell Filter to check and compare the corresponding bit in "Octet # 4" (of the incoming user cell) with the corresponding bit in "Octet # 4" (of the incoming user cell) with the corresponding bit in "Octet # 4" (of the incoming user cell) with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Register - Header Byte 4". Writing a "0" to a particular bit-field in this register causes the Receive User Cell Filter to treat the corresponding bit within "Octet # 4" (in the incoming user cell) as a "don't care" (e.g., to forgo the com- parison between the corresponding bit in "Octet # 4" of the incoming user cell with the corresponding bit-field in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Pattern Register - Heade

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - FILTERED CELL COUNT - BYTE 3 (ADDRESS = 0X174C)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0		
Receive User Cell Filter # 0 - Filtered Cell Count[31:24]									
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive User Cell Filter # 0 - Filtered Cell Count[31:24]	RUR	 Receive User Cell Filter # 0 - Filtered Cell Count[31:24]: These RESET-upon-READ bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 - Filtered Cell Count - Bytes 2" through "0" register contain a 32-bit expression for the number of User Cells that have been filtered by Receive User Cell Filter # 0 since the last read of this register. Depending upon the configuration settings within the "Receive ATM Cell Processor Block - Receive User Cell Filter Control - User Cell Filter # 0" Register (Address = 0x1743), these register bits will be incremented anytime User Cell Filter # 0 performs any of the following functions. Discards an incoming "User Cell". Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Receive Cell Extraction Buffer. Both the above actions. This particular register contains the MSB (Most Significant Byte) value for this 32-bit expression. Note: If the number of "filtered cells" reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - FILTERED CELL COUNT - BYTE 2 (ADDRESS = 0X174D)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0		
Receive User Cell Filter # 0 - Filtered Cell Count[23:16]									
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive User Cell Filter # 0 - Filtered Cell Count[23:16]	RUR	 Receive User Cell Filter # 0 - Filtered Cell Count[23:16]: These RESET-upon-READ bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 Filtered Cell Count - Bytes 3, 1 and 0" register contain a 32-bit expression for the number of User Cells that have been filtered by Receive User Cell Filter # 0 since the last read of this register. Depending upon the configuration settings within the "Receive ATM Cell Processor Block - Receive User Cell Filter Control - Receive User Cell Filter # 0" Register (Address = 0x1743), these register bits will be incremented anytime User Cell Filter # 0 per- forms any of the following functions. Discards an incoming "User Cell". Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Receive Cell Extraction Buffer. Both the above actions. NOTE: If the number of "filtered cells" reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - FILTERED CELL COUNT - BYTE 1 (ADDRESS = 0X174E)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0			
Receive User Cell Filter # 0 - Filtered Cell Count[15:8]										
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR			
0	0	0	0	0	0	0	0			

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Receive User Cell Filter # 0 - Filtered Cell Count[15:8]	RUR	 Receive User Cell Filter # 0 - Filtered Cell Count[15:8]: These RESET-upon-READ bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 Filtered Cell Count - Bytes 3, 2 and 0" register contain a 32-bit expression for the number of User Cells that have been filtered by Receive User Cell Filter # 0 since the last read of this register. Depending upon the configuration settings within the "Receive ATM Cell Processor Block - Receive User Cell Filter Control - Receive User Cell Filter # 0" Register (Address = 0x1743), these register bits will be incremented anytime Receive User Cell Filter # 0 performs any of the following functions. Discards an incoming "User Cell". Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Receive Cell Extraction Buffer. Both the above actions. NoTE: If the number of "filtered cells" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 0 - FILTERED CELL COUNT - BYTE 0 (ADDRESS = 0X174F)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0			
Receive User Cell Filter # 0 - Filtered Cell Count[7:0]										
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Receive User Cell Filter # 0 - Filtered Cell Count[7:0]	RUR	 Receive User Cell Filter # 0 - Filtered Cell Count[7:0]: These RESET-upon-READ bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 0 Filtered Cell Count - Bytes 3" through "1" register contain a 32- bit expression for the number of User Cells that have been fil- tered by Receive User Cell Filter # 0 since the last read of this register. Depending upon the configuration settings within the "Receive ATM Cell Processor Block - Receive User Cell Filter Control - Receive User Cell Filter # 0" Register (Address = 0x1743), these register bits will be incremented anytime Receive User Cell Filter # 0 performs any of the following functions. Discards an incoming "User Cell". Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Receive Cell Extraction Buffer. Both the above actions. This particular register contains the LSB (Least Significant Byte) value for this 32-bit expression. NOTE: If the number of "filtered cells" reaches the value "OxFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER CONTROL - FILTER 1 (ADDRESS = 0X1753)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	Віт 0
	Unu	ised		User Cell Fil- ter # 1 Enable	Copy Cell Enable	Discard Cell Enable	Filter if Pat- tern Match
R/O	R/O	R/O	R/O	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 4	Unused	R/O	

XRT79L71 REV. P1.0.3

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION	
3	User Cell Filter # 1 Enable	R/W	 User Cell Filter # 1 - Enable: This READ/WRITE bit-field permits the user to either enable or disable User Cell Filter # 1. If the user enables User Cell Filter # 1, then User Cell Filter # 0 will function per the configuration settings in Bits 2 through 0, within this register. If the user disables User Cell Filter # 1, then User Cell Filter # 0 then all cells that are applied to the input of User Cell Filter # 1 will pass through to the output of User Cell Filter # 1. 0 - Disables User Cell Filter # 1. 1 - Enables User Cell Filter # 1. 	
2	Copy Cell Enable	R/W	 Copy Cell Enable - User Cell Filter # 1: This READ/WRITE bit-field permits the user to either configure User Cell Filter # 1 (within the Receive ATM Cell Processor Block) to copy all cells that have header byte patterns that com ply with the "user-defined" criteria, per User Cell Filter # 1, or to NOT copy any of these cells. If the user configures User Cell Filter # 1 to copy all cells compling with a certain "header-byte" pattern, then a copy (or repli- cate) of this "compliant" ATM cell will be routed to the Receive Cell Extraction Buffer. If the user configures User Cell Filter # 1 to NOT copy all cells complying with a certain "header-byte" pattern, then NO copies (or replicates) of these "compliant" ATM cells will be made nor will any be routed to the Receive Cell Extraction Buffer. 0 - Configures User Cell Filter # 1 to NOT copy any cells that have header byte patterns which are compliant with the "user- defined" filtering criteria. 1 - Configures User Cell Filter # 1 to copy any cells that have header byte patterns that are compliant with the "user- defined" filtering criteria. 1 - Configures User Cell Filter # 1 to copy any cells that have header byte patterns that are compliant with the "user- defined" filtering criteria. 1 - Configures User Cell Filter # 1 to copy any cells that have header byte patterns that are compliant with the "user- defined" filtering criteria. 1 - Configures User Cell Filter # 1 to copy any cells that have header byte patterns that are compliant with the "user- defined" filtering criteria. 1 - Configures User Cell Filter # 1 to copy any cells that have header byte patterns that are compliant with the "user- defined" filtering criteria, and to route these copies (of cells) to the Receive Cell Extraction Buffer. Note: This bit-field is only active if "User Cell Filter # 0" has been enabled. 	
1	Discard Cell Enable	R/W	 Discard Cell Enable - User Cell Filter # 1: This READ/WRITE bit-field permits the user to either configure User Cell Filter # 1 (within the Receive ATM Cell Processor Block) to discard all cells that have header byte patterns that comply with the "user-defined" criteria, per User Cell Filter # 1, or NOT discard any of these cells. If the user configures User Cell Filter # 1 to NOT discard any cells that is compliant with a certain "header-byte" pattern, then the cell will be retained for further processing. 0 - Configures User Cell Filter # 1 to NOT discard any cells that have header byte patterns that are compliant with the "user- defined" filtering criteria. 1 - Configures User Cell Filter # 1 to discard any cells that have header byte patterns that are compliant with the "user- defined" filtering criteria. NOTE: This bit-field is only active if "User Cell Filter # 1" has been enabled. 	

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
0	Filter if Pattern Match	R/W	 Filter if Pattern Match - User Cell Filter # 1: This READ/WRITE bit-field permits the user to either configure User Cell Filter # 1 to filter (based upon the configuration set- tings for Bits 1 and 2, in this register) ATM cells with header bytes that match the "user-defined" header byte patterns, or to filter ATM cells with header bytes that do NOT match the "user- defined" header byte patterns. 0 - Configures User Cell Filter # 1 to filter user cells that do NOT match the header byte patterns (as defined in the " " registers). 1 - Configures User Cell Filter # 1 to filter user cells that do match the header byte patterns (as defined in the " " registers). NOTE: This bit-field is only active if "User Cell Filter # 1" has been enabled.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 1 - PATTERN REGISTER -HEADER BYTE 1 (ADDRESS = 0X1754)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0		
User Cell Filter # 1 - Pattern Register - Byte 1 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 1 - Pat- tern Register - Header Byte 1	R/W	User Cell Filter # 1 - Pattern Register - Header Byte 1: The User Cell filtering criteria (for User Cell Filter # 1) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Check Register - Header Byte 1" permits the user to define the User Cell Filtering criteria for "Octet # 1" of the incoming User Cell. The user will write the header byte pattern (for Octet 1) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Check Register - Header Byte 1" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 1 - PATTERN REGISTER -HEADER BYTE 2 (ADDRESS = 0X1755)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0	
User Cell Filter # 1 - Pattern Register - Byte 2 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 1 - Pat- tern Register - Header Byte 2	R/W	User Cell Filter # 1 - Pattern Register - Header Byte 2: The User Cell filtering criteria (for User Cell Filter # 1) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Check Register - Header Byte 2" permits the user to define the User Cell Filtering criteria for "Octet # 2" of the incoming User Cell. The user will write the header byte pattern (for Octet 2) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Check Register - Header Byte 2" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 1 - PATTERN REGISTER -HEADER BYTE 3 (ADDRESS = 0X1756)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0	
User Cell Filter # 1 - Pattern Register - Byte 3 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 1 - Pat- tern Register - Header Byte 3	R/W	User Cell Filter # 1 - Pattern Register - Header Byte 3: The User Cell filtering criteria (for User Cell Filter # 1) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Check Register - Header Byte 3" permits the user to define the User Cell Filtering criteria for "Octet # 3" of the incoming User Cell. The user will write the header byte pattern (for Octet 3) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Check Register - Header Byte 3" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 1 - PATTERN REGISTER -HEADER BYTE 4 (ADDRESS = 0X1757)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0		
User Cell Filter # 1 - Pattern Register - Byte 4 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 1 - Pat- tern Register - Header Byte 4	R/W	User Cell Filter # 1 - Pattern Register - Header Byte 4: The User Cell filtering criteria (for User Cell Filter # 1) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Check Register - Header Byte 4" permits the user to define the User Cell Filtering criteria for "Octet # 4" of the incoming User Cell. The user will write the header byte pattern (for Octet 4) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Check Register - Header Byte 4" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

XPEXAR

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 1 - CHECK REGISTER -BYTE 1 (ADDRESS = 0X1758)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0		
User Cell Filter # 1 - Check Register - Byte 1 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 1 - Check Register - Header Byte 1	R/W	User Cell Filter # 1 - Check Register - Header Byte 1: The User Cell filtering criteria (for User Cell Filter # 1) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Pattern Register - Header Byte 1" permits the user to define the User Cell Filter- ing criteria for "Octet # 1" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 1" of the incoming user cell (in the Receive ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter # 1 - Pattern Register - Header Byte 1" by the User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the User Cell Filter to check and compare the corresponding bit in "Octet # 1" (of the incoming user cell) with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter #1 - Pattern Register - Header Byte 1". Writing a "0" to a particular bit-field in this register causes the User Cell Filter to treat the corresponding bit within "Octet # 1" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 1" of the incoming user cell with the corresponding bit in "Cetter # 1" of the incoming user cell with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Pattern Register - Header Byte 1").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 1 - CHECK REGISTER -BYTE 2 (ADDRESS = 0X1759)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	BIT 0		
User Cell Filter # 1 - Check Register - Byte 2 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 1 - Check Register - Header Byte 2	R/W	User Cell Filter # 1 - Check Register - Header Byte 2: The User Cell filtering criteria (for User Cell Filter # 1) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Pattern Register - Header Byte 2" permits the user to define the User Cell Filter- ing criteria for "Octet # 2" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 2" of the incoming user cell (in the Receive ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter # 1 - Pattern Register - Header Byte 2" by the User Cell Filter # 1 - Pattern Register - Header Byte 2" by the User Cell Filter # 1 - Pattern Register - Header Byte 2" by the User Cell Filter # 1 - Pattern Register - Header Byte 2" by the User Cell Filter # 1 - Pattern Register - Header Byte 2" by the User Cell Filter # 1 - Pattern Register - Header Byte 2" log the incoming user cell) with the corresponding bit in "Octet # 2" (of the incoming user cell) with the corresponding bit in "Octet # 2" (of the incoming user cell) with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Pattern Register - Header Byte 2". Writing a "0" to a particular bit-field in this register causes the User Cell Filter to treat the corresponding bit within "Octet # 2" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 2" of the incoming user cell with the corresponding bit in the "Receive ATM Cell Processor Block

T - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 1 - CHECK REGISTER -BYTE 3 (ADDRESS = 0X175A)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0		
User Cell Filter # 1 - Check Register - Byte 3 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 1 - Check Register - Header Byte 3	R/W	User Cell Filter # 1 - Check Register - Header Byte 3: The User Cell filtering criteria (for User Cell Filter # 1) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Pattern Register - Header Byte 3" permits the user to define the User Cell Filter- ing criteria for "Octet # 3" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 3" of the incoming user cell (in the Receive ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter # 1 - Pattern Register - Header Byte 3" by the User Cell Filter # 1 - Pattern Register - Header Byte 3" by the User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the User Cell Filter to check and compare the corresponding bit in "Octet # 3" (of the incoming user cell) with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Pattern Register - Header Byte 3". Writing a "0" to a particular bit-field in this register causes the User Cell Filter to treat the corresponding bit within "Octet # 3" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 3" of the incoming user cell with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Pattern Register - Header Byte 3").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 1 - CHECK REGISTER -BYTE 4 (ADDRESS = 0X175B)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0		
User Cell Filter # 1 Check Register - Byte 4 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	Nаме	Түре	DESCRIPTION
7 - 0	User Cell Filter # 1 - Check Register - Header Byte 4	R/W	User Cell Filter # 1 - Check Register - Header Byte 4: The User Cell filtering criteria (for User Cell Filter # 1) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Pattern Register - Header Byte 4" permits the user to define the User Cell Filter- ing criteria for "Octet # 4" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 4" of the incoming user cell (in the Receive ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter # 1 - Pattern Register - Header Byte 4" by the User Cell Filter # 1 - Pattern Register - Header Byte 4" by the User Cell Filter # 1 - Pattern Register - Header Byte 4" by the User Cell Filter # 1 - Pattern Register - Header Byte 4" by the User Cell Filter # 1 - Pattern Register - Header Byte 4" by the User Cell Filter # 1 - Pattern Register - Header Byte 4" by the User Cell Filter # 1 - Pattern Register - Header Byte 4" to a particular bit-field in this register, forces the User Cell Filter to check and compare the corresponding bit in "Octet # 4" (of the incoming user cell) with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Pattern Register - Header Byte 4". Writing a "0" to a particular bit-field in this register causes the User Cell Filter to treat the corresponding bit within "Octet # 4" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 4" of the incoming user cell with the corr

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 1 - FILTERED CELL COUNT - BYTE 3 (ADDRESS = 0X175C)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0		
User Cell Filter # 1 - Filtered Cell Count[31:24]									
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 1 - Fil- tered Cell Count[31:24]	RUR	 User Cell Filter # 1 - Filtered Cell Count[31:24]: These RESET-upon-READ bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Filtered Cell Count - Bytes 2" through "0" register contain a 32- bit expression for the number of User Cells that have been fil- tered by User Cell Filter # 1 since the last read of this register. Depending upon the configuration settings within the "Receive ATM Cell Processor Block - Receive User Cell Filter Control - User Cell Filter # 1" Register (Address = 0x1753), these register bits will be incremented anytime User Cell Filter # 1 performs any of the following functions. Discards an incoming "User Cell". Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Receive Cell Extraction Buffer. Both the above actions. This particular register contains the MSB (Most Significant Byte) value for this 32-bit expression. NOTE: If the number of "filtered cells" reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 1 - FILTERED CELL COUNT - BYTE 2 (ADDRESS = 0X175D)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	BIT 0		
User Cell Filter # 1 - Filtered Cell Count[23:16]									
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 1 - Fil- tered Cell Count[23:16]	RUR	 User Cell Filter # 1 - Filtered Cell Count[23:16]: These RESET-upon-READ bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 Filtered Cell Count - Bytes 3, 1 and 0" register contain a 32-bit expression for the number of User Cells that have been filtered by User Cell Filter # 1 since the last read of this register. Depending upon the configuration settings within the "Receive ATM Cell Processor Block - Receive User Cell Filter Control - User Cell Filter # 1" Register (Address = 0x1753), these register bits will be incremented anytime User Cell Filter # 1 performs any of the following functions. Discards an incoming "User Cell". Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Receive Cell Extraction Buffer Both the above actions. Note: If the number of "filtered cells" reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 1 - FILTERED CELL COUNT - BYTE 1 (ADDRESS = 0X175E)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0
	User Cell Filter # 1 - Filtered Cell Count[15:8]						
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 1 - Fil- tered Cell Count[15:8]	RUR	 User Cell Filter # 1 - Filtered Cell Count[15:8]: These RESET-upon-READ bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 Filtered Cell Count - Bytes 3, 2 and 0" register contain a 32-bit expression for the number of User Cells that have been filtered by User Cell Filter # 1 since the last read of this register. Depending upon the configuration settings within the "Receive ATM Cell Processor Block - Receive User Cell Filter Control - User Cell Filter # 1" Register (Address = 0x1753), these register bits will be incremented anytime User Cell Filter # 1 performs any of the following functions. Discards an incoming "User Cell". Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Receive Cell Extraction Buffer. Both the above actions. Note: If the number of "filtered cells" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 1 - FILTERED CELL COUNT - BYTE 0 (ADDRESS = 0X175F)

BIT 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0
	User Cell Filter # 1 - Filtered Cell Count[7:0]						
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	User Cell Filter # 1 - Fil- tered Cell Count[7:0]	RUR	 User Cell Filter # 1 - Filtered Cell Count[7:0]: These RESET-upon-READ bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 1 - Filtered Cell Count - Bytes 3" through "1" register contain a 32- bit expression for the number of User Cells that have been fil- tered by User Cell Filter # 1 since the last read of this register. Depending upon the configuration settings within the "Receive ATM Cell Processor Block - Receive User Cell Filter Control - User Cell Filter # 1" Register (Address = 0x1753), these register bits will be incremented anytime User Cell Filter # 1 performs any of the following functions. Discards an incoming "User Cell". Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Receive Cell Extraction Buffer. Both the above actions. This particular register contains the LSB (Least Significant Byte) value for this 32-bit expression. NOTE: If the number of "filtered cells" reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

XPEXAR

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER CONTROL - FILTER 2 (ADDRESS = 0X1763)

Віт 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Unused				User Cell Fil- ter # 0 Enable	Copy Cell Enable	Discard Cell Enable	Filter if Pat- tern Match
R/O	R/O	R/O	R/O	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 4	Unused	R/O	
3	User Cell Filter # 2 Enable	R/W	 User Cell Filter # 2 - Enable: This READ/WRITE bit-field permits the user to either enable or disable User Cell Filter # 2. If the user enables User Cell Filter # 0, then User Cell Filter # 2 will function per the configuration settings in Bits 2 through 0, within this register. If the user disables User Cell Filter # 2, then User Cell Filter # 0 then all cells that are applied to the input of User Cell Filter # 2 will pass through to the output of User Cell Filter # 2. 0 - Disables User Cell Filter # 2. 1 - Enables User Cell Filter # 2.
2	Copy Cell Enable	R/W	 Copy Cell Enable - User Cell Filter # 2: This READ/WRITE bit-field permits the user to either configure User Cell Filter # 2 (within the Receive ATM Cell Processor Block) to copy all cells that have header byte patterns that comply with the "user-defined" criteria, per User Cell Filter # 2, or to NOT copy any of these cells. If the user configures User Cell Filter # 2 to copy all cells complying with a certain "header-byte" pattern, then a copy (or replicate) of this "compliant" ATM cell will be routed to the Receive Cell Extraction Buffer. If the user configures User Cell Filter # 2 to NOT copy all cells complying with a certain "header-byte" pattern, then NO copies (or replicates) of these "compliant" ATM cells will be made nor will any be routed to the Receive Cell Extraction Buffer. 0 - Configures User Cell Filter # 2 to NOT copy any cells that have header byte patterns which are compliant with the "user-defined" filtering criteria. 1 - Configures User Cell Filter # 2 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures User Cell Filter # 2 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures User Cell Filter # 2 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures User Cell Filter # 2 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures User Cell Filter # 2 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria, and to route these copies (of cells) to the Receive Cell Extraction Buffer. Note: This bit-field is only active if "User Cell Filter # 0" has been enabled.

XRT79L71 REV. P1.0.3

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
1	Discard Cell Enable	R/W	 Discard Cell Enable - User Cell Filter # 0: This READ/WRITE bit-field permits the user to either configure User Cell Filter # 2 (within the Receive ATM Cell Processor Block) to discard all cells that have header byte patterns that comply with the "user-defined" criteria, per User Cell Filter # 2, or NOT discard any of these cells. If the user configures User Cell Filter # 2 to NOT discarded any cells that is compliant with a certain "header-byte" pattern, then the cell will be retained for further processing. 0 - Configures User Cell Filter # 2 to NOT discard any cells that have header byte patterns that are compliant with the "user- defined" filtering criteria. 1 - Configures User Cell Filter # 2 to discard any cells that have header byte patterns that are compliant with the "user- defined" filtering criteria. NOTE: This bit-field is only active if "User Cell Filter # 0" has been enabled.
0	Filter if Pattern Match	R/W	 Filter if Pattern Match - User Cell Filter # 0: This READ/WRITE bit-field permits the user to either configure User Cell Filter # 2 to filter (based upon the configuration set- tings for Bits 1 and 2, in this register) ATM cells with header bytes that match the "user-defined" header byte patterns, or to filter ATM cells with header bytes that do NOT match the "user- defined" header byte patterns. 0 - Configures User Cell Filter # 2 to filter user cells that do NOT match the header byte patterns (as defined in the " " registers). 1 - Configures User Cell Filter # 2 to filter user cells that do match the header byte patterns (as defined in the " " registers). NOTE: This bit-field is only active if "User Cell Filter # 2" has been enabled.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - PATTERN REGISTER -HEADER BYTE 1 (ADDRESS = 0X1764)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0	
User Cell Filter # 2 - Pattern Register - Byte 1 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	User Cell Filter # 2 - Pat- tern Register - Header Byte 1	R/W	User Cell Filter # 2 - Pattern Register - Header Byte 1: The User Cell filtering criteria (for User Cell Filter # 0) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Check Register - Header Byte 1" permits the user to define the User Cell Filtering criteria for "Octet # 1" of the incoming User Cell. The user will write the header byte pattern (for Octet 1) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Check Register - Header Byte 1" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - PATTERN REGISTER -HEADER BYTE 2 (ADDRESS = 0X1765)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0		
	User Cell Filter # 2 - Pattern Register - Byte 2 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 0 - Pat- tern Register - Header Byte 2	R/W	User Cell Filter # 2 - Pattern Register - Header Byte 2: The User Cell filtering criteria (for User Cell Filter # 2) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Check Register - Header Byte 2" permits the user to define the User Cell Filtering criteria for "Octet # 2" of the incoming User Cell. The user will write the header byte pattern (for Octet 2) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Check Register - Header Byte 2" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - PATTERN REGISTER -HEADER BYTE 3 (ADDRESS = 0X1766)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0		
	User Cell Filter # 2 - Pattern Register - Byte 3 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 2 - Pat- tern Register - Header Byte 3	R/W	User Cell Filter # 2 - Pattern Register - Header Byte 3: The User Cell filtering criteria (for User Cell Filter # 2) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Check Register - Header Byte 3" permits the user to define the User Cell Filtering criteria for "Octet # 3" of the incoming User Cell. The user will write the header byte pattern (for Octet 3) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Check Register - Header Byte 3" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - PATTERN REGISTER -HEADER BYTE 4 (ADDRESS = 0X1767)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0		
	User Cell Filter # 2 - Pattern Register - Byte 4 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 2 - Pat- tern Register - Header Byte 4	R/W	User Cell Filter # 2 - Pattern Register - Header Byte 4: The User Cell filtering criteria (for User Cell Filter # 2) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Check Register - Header Byte 4" permits the user to define the User Cell Filtering criteria for "Octet # 4" of the incoming User Cell. The user will write the header byte pattern (for Octet 4) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Check Register - Header Byte 4" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

T - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - CHECK REGISTER -BYTE 1 (ADDRESS = 0X1768)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
User Cell Filter # 2 - Check Register - Byte 1 [7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7-0	User Cell Filter # 2 - Check Register - Header Byte 1	R/W	User Cell Filter # 2 - Check Register - Header Byte 1: The User Cell filtering criteria (for User Cell Filter # 2) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Register - Header Byte 1" permits the user to define the User Cell Filter- ing criteria for "Octet # 1" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 1" of the incoming user cell (in the Receive ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the User Cell Filter to check and compare the corresponding bit in "Octet # 1" (of the incoming user cell) with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Register - Header Byte 1". Writing a "0" to a particular bit-field in this register causes the User Cell Filter to treat the corresponding bit within "Octet # 1" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 1" of the incoming user cell with the corresponding bit in "Octet # 1" of the incoming user cell with the corresponding bit in "Cett # 1" of the incoming user cell with the corresponding bit in "Octet # 1" of the incoming user cell with the corresponding bit in "Octet # 1" of the incoming user cell with the corresponding bit in the "Receive ATM Cell Processor Blo

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - CHECK REGISTER -BYTE 2 (ADDRESS = 0X1769)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	BIT 0	
User Cell Filter # 2 - Check Register - Byte 2 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER	Nаме	Түре	DESCRIPTION
7 - 0	User Cell Filter # 2 - Check Register - Header Byte 2	R/W	User Cell Filter # 2 - Check Register - Header Byte 2: The User Cell filtering criteria (for User Cell Filter # 2) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Register - Header Byte 2" permits the user to define the User Cell Filter- ing criteria for "Octet # 2" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 2" of the incoming user cell (in the Receive ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter # 2 - Pattern Register - Header Byte 2" by the User Cell Filter # 2 - Pattern Register - Header Byte 2" by the User Cell Filter # 2 - Pattern Register - Header Byte 2" by the User Cell Filter # 2 - Pattern Register - Header Byte 2" by the User Cell Filter # 2 - Pattern Register - Header Byte 2" by the User Cell Filter # 2 - Pattern Register - Header Byte 2" by the User Cell Filter # 2 - Pattern Register - Header Byte 2" log the incoming user cell) with the corresponding bit in "Octet # 2" (of the incoming user cell) with the corresponding bit in "Octet # 2" (of the incoming user cell) with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Register - Header Byte 2". Writing a "0" to a particular bit-field in this register causes the User Cell Filter to treat the corresponding bit within "Octet # 2" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 2" of the incoming user cell wit

T - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - CHECK REGISTER -BYTE 3 (ADDRESS = 0X176A)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0		
	User Cell Filter # 2 - Check Register - Byte 3 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 2 - Check Register - Header Byte 3	R/W	User Cell Filter # 2 - Check Register - Header Byte 3: The User Cell filtering criteria (for User Cell Filter # 2) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Register - Header Byte 3" permits the user to define the User Cell Filter- ing criteria for "Octet # 3" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 3" of the incoming user cell (in the Receive ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the User Cell Filter to check and compare the corresponding bit in "Octet # 3" (of the incoming user cell) with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Register - Header Byte 3". Writing a "0" to a particular bit-field in this register causes the User Cell Filter to treat the corresponding bit within "Octet # 3" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 3" of the incoming user cell with the corresponding bit in "Octet # 3" of the incoming user cell with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Register - Header Byte 3").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - CHECK REGISTER -BYTE 4 (ADDRESS = 0X176B)

Віт 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	BIT 0	
User Cell Filter # 2 - Check Register - Byte 4 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	User Cell Filter # 2 - Check Register - Header Byte 4	R/W	User Cell Filter # 2 - Check Register - Header Byte 4: The User Cell filtering criteria (for User Cell Filter # 2) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Register - Header Byte 4" permits the user to define the User Cell Filter- ing criteria for "Octet # 4" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 4" of the incoming user cell (in the Receive ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter # 2 - Pattern Register - Header Byte 4" by the User Cell Filter # 2 - Pattern Register - Header Byte 4" by the User Cell Filter # 2 - Pattern Register - Header Byte 4" by the User Cell Filter # 2 - Pattern Register - Header Byte 4" by the User Cell Filter # 2 - Pattern Register - Header Byte 4" by the User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the User Cell Filter to check and compare the corresponding bit in "Octet # 4" (of the incoming user cell) with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Pattern Register - Header Byte 4". Writing a "0" to a particular bit-field in this register causes the User Cell Filter to treat the corresponding bit within "Octet # 4" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 4" of the incoming user cell with the corresponding bit in "Octet # 4" of the

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - FILTERED CELL COUNT - BYTE 3 (ADDRESS = 0X176C)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0	
User Cell Filter # 2 - Filtered Cell Count[31:24]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 2 - Fil- tered Cell Count[31:24]	RUR	 User Cell Filter # 2 - Filtered Cell Count[31:24]: These RESET-upon-READ bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 Filtered Cell Count - Bytes 2" through "0" register contain a 32- bit expression for the number of User Cells that have been fil- tered by User Cell Filter # 2 since the last read of this register. Depending upon the configuration settings within the "Receive ATM Cell Processor Block - Receive User Cell Filter Control - User Cell Filter # 2" Register (Address = 0x1763), these register bits will be incremented anytime User Cell Filter # 2 performs any of the following functions. Discards an incoming "User Cell". Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Receive Cell Extraction Buffer. Both the above actions. This particular register contains the MSB (Most Significant Byte) value for this 32-bit expression. NoTE: If the number of "filtered cells" reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - FILTERED CELL COUNT - BYTE 2 (ADDRESS = 0X176D)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0	
User Cell Filter # 2 - Filtered Cell Count[23:16]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	User Cell Filter # 2 - Fil- tered Cell Count[23:16]	RUR	 User Cell Filter # 2 - Filtered Cell Count[23:16]: These RESET-upon-READ bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Filtered Cell Count - Bytes 3, 1 and 0" register contain a 32-bit expression for the number of User Cells that have been filtered by User Cell Filter # 2 since the last read of this register. Depending upon the configuration settings within the "Receive ATM Cell Processor Block - Receive User Cell Filter Control - User Cell Filter # 2" Register (Address = 0x1763), these register bits will be incremented anytime User Cell Filter # 2 performs any of the following functions. Discards an incoming "User Cell".
			• Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Receive Cell Extraction Buffer.
			Both the above actions.
			Note: If the number of "filtered cells" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - FILTERED CELL COUNT - BYTE 1 (ADDRESS = 0X176E)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	
User Cell Filter # 2 - Filtered Cell Count[15:8]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 2 - Fil- tered Cell Count[15:8]	RUR	 User Cell Filter # 2 - Filtered Cell Count[15:8]: These RESET-upon-READ bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 Filtered Cell Count - Bytes 3, 2 and 0" register contain a 32-bit expression for the number of User Cells that have been filtered by User Cell Filter # 2 since the last read of this register. Depending upon the configuration settings within the "Receive ATM Cell Processor Block - Receive User Cell Filter Control - User Cell Filter # 2" Register (Address = 0x1763), these register bits will be incremented anytime User Cell Filter # 2 performs any of the following functions. Discards an incoming "User Cell" Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Receive Cell Extraction Buffer Both the above actions. Note: If the number of "filtered cells" reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 2 - FILTERED CELL COUNT - BYTE 0 (ADDRESS = 0X176F)

BIT 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	BIT 0	
User Cell Filter # 2 - Filtered Cell Count[7:0]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	User Cell Filter # 2 - Fil- tered Cell Count[7:0]	RUR	 User Cell Filter # 2 - Filtered Cell Count[7:0]: These RESET-upon-READ bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 2 - Filtered Cell Count - Bytes 3" through "1" register contain a 32- bit expression for the number of User Cells that have been fil- tered by User Cell Filter # 2 since the last read of this register. Depending upon the configuration settings within the "Receive ATM Cell Processor Block - Receive User Cell Filter Control - User Cell Filter # 2" Register (Address = 0x1763), these register bits will be incremented anytime User Cell Filter # 2 performs any of the following functions. Discards an incoming "User Cell". Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Receive Cell Extraction Buffer. Both the above actions. This particular register contains the LSB (Least Significant Byte) value for this 32-bit expression. Note: If the number of "filtered cells" reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER CONTROL - FILTER 3 (ADDRESS = 0X1773)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Unused				User Cell Filter # 3 Enable	Copy Cell Enable	Discard Cell Enable	Filter if Pattern Match
R/O	R/O	R/O	R/O	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 4	Unused	R/O	
3	User Cell Filter # 3 Enable	R/W	 User Cell Filter # 3 - Enable: This READ/WRITE bit-field permits the user to either enable or disable User Cell Filter # 3. If the user enables User Cell Filter # 3, then User Cell Filter # 3 will function per the configuration settings in Bits 2 through 0, within this register. If the user disables User Cell Filter # 3, then User Cell Filter # 3 then all cells that are applied to the input of User Cell Filter # 3. 0 - Disables User Cell Filter # 3. 1 - Enables User Cell Filter # 3.
2	Copy Cell Enable	R/W	 Copy Cell Enable - User Cell Filter # 3: This READ/WRITE bit-field permits the user to either configure User Cell Filter # 3 (within the Receive ATM Cell Processor Block) to copy all cells that have header byte patterns that comply with the "user-defined" criteria, per User Cell Filter # 3, or to NOT copy any of these cells. If the user configures User Cell Filter # 3 to copy all cells complying with a certain "header-byte" pattern, then a copy (or replicate) of this "compliant" ATM cell will be routed to the Receive Cell Extraction Buffer. If the user configures User Cell Filter # 3 to NOT copy all cells complying with a certain "header-byte" pattern, then NO copies (or replicates) of these "compliant" ATM cells will be made nor will any be routed to the Receive Cell Extraction Buffer. 0 - Configures User Cell Filter # 3 to NOT copy any cells that have header byte patterns which are compliant with the "user-defined" filtering criteria. 1 - Configures User Cell Filter # 3 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures User Cell Filter # 3 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures User Cell Filter # 3 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures User Cell Filter # 3 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures User Cell Filter # 3 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria, and to route these copies (of cells) to the Receive Cell Extraction Buffer. NoTE: This bit-field is only active if "User Cell Filter # 0" has been enabled.

XRT79L71 REV. P1.0.3

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION	
1	Discard Cell Enable	R/W	 Discard Cell Enable - User Cell Filter # 3: This READ/WRITE bit-field permits the user to either configure User Cell Filter # 3 (within the Receive ATM Cell Processor Block) to discard all cells that have header byte patterns that comply with the "user-defined" criteria, per User Cell Filter # 3, o NOT discard any of these cells. If the user configures User Cell Filter # 3 to NOT discarded any cells that is compliant with a certain "header-byte" pattern, then the cell will be retained for further processing. 0 - Configures User Cell Filter # 3 to NOT discard any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures User Cell Filter # 3 to discard any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. NOTE: This bit-field is only active if "User Cell Filter # 3" has been enabled. 	
0	Filter if Pattern Match	R/W	 Filter if Pattern Match - User Cell Filter # 3: This READ/WRITE bit-field permits the user to either configure User Cell Filter # 3 to filter (based upon the configuration settings for Bits 1 and 2, in this register) ATM cells with header bytes that match the "user-defined" header byte patterns, or to filter ATM cells with header bytes that do NOT match the "user-defined" header byte patterns. 0 - Configures User Cell Filter # 3 to filter user cells that do NOT match the header byte patterns (as defined in the " " registers). 1 - Configures User Cell Filter # 3 to filter user cells that do match the header byte patterns (as defined in the " " registers). NOTE: This bit-field is only active if "User Cell Filter # 3" has been enabled. 	

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - PATTERN REGISTER -HEADER BYTE 1 (ADDRESS = 0X1774)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
Unused				User Cell Fil- ter # 3 Enable	Copy Cell Enable	Discard Cell Enable	Filter if Pat- tern Match
R/O	R/O	R/O	R/O	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 4	Unused	R/O	

PRELIMINARY

XRT79L71 *REV. P1.0.3*

BIT NUMBER	NAME	Түре	DESCRIPTION
3	User Cell Filter # 3 Enable	R/W	User Cell Filter # 3 - Enable: This READ/WRITE bit-field permits the user to either enable or disable User Cell Filter # 3. If the user enables User Cell Filter # 3, then User Cell Filter # 3 will function per the configuration set- tings in Bits 2 through 0, within this register. If the user disables User Cell Filter # 3, then User Cell Filter # 3 then all cells that are applied to the input of User Cell Filter # 3 will pass through to the output of User Cell Filter # 3. 0 - Disables User Cell Filter # 3. 1 - Enables User Cell Filter # 3.
2	Copy Cell Enable	R/W	Copy Cell Enable - User Cell Filter # 3:This READ/WRITE bit- field permits the user to either configure User Cell Filter # 3 (within the Receive ATM Cell Processor Block) to copy all cells that have header byte patterns that comply with the "user- defined" criteria, per User Cell Filter # 3, or to NOT copy any of these cells. If the user configures User Cell Filter # 3 to copy all cells comply- ing with a certain "header-byte" pattern, then a copy (or repli- cate) of this "compliant" ATM cell will be routed to the Receive Cell Extraction Buffer. If the user configures User Cell Filter # 3 to NOT copy all cells complying with a certain "header-byte" pattern, then NO copies (or replicates) of these "compliant" ATM cells will be made nor will any be routed to the Receive Cell Extraction Buffer. 0 - Configures User Cell Filter # 3 to NOT copy any cells that have header byte patterns which are compliant with the "user- defined" filtering criteria. 1 - Configures User Cell Filter # 3 to copy any cells that have header byte patterns that are compliant with the "user- defined" filtering criteria. 1 - Configures User Cell Filter # 3 to copy any cells that have header byte patterns that are compliant with the "user- defined" filtering criteria. 1 - Configures User Cell Filter # 3 to copy any cells that have header byte patterns that are compliant with the "user- defined" filtering criteria. NOTE: This bit-field is only active if "User Cell Filter # 0" has been enabled.
1	Discard Cell Enable	R/W	 Discard Cell Enable - User Cell Filter # 3:This READ/WRITE bitfield permits the user to either configure User Cell Filter # 3 (within the Receive ATM Cell Processor Block) to discard all cells that have header byte patterns that comply with the "user-defined" criteria, per User Cell Filter # 3, or NOT discard any of these cells. If the user configures User Cell Filter # 3 to NOT discarded any cells that is compliant with a certain "header-byte" pattern, then the cell will be retained for further processing. 0 - Configures User Cell Filter # 3 to NOT discard any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures User Cell Filter # 3 to discard any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. NOTE: This bit-field is only active if "User Cell Filter # 3" has been enabled.

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
0	Filter if Pattern Match	R/W	 Filter if Pattern Match - User Cell Filter # 3:This READ/WRITE bit-field permits the user to either configure User Cell Filter # 3 to filter (based upon the configuration settings for Bits 1 and 2, in this register) ATM cells with header bytes that match the "user-defined" header byte patterns, or to filter ATM cells with header bytes that do NOT match the "user-defined" header byte patterns. 0 - Configures User Cell Filter # 3 to filter user cells that do NOT match the header byte patterns (as defined in the " registers). 1 - Configures User Cell Filter # 3 to filter user cells that do match the header byte patterns (as defined in the " registers). NOTE: This bit-field is only active if "User Cell Filter # 3" has been enabled.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - PATTERN REGISTER -HEADER BYTE 1 (ADDRESS = 0X1774)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0		
User Cell Filter # 3 - Pattern Register - Byte 1 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 3 - Pat- tern Register - Header Byte 1	R/W	User Cell Filter # 3 - Pattern Register - Header Byte 1: The User Cell filtering criteria (for User Cell Filter # 3) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Check Register - Header Byte 1" permits the user to define the User Cell Filtering criteria for "Octet # 1" of the incoming User Cell. The user will write the header byte pattern (for Octet 1) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Check Register - Header Byte 1" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - PATTERN REGISTER -HEADER BYTE 2 (ADDRESS = 0X1775)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0	
User Cell Filter # 3 - Pattern Register - Byte 2 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	User Cell Filter # 3 - Pat- tern Register - Header Byte 2	R/W	User Cell Filter # 3 - Pattern Register - Header Byte 2: The User Cell filtering criteria (for User Cell Filter # 3) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Check Register - Header Byte 2" permits the user to define the User Cell Filtering criteria for "Octet # 2" of the incoming User Cell. The user will write the header byte pattern (for Octet 2) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Check Register - Header Byte 2" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - PATTERN REGISTER -HEADER BYTE 3 (ADDRESS = 0X1776)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0		
User Cell Filter # 3 - Pattern Register - Byte 3 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	User Cell Filter # 3 - Pat- tern Register - Header Byte 3	R/W	User Cell Filter # 3 - Pattern Register - Header Byte 3: The User Cell filtering criteria (for User Cell Filter # 3) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Check Register - Header Byte 3" permits the user to define the User Cell Filtering criteria for "Octet # 3" of the incoming User Cell. The user will write the header byte pattern (for Octet 3) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Check Register - Header Byte 3" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - PATTERN REGISTER -HEADER BYTE 4 (ADDRESS = 0X1777)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0		
User Cell Filter # 3 - Pattern Register - Byte 4 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 3 - Pat- tern Register - Header Byte 4	R/W	User Cell Filter # 3 - Pattern Register - Header Byte 4: The User Cell filtering criteria (for User Cell Filter # 3) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Check Register - Header Byte 4" permits the user to define the User Cell Filtering criteria for "Octet # 4" of the incoming User Cell. The user will write the header byte pattern (for Octet 4) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Check Register - Header Byte 4" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - CHECK REGISTER -BYTE 1 (ADDRESS = 0X1778)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	BIT 0			
User Cell Filter # 3 - Check Register - Byte 1 [7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	Nаме	Түре	DESCRIPTION
7-0	User Cell Filter # 3 - Check Register - Header Byte 1	R/W	User Cell Filter # 3 - Check Register - Header Byte 1: The User Cell filtering criteria (for User Cell Filter # 3) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Register - Header Byte 1" permits the user to define the User Cell Filter- ing criteria for "Octet # 1" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 1" of the incoming user cell (in the Receive ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the User Cell Filter to check and compare the corresponding bit in "Octet # 1" (of the incoming user cell) with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Register - Header Byte 1". Writing a "0" to a particular bit-field in this register causes the User Cell Filter to treat the corresponding bit within "Octet # 1" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 1" of the incoming user cell with the corresponding bit in "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Register - Header Byte 1").

T - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - CHECK REGISTER -BYTE 2 (ADDRESS = 0X1779)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0		
User Cell Filter # 3 - Check Register - Byte 2 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 3 - Check Register - Header Byte 2	R/W	User Cell Filter # 3 - Check Register - Header Byte 2: The User Cell filtering criteria (for User Cell Filter # 3) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Register - Header Byte 2" permits the user to define the User Cell Filter- ing criteria for "Octet # 2" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 2" of the incoming user cell (in the Receive ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the User Cell Filter to check and compare the corresponding bit in "Octet # 2" (of the incoming user cell) with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Register - Header Byte 2". Writing a "0" to a particular bit-field in this register causes the User Cell Filter to treat the corresponding bit within "Octet # 2" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 2" of the incoming user cell with the corresponding bit in "Octet # 2" of the incoming user cell with the corresponding bit in "Cett # 2" of the incoming user cell with the corresponding bit in "Cett # 2" of the incoming user cell with the corresponding bit in "Cett # 2" of the incoming user cell with the corresponding bit in "Cett # 2" of the incomparison between the corresponding bit in "Cett

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - CHECK REGISTER -BYTE 3 (ADDRESS = 0X177A)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	BIT 0			
User Cell Filter # 3 - Check Register - Byte 3 [7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 3 - Check Register - Header Byte 3	R/W	User Cell Filter # 3 - Check Register - Header Byte 3: The User Cell filtering criteria (for User Cell Filter # 3) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Register - Header Byte 3" permits the user to define the User Cell Filter- ing criteria for "Octet # 3" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 3" of the incoming user cell (in the Receive ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter # 3 - Pattern Register - Header Byte 3" by the User Cell Filter # 3 - Pattern Register - Header Byte 3" by the User Cell Filter # 3 - Pattern Register - Header Byte 3" by the User Cell Filter # 3 - Pattern Register - Header Byte 3" by the User Cell Filter # 3 - Pattern Register - Header Byte 3" log the incoming user cell) with the corresponding bit in "Octet # 3" (of the incoming user cell) with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Register - Header Byte 3". Writing a "0" to a particular bit-field in this register causes the User Cell Filter to treat the corresponding bit within "Octet # 3" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 3" of the incoming user cell with the corresponding bit in "Octet # 3" of the incoming user cell with the corresponding bit in "Octet # 3" of the incoming user cell with the corresponding bit in the "Receive ATM Cell Processor Blo

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

XPEXAR

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - CHECK REGISTER -BYTE 4 (ADDRESS = 0X177B)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0		
User Cell Filter # 3 - Check Register - Byte 4 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 3 - Check Register - Header Byte 4	R/W	User Cell Filter # 3 - Check Register - Header Byte 4: The User Cell filtering criteria (for User Cell Filter # 3) is defined based upon the contents of 9 read/write registers. These regis- ters are the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Registers", the four "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Check Reg- isters" and the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 Control Register. This READ/WRITE register, along with the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Register - Header Byte 4" permits the user to define the User Cell Filter- ing criteria for "Octet # 4" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 4" of the incoming user cell (in the Receive ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Receive ATM Cell Pro- cessor Block - Receive User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the User Cell Filter to check and compare the corresponding bit in "Octet # 4" (of the incoming user cell) with the corresponding bit in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Pattern Register - Header Byte 4". Writing a "0" to a particular bit-field in this register causes the User Cell Filter to treat the corresponding bit within "Octet # 4" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 4" of the incoming user cell with the corresponding bit in "Octet # 4" of the incoming user cell with the corresponding bit in "Cett # 4" of the incoming user cell with the corresponding bit in "Cett # 4" of the incoming user cell with the corresponding bit in "Cett # 4" of the incoming user cell with the corresponding bit in "Cett # 4" of the incomparison between the corresponding bit in "Cett

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - FILTERED CELL COUNT - BYTE 3 (ADDRESS = 0X177C)

Віт 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	BIT 0			
User Cell Filter # 3 - Filtered Cell Count[31:24]										
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 3 - Fil- tered Cell Count[31:24]	RUR	 User Cell Filter # 3 - Filtered Cell Count[31:24]: These RESET-upon-READ bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Filtered Cell Count - Bytes 2" through "0" register contain a 32- bit expression for the number of User Cells that have been fil- tered by User Cell Filter # 3 since the last read of this register. Depending upon the configuration settings within the "Receive ATM Cell Processor Block - Receive User Cell Filter Control - User Cell Filter # 3" Register (Address = 0x1773), these register bits will be incremented anytime User Cell Filter # 3 performs any of the following functions. Discards an incoming "User Cell". Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Receive Cell Extraction Buffer Both the above actions. This particular register contains the MSB (Most Significant Byte) value for this 32-bit expression. Note: If the number of "filtered cells" reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - FILTERED CELL COUNT - BYTE 2 (ADDRESS = 0X177D)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
User Cell Filter # 3 - Filtered Cell Count[23:16]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 3 - Fil- tered Cell Count[23:16]	RUR	 User Cell Filter # 3 - Filtered Cell Count[23:16]: These RESET-upon-READ bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 Filtered Cell Count - Bytes 3, 1 and 0" register contain a 32-bit expression for the number of User Cells that have been filtered by User Cell Filter # 3 since the last read of this register. Depending upon the configuration settings within the "Receive ATM Cell Processor Block - Receive User Cell Filter Control - User Cell Filter # 3" Register (Address = 0x1773), these register bits will be incremented anytime User Cell Filter # 3 performs any of the following functions. Discards an incoming "User Cell". Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Receive Cell Extraction Buffer. Both the above actions. NOTE: If the number of "filtered cells" reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - FILTERED CELL COUNT - BYTE 1 (ADDRESS = 0X177E)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
User Cell Filter # 3 - Filtered Cell Count[15:8]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	User Cell Filter # 3 - Fil- tered Cell Count[15:8]	RUR	 User Cell Filter # 3 - Filtered Cell Count[15:8]: These RESET-upon-READ bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Filtered Cell Count - Bytes 3, 2 and 0" register contain a 32-bit expression for the number of User Cells that have been filtered by User Cell Filter # 3 since the last read of this register. Depending upon the configuration settings within the "Receive ATM Cell Processor Block - Receive User Cell Filter Control - User Cell Filter # 3" Register (Address = 0x1773), these register bits will be incremented anytime User Cell Filter # 3 performs any of the following functions. Discards an incoming "User Cell".
			• Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Receive Cell Extraction Buffer.
			Both the above actions.
			Note: If the number of "filtered cells" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

RECEIVE ATM CELL PROCESSOR BLOCK - RECEIVE USER CELL FILTER # 3 - FILTERED CELL COUNT - BYTE 0 (ADDRESS = 0X177F)

Віт 7	BIT 6	Віт 5	Віт 4	BIT 3	BIT 2	BIT 1	BIT 0
User Cell Filter # 3 - Filtered Cell Count[7:0]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	User Cell Filter # 3 - Fil- tered Cell Count[7:0]	RUR	 User Cell Filter # 3 - Filtered Cell Count[7:0]: These RESET-upon-READ bit-fields, along with that in the "Receive ATM Cell Processor Block - Receive User Cell Filter # 3 - Filtered Cell Count - Bytes 3" through "1" register contain a 32- bit expression for the number of User Cells that have been fil- tered by User Cell Filter # 3 since the last read of this register. Depending upon the configuration settings within the "Receive ATM Cell Processor Block - Receive User Cell Filter Control - User Cell Filter # 3" Register (Address = 0x1773), these register bits will be incremented anytime User Cell Filter # 3 performs any of the following functions. Discards an incoming "User Cell" Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Receive Cell Extraction Buffer Both the above actions. This particular register contains the LSB (Least Significant Byte) value for this 32-bit expression. NOTE: If the number of "filtered cells" reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

RECEIVE PPP PACKET PROCESSOR BLOCK (PPP APPLICATIONS ONLY)

RECEIVE PPP PACKET PROCESSOR BLOCK - RECEIVE PPP CONTROL REGISTER (ADDRESS = 0X1703)

Віт 7	BIT 6	BIT 5	BIT 4	BIT 3	Віт 2	BIT 1	Віт 0
Unu	ised	Receive CRC-32/ CRC-16*	RxFIFO Over- flow ABORT Enable	Unused	De-Scramble Enable	Delete FCS from Incoming Packet	Receive PPP Packet Pro- cessor Block Enable
R/O	R/O	R/W	R/W	R/O	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 6	Unused	R/O	
5	Receive CRC-32/CRC- 16*	R/W	 Receive CRC-32/CRC-16* Select: This READ/WRITE bit-field permits the user to configure the Receive PPP Packet Processor block to either compute and verify a CRC-32 or CRC-16 within the incoming PPP packet-stream. 0 - Configures the Receive PPP Packet Processor block to compute and verify a CRC-16 value within each incoming PPP packet. 1 - Configures the Receive PPP Packet Processor block to compute and verify a CRC-32 value within each incoming PPP packet.
4	RxFIFO Overflow ABORT Enable	R/W	
3	Unused	R/O	
2	Descramble Enable	R/W	
1	Delete FCS from Incom- ing Packet	R/W	
0	Receive PPP Packet Pro- cessor Block Enable	R/W	

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TRANSMIT ATM CELL PROCESSOR BLOCK

This section presents the Register Description/Address Map of the control registers associated with the Transmit ATM Cell Processor block.

TABLE 18: TRANSMIT ATM CELL PROCESSOR/PPP PACKET PROCESSOR BLOCK - REGISTER/ADDRESS MAP

Address Location	REGISTER NAME	Түре	Default Value				
TRANSMIT ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS							
0x1F00	Transmit ATM Cell Processor Control Register - Byte 3	R/W	0x00				
0x1F01	Transmit ATM Cell Processor Control Register - Byte 2	R/W	0x00				
0x1F02	Transmit ATM Cell Processor Control Register - Byte 1	R/W	0x00				
0x1F03	Transmit ATM Cell/PPP Processor Control Register - Byte 0	R/W	0x00				
0x1F04 - 0x1F06	Reserved	R/O	0x00				
0x1F07	Transmit ATM Status Register	R/O	0x00				
0x1F05 - 0x1F0A	Reserved	R/O	0x00				
0x1F0B	Transmit ATM Cell/PPP Processor Interrupt Status Register	RUR	0x00				
0x1F0C - 0x1F0E	Reserved	R/O	0x00				
0x1F0F	Transmit ATM Cell/PPP Processor Interrupt Enable Register	R/W	0x00				
0x1F10 - 0x1F12	Reserved	R/O	0x00				
0x1F13	Transmit ATM Cell Insertion/Extraction Memory Control Register	R/O & R/ W	0x00				
0x1F14	Transmit ATM Cell Insertion/Extraction Memory - Byte 3	R/W	0x00				
0x1F15	Transmit ATM Cell Insertion/Extraction Memory - Byte 2	R/W	0x00				
0x1F16	Transmit ATM Cell Insertion/Extraction Memory - Byte 1	R/W	0x00				
0x1F17	Transmit ATM Cell Insertion/Extraction Memory - Byte 0	R/W	0x00				
0x1F18	Transmit ATM Cell - Idle Cell Header Byte # 1 Register	R/W	0x00				
0x1F19	Transmit ATM Cell - Idle Cell Header Byte # 2 Register	R/W	0x00				
0x1F1A	Transmit ATM Cell - Idle Cell Header Byte # 3 Register	R/W	0x00				
0x1F1B	Transmit ATM Cell - Idle Cell Header Byte # 4 Register	R/W	0x00				
0x1F1C - 0x1F1E	Reserved	R/O	0x00				
0x1F1F	Transmit ATM Cell - Idle Cell Payload Byte Register	R/W	0x00				
0x1F20	Transmit ATM Cell - Test Cell Header Byte # 1 Register	R/W	0x00				
0x1F21	Transmit ATM Cell - Test Cell Header Byte # 2 Register	R/W	0x00				
0x1F22	Transmit ATM Cell - Test Cell Header Byte # 3 Register	R/W	0x00				
0x1F23	Transmit ATM Cell - Test Cell Header Byte # 4 Register	R/W	0x00				
0x1F24 - 0x1F27	Reserved	R/O	0x00				
0x1F28	Transmit ATM Cell - Cell Count Register - Byte 3	RUR	0x00				

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TABLE 18: TRANSMIT ATM CELL PROCESSOR/PPP PACKET PROCESSOR BLOCK - REGISTER/ADDRESS MAP

Address Location	REGISTER NAME	Түре	DEFAULT VALUE
т	RANSMIT ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTER	RS	
0x1F29	Transmit ATM Cell - Cell Count Register - Byte 2	RUR	0x00
0x1F2A	Transmit ATM Cell - Cell Count Register - Byte 1	RUR	0x00
0x1F2B	Transmit ATM Cell - Cell Count Register - Byte 0	RUR	0x00
0x1F2C	Transmit ATM Cell - Discard Cell Count Register - Byte 3	RUR	0x00
0x1F2D	Transmit ATM Cell - Discard Cell Count Register - Byte 2	RUR	0x00
0x1F2E	Transmit ATM Cell - Discard Cell Count Register - Byte 1	RUR	0x00
0x1F2F	Transmit ATM Cell - Discard Cell Count Register - Byte 0	RUR	0x00
0x1F30	Transmit ATM Cell - HEC Byte Error Count Register - Byte 3	RUR	0x00
0x1F31	Transmit ATM Cell - HEC Byte Error Count Register - Byte 2	RUR	0x00
0x1F32	Transmit ATM Cell - HEC Byte Error Count Register - Byte 1	RUR	0x00
0x1F33	Transmit ATM Cell - HEC Byte Error Count Register - Byte 0	RUR	0x00
0x1F34	Transmit ATM Cell - Parity Error Count Register - Byte 3	RUR	0x00
0x1F35	Transmit ATM Cell - Parity Error Count Register - Byte 2	RUR	0x00
0x1F36	Transmit ATM Cell - Parity Error Count Register - Byte 1	RUR	0x00
0x1F37	Transmit ATM Cell - Parity Error Count Register - Byte 0	RUR	0x00
0x1F38 - 0x1F42	Reserved	R/O	0x00
0x1F43	Transmit ATM Controller - Transmit ATM Filter # 0 Control Register	R/W	0x00
0x1F44	Transmit ATM Controller - Transmit ATM Filter # 0 Pattern - Header Byte 1	R/W	0x00
0x1F45	Transmit ATM Controller - Transmit ATM Filter # 0 Pattern - Header Byte 2	R/W	0x00
0x1F46	Transmit ATM Controller - Transmit ATM Filter # 0 Pattern - Header Byte 3	R/W	0x00
0x1F47	Transmit ATM Controller - Transmit ATM Filter # 0 Pattern - Header Byte 4	R/W	0x00
0x1F48	Transmit ATM Controller - Transmit ATM Filter # 0 Check - Header Byte 1	R/W	0x00
0x1F49	Transmit ATM Controller - Transmit ATM Filter # 0 Check - Header Byte 2	R/W	0x00
0x1F4A	Transmit ATM Controller - Transmit ATM Filter # 0 Check - Header Byte 3	R/W	0x00
0x1F4B	Transmit ATM Controller - Transmit ATM Filter # 0 Check - Header Byte 4	R/W	0x00
0x1F4C	Transmit ATM Cell - Cell Count Register - Byte 3	RUR	0x00
0x1F4D	Transmit ATM Cell - Cell Count Register - Byte 2	RUR	0x00
0x1F4E	Transmit ATM Cell - Cell Count Register - Byte 1	RUR	0x00
0x1F4F	Transmit ATM Cell - Cell Count Register - Byte 0	RUR	0x00
0x1F50 - 0x1F52	Reserved	R/O	0x00
0x1F53	Transmit ATM Controller - Transmit ATM Filter # 1 Control Register	R/W	0x00

XP EXAR

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TABLE 18: TRANSMIT ATM CELL PROCESSOR/PPP PACKET PROCESSOR BLOCK - REGISTER/ADDRESS MAP

Address Location	REGISTER NAME	Түре	DEFAULT VALUE
т	RANSMIT ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTER	RS	
0x1F54	Transmit ATM Controller - Transmit ATM Filter # 1 Pattern - Header Byte 1	R/W	0x00
0x1F55	Transmit ATM Controller - Transmit ATM Filter # 1 Pattern - Header Byte 2	R/W	0x00
0x1F56	Transmit ATM Controller - Transmit ATM Filter # 1 Pattern - Header Byte 3	R/W	0x00
0x1F57	Transmit ATM Controller - Transmit ATM Filter # 1 Pattern - Header Byte 4	R/W	0x00
0x1F58	Transmit ATM Controller - Transmit ATM Filter # 1 Check - Header Byte 1	R/W	0x00
0x1F59	Transmit ATM Controller - Transmit ATM Filter # 1 Check - Header Byte 2	R/W	0x00
0x1F5A	Transmit ATM Controller - Transmit ATM Filter # 1 Check - Header Byte 3	R/W	0x00
0x1F5B	Transmit ATM Controller - Transmit ATM Filter # 1 Check - Header Byte 4	R/W	0x00
0x1F5C	Transmit ATM Cell - Cell Count Register - Byte 3	RUR	0x00
0x1F5D	Transmit ATM Cell - Cell Count Register - Byte 2	RUR	0x00
0x1F5E	Transmit ATM Cell - Cell Count Register - Byte 1	RUR	0x00
0x1F5F	Transmit ATM Cell - Cell Count Register - Byte 0	RUR	0x00
0x1F60 - 0x1F62	Reserved	R/O	0x00
0x1F63	Transmit ATM Controller - Transmit ATM Filter # 2 Control Register	R/W	0x00
0x1F64	Transmit ATM Controller - Transmit ATM Filter # 2 Pattern - Header Byte 1	R/W	0x00
0x1F65	Transmit ATM Controller - Transmit ATM Filter # 2 Pattern - Header Byte 2	R/W	0x00
0x1F66	Transmit ATM Controller - Transmit ATM Filter # 2 Pattern - Header Byte 3	R/W	0x00
0x1F67	Transmit ATM Controller - Transmit ATM Filter # 2 Pattern - Header Byte 4	R/W	0x00
0x1F68	Transmit ATM Controller - Transmit ATM Filter # 2 Check - Header Byte 1	R/W	0x00
0x1F69	Transmit ATM Controller - Transmit ATM Filter # 2 Check - Header Byte 2	R/W	0x00
0x1F6A	Transmit ATM Controller - Transmit ATM Filter # 2 Check - Header Byte 3	R/W	0x00
0x1F6B	Transmit ATM Controller - Transmit ATM Filter # 3 Check - Header Byte 4	R/W	0x00
0x1F6C	Transmit ATM Cell - Cell Count Register - Byte 3	RUR	0x00
0x1F6D	Transmit ATM Cell - Cell Count Register - Byte 2	RUR	0x00
0x1F6E	Transmit ATM Cell - Cell Count Register -Byte 1	RUR	0x00
0x1F6F	Transmit ATM Cell - Cell Count Register - Byte 0	RUR	0x00
0x1F70 - 0x1F72	Reserved	R/O	0x00
0x1F73	Transmit ATM Controller - Transmit ATM Filter # 3 Control Register	R/W	0x00
0x1F74	Transmit ATM Controller - Transmit ATM Filter # 3 Pattern - Header Byte 1	R/W	0x00
0x1F75	Transmit ATM Controller - Transmit ATM Filter # 3 Pattern - Header Byte 2	R/W	0x00
0x1F76	Transmit ATM Controller - Transmit ATM Filter # 3 Pattern - Header Byte 3	R/W	0x00

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TABLE 18: TRANSMIT ATM CELL PROCESSOR/PPP PACKET PROCESSOR BLOCK - REGISTER/ADDRESS MAP

Address Location	REGISTER NAME	Түре	Default Value						
Т	TRANSMIT ATM CELL PROCESSOR/PPP PROCESSOR BLOCK CONTROL REGISTERS								
0x1F77	Transmit ATM Controller - Transmit ATM Filter # 3 Pattern - Header Byte 4 - Channe1 N-1	R/W	0x00						
0x1F78	Transmit ATM Controller - Transmit ATM Filter # 3 Check - Header Byte 1	R/W	0x00						
0x1F79	Transmit ATM Controller - Transmit ATM Filter # 3 Check - Header Byte 2	R/W	0x00						
0x1F7A	Transmit ATM Controller - Transmit ATM Filter # 3 Check - Header Byte 3	R/W	0x00						
0x1F7B	Transmit ATM Controller - Transmit ATM Filter # 3 Check - Header Byte 4	R/W	0x00						
0x1F7C	Transmit ATM Cell - Cell Count Register - Byte 3	RUR	0x00						
0x1F7D	Transmit ATM Cell - Cell Count Register - Byte 2	RUR	0x00						
0x1F7E	Transmit ATM Cell - Cell Count Register - Byte 1	RUR	0x00						
0x1F7F	Transmit ATM Cell - Cell Count Register - Byte 0	RUR	0x00						
0x1F80 - 0x2102	Reserved	R/O	0x00						

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CONTROL REGISTER - BYTE 2 (ADDRESS = 0X1F01)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
			Transmit ATM Cell Processor Enable				
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 1	Unused	R/O	
0	Transmit ATM Cell Pro- cessor Enable	R/W	 Transmit ATM Cell Processor Block Enable: This READ/WRITE bit-field permits the user to either enable or disable the Transmit ATM Cell Processor block. If the user wishes to operate a given Channel in the ATM Mode, they must enable the Transmit ATM Cell Processor Block. 0 - Disables the Transmit ATM Cell Processor Block 1 - Enables the Transmit ATM Cell Processor Bloc Note: The user must set this bit-field to "1" before he/she begins to write ATM cell data into the Transmit UTOPIA Interface block.

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

XPEXAR

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CONTROL REGISTER - BYTE 1 (ADDRESS = 0X1F02)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Test Cell Transmit Mode Enable	ONE SHOT MODE	GFC Inser- tion Enable - Bit 3 (MSB)	GFC Inser- tion Enable - Bit 2	GFC Inser- tion Enable - Bit 1	GFC Inser- tion Enable - Bit 0 (LSB)	COSET Poly- nomial Addi- tion	Regenerate HEC Byte Enable
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	Test Cell Transmit Mode Enable	R/W	Test Cell Transmit Mode Enable: This READ/WRITE bit-field permits the user to enable the Test Cell Transmitter (within the Transmit ATM Cell Processor Block). The user must implement this configuration option in order to perform diagnostic operations with Test Cells. 0 - Disables the Test Cell Transmitter. 1 - Enables the Test Cell Transmitter. Note: For normal operation, the user should set this bit-field to "1".
6	One Shot Mode	R/W	One Shot Mode: If the user has enabled the Test Cell Transmitter, then this READ/ WRITE bit-field permits the user to either configure the Test Cell Transmitter into the "One-Shot" or in the "Continuous" Mode. If the user configures the Test Cell Transmitter into the "One-Shot" Mode, then (whenever the user implements a "0 to 1" transition within Bit 7 [Test Cell Transmit Mode Enable] of this register) then the Test Cell Transmitter will generate and transmit 1024 test cells. Afterwards, the Test Cell Transmitter will halt its transmission of Test Cells until the user implements another "0 to 1 transition" within Bit 7 (Test Cell Transmit Mode Enable) within this register. If the user configures the Test Cell Transmitter into the "Continuous" Mode, then the Test Cell Transmitter will continuously generate and transmit test cells for the duration that Bit 7(Test Cell Transmit Mode Enable) is set to "1". 0 - Configures the Test Cell Transmitter to operate in the "Continu- ous" Mode. 1 - Configures the Test Cell Transmitter" to operate in the "One- Shot" Mode.
5	GFC Insertion Enable - Bit 3	R/W	 GFC Insertion Enable - Bit 3 (MSB): This READ/WRITE bit-field along with GFC Insertion Enable - Bits 2 through 0 permit the user to select the bits (within the GFC nibble of each "outbound" ATM cell) that will be modified by the contents that is applied via the "Transmit GFC Serial Input" port, as described below. 0 - Configures the Transmit GFC Serial Input" port to NOT modify the contents of Bit 3 (the most significant bit) within the GFC nibble. 1 - Configures the Transmit GFC Serial Input" port to modify the contents of Bit 3 (within the GFC nibble) with the value that is applied via the Transmit GFC Serial Input" port to modify the contents of Bit 3 (within the GFC nibble) with the value that is applied via the Transmit GFC Serial Input Port.

XRT79L71 REV. P1.0.3 PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
4	GFC Insertion Enable - Bit 2	R/W	 GFC Insertion Enable - Bit 2: This READ/WRITE bit-field along with GFC Insertion Enable - Bits 3, 1 and 0 permit the user to select the bits (within the GFC nibble of each "outbound" ATM cell) that will be modified by the contents that is applied via the "Transmit GFC Serial Input" port, as described below. 0 - Configures the Transmit GFC Serial Input" port to NOT modify the contents of Bit 2 within the GFC nibble. 1 - Configures the Transmit GFC Serial Input" port to modify the contents of Bit 2 (within the GFC nibble) with the value that is applied via the Transmit GFC Serial Input" port to modify the contents of Bit 2 (within the GFC nibble) with the value that is applied via the Transmit GFC Serial Input Port.
3	GFC Insertion Enable - Bit 1	R/W	 GFC Insertion Enable - Bit 1: This READ/WRITE bit-field along with GFC Insertion Enable - Bits 3, 2 and 0 permit the user to select the bits (within the GFC nibble of each "outbound" ATM cell) that will be modified by the contents that is applied via the "Transmit GFC Serial Input" port, as described below. 0 - Configures the Transmit GFC Serial Input" port to NOT modify the contents of Bit 3 (the most significant bit) within the GFC nibble. 1 - Configures the Transmit GFC Serial Input" port to modify the contents of Bit 3 (within the GFC nibble) with the value that is applied via the Transmit GFC Serial Input" port to modify the contents of Bit 3 (within the GFC nibble) with the value that is applied via the Transmit GFC Serial Input Port.
2	GFC Insertion Enable - Bit 0	R/W	 GFC Insertion Enable - Bit 0 (LSB): This READ/WRITE bit-field along with GFC Insertion Enable - Bits 2 through 0 permit the user to select the bits (within the GFC nibble of each "outbound" ATM cell) that will be modified by the contents that is applied via the "Transmit GFC Serial Input" port, as described below. 0 - Configures the Transmit GFC Serial Input" port to NOT modify the contents of Bit 0 (the least significant bit) within the GFC nibble. 1 - Configures the Transmit GFC Serial Input" port to modify the contents of Bit 0 (within the GFC nibble) with the value that is applied via the Transmit GFC Serial Input" port to modify the contents of Bit 0 (serial Input Port.
1	COSET Polynomial Addi- tion	R/W	 COSET Polynomial Addition: This READ/WRITE bit-field permits the user to configure the Transmit ATM Cell Processor block to modulo-add the COSET Polynomial (e.g., x^6 + x^4 + x^2 + 1) to the HEC byte value, within each "outbound" ATM cell. 0 - Configures the Transmit ATM Cell Processor block to NOT modulo-add the COSET Polynomial to the HEC byte within each outbound ATM cell. 1 - Configures the Transmit ATM Cell Processor block to modulo-add the COSET Polynomial to the HEC byte within each outbound ATM cell.

PRELIMINARY

XRT79L71 *REV. P1.0.3*

BIT NUMBER	NAME	Түре	DESCRIPTION
0	Regenerate HEC Byte Enable	R/W	 Regenerate HEC Byte Enable: This READ/WRITE bit-field permits the user to configure the Transmit ATM Cell Processor block to automatically re-compute and insert a new HEC byte into each ATM cell (that it receives from the Transmit UTOPIA Interface block) that contains an uncorrectable HEC byte. 0 - Does not configure the Transmit ATM Cell Processor block to compute and insert a new HEC byte into ATM cells that contains an "uncorrectable" HEC Byte error. 1 - Configures the Transmit ATM Cell Processor block to compute and insert a new HEC byte into ATM cells that contains an "uncorrectable" HEC Byte error.

TRANSMIT	ATM	CELL	PROCESSOR	BLOCK	- TRANSMIT	ATM	CONTROL	- BYTE 0	(ADDRESS =
0X1F03)									

BIT 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0
HEC Byte Invert	HEC Byte Check Enable	Transmit UTOPIA Parity Check Enable	Transmit UTOPIA Parity Error - Discard	Transmit UTOPIA - ODD Parity	Rese	erved	Scrambler Enable
R/W	R/W	R/W	R/W	R/W	R/O	R/O	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7	HEC Byte Invert	R/W	HEC Byte Invert: This READ/WRITE bit-field permits the user to configure the Trans- mit ATM Cell Processor block to invert each bit within the newly com- puted HEC byte of each outbound ATM cell.
			0 - Configures the Transmit ATM Cell Processor block to NOT invert the HEC byte values that it inserts into the fifth octet position within each outbound ATM cell.
			1 - Configures the Transmit ATM Cell Processor block to invert each bit-field within the newly computed HEC, prior to inserting it into the fifth octet position, within each outbound ATM cell.
6	HEC Byte Check Enable	R/W	 HEC Byte Check Enable: This READ/WRITE bit-field permits the user to configure the Transmit ATM Cell Processor block to perform HEC byte checking of all ATM cells that it receives via the Transmit UTOPIA Interface block. 0 - Configures the Transmit ATM Cell Processor block to NOT perform HEC byte checking on all ATM cells that it receives via the Transmit UTOPIA Interface block. 1 - Configures the Transmit ATM Cell Processor block to perform HEC byte checking on all ATM cells that it receives via the Transmit UTOPIA Interface block. 1 - Configures the Transmit ATM Cell Processor block to perform HEC byte checking on all ATM cells that it receives via the Transmit UTOPIA Interface block.

XRT79L71 REV. P1.0.3 PRELIMINARY

BIT NUMBER	NAME	Түре	DESCRIPTION
5	Transmit UTOPIA Parity Check Enable	R/W	Transmit UTOPIA Parity Check Enable: This READ/WRITE bit-field permits the user to either enable or dis- able "Transmit UTOPIA Interface" Parity checking. If the user enables "Transmit UTOPIA Interface" Parity Checking, then the Transmit ATM Cell Processor block will compute either the EVEN or ODD parity value (depending upon the setting of Bit 3 within this reg- ister) of each byte or 16-bit word that is input via the Transmit UTO- PIA Data Bus input pins: (TxUData[15:0]). Afterwards, the Transmit ATM Cell Processor block will compare this "locally computed" parity value with that which the ATM Layer Processor has provided to the "TxUPrty" input pin. If the Transmit ATM Cell Processor detects any discrepancies between these two parity values (e.g., any parity errors) then it will take action based upon the user's settings for Bit 4 (Transmit UTOPIA Parity Error - Discard). 0 - Disables "Transmit UTOPIA Interface" Parity Checking. 1 - Enables "Transmit UTOPIA Interface" Parity Checking.
4	Transmit UTOPIA Parity Error - Discard	R/W	 Transmit UTOPIA Parity Error - Discard Cell: This READ/WRITE bit-field permits the user to configure the Transmit ATM Cell Processor block to either discard or retain (for further processing) any ATM cell that contains a "Transmit UTOPIA Interface" parity error. 0 - Configures the Transmit ATM Cell Processor block to retain (for further processing) all cells that contain "Transmit UTOPIA Interface" parity errors. 1 - Configures the Transmit ATM Cell Processor block to discard all cells that contain "Transmit UTOPIA Interface" parity errors. Note: This bit-field is only valid if "Transmit UTOPIA Interface" Parity Checking has been enabled.
3	Transmit UTOPIA - Odd Parity	R/W	 Transmit UTOPIA Parity Value - ODD Parity: This READ/WRITE bit-field permits the user to configure the Transmit ATM Cell Processor block to compute either the EVEN or ODD parity value for each byte or 16-bit word within each cell that it processes. Each of these parity values will ultimately be compared with the value that is input via the "TxUPrty" input pin (on the Transmit UTOPIA Interface block) coincident to when ATM cell data is being applied to the "TxUData[15:0]" input pins. 0 - Configures the Transmit ATM Cell Processor block to compute and verify the EVEN Parity value of each byte (or 16-bit word) of ATM cell data that it processes. 1 - Configures the Transmit ATM Cell Processor block to compute and verify the ODD Parity value of each byte (or 16-bit word) of ATM cell data that it processes. 1 - Configures the Transmit ATM Cell Processor block to compute and verify the ODD Parity value of each byte (or 16-bit word) of ATM cell data that it processes. 1 - Configures the Transmit ATM Cell Processor block to compute and verify the ODD Parity value of each byte (or 16-bit word) of ATM cell data that it processes.
2 - 1	Reserved	R/O	

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
0	Scrambler Enable		Cell Payload Scrambler Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Cell Payload Scrambler". If the user enables the "Cell Payload Scrambler" then the Transmit ATM Cell Processor will payload self-synchronous scrambling on all cell payloads bytes (within each outbound ATM cell) with the x^43+1 polynomial. 0 - Disables the Cell Payload Scrambler 1 - Enables the Cell Payload Scrambler

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM STATUS REGISTER (ADDRESS = 0X1F07)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
	Unused						
R/O	R/O	R/O	R/O	R/O	R/O	R/O	R/O
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 1	Unused	R/O	
0	One Shot DONE	R/O	One Shot DONE: This READ-ONLY bit-field indicates whether or not the Test Cell Transmitter has completed its transmission of 1024 test cells, follow- ing the instant that the user has commanded the Test Cell to transmit this burst of 1024 cells.
			0 - Indicates that the Test Cell Transmitter has NOT completed its transmission of 1024 test cells.
			1 - Indicates that the Test Cell Transmitter has completed its trans- mission of 1024 test cells since the last "Transmit Test Cell - One Shot" command.
			Notes:
			 This bit-field is only valid if (1) the Test Cell Transmitter is active and (2) if the Test Cell Transmitter has been configured to operate in the "One-Shot" Mode.
			 Once this bit-field has been set to "1", it will remain at "1" until the user executes another "Transmit Test Cell - One Shot" command.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM INTERRUPT STATUS REGISTER (ADDRESS = 0X1F0B)

Віт 7	BIT 6	Віт 5	Віт 4	Віт 3	Віт 2	BIT 1	Віт 0
Unu	ised	Transmit Cell Extraction Interrupt Sta- tus	Transmit Cell Insertion Interrupt Sta- tus	Transmit Cell Extraction Memory Overflow Interrupt Sta- tus	Transmit Cell Insertion Memory Overflow Interrupt Sta- tus	Detection of HEC Byte Error Inter- rupt Status	Detection of Transmit UTOPIA Par- ity Error Inter- rupt Status
R/O	R/O	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 6	Unused	R/O	
5	Transmit Cell Extraction Interrupt Status	RUR	 Transmit Cell Extraction Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Transmit Cell Extraction" interrupt has occurred since the last read of this register. The Transmit ATM Cell Processor block will generate the "Transmit Cell Extraction" Interrupt anytime it receives an incoming ATM cell (from the TxFIFO) and loads an ATM cell into the "Extraction Memory" Buffer. 0 - Indicates that the "Transmit Cell Extraction" Interrupt has NOT occurred since the last read of this register. 1 - Indicates that the "Transmit Cell Extraction" Interrupt has occurred since the last read of this register.
4	Transmit Cell Insertion Interrupt Status	RUR	 Transmit Cell Insertion Interrupt: This RESET-upon-READ bit-field indicates whether or not the "Transmit Cell Insertion" interrupt has occurred since the last read of this register. The Transmit ATM Cell Processor block will generate the "Transmit Cell Insertion" Interrupt anytime a cell (residing in the Transmit Cell Insertion Buffer) is read out of the "Transmit Cell Insertion Buffer" and is loaded into the outbound ATM cell traffic. 0 - Indicates that the "Transmit Cell Insertion" Interrupt has NOT occurred since the last read of this register. 1 - Indicates that the "Transmit Cell Insertion" Interrupt has occurred since the last read of this register.
3	Transmit Cell Extraction Memory Overflow Inter- rupt Status	RUR	 Transmit Cell Extraction Memory Overflow Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the "Transmit Cell Extraction Memory Overflow" Interrupt has occurred since the last read of this register. The Transmit ATM Cell Processor block will generate this interrupt anytime an overflow event has occurred in the "Transmit Cell Extraction Memory" Buffer. O - Indicates that the Transmit ATM Cell Processor block has NOT declared the "Transmit Cell Extraction Memory Overflow" Interrupt since the last read of this register. 1 - Indicates that the Transmit ATM Cell Processor block has declared the "Transmit Cell Extraction Memory Overflow" interrupt since the last read of this register.

PRELIMINARY

XRT79L71 *REV. P1.0.3*

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
2	Transmit Cell Insertion Memory Overflow Inter- rupt Status	RUR	 Transmit Cell Insertion Memory Overflow Interrupt Status: This RESET-upon-READ bit-field indicates whether or not the Transmit Cell Insertion Memory Overflow" Interrupt has occurred since the last read of this register. The Transmit ATM Cell Processor block will generate this interrupt anytime an overflow event has occurred in the "Transmit Cell Insertion Memory" Buffer. 0 - Indicates that the Transmit ATM Cell Processor block has NOT declared the "Transmit Cell Insertion Memory Overflow" interrupt since the last read of this register. 1 - Indicates that the Transmit ATM Cell Processor block has declared the "Transmit Cell Insertion Memory Overflow" interrupt since the last read of this register.
1	Detection of HEC Byte Error Interrupt	RUR	 Detection of HEC Byte Error Interrupt: This RESET-upon-READ bit-field indicates whether or not the "Transmit ATM Cell Processor block" has declared the "Detection of HEC Byte Error" Interrupt since the last read of this register. The Transmit ATM Cell Processor block will generate this interrupt anytime it has received an ATM cell (from the TxFIFO) that contains a HEC byte error. 0 - Indicates that the Transmit ATM Cell Processor block has NOT declared the "Detection of HEC Byte Error" Interrupt since the last read of this register. 1 - Indicates that the Transmit ATM Cell Processor block has declared the "Detection of HEC Byte Error" Interrupt since the last read of this register.
0	Detection of Transmit UTOPIA Parity Error Interrupt		 Detection of Transmit UTOPIA Parity Error Interrupt: This RESET-upon-READ bit-field indicates whether or not the "Transmit ATM Cell Processor" block has declared the "Detection of Transmit UTOPIA Parity Error" Interrupt since the last read of this register. The Transmit ATM Cell Processor block will generate this interrupt anytime it has received an ATM cell byte or 16-bit word (from the Transmit UTOPIA Interface block) that contains a parity error. 0 - Indicates that the Transmit ATM Cell Processor block has NOT declared the "Detection of Transmit UTOPIA Parity Error" Interrupt since the last read of this register. 1 - Indicates that the Transmit ATM Cell Processor block has declared the "Detection of Transmit UTOPIA Parity Error" Interrupt since the last read of this register.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM INTERRUPT ENABLE REGISTER (ADDRESS = 0X1F0F)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0
Unu	sed	Transmit Cell Extraction Interrupt Enable	Transmit Cell Insertion Interrupt Enable	Transmit Cell Extraction Memory Overflow Interrupt Enable	Transmit Cell Insertion Memory Overflow Interrupt Enable	Detection of HEC Byte Error Inter- rupt Enable	Detection of Transmit UTOPIA Par- ity Error Inter- rupt Enable
R/O	R/O	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 6	Unused		
5	Transmit Cell Extraction Interrupt Enable	R/W	 Transmit Cell Extraction Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Transmit Cell Extraction" Interrupt. If the user enables this feature, then the Transmit ATM Cell Processor block will generate the "Transmit Cell Extraction" Interrupt anytime it receives an incoming ATM cell (from the TxFIFO) and loads this ATM cell into the "Transmit Extraction Memory" Buffer. 0 - Disables the "Transmit Cell Extraction" Interrupt. 1 - Enables the "Transmit Cell Extraction" Interrupt
4	Transmit Cell Insertion Interrupt Enable	R/W	 Transmit Cell Insertion Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Transmit Cell Insertion" Interrupt. If the user enables this feature, then the Transmit ATM Cell Processor block will generate the "Transmit Cell Insertion" Interrupt anytime a cell (residing in the "Transmit Cell Insertion" Buffer) is read out of the "Transmit Cell Insertion" Buffer) is read out of the "Transmit Cell Insertion" Buffer and is loaded into the "outbound" ATM cell traffic. 0 - Disables the Transmit Cell Insertion Interrupt. 1 - Enables the Transmit Cell Insertion Interrupt.
3	Transmit Cell Extraction Memory Overflow Inter- rupt Enable	R/W	 Transmit Cell Extraction Memory Overflow Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Transmit Cell Extraction Memory Overflow" Interrupt. If the user enables this interrupt, then the Transmit ATM Cell Processor block will generate an interrupt any time an overflow event has occurred in the "Transmit Cell Extraction Memory" buffer. 0 - Disables the Transmit Cell Extraction Memory Overflow Interrupt. 1 - Enables the Transmit Cell Extraction Memory Overflow Interrupt.

PRELIMINARY

XRT79L71 *REV. P1.0.3*

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
2	Transmit Cell Insertion Memory Overflow Inter- rupt Enable	R/W	 Transmit Cell Insertion Memory Overflow Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Transmit Cell Insertion Memory Overflow" Interrupt. If the user enables this interrupt, then the Transmit ATM Cell Processor block will generate an interrupt any time an overflow event has occurred in the "Transmit Cell Insertion Memory" buffer. 0 - Disables the Transmit Cell Insertion Memory Overflow Interrupt. 1 - Enables the Transmit Cell Insertion Memory Overflow Interrupt.
1	Detection of HEC Byte Error Interrupt Enable	R/W	Detection of HEC Byte Error Interrupt Enable:This READ/WRITE bit-field permits the user to either enable or disable the "Detection of HEC Byte Error Interrupt" within the TransmitATM Cell Processor Block.If the user enables this interrupt, then the Transmit ATM Cell Processor block will generate an interrupt each time it receives an ATM cell(from the TxFIFO) that contains a HEC Byte error.0 - Disables the "Detection of HEC Byte Error" Interrupt.1 - Enables the "Detection of HEC Byte Error" Interrupt
0	Detection of Transmit UTOPIA Parity Error Interrupt Enable		 Detection of Transmit UTOPIA Parity Error Interrupt Enable: This READ/WRITE bit-field permits the user to either enable or disable the "Detection of Transmit UTOPIA Parity Error" Interrupt within the Transmit ATM Cell Processor block. If the user enables this interrupt, then the Transmit ATM Cell Processor block will generate an interrupt each time it receives an ATM cell byte or 16-bit word (from the TxFIFO) that contains a parity error. 0 - Disables the "Detection of Transmit UTOPIA Parity Error" Interrupt. 1 - Enables the "Detection of Transmit UTOPIA Parity Error" Interrupt.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CELL INSERTION/EXTRACTION MEMORY CONTROL REGISTER (0X1F13)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
	Unused		Transmit Cell Extraction Memory RESET*	Transmit Cell Extraction Memory CLAV	Transmit Cell Insertion Memory RESET*	Transmit Cell Insertion Memory ROOM	Transmit Cell Insertion Memory WSOC
R/O	R/O	R/O	R/W	R/O	R/W	R/O	W/O
0	0	0	1	0	1	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7-5	Unused		
4	Transmit Cell Extraction Memory RESET*	R/W	 Transmit Cell Extraction Memory RESET*: This READ/WRITE bit-field permits the user to perform a REST operation to the Transmit Cell Extraction Memory. If the user writes a "1-to-0 transition" into this bit-field, then the following events will occur. a. All of the contents of the Transmit Cell Extraction Memory will be flushed. b. All READ and WRITE pointers will be reset to their default positions. Note: Following this RESET event, the user must write the value "1" into this bit-field in order to enable normal operation within the Transmit Cell Extraction Memory.
3	Transmit Cell Extraction Memory CLAV	R/O	 Transmit Cell Extraction Memory - Cell Available Indicator: This READ-ONLY bit-field indicates whether or not there is at least ATM cell of data (residing within the Transmit Cell Extraction Memory) that needs to be read out via the Microprocessor Interface. 0 - Indicates that the Transmit Cell Extraction Memory is empty and contains no ATM cell data. 1 - Indicates that the Transmit Cell Extraction Memory contains at least one ATM cell of data that needs to be read out. Note: The user should validate each ATM cell that is being read out from the Transmit Cell Extraction memory by checking the state of this bit-field prior to reading out the contents of ATM cell data residing within the Transmit Cell Extraction Memory
2	Transmit Cell Insertion Memory RESET*	R/W	 Transmit Cell Insertion Memory RESET*: This READ/WRITE bit-field permits the user to perform a RESET operation to the Transmit Cell Insertion Memory. If the user writes a "1-to-0 transition" into this bit-field, then the following events will occur. a. All of the contents of the Transmit Cell Insertion Memory will be flushed. b. All READ and WRITE pointers will be reset to their default positions. NOTE: Following this RESET event, the user must write the value "1" into this bit-field in order to enable normal operation of the Transmit Cell Insertion Memory.

PRELIMINARY

XRT79L71 *REV. P1.0.3*

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
1	Transmit Cell Insertion Memory ROOM	R/O	 Transmit Cell Insertion Memory - ROOM Indicator: This READ-ONLY bit-field indicates whether or not there is room (e.g., empty space) available for the contents of another ATM cell to be written into the Transmit Cell Insertion Memory. 0 - Indicates that the Transmit Cell Insertion Memory does not contain enough empty space to receive another ATM cell via the Microprocessor Interface. 1 - Indicates that the Transmit Cell Insertion Memory does contain enough empty space to receive another ATM cell via the Microprocessor Interface. NOTE: The user should verify that the Transmit Cell Insertion Memory has sufficient empty space to accept another ATM cell of data (via the Microprocessor Interface) by polling the state of this bit-field prior to writing each cell into the Transmit Cell Insertion Memory.
0	Transmit Cell Insertion Memory WSOC	W/O	 Transmit Cell Insertion Memory - Write SOC (Start of Cell): Whenever the user is writing the contents of an ATM cell into the Transmit Cell Insertion Memory, then he/she is suppose to identify/ designate the very first byte of this ATM cell by setting this bit-field to "1". When the user does this, then the Transmit Cell Insertion Memory will "know" that the next octet that is written into the "Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory Data Register - Byte 3 (Address = 0x1F14) is designated as the first byte of the ATM cell currently being written into the Transmit Cell Insertion Memory. Note: This bit-field must be set to "0" during all other WRITE operations to the Transmit ATM Cell Processor - Transmit Cell Insertion/Extraction Memory.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 3 (ADDRESS = 0X1F14)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	BIT 0	
Transmit Cell Insertion/Extraction Memory Data[31:24]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER	Nаме	Түре	DESCRIPTION
7 - 0	Transmit Cell Insertion/ Extraction Memory Data[31:24]	R/W	 Transmit Cell Insertion/Extraction Memory Data[31:24]: These READ/WRITE bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory Data - Bytes 2 through 0" support the following functions. a. They function as the address location for the user to write the contents of an "outbound" ATM cell into the Transmit Cell Insertion Memory, via the Microprocessor Interface. b. They function as the address location, for which the user to read out the contents of an "inbound" ATM cell from the Receive Cell Extraction Memory, via the Microprocessor Interface.
			Notes:
			 If the user performs a WRITE operation to this (and the other three address locations), then he/she is writing ATM cell data into the Transmit Cell Insertion Memory. If the user performs a READ operation to this (and the other
			three address locations), then he/she is reading ATM cell data from the Transmit Cell Extraction Memory.
			 READ and WRITE operations must be performed in a "32- bit" (4-byte "word") manner. Hence, whenever the user performs a READ/WRITE operation to these address locations, he/she must start by writing in or reading out the first byte (of this "4-byte" word) of a given ATM cell, into/ from this particular address location. Next, the user must perform the READ/WRITE operation (with the second of this "4-byte" word) to the "Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory - Byte 2 register. Afterwards, the user must perform a READ/ WRITE operation (with the third of this "4-byte" word) to the Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory - Byte 1 register. Finally, the user must perform a READ/WRITE operation (with the fourth of this "4-byte" word) to the Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory - Byte 0 register. When reading out (writing in) the next four bytes of a given ATM Cell, the user must repeat this process with a READ or WRITE operation, from/to this register location, and so on. Whenever the user is writing cell data into the Transmit Cell Insertion Memory, the size of the Cell is always 56 bytes. Whenever the user is reading cell data from the Transmit
			 Whenever the user is reading cell data from the Transmit Cell Extraction Memory, the size of the Cell is always 56 bytes.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 2 (ADDRESS = 0X1F15)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0
Transmit Cell Insertion/Extraction Memory Data[23:16]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit Cell Insertion/ Extraction Memory Data[23:16]	R/W	Transmit Cell Insertion/Extraction Memory Data[23:16]: These READ/WRITE bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory Data - Bytes 3, 1 and 0" support the following functions.
			a. They function as the address location for the user to write the contents of an "outbound" ATM cell into the Transmit Cell Insertion Memory, via the Microprocessor Interface.
			b. They function as the address location, for which the user to read out the contents of an "inbound" ATM cell from the Receive Cell Extraction Memory, via the Microprocessor Interface.
			Notes:
			 If the user performs a WRITE operation to this (and the other three address locations), then he/she is writing ATM cell data into the Transmit Cell Insertion Memory.
			 If the user performs a READ operation to this (and the other three address locations), then he/she is reading ATM cell data from the Transmit Cell Extraction Memory.
			3. READ and WRITE operations must be performed in a "32- bit" (4-byte "word") manner. Hence, whenever the user performs a READ/WRITE operation to these address locations, he/she must start by writing in or reading out the first byte (of this "4-byte" word) of a given ATM cell, into/from the Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory - Byte 3" register. Next, the user must perform the READ/WRITE operation (with the second of this "4-byte" word) to this particular address location. Afterwards, the user must perform a READ/WRITE operation (with the third of this "4-byte" word) to the Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory - Byte 1 register. Finally, the user must perform a READ/WRITE operation (with the fourth of this "4-byte" word) to the Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory - Byte 0 register. When reading out (writing in) the next four bytes of a given ATM Cell, the user must repeat this process with a READ or WRITE operation, from/to this register location, and so on.
			4. Whenever the user is writing cell data into the Transmit Cell Insertion Memory, the size of the Cell is always 56 bytes.
			5. Whenever the user is reading cell data from the Transmit Cell Extraction Memory, the size of the Cell is always 56 bytes.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 1 (ADDRESS = 0X1F16)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	Віт 0
Transmit Cell Insertion/Extraction Memory Data[15:8]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit Cell Insertion/ Extraction Memory Data[15:8]	R/W	Transmit Cell Insertion/Extraction Memory Data[15:8]: These READ/WRITE bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory Data - Bytes 3, 2 and 0" support the following functions.
			 a. Transmit Cell Insertion/Extraction Memory Data[15:8]:These READ/WRITE bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory Data - Bytes 3, 2 and 0" support the following functions.a.They function as the address location for the user to write the contents of an "outbound" ATM cell into the Transmit Cell Insertion Memory, via the Microprocessor Interface.
			b. They function as the address location, for which the user to read out the contents of an "inbound" ATM cell from the Receive Cell Extraction Memory, via the Microprocessor Interface.
			NOTES:
			1. If the user performs a WRITE operation to this (and the other three address locations), then he/she is writing ATM cell data into the Transmit Cell Insertion Memory.
			 If the user performs a READ operation to this (and the other three address locations), then he/she is reading ATM cell data from the Transmit Cell Extraction Memory.
			3. READ and WRITE operations must be performed in a "32- bit" (4-byte "word") manner. Hence, whenever the user performs a READ/WRITE operation to these address locations, he/she must start by writing in or reading out the first byte (of this "4-byte" word) of a given ATM cell, into/from the Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory - Byte 3 register. Next, the user must perform the READ/WRITE operation (with the second of this "4-byte" word) to the "Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory - Byte 2 register. Afterwards, the user must perform a READ/WRITE operation (with the third of this "4-byte" word) to this particular register location. Finally, the user must perform a READ/WRITE operation (with the fourth of this "4-byte" word) to the Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory - Byte 0 register. When reading out (writing in) the next four bytes of a given ATM Cell, the user must repeat this process with a READ or WRITE operation, from/to this register location, and so on.
			 Whenever the user is writing cell data into the Transmit Cell Insertion Memory, the size of the Cell is always 56 bytes. Whenever the user is reading cell data from the Transmit Cell Extraction Memory, the size of the Cell is always 56 bytes.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT CELL INSERTION/EXTRACTION MEMORY DATA - BYTE 0 (ADDRESS = 0X1F17)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Transmit Cell Insertion/Extraction Memory Data[7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Transmit Cell Insertion/ Extraction Memory Data[7:0]	R/W	Transmit Cell Insertion/Extraction Memory Data[7:0]: These READ/WRITE bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory Data - Bytes 3, through 1" support the following functions.
			a. They function as the address location for the user to write the contents of an "outbound" ATM cell into the Transmit Cell Insertion Memory, via the Microprocessor Interface.
			b. They function as the address location, for which the user to read out the contents of an "inbound" ATM cell from the Receive Cell Extraction Memory, via the Microprocessor Interface.
			Notes:
			 If the user performs a WRITE operation to this (and the other three address locations), then he/she is writing ATM cell data into the Transmit Cell Insertion Memory.
			 If the user performs a READ operation to this (and the other three address locations), then he/she is reading ATM cell data from the Transmit Cell Extraction Memory.
			3. READ and WRITE operations must be performed in a "32- bit" (4-byte "word") manner. Hence, whenever the user performs a READ/WRITE operation to these address locations, he/she must start by writing in or reading out the first byte (of this "4-byte" word) of a given ATM cell, into/from the Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory - Byte 3 register. Next, the user must perform the READ/WRITE operation (with the second of this "4-byte" word) to the "Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory - Byte 2 register. Afterwards, the user must perform a READ/WRITE operation (with the third of this "4-byte" word) to the "Transmit ATM Cell Processor Block - Transmit Cell Insertion/Extraction Memory - Byte 1" register. Finally, the user must perform a READ/WRITE operation (with the fourth of this "4-byte" word) to this particular register location. When reading out (writing in) the next four bytes of a given ATM Cell, the user must repeat this process with a READ or WRITE operation, from/ to this register location, and so on.
			4. Whenever the user is writing cell data into the Transmit Cell Insertion Memory, the size of the Cell is always 56 bytes.
			5. Whenever the user is reading cell data from the Transmit Cell Extraction Memory, the size of the Cell is always 56 bytes.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 1 (ADDRESS = 0X1F18)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0
Transmit Idle Cell Header Byte 1 [7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Transmit Idle Cell Header Byte - 1 [7:0]	R/W	Transmit Idle Cell Header Byte - 1[7:0]: These READ/WRITE register bits, along with that in "Transmit ATM Cell Processor Block - Transmit ATM Idle Cell Header Byte 2 through Byte 4" registers permit the user to define the header byte pattern of all Idle Cells that are generated by the Transmit ATM Cell Processor block. This register permits the user to define/specify the value of Header Byte # 1 within each Idle Cell that is generated and transmitted by the Transmit ATM Cell Processor block.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 2 (ADDRESS = 0X1F19)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0		
	Transmit Idle Cell Header Byte 2 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit Idle Cell Header Byte - 2 [7:0]	R/W	Transmit Idle Cell Header Byte - 2[7:0]: These READ/WRITE register bits, along with that in "Transmit ATM Cell Processor Block - Transmit ATM Idle Cell Header Bytes 1, 3 and 4" registers permit the user to define the header byte pattern of all Idle Cells that are generated by the Transmit ATM Cell Processor block. This register permits the user to define/specify the value of Header Byte # 2 within each Idle Cell that is generated and transmitted by the Transmit ATM Cell Processor block.

THE STAR PRELIMINARY 1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 3 (ADDRESS = 0X1F1A)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Transmit Idle Cell Header Byte 3 [7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit Idle Cell Header Byte - 3 [7:0]	R/W	Transmit Idle Cell Header Byte - 3[7:0]: These READ/WRITE register bits, along with that in "Transmit ATM Cell Processor Block - Transmit ATM Idle Cell Header Bytes 1, 2 and 4" registers permit the user to define the header byte pattern of all Idle Cells that are generated by the Transmit ATM Cell Processor block. This register permits the user to define/specify the value of Header Byte # 3 within each Idle Cell that is generated and transmitted by the Transmit ATM Cell Processor block.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL HEADER BYTE 4 (ADDRESS = 0X1F1B)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0		
	Transmit Idle Cell Header Byte 4 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Transmit Idle Cell Header Byte - 4 [7:0]	R/W	Transmit Idle Cell Header Byte - 4[7:0]: These READ/WRITE register bits, along with that in "Transmit ATM Cell Processor Block - Transmit ATM Idle Cell Header Byte 1 through Byte 3" registers permit the user to define the header byte pattern of all Idle Cells that are generated by the Transmit ATM Cell Processor block. This register permits the user to define/specify the value of Header Byte # 4 within each Idle Cell that is generated and transmitted by the Transmit ATM Cell Processor block.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM IDLE CELL PAYLOAD REGISTER (ADDRESS = 0X1F1F)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	Віт 0		
	Transmit Idle Cell Payload Byte[7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Transmit Idle Cell Pay- load Byte[7:0]	R/W	 Transmit Idle Cell Payload Byte [7:0]: These READ/WRITE register bits permit the user to define the value of the payload bytes of all Idle Cells that are generated and transmitted by the Transmit ATM Cell Processor block. Note: Each of the 48 payload bytes (within each outbound Idle Cell) will be assigned the value that is written into this register.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT TEST CELL HEADER BYTE - BYTE 1 (ADDRESS = 0X1F20)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0		
	Transmit Test Cell Header Byte 1 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit Test Cell Header Byte 1[7:0]	R/W	Receive Test Cell Header Byte 1: These READ/WRITE register bits along with that in the "Transmit ATM Cell Processor Block - Transmit Cell Header Byte - Bytes 2 through 4" permit the user to define the headers of test cells that the Transmit Test Cell Generator will generate. This particular register byte permits the user to define the contents of Header Byte # 1.
			Note: These register bits are only active if the Transmit Test Cell Generator has been enabled.

T - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT TEST CELL HEADER BYTE - BYTE 2 (ADDRESS = 0X1F21)

Віт 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0		
	Transmit Test Cell Header Byte 2 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit Test Cell Header Byte 2[7:0]	R/W	Receive Test Cell Header Byte 2: These READ/WRITE register bits along with that in the "Transmit ATM Cell Processor Block - Transmit Cell Header Byte - Bytes 1, 3 and 4" permit the user to define the headers of test cells that the Transmit Test Cell Generator will generate. This particular register byte permits the user to define the contents of Header Byte # 2. Note: These register bits are only active if the Transmit Test Cell
			Generator has been enabled.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT TEST CELL HEADER BYTE - BYTE 3 (ADDRESS = 0X1F22)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0		
	Transmit Test Cell Header Byte 3 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit Test Cell Header Byte 3[7:0]	R/W	Receive Test Cell Header Byte 3: These READ/WRITE register bits along with that in the "Transmit ATM Cell Processor Block - Transmit Cell Header Byte - Bytes 1, 2 and 4" permit the user to define the headers of test cells that the Transmit Test Cell Generator will generate. This particular register byte permits the user to define the contents of Header Byte # 3. Note: These register bits are only active if the Transmit Test Cell Generator has been enabled.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT TEST CELL HEADER BYTE - BYTE 4 (ADDRESS = 0X1F23)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	Віт 2	BIT 1	BIT 0
Transmit Test Cell Header Byte 4 [7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Transmit Test Cell Header Byte 4[7:0]	R/W	Receive Test Cell Header Byte 4: These READ/WRITE register bits along with that in the "Transmit ATM Cell Processor Block - Transmit Cell Header Byte - Bytes 1 through 3" permit the user to define the headers of test cells that the Transmit Test Cell Generator will generate. This particular register byte permits the user to define the contents of Header Byte # 4. NOTE: These register bits are only active if the Transmit Test Cell Generator has been enabled.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CELL COUNTER - BYTE 3 (ADDRESS = 0X1F28)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0		
	Transmit ATM Cell Count[31:24]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit ATM Cell Count[31:24]	RUR	 Transmit ATM Cell Count - Byte 3[31:24]: This RESET-upon-READ register, along with the "Transmit ATM Cell Count - Bytes 2 through 0" registers, contain a 32-bit value for the number of User/Valid cells that have been transmitted by the Transmit ATM Cell Processor block. This particular register contains the MSB (Most Significant Byte) value for this 32-bit expression. <i>NoTES:</i> The contents within these registers include all of the following: All ATM cells that have been read out from the TxFIFO, or the Transmit Cell Insertion Buffer. The contents of these registers do not include the number of Idle Cells that have been generated by the Transmit ATM Cell Processor block. If the number of Cells reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will NOT overflow to "0x0000000").

T - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CELL COUNTER - BYTE 2 (ADDRESS = 0X1F29)

Віт 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Transmit ATM Cell Count[23:16]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit ATM Cell Count[23:16]	RUR	 Transmit ATM Cell Count - Byte 2[23:16]: This RESET-upon-READ register, along with the "Transmit ATM Cell Count - Bytes 3, 1 and 0" registers, contain a 32-bit value for the number of User/Valid cells that have been transmitted by the Transmit ATM Cell Processor block. <i>Notes:</i> The contents within these registers include all of the following: All ATM cells that have been read out from the TxFIFO, or the Transmit Cell Insertion Buffer. The contents of these registers do not include the number of Idle Cells that have been generated by the Transmit ATM Cell
			Processor block.
			 If the number of Cells reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will NOT overflow to "0x00000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CELL COUNTER - BYTE 1 (ADDRESS = 0X1F2A)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
Transmit ATM Cell Count[15:8]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	Nаме	Түре	DESCRIPTION
7 - 0	Transmit ATM Cell Count[15:8]	RUR	Transmit ATM Cell Count - Byte 1[15:8]:T his RESET-upon-READ register, along with the "Transmit ATM Cell Count - Bytes 3, 2 and 0" registers, contain a 32-bit value for the num- ber of User/Valid cells that have been transmitted by the Transmit ATM Cell Processor block.
			Notes:
			 The contents within these registers include all of the following: All ATM cells that have been read out from the TxFIFO, or the Transmit Cell Insertion Buffer.
			 The contents of these registers do not include the number of Idle Cells that have been generated by the Transmit ATM Cell Processor block.
			 If the number of Cells reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will NOT overflow to "0x00000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM CELL COUNTER - BYTE 0 (ADDRESS = 0X1F2B)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Transmit ATM Cell Count[7:0]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit ATM Cell Count[7:0]	RUR	 Transmit ATM Cell Count - Byte 0[7:0]: This RESET-upon-READ register, along with the "Transmit ATM Cell Count - Bytes 3 through 1" registers, contain a 32-bit value for the number of User/Valid cells that have been transmitted by the Transmit ATM Cell Processor block. This particular register contains the LSB (Least Significant Byte) value for this 32-bit expression. <i>Notes:</i> The contents within these registers include all of the following: All ATM cells that have been read out from the TxFIFO, or the Transmit Cell Insertion Buffer. The contents of these registers do not include the number of Idle Cells that have been generated by the Transmit ATM Cell Processor block. If the number of Cells reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will NOT overflow to "0x0000000").

XPEXAR PRE 1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT DISCARDED ATM CELL COUNT - BYTE 3 (ADDRESS = 0X1F2C)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Transmit - Discard Cell Count[31:24]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit - Discard Cell Count[31:24]	RUR	 Transmit - Discard Cell Count - Byte 3[7:0]: This RESET-upon-READ register, along with the "Transmit ATM Cell Processor Block - Transmit ATM Cell Discard Cell Count - Bytes 2 through 0" registers, contain a 32-bit value for the number of ATM cells that have been discarded by the Transmit ATM Cell Processor block. This particular register contains the MSB (Most Significant Byte) value of this 32-bit expression. Notes: The contents within these register includes all ATM cells that contain either a HEC Byte error or a "Transmit UTOPIA Parity" error. If the number of Cells reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will NOT overflow to "0x0000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT DISCARDED ATM CELL COUNT - BYTE 2 (ADDRESS = 0X1F2D)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0	
Transmit - Discard Cell Count[23:16]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION	
7 - 0	Transmit - Discard Cell Count[23:16]	RUR	Transmit - Discard Cell Count - Byte 2[7:0]: This RESET-upon-READ register, along with the "Transmit ATM C Processor Block - Transmit ATM Cell Discard Cell Count - Bytes 3 and 0" registers, contain a 32-bit value for the number of ATM cells that have been discarded by the Transmit ATM Cell Processor block	
			Notes:	
			 The contents within these register includes all ATM cells that contain either a HEC Byte error or a "Transmit UTOPIA Parity" error. 	
			 If the number of Cells reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will NOT overflow to "0x00000000"). 	

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT DISCARDED ATM CELL COUNT - BYTE 1 (ADDRESS = 0X1F2E)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	Віт 2	BIT 1	Віт 0
Transmit - Discard Cell Count[15:8]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit - Discard Cell Count[15:8]	RUR	 Transmit - Discard Cell Count - Byte 1[7:0]: This RESET-upon-READ register, along with the "Transmit ATM Cell Processor Block - Transmit ATM Cell Discard Cell Count - Bytes 3, 2 and 0" registers, contain a 32-bit value for the number of ATM cells that have been discarded by the Transmit ATM Cell Processor block. NOTES: The contents within these register includes all ATM cells that contain either a HEC Byte error or a "Transmit UTOPIA Parity" error. If the number of Cells reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will NOT overflow to "0x0000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT DISCARDED ATM CELL COUNT - BYTE 0 (ADDRESS = 0X1F2F)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0		
	Transmit - Discard Cell Count[7:0]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit - Discard Cell Count[7:0]	RUR	 Transmit - Discard Cell Count - Byte 0[7:0]: This RESET-upon-READ register, along with the "Transmit ATM Cell Processor Block - Transmit ATM Cell Discard Cell Count - Bytes 3 through 1" registers, contain a 32-bit value for the number of ATM cells that have been discarded by the Transmit ATM Cell Processor block. This particular register contains the LSB (Least Significant Byte) value of this 32-bit expression. <i>Notes:</i> The contents within these register includes all ATM cells that contain either a HEC Byte error or a "Transmit UTOPIA Parity" error. If the number of Cells reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will NOT overflow to "0x0000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM HEC BYTE ERROR COUNT REGISTER -BYTE 3 (ADDRESS = 0X1F30)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	Віт 0
Transmit - HEC Byte Error Count[31:24]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	Nаме	Түре	DESCRIPTION
7 - 0	Transmit - HEC Byte Error Count[31:24]	RUR	 Transmit - HEC Byte Error Count - Byte 3[7:0]: his RESET-upon-READ register, along with the "Transmit ATM Cell Processor Block - Transmit ATM HEC Byte Error Count Register - Bytes 2 through 0" register, contain a 32-bit value for the number of ATM cells that contain HEC byte errors (as detected by the Transmit ATM Cell Processor block). This particular register functions as the MSB (Most Significant Byte) for this 32-bit expression. <i>Notes:</i> This register is valid if the Transmit ATM Cell Processor block has been configured to compute and verify the HEC byte of each ATM cell Insertion Buffer". If the number of cells reaches the value "0xFFFFFFFF", then these registers will saturate to and remain at this value (e.g., it will NOT overflow to "0x0000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM HEC BYTE ERROR COUNT REGISTER -BYTE 2 (ADDRESS = 0X1F31)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0		
	Transmit - HEC Byte Error Count[23:16]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR		
0	0	0	0	0	0	0	0		

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Transmit - HEC Byte Error Count[23:16]	RUR	 Transmit - HEC Byte Error Count - Byte 2[7:0]: This RESET-upon-READ register, along with the "Transmit ATM Cell Processor Block - Transmit ATM HEC Byte Error Count Register - Bytes 3, 1 and 0" register, contain a 32-bit value for the number of ATM cells that contain HEC byte errors (as detected by the Transmit ATM Cell Processor block). Notes: This register is valid if the Transmit ATM Cell Processor block has been configured to compute and verify the HEC byte of each ATM cell that it receives from the TxFIFO or the "Transmit Cell Insertion Buffer". If the number of cells reaches the value "0xFFFFFFFF", then these registers will saturate to and remain at this value (e.g., it will NOT overflow to "0x0000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM HEC BYTE ERROR COUNT REGISTER -BYTE 1 (ADDRESS = 0X1F32)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	Віт 0
Transmit - HEC Byte Error Count[15:8]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit - HEC Byte Error Count[15:8]	RUR	Transmit - HEC Byte Error Count - Byte 1[7:0]: This RESET-upon-READ register, along with the "Transmit ATM Cell Processor Block - Transmit ATM HEC Byte Error Count Register - Bytes 3, 2 and 0" register, contain a 32-bit value for the number of ATM cells that contain HEC byte errors (as detected by the Transmit ATM Cell Processor block). Mortes: 1. This register is valid if the Transmit ATM Cell Processor block has been configured to compute and verify the HEC byte of each ATM cell that it receives from the TxFIFO or the "Transmit Cell Insertion Buffer".
			 If the number of cells reaches the value "0xFFFFFFF", then these registers will saturate to and remain at this value (e.g., it will NOT overflow to "0x00000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT ATM HEC BYTE ERROR COUNT REGISTER -BYTE 0 (ADDRESS = 0X1F33)

Віт 7	Віт 6	Віт 5	Віт 4	BIT 3	Віт 2	BIT 1	BIT 0	
Transmit - HEC Byte Error Count[7:0]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit - HEC Byte Error Count[7:0]	RUR	 Transmit - HEC Byte Error Count - Byte 0[7:0]: This RESET-upon-READ register, along with the "Transmit ATM Cell Processor Block - Transmit ATM HEC Byte Error Count Register - Bytes 3 through 1" register, contain a 32-bit value for the number of ATM cells that contain HEC byte errors (as detected by the Transmit ATM Cell Processor block). This particular register functions as the LSB (Least Significant Byte) for this 32-bit expression. <i>Notes:</i> This register is valid if the Transmit ATM Cell Processor block has been configured to compute and verify the HEC byte of each ATM cell Insertion Buffer". If the number of cells reaches the value "0xFFFFFFFF", then these registers will saturate to and remain at this value (e.g., it will NOT overflow to "0x0000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT UTOPIA PARITY ERROR COUNT REGISTER -BYTE 3 (ADDRESS = 0X1F34)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0
Transmit UTOPIA - Parity Error Count[31:24]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Transmit UTOPIA - Parity Error Count[31:24]	RUR	Transmit UTOPIA Parity Error Count - Byte 3[7:0]: This RESET-upon-READ register, along with the "Transmit ATM Cell Processor Block - Transmit UTOPIA Parity Error Count Register - Bytes 2 through 0" registers, contains a 32-bit value for the number of ATM cells that contain "Transmit UTOPIA" Parity (byte or word) errors (as detected by the Transmit ATM Cell Processor block). This particular register functions as the MSB (Most Significant Byte) for this 32-bit expression.
			Note: if the number of cells reaches the value "0xFFFFFFF", then these registers will saturate to and remain at this value (e.g., it will NOT overflow to "0x0000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT UTOPIA PARITY ERROR COUNT REGISTER -BYTE 2 (ADDRESS = 0X1F35)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0	
Transmit UTOPIA - Parity Error Count[23:16]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Transmit UTOPIA - Parity Error Count[23:16]	RUR	 Transmit UTOPIA Parity Error Count - Byte 2[7:0]: This RESET-upon-READ register, along with the "Transmit ATM Cell Processor Block - Transmit UTOPIA Parity Error Count Register - Bytes 3, 1 and 0" registers, contains a 32-bit value for the number of ATM cells that contain "Transmit UTOPIA" Parity (byte or word) errors (as detected by the Transmit ATM Cell Processor block). Note: if the number of cells reaches the value "0xFFFFFFF", then these registers will saturate to and remain at this value (e.g., it will NOT overflow to "0x0000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT UTOPIA PARITY ERROR COUNT REGISTER -BYTE 1 (ADDRESS = 0X1F36)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0
Transmit UTOPIA - Parity Error Count[15:8]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit UTOPIA - Parity Error Count[15:8]	RUR	Transmit UTOPIA Parity Error Count - Byte 1[7:0]: This RESET-upon-READ register, along with the "Transmit ATM Cell Processor Block - Transmit UTOPIA Parity Error Count Register - Bytes 3, 2 and 0" registers, contains a 32-bit value for the number of ATM cells that contain "Transmit UTOPIA" Parity (byte or word) errors (as detected by the Transmit ATM Cell Processor block).
			Note: if the number of cells reaches the value "0xFFFFFFFF", then these registers will saturate to and remain at this value (e.g., it will NOT overflow to "0x00000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT UTOPIA PARITY ERROR COUNT REGISTER -BYTE 0 (ADDRESS = 0X1F37)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0		
	Transmit UTOPIA - Parity Error Count[7:0]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR		
0	0	0	0	0	0	0	0		

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Transmit UTOPIA - Parity Error Count[7:0]	RUR	 Transmit UTOPIA Parity Error Count - Byte 0[7:0]: This RESET-upon-READ register, along with the "Transmit ATM Cell Processor Block - Transmit UTOPIA Parity Error Count Register - Bytes 3 through 1" registers, contains a 32-bit value for the number of ATM cells that contain "Transmit UTOPIA" Parity (byte or word) errors (as detected by the Transmit ATM Cell Processor block). This particular register functions as the LSB (Least Significant Byte) for this 32-bit expression. NoTE: if the number of cells reaches the value "0xFFFFFFFF", then these registers will saturate to and remain at this value (e.g., it will NOT overflow to "0x0000000").

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

XPEXAR

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER CONTROL - FILTER 0 (ADDRESS = 0X1F43)

Віт 7	BIT 6	Віт 5	BIT 4	BIT 3	Віт 2	BIT 1	BIT 0
	Unused				Copy Cell Enable	Discard Cell Enable	Filter if Pat- tern Match
R/O	R/O	R/O	R/O	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 4	Unused	R/O	
3	Transmit User Cell Fil- ter # 0 Enable	R/W	 Transmit User Cell Filter # 0 - Enable: This READ/WRITE bit-field permits the user to either enable or disable Transmit User Cell Filter # 0. If the user enables Transmit User Cell Filter # 0, then Transmit User Cell Filter # 0 will function per the configuration settings in Bits 2 through 0, within this register. If the user disables Transmit User Cell Filter # 0, then Transmit User Cell Filter # 0 then all cells that are applied to the input of Transmit User Cell Filter # 0. 0 - Disables Transmit User Cell Filter # 0. 1 - Enables Transmit User Cell Filter # 0.
2	Copy Cell Enable	R/W	 Copy Cell Enable - Transmit User Cell Filter # 0: This READ/WRITE bit-field permits the user to either configure Transmit User Cell Filter # 0 (within the Transmit ATM Cell Processor Block) to copy all cells that have header byte patterns that comply with the "user-defined" criteria, per Transmit User Cell Filter # 0, or to NOT copy any of these cells. If the user configures Transmit User Cell Filter # 0 to copy all cells complying with a certain "header-byte" pattern, then a copy (or replicate) of this "compliant" ATM cell will be routed to the Transmit Cell Extraction Buffer. If the user configures Transmit User Cell Filter # 0 to NOT copy all cells complying with a certain "header-byte" pattern, then NO copies (or replicates) of these "compliant" ATM cell swill be made nor will any be routed to the Transmit Cell Extraction Buffer. 0 - Configures Transmit User Cell Filter # 0 to NOT copy any cells that have header byte patterns which are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 0 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 0 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 0 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 0 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 0 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. Norre: This bit-field is only active if "Transmit User Cell Filter # 0" has been enabled.

XRT79L71 REV. P1.0.3

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
1	Discard Cell Enable	R/W	Discard Cell Enable - Transmit User Cell Filter # 0: This READ/WRITE bit-field permits the user to either configure Trans- mit User Cell Filter # 0 (within the Transmit ATM Cell Processor Block) to discard all cells that have header byte patterns that comply with the "user-defined" criteria, per Transmit User Cell Filter # 0, or NOT dis- card any of these cells.
			If the user configures Transmit User Cell Filter # 0 to NOT discarded any cells that is compliant with a certain "header-byte" pattern, then the cell will be retained for further processing.
			0 - Configures Transmit User Cell Filter # 0 to NOT discard any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria.
			1 - Configures Transmit User Cell Filter # 0 to discard any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria.
			NOTE: This bit-field is only active if "Transmit User Cell Filter # 0" has been enabled.
0	Filter if Pattern Match	R/W	 Filter if Pattern Match - Transmit User Cell Filter # 0: This READ/WRITE bit-field permits the user to either configure Transmit User Cell Filter # 0 to filter (based upon the configuration settings for Bits 1 and 2, in this register) ATM cells with header bytes that match the "user-defined" header byte patterns, or to filter ATM cells with header bytes that do NOT match the "user-defined" header byte patterns. 0 - Configures Transmit User Cell Filter # 0 to filter user cells that do NOT match the header byte patterns (as defined in the " " registers). 1 - Configures Transmit User Cell Filter # 0 to filter user cells that do match the header byte patterns (as defined in the " " registers). NOTE: This bit-field is only active if "Transmit User Cell Filter # 0" has been enabled.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 0 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0X1F44)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0		
Transmit User Cell Filter # 0 - Pattern Register - Byte 1 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 0 - Pattern Regis- ter - Header Byte 1	R/W	Transmit User Cell Filter # 0 - Pattern Register - Header Byte 1: The User Cell filtering criteria (for Transmit User Cell Filter # 0) is defined based upon the contents of 9 read/write registers. These reg- isters are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Pattern Registers", the four "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 0 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 0 - Check Register - Header Byte 1" permits the user to define the User Cell Filtering criteria for "Octet # 1" of the incoming User Cell. The user will write the header byte pattern (for Octet 1) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this reg- ister. The user will also write in a value into the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Check Register - Header Byte 1" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 0 - PATTERN REGISTER - HEADER BYTE 2 (ADDRESS = 0X1F45)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0			
Transmit User Cell Filter # 0 - Pattern Register - Byte 2 [7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 0 - Pattern Regis- ter - Header Byte 2	R/W	Transmit User Cell Filter # 0 - Pattern Register - Header Byte 2: The User Cell filtering criteria (for Transmit User Cell Filter # 0) is defined based upon the contents of 9 read/write registers. These reg- isters are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Pattern Registers", the four "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 0 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 0 - Check Register - Header Byte 2" permits the user to define the User Cell Filtering criteria for "Octet # 2" of the incoming User Cell. The user will write the header byte pattern (for Octet 2) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this reg- ister. The user will also write in a value into the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Check Register - Header Byte 2" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 0 - PATTERN REGISTER - HEADER BYTE 3 (ADDRESS = 0X1F46)

Віт 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0		
Transmit User Cell Filter # 0 - Pattern Register - Byte 3 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 0 - Pattern Regis- ter - Header Byte 3	R/W	Transmit User Cell Filter # 0 - Pattern Register - Header Byte 3: The User Cell filtering criteria (for Transmit User Cell Filter # 0) is defined based upon the contents of 9 read/write registers. These reg- isters are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Pattern Registers", the four "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 0 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 0 - Check Register - Header Byte 3" permits the user to define the User Cell Filtering criteria for "Octet # 3" of the incoming User Cell. The user will write the header byte pattern (for Octet 3) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this reg- ister. The user will also write in a value into the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Check Register - Header Byte 3" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 0 - PATTERN REGISTER - HEADER BYTE 4 (ADDRESS = 0X1F47)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	Віт 2	BIT 1	BIT 0			
Transmit User Cell Filter # 0 - Pattern Register - Byte 4 [7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER NAME TYPE DESCRIPTION	DN
 7 - 0 Transmit User Cell Filter # 0 - Pattern Register - Header Byte 4 R/W R/W Transmit User Cell Filter # 0 - Pattern The User Cell Filter ing criteria (for Transdefined based upon the contents of 9 registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 Pattern Registers", the for sor Block - Transmit User Cell Filter # 0 "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 Byte 4" permits the user to define the U "Octet # 4" of the incoming User Cell. The user will write the header byte patter wishes to use as part of the "User Cell Filter. The user will also write in a value Processor Block - Transmit User Cell Filter # 0 Header Byte 4" that indicates which bits incoming cells are to be compared with 	mit User Cell Filter # 0) is ead/write registers. These reg- rocessor Block - Transmit User our "Transmit ATM Cell Proces- - Check Registers" and the "ansmit User Cell Filter # 0 the "Transmit ATM Cell Proces- - Check Register - Header ser Cell Filtering criteria for ern (for Octet 4) that he/she Filtering" criteria, into this reg- into the "Transmit ATM Cell lter # 0 - Check Register - s within the first octet of the

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 0 - CHECK REGISTER -BYTE 1 (ADDRESS = 0X1F48)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	Віт 1	BIT 0		
Transmit User Cell Filter # 0 - Check Register - Byte 1 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 0 - Check Regis- ter - Header Byte 1	R/W	Transmit User Cell Filter # 0 - Check Register - Header Byte 1: The User Cell filtering criteria (for Transmit User Cell Filter # 0) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Pattern Register - Header Byte 1" permits the user to define the User Cell Filtering criteria for "Octet # 1" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 1" of the incoming user cell (in the Transmit USer Cell Filter # 0 - Pattern Register - Header Byte 1" of the incoming user cell (in the Transmit User Cell Filter # 0 - Pattern Register - Header Byte 1" of the incoming user cell. Wore Specify which bit(s) in "Octet 1" of the incoming user Cell 5" by the User Cell Filter # 0 - Pattern Register - Header Byte 1" by the User Cell Filter # 0 - Pattern Register - Header Byte 1" by the User Cell Filter # 0 - Pattern Register - Header Byte 1" by the User Cell Filter # 0 - Pattern Register - Header Byte 1" by the Corresponding bit in "Octet # 1" (of the incoming user cell) with the corresponding bit in "Octet # 1" (of the incoming user cell) with the corresponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Pattern Register - Header Byte 1". Writing a "0" to a particular bit-field in this register causes the Transmit User Cell Filter to treat the corresponding bit within "Octet # 1" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 1" of the incoming user cell with the corresponding bit in "Octet # 1" of the incoming user cell Fi

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 0 - CHECK REGISTER -BYTE 2 (ADDRESS = 0X1F49)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0			
Transmit User Cell Filter # 0 - Check Register - Byte 2 [7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 0 - Check Regis- ter - Header Byte 2	R/W	 Transmit User Cell Filter # 0 - Check Register - Header Byte 2: The User Cell filtering criteria (for Transmit User Cell Filter # 0) is defined based upon the contents of 9 read/write registers. These reg- isters are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Pattern Registers", the four "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 0 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 0 - Pattern Register - Header Byte 2" permits the user to define the User Cell Filtering criteria for "Octet # 2" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 2" of the incoming user cell (in the Transmit ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Pattern Register - Header Byte 2" by the User Cell Filter, when deter- mine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the Transmit User Cell Filter to check and compare the corresponding bit in "Octet # 2" (of the incoming user cell) with the corresponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Pattern Register - Header Byte 2". Writing a "0" to a particular bit-field in this register causes the Transmit User Cell Filter to treat the corresponding bit within "Octet # 2" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 2" of the incoming user cell with the corresponding bit in "Octet # 2" of the incoming user cell with the corresponding bit field in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Pattern Register - Header Byte 2"). <

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 0 - CHECK REGISTER -BYTE 3 (ADDRESS = 0X1F4A)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	Віт 1	BIT 0
Transmit User Cell Filter # 0 - Check Register - Byte 3 [7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	Nаме	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 0 - Check Regis- ter - Header Byte 3	R/W	 Transmit User Cell Filter # 0 - Check Register - Header Byte 3: The User Cell filtering criteria (for Transmit User Cell Filter # 0) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Pattern Register - Header Byte 3" permits the user to define the User Cell Filtering criteria for "Octet # 3" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 3" of the incoming user cell (in the Transmit User Cell Filter # 0 - Pattern Register - Header Byte 3" of the incoming user cell (in the Transmit User Cell Filter # 0 - Pattern Register - Header Byte 3" by the User Cell Filter # 0 - Pattern Register - Header Byte 3" by the User Cell Filter # 0 - Pattern Register - Header Byte 3" by the User Cell Filter # 0 - Pattern Register - Header Byte 3" by the User Cell Filter # 0 - Pattern Register - Header Byte 3" by the User Cell Filter # 0 - Pattern Register - Header Byte 3" by the User Cell Filter # 0 - Pattern Register - Header Byte 3". Writing a "1" to a particular bit-field in this register, forces the Transmit User Cell Filter to check and compare the corresponding bit in "Octet # 3" (of the incoming user cell) with the corresponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Pattern Register - Header Byte 3". Writing a "0" to a particular bit-field in this register causes the Transmit User Cell Filter to treat the corresponding bit within "Octet # 3" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 0 - CHECK REGISTER -BYTE 4 (ADDRESS = 0X1F4B)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0
	Transmit User Cell Filter # 0 - Check Register - Byte 4 [7:0]						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	Nаме	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 0 - Check Regis- ter - Header Byte 4	R/W	Transmit User Cell Filter # 0 - Check Register - Header Byte 4: The User Cell filtering criteria (for Transmit User Cell Filter # 0) is defined based upon the contents of 9 read/write registers. These reg- isters are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Pattern Registers", the four "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 0 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 0 - Pattern Register - Header Byte 4" permits the user to define the User Cell Filtering criteria for "Octet # 4" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 4" of the incoming user cell (in the Transmit ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Pattern Register - Header Byte 4" by the User Cell Filter, when deter- mine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the Transmit User Cell Filter to check and compare the corresponding bit in "Octet # 4" (of the incoming user cell) with the corresponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Pattern Register - Header Byte 4". Writing a "0" to a particular bit-field in this register causes the Transmit User Cell Filter to treat the corresponding bit within "Octet # 4" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 4" of the incoming user cell with the corresponding bit field in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Pattern Register - Header Byte 4").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 0 - FILTERED CELL COUNT - BYTE 3 (ADDRESS = 0X1F4C)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Transmit User Cell Filter # 0 - Filtered Cell Count[31:24]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 0 - Filtered Cell Count[31:24]	RUR	Transmit User Cell Filter # 0 - Filtered Cell Count[31:24]: These RESET-upon-READ bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Filtered Cell Count - Bytes 2" through "0" register contain a 32-bit expression for the number of User Cells that have been filtered by Transmit User Cell Filter # 0 since the last read of this register. Depending upon the configuration settings within the "Transmit ATM
			Cell Processor Block - Transmit User Cell Filter Control - User Cell Fil- ter # 0" Register (Address = 0x1F43), these register bits will be incre- mented anytime User Cell Filter # 0 performs any of the following functions.
			Discards an incoming "User Cell".
			• Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Transmit Cell Extraction Buffer.
			both the above actions.
			This particular register contains the MSB (Most Significant Byte) value for this 32-bit expression.
			Note: If the number of "filtered cells" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 0 - FILTERED CELL COUNT - BYTE 2 (ADDRESS = 0X1F4D)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
	Transmit User Cell Filter # 0 - Filtered Cell Count[23:16]						
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 0 - Filtered Cell Count[23:16]	RUR	Transmit User Cell Filter # 0 - Filtered Cell Count[23:16]: These RESET-upon-READ bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Filtered Cell Count - Bytes 3, 1 and 0" register contain a 32-bit expression for the number of User Cells that have been filtered by Transmit User Cell Fil- ter # 0 since the last read of this register.
			Depending upon the configuration settings within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter Control - Transmit User Cell Filter # 0" Register (Address = 0x1F43), these register bits will be incremented anytime User Cell Filter # 0 performs any of the following functions.
			Discards an incoming "User Cell".
			• Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Transmit Cell Extraction Buffer.
			both the above actions.
			Note: If the number of "filtered cells" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 0 - FILTERED CELL COUNT - BYTE 1 (ADDRESS = 0X1F4E)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0			
Transmit User Cell Filter # 0 - Filtered Cell Count[15:8]										
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 0 - Filtered Cell Count[15:8]	RUR	Transmit User Cell Filter # 0 - Filtered Cell Count[15:8]: These RESET-upon-READ bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Filtered Cell Count - Bytes 3, 2 and 0" register contain a 32-bit expression for the number of User Cells that have been filtered by Transmit User Cell Fil- ter # 0 since the last read of this register.
			Depending upon the configuration settings within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter Control - Transmit User Cell Filter # 0" Register (Address = 0x1F43), these register bits will be incremented anytime Transmit User Cell Filter # 0 performs any of the following functions.
			Discards an incoming "User Cell".
			• Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Transmit Cell Extraction Buffer.
			both the above actions.
			Note: If the number of "filtered cells" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 0 - FILTERED CELL COUNT - BYTE 0 (ADDRESS = 0X1F4F)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0			
Transmit User Cell Filter # 0 - Filtered Cell Count[7:0]										
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 0 - Filtered Cell Count[7:0]	RUR	Transmit User Cell Filter # 0 - Filtered Cell Count[7:0]: These RESET-upon-READ bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 0 - Filtered Cell Count - Bytes 3" through "1" register contain a 32-bit expression for the number of User Cells that have been filtered by Transmit User Cell Filter # 0 since the last read of this register. Depending upon the configuration settings within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter Control - Transmit User Cell Filter # 0" Register (Address = 0x1F43), these register bits will be incremented anytime Transmit User Cell Filter # 0 performs any of the following functions.
			 Discards an incoming "User Cell".
			• Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Transmit Cell Extraction Buffer.
			both the above actions.
			This particular register contains the LSB (Least Significant Byte) value for this 32-bit expression.
			Note: If the number of "filtered cells" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

XPEXAR

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER CONTROL - FILTER 1 (ADDRESS = 0X1F53)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	Віт 0
	Unused				Copy Cell Enable	Discard Cell Enable	Filter if Pattern Match
R/O	R/O	R/O	R/O	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 4	Unused	R/O	
3	Transmit User Cell Fil- ter # 1 Enable	R/W	 Transmit User Cell Filter # 1 - Enable: This READ/WRITE bit-field permits the user to either enable or disable Transmit User Cell Filter # 1. If the user enables Transmit User Cell Filter # 1, then Transmit User Cell Filter # 1 will function per the configuration settings in Bits 2 through 0, within this register. If the user disables Transmit User Cell Filter # 1, then Transmit User Cell Filter # 1 then all cells that are applied to the input of Transmit User Cell Filter # 1. 0 - Disables Transmit User Cell Filter # 1. 1 - Enables Transmit User Cell Filter # 1.
2	Copy Cell Enable	R/W	 Copy Cell Enable - Transmit User Cell Filter # 1: This READ/WRITE bit-field permits the user to either configure Transmit User Cell Filter # 1 (within the Transmit ATM Cell Processor Block) to copy all cells that have header byte patterns that comply with the "user-defined" criteria, per Transmit User Cell Filter # 1, or to NOT copy any of these cells. If the user configures Transmit User Cell Filter # 1 to copy all cells complying with a certain "header-byte" pattern, then a copy (or replicate) of this "compliant" ATM cell will be routed to the Transmit Cell Extraction Buffer. If the user configures Transmit User Cell Filter # 1 to NOT copy all cells complying with a certain "header-byte" pattern, then NO copies (or replicates) of these "compliant" ATM cell swill be made nor will any be routed to the Transmit Cell Extraction Buffer. 0 - Configures Transmit User Cell Filter # 1 to NOT copy any cells that have header byte patterns which are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 1 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 1 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 1 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 1 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. Norre: This bit-field is only active if "Transmit User Cell Filter # 1" has been enabled.

XRT79L71 REV. P1.0.3

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
1	Discard Cell Enable	R/W	Discard Cell Enable - Transmit User Cell Filter # 1: This READ/WRITE bit-field permits the user to either configure Trans- mit User Cell Filter # 1 (within the Transmit ATM Cell Processor Block) to discard all cells that have header byte patterns that comply with the "user-defined" criteria, per Transmit User Cell Filter # 1, or NOT dis- card any of these cells. If the user configures Transmit User Cell Filter # 1 to NOT discarded
			 any cells that is compliant with a certain "header-byte" pattern, then the cell will be retained for further processing. 0 - Configures Transmit User Cell Filter # 1 to NOT discard any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 1 to discard any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 1 to discard any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. NoTE: This bit-field is only active if "Transmit User Cell Filter # 1" has been enabled.
0	Filter if Pattern Match	R/W	 Filter if Pattern Match - Transmit User Cell Filter # 1: This READ/WRITE bit-field permits the user to either configure Transmit User Cell Filter # 1 to filter (based upon the configuration settings for Bits 1 and 2, in this register) ATM cells with header bytes that match the "user-defined" header byte patterns, or to filter ATM cells with header bytes that do NOT match the "user-defined" header byte patterns. 0 - Configures Transmit User Cell Filter # 1 to filter user cells that do NOT match the header byte patterns (as defined in the " registers). 1 - Configures Transmit User Cell Filter # 1 to filter user cells that do match the header byte patterns (as defined in the " registers). NOTE: This bit-field is only active if "Transmit User Cell Filter # 1" has been enabled.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 1 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0X1F54)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0			
Transmit User Cell Filter # 1 - Pattern Register - Byte 1 [7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 1 - Pattern Regis- ter - Header Byte 1	R/W	Transmit User Cell Filter # 1 - Pattern Register - Header Byte 1: The User Cell filtering criteria (for Transmit User Cell Filter # 1) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Check Reg- isters" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 1 - Check Register - Header Byte 1" permits the user to define the User Cell Filtering criteria for "Octet # 1" of the incoming User Cell. The user will write the header byte pattern (for Octet 1) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this reg- ister. The user will also write in a value into the "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 1 - Check Register - Header Byte 1" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 1 - PATTERN REGISTER - HEADER BYTE 2 (ADDRESS = 0X1F55)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	Віт 2	BIT 1	BIT 0				
	Transmit User Cell Filter # 1 - Pattern Register - Byte 2 [7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0	0	0	0	0	0	0	0				

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 1 - Pattern Regis- ter - Header Byte 2	R/W	 Transmit User Cell Filter # 1 - Pattern Register - Header Byte 2: The User Cell filtering criteria (for Transmit User Cell Filter # 1) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Check Register - Header Byte 2" permits the user to define the User Cell Filtering criteria for "Octet # 2" of the incoming User Cell. The user will write the header byte pattern (for Octet 2) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Check Register - Header Byte 2" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 1 - PATTERN REGISTER - HEADER BYTE 3 (ADDRESS = 0X1F56)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0			
Transmit User Cell Filter # 1 - Pattern Register - Byte 3 [7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 1 - Pattern Regis- ter - Header Byte 3	R/W	 Transmit User Cell Filter # 1 - Pattern Register - Header Byte 3: The User Cell filtering criteria (for Transmit User Cell Filter # 1) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Check Register - Header Byte 3" permits the user to define the User Cell Filtering criteria for "Octet # 3" of the incoming User Cell. The user will write the header byte pattern (for Octet 3) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Check Register - Header Byte 3" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 1 - PATTERN REGISTER - HEADER BYTE 4 (ADDRESS = 0X1F57)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0			
Transmit User Cell Filter # 1 - Pattern Register - Byte 4 [7:0]										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 1 - Pattern Regis- ter - Header Byte 4	R/W	 Transmit User Cell Filter # 1 - Pattern Register - Header Byte 4: The User Cell filtering criteria (for Transmit User Cell Filter # 1) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Check Register - Header Byte 4" permits the user to define the User Cell Filtering criteria for "Octet # 4" of the incoming User Cell. The user will write the header byte pattern (for Octet 4) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Check Register - Header Byte 4" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 1 - CHECK REGISTER -BYTE 1 (ADDRESS = 0X1F58)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	Віт 1	BIT 0		
Transmit User Cell Filter # 1 - Check Register - Byte 1 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 1 - CHECK REGISTER -BYTE 2 (ADDRESS = 0X1F59)

BIT 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0		
Transmit User Cell Filter # 1 - Check Register - Byte 2 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 1 - Check Regis- ter - Header Byte 2	R/W	Transmit User Cell Filter # 1 - Check Register - Header Byte 2: The User Cell filtering criteria (for Transmit User Cell Filter # 1) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Check Registers" and the "Transmit User Cell Filter # 1 - Pattern Register - Header Byte 2" permits the user to define the User Cell Filtering criteria for "Octet # 2" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 2" of the incoming user cell (in the Transmit ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Pattern Register - Header Byte 2" by the User Cell Filter # 1 - Pattern Register - Header Byte 2" by the User Cell Filter # 1 - Pattern Register - Header Byte 2" by the User Cell Filter # 1 - Pattern Register - Header Byte 2". Writing a "1" to a particular bit-field in this register, forces the Transmit User Cell Filter to check and compare the corresponding bit in "Octet # 2" (of the incoming user cell) with the corresponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Pattern Register - Header Byte 2". Writing a "0" to a particular bit-field in this register causes the Transmit User Cell Filter to treat the corresponding bit within "Octet # 2" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 2" of the incoming user cell With the corresponding bit

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 1 - CHECK REGISTER -BYTE 3 (ADDRESS = 0X1F5A)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0		
Transmit User Cell Filter # 1 - Check Register - Byte 3 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 1 - Check Regis- ter - Header Byte 3	R/W	 Transmit User Cell Filter #1 - Check Register - Header Byte 3: The User Cell filtering criteria (for Transmit User Cell Filter #1) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter #1 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter #1 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter #1 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter #1 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter #1 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter #1 - Pattern Register - Header Byte 3" permits the user to Ell Filter #1 - Pattern Register - Header Byte 3" permits the user to define the User Cell Filtering criteria for "Octet # 3" within the incoming User Cell. More specify which bit(s) in "Octet 3" of the incoming user cell (in the Transmit ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter #1 - Pattern Register - Header Byte 3" by the User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the Transmit User Cell Filter to check and compare the corresponding bit in "Octet #3" (of the incoming user cell) with the corresponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter #1 - Pattern Register - Header Byte 3". Writing a "0" to a particular bit-field in this register causes the Transmit User Cell Filter to treat the corresponding bit within "Octet #3" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet #3" of the incoming user cell Filter #1 - Pattern Register - Header Byte 3".

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 1 - CHECK REGISTER -BYTE 4 (ADDRESS = 0X1F5B)

BIT 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	BIT 0		
Transmit User Cell Filter # 1 - Check Register - Byte 4 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 1 - Check Regis- ter - Header Byte 4	R/W	Transmit User Cell Filter # 1 - Check Register - Header Byte 4: The User Cell filtering criteria (for Transmit User Cell Filter # 1) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Pattern Register - Header Byte 4" permits the user to define the User Cell Filtering criteria for "Octet # 4" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 4" of the incoming user cell (in the Transmit ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Pattern Register - Header Byte 4" by the User Cell Filter # 1 - Pattern Register - Header Byte 4" by the User Cell Filter # 1 - Pattern Register - Header Byte 4" by the User Cell Filter # 1 - Pattern Register - Header Byte 4" by the User Cell Filter # 1 - Pattern Register - Header Byte 4". Writing a "1" to a particular bit-field in this register, forces the Transmit User Cell Filter to check and compare the corresponding bit in "Octet # 4" (of the incoming user cell) with the corresponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Pattern Register - Header Byte 4". Writing a "0" to a particular bit-field in this register causes the Transmit User Cell Filter to treat the corresponding bit within "Octet # 4" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 4" of the incoming

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 1 - FILTERED CELL COUNT - BYTE 3 (ADDRESS = 0X1F5C)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0		
Transmit User Cell Filter # 1 - Filtered Cell Count[31:24]									
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 1 - Filtered Cell Count[31:24]	RUR	Transmit User Cell Filter # 1 - Filtered Cell Count[31:24]: These RESET-upon-READ bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Filtered Cell Count - Bytes 2" through "0" register contain a 32-bit expression for the number of User Cells that have been filtered by Transmit User Cell Filter # 1 since the last read of this register.
			Depending upon the configuration settings within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter Control - User Cell Fil- ter # 1" Register (Address = 0x1F53), these register bits will be incre- mented anytime User Cell Filter # 1 performs any of the following functions.
			 Discards an incoming "User Cell".
			• Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Transmit Cell Extraction Buffer.
			both the above actions.
			This particular register contains the MSB (Most Significant Byte) value for this 32-bit expression.
			Note: If the number of "filtered cells" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 1 - FILTERED CELL COUNT - BYTE 2 (ADDRESS = 0X1F5D)

Віт 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	Віт 0	
Transmit User Cell Filter # 1 - Filtered Cell Count[23:16]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 1 - Filtered Cell Count[23:16]	RUR	Transmit User Cell Filter # 1 - Filtered Cell Count[23:16]: These RESET-upon-READ bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Filtered Cell Count - Bytes 3, 1 and 0" register contain a 32-bit expression for the number of User Cells that have been filtered by Transmit User Cell Fil- ter # 1 since the last read of this register.
			Depending upon the configuration settings within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter Control - Transmit User Cell Filter # 1" Register (Address = 0x1F53), these register bits will be incremented anytime User Cell Filter # 1 performs any of the following functions.
			Discards an incoming "User Cell".
			• Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Transmit Cell Extraction Buffer.
			Both the above actions.
			Note: If the number of "filtered cells" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 1 - FILTERED CELL COUNT - BYTE 1 (ADDRESS = 0X1F5E)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0	
Transmit User Cell Filter # 1 - Filtered Cell Count[15:8]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 1 - Filtered Cell Count[15:8]	RUR	Transmit User Cell Filter # 1 - Filtered Cell Count[15:8]: These RESET-upon-READ bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Filtered Cell Count - Bytes 3, 2 and 0" register contain a 32-bit expression for the number of User Cells that have been filtered by Transmit User Cell Fil- ter # 1 since the last read of this register.
			Depending upon the configuration settings within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter Control - Transmit User Cell Filter # 1" Register (Address = 0x1F53), these register bits will be incremented anytime Transmit User Cell Filter # 1 performs any of the following functions.
			Discards an incoming "User Cell"
			• Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Transmit Cell Extraction Buffer.
			both the above actions.
			Note: If the number of "filtered cells" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 1 - FILTERED CELL COUNT - BYTE 0 (ADDRESS = 0X1F5F)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0	
Transmit User Cell Filter # 1 - Filtered Cell Count[7:0]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 1 - Filtered Cell Count[7:0]	RUR	Transmit User Cell Filter # 1 - Filtered Cell Count[7:0]: These RESET-upon-READ bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 1 - Filtered Cell Count - Bytes 3" through "1" register contain a 32-bit expression for the number of User Cells that have been filtered by Transmit User Cell Filter # 1 since the last read of this register. Depending upon the configuration settings within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter Control - Transmit User Cell Filter # 1" Register (Address = 0x1F53), these register bits will be incremented anytime Transmit User Cell Filter # 1 performs any of the following functions.
			Discards an incoming "User Cell".
			• Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Transmit Cell Extraction Buffer.
			both the above actions.
			This particular register contains the LSB (Least Significant Byte) value for this 32-bit expression.
			Note: If the number of "filtered cells" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

XPEXAR

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER CONTROL - FILTER 2 (ADDRESS = 0X1F63)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
	Սու	ised		Transmit User Cell Filter # 2 Enable	Copy Cell Enable	Discard Cell Enable	Filter if Pattern Match
R/O	R/O	R/O	R/O	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 4	Unused	R/O	
3	Transmit User Cell Fil- ter # 2 Enable	R/W	 Transmit User Cell Filter # 2 - Enable: This READ/WRITE bit-field permits the user to either enable or disable Transmit User Cell Filter # 2. If the user enables Transmit User Cell Filter # 2, then Transmit User Cell Filter # 2 will function per the configuration settings in Bits 2 through 0, within this register. If the user disables Transmit User Cell Filter # 2, then Transmit User Cell Filter # 2 then all cells that are applied to the input of Transmit User Cell Filter # 2. 0 - Disables Transmit User Cell Filter # 2. 1 - Enables Transmit User Cell Filter # 2.
2	Copy Cell Enable	R/W	 Copy Cell Enable - Transmit User Cell Filter # 2: This READ/WRITE bit-field permits the user to either configure Transmit User Cell Filter # 2 (within the Transmit ATM Cell Processor Block) to copy all cells that have header byte patterns that comply with the "user-defined" criteria, per Transmit User Cell Filter # 2, or to NOT copy any of these cells. If the user configures Transmit User Cell Filter # 2 to copy all cells complying with a certain "header-byte" pattern, then a copy (or replicate) of this "compliant" ATM cell will be routed to the Transmit Cell Extraction Buffer. If the user configures Transmit User Cell Filter # 2 to NOT copy all cells complying with a certain "header-byte" pattern, then NO copies (or replicates) of these "compliant" ATM cells will be made nor will any be routed to the Transmit Cell Extraction Buffer. 0 - Configures Transmit User Cell Filter # 2 to NOT copy any cells that have header byte patterns which are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 2 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 2 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 2 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 2 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 2 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. Note: This bit-field is only active if "Transmit User Cell Filter # 2" has been enabled.

XRT79L71 REV. P1.0.3

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
1	Discard Cell Enable	R/W	Discard Cell Enable - Transmit User Cell Filter # 2: This READ/WRITE bit-field permits the user to either configure Trans- mit User Cell Filter # 2 (within the Transmit ATM Cell Processor Block) to discard all cells that have header byte patterns that comply with the "user-defined" criteria, per Transmit User Cell Filter # 2, or NOT dis- card any of these cells.
			If the user configures Transmit User Cell Filter # 2 to NOT discarded any cells that is compliant with a certain "header-byte" pattern, then the cell will be retained for further processing.
			0 - Configures Transmit User Cell Filter # 2 to NOT discard any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria.
			1 - Configures Transmit User Cell Filter # 2 to discard any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria.
			NOTE: This bit-field is only active if "Transmit User Cell Filter # 2" has been enabled.
0	Filter if Pattern Match	R/W	 Filter if Pattern Match - Transmit User Cell Filter # 2: This READ/WRITE bit-field permits the user to either configure Transmit User Cell Filter # 2 to filter (based upon the configuration settings for Bits 1 and 2, in this register) ATM cells with header bytes that match the "user-defined" header byte patterns, or to filter ATM cells with header bytes that do NOT match the "user-defined" header byte patterns. 0 - Configures Transmit User Cell Filter # 2 to filter user cells that do NOT match the header byte patterns (as defined in the " " registers). 1 - Configures Transmit User Cell Filter # 2 to filter user cells that do match the header byte patterns (as defined in the " " registers). NOTE: This bit-field is only active if "Transmit User Cell Filter # 2" has been enabled.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0X1F64)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0		
Transmit User Cell Filter # 2 - Pattern Register - Byte 1 [7:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 2 - Pattern Regis- ter - Header Byte 1	R/W	Transmit User Cell Filter # 2 - Pattern Register - Header Byte 1: The User Cell filtering criteria (for Transmit User Cell Filter # 2) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Check Reg- isters" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Check Reg- isters" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 2 - Check Register - Header Byte 1" permits the user to define the User Cell Filtering criteria for "Octet # 1" of the incoming User Cell. The user will write the header byte pattern (for Octet 1) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this reg- ister. The user will also write in a value into the "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 2 - Check Register - Header Byte 1" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 2 (ADDRESS = 0X1F65)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0	
	Transmit User Cell Filter # 2 - Pattern Register - Byte 2 [7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

7 - 0 Transmit User Cell Fil- ter # 2 - Pattern Regis- ter - Header Byte 2 R/W Transmit User Cell Filter # 2 - Pattern Register - Header Byte 2: The User Cell filtering criteria (for Transmit User Cell Filter # 2) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Check Reg- isters" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 2 - Check Register - Header Bute 2" permits the user to define the User Cell Eiltering criteria for	BIT NUMBER	NAME	Түре	DESCRIPTION
"Octet # 2" of the incoming User Cell. The user will write the header byte pattern (for Octet 2) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this reg- ister. The user will also write in a value into the "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 2 - Check Register - Header Byte 2" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.	_	Transmit User Cell Fil- ter # 2 - Pattern Regis-		 Transmit User Cell Filter # 2 - Pattern Register - Header Byte 2: The User Cell filtering criteria (for Transmit User Cell Filter # 2) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Check Register Ser Block - Transmit User Cell Filter # 2 - Check Register - Header Byte 2" permits the user to define the User Cell Filtering criteria for "Octet # 2" of the incoming User Cell. The user will write the header byte pattern (for Octet 2) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Check Register - Header Byte 2" that indicates which bits within the first octet of the incoming

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 3 (ADDRESS = 0X1F66)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Transmit User Cell Filter # 2 - Pattern Register - Byte 3 [7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 2 - Pattern Regis- ter - Header Byte 3	R/W	 Transmit User Cell Filter # 2 - Pattern Register - Header Byte 3: The User Cell filtering criteria (for Transmit User Cell Filter # 2) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Check Register - Header Byte 3" permits the user to define the User Cell Filtering criteria for "Octet # 3" of the incoming User Cell. The user will write the header byte pattern (for Octet 3) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Check Register - Header Byte 3" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - PATTERN REGISTER - HEADER BYTE 4 (ADDRESS = 0X1F67)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	Віт 2	BIT 1	Віт 0
		Transmit User	Cell Filter # 2 -	Pattern Registe	er - Byte 4 [7:0]		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 2 - Pattern Regis- ter - Header Byte 4	R/W	Transmit User Cell Filter # 2 - Pattern Register - Header Byte 4: The User Cell filtering criteria (for Transmit User Cell Filter # 2) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 Control Register.T his READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Check Register - Header Byte 4" permits the user to define the User Cell Filtering criteria for "Octet # 4" of the incoming User Cell. The user will write the header byte pattern (for Octet 4) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Check Register - Header Byte 4" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - CHECK REGISTER -BYTE 1 (ADDRESS = 0X1F68)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Transmit User Cell Filter # 2 - Check Register - Byte 1 [7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
Віт Number 7 - 0	NAME Transmit User Cell Fil- ter # 2 - Check Regis- ter - Header Byte 1	TYPE R/W	DESCRIPTION Transmit User Cell Filter # 2 - Check Register - Header Byte 1: The User Cell filtering criteria (for Transmit User Cell Filter # 2) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Check Reg- isters" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 2 - Pattern Register - Header Byte 1" permits the user to define the User Cell Filtering criteria for "Octet # 1" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 1" of the incoming user cell (in the Transmit ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Register - Header Byte 1" by the User Cell Filter, when deter- mine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the Transmit User Cell Filter to check and compare the corresponding bit in "Octet # 1" (of the incoming user cell) with the corresponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 Pattern Register - Header Byte 1". Writing a "0" to a particular bit-field in this register causes the Transmit User Cell Filter to check and compare the corresponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 Pattern Register - Header Byte 1". Writing a "0" to a particular bit-field in this register causes the Transmit User Cell Filter to treat the corresponding bit within "Octet # 1" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet #
			Block - Transmit User Cell Filter # 2 - Pattern Register - Header Byte 1").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - CHECK REGISTER -BYTE 2 (ADDRESS = 0X1F69)

BIT 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	BIT 0
Transmit User Cell Filter # 2 - Check Register - Byte 2 [7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 2 - Check Regis- ter - Header Byte 2	R/W	Transmit User Cell Filter # 2 - Check Register - Header Byte 2: The User Cell filtering criteria (for Transmit User Cell Filter # 2) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Register - Header Byte 2" permits the user to define the User Cell Filtering criteria for "Octet # 2" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 2" of the incoming user cell (in the Transmit ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Register - Header Byte 2" by the User Cell Filter # 2 - Pattern Register - Header Byte 2" by the User Cell Filter # 2 - Pattern Register - Header Byte 2" by the User Cell Filter # 2 - Pattern Register - Header Byte 2" by the User Cell Filter # 2 - Pattern Register - Header Byte 2" by the User Cell Filter # 2 - Pattern Register - Header Byte 2" by the User Cell Filter # 2 - Pattern Register - Header Byte 2". Writing a "1" to a particular bit-field in this register, forces the Transmit User Cell Filter to check and compare the corresponding bit in "Octet # 2" (of the incoming user cell) with the corresponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Register - Header Byte 2". Writing a "0" to a particular bit-field in this register causes the Transmit User Cell Filter to treat the corresponding bit within "Octet # 2" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - CHECK REGISTER -BYTE 3 (ADDRESS = 0X1F6A)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	Віт 1	BIT 0
		Transmit User	Cell Filter # 2 -	Check Registe	r - Byte 3 [7:0]		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 2 - Check Regis- ter - Header Byte 3	R/W	 Transmit User Cell Filter # 2 - Check Register - Header Byte 3: The User Cell filtering criteria (for Transmit User Cell Filter # 2) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Register - Header Byte 3" permits the user to effine the User Cell Filtering criteria for "Octet # 3" within the incoming User Cell. More specify which bit(s) in "Octet 3" of the incoming user cell (in the Transmit ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Register - Header Byte 3" by the User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the Transmit User Cell Filter to check and compare the corresponding bit in "Octet # 3" (of the incoming user cell) with the corresponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Register - Header Byte 3". Writing a "0" to a particular bit-field in this register causes the Transmit User Cell Filter to treat the corresponding bit within "Octet # 3" (in the incoming user cell) as "don't care" (e.g., to forgo the comparison between the corresponding bit field in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter to check and the ser server agains the incoming user cell with the corresponding bit in "Octet # 3" (in the incoming user cell) as "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 3" of the incoming user cell as "don't ca

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - CHECK REGISTER -BYTE 4 (ADDRESS = 0X1F6B)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Transmit User Cell Filter # 2 - Check Register - Byte 4 [7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 2 - Check Regis- ter - Header Byte 4	R/W	 Transmit User Cell Filter # 2 - Check Register - Header Byte 4: The User Cell filtering criteria (for Transmit User Cell Filter # 2) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Register - Header Byte 4" permits the user to define the User Cell Filtering criteria for "Octet # 4" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 4" of the incoming user cell (in the Transmit User Cell Filter # 2 - Pattern Register - Header Byte 4" of the incoming user cell (in the Transmit User Cell Filter # 2 - Pattern Register - Header Byte 4" by the User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the Transmit User Cell Filter to check and compare the corresponding bit in "Octet 4" (of the incoming user cell) with the corresponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Pattern Register - Header Byte 4". Writing a "0" to a particular bit-field in this register causes the Transmit User Cell Filter to treat the corresponding bit within "Octet 4" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit field in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter 4 2 - Pattern Register - Header Byte 4".

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - FILTERED CELL COUNT - BYTE 3 (ADDRESS = 0X1F6C)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Transmit User Cell Filter # 2 - Filtered Cell Count[31:24]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	7 - 0 Transmit User Cell Fil- ter # 2 - Filtered Cell Count[31:24]		Transmit User Cell Filter # 2 - Filtered Cell Count[31:24]: These RESET-upon-READ bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Filtered Cell Count - Bytes 2" through "0" register contain a 32-bit expression for the number of User Cells that have been filtered by Transmit User Cell Filter # 2 since the last read of this register.
			Depending upon the configuration settings within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter Control - User Cell Filter # 2" Register (Address = 0x1F63), these register bits will be incremented anytime User Cell Filter # 2 performs any of the following functions.
			 Discards an incoming "User Cell".
			• Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Transmit Cell Extraction Buffer.
			both the above actions.
			This particular register contains the MSB (Most Significant Byte) value for this 32-bit expression.
			Note: If the number of "filtered cells" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - FILTERED CELL COUNT - BYTE 2 (ADDRESS = 0X1F6D)

Віт 7	Віт 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0
Transmit User Cell Filter # 2 - Filtered Cell Count[23:16]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 2 - Filtered Cell Count[23:16]	RUR	Transmit User Cell Filter # 2 - Filtered Cell Count[23:16]: These RESET-upon-READ bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Filtered Cell Count - Bytes 3, 1 and 0" register contain a 32-bit expression for the number of User Cells that have been filtered by Transmit User Cell Fil- ter # 2 since the last read of this register.
			Depending upon the configuration settings within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter Control - Transmit User Cell Filter # 2" Register (Address = 0x1F63), these register bits will be incremented anytime User Cell Filter # 2 performs any of the following functions.
			Discards an incoming "User Cell".
			• Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Transmit Cell Extraction Buffer.
			both the above actions.
			Note: If the number of "filtered cells" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - FILTERED CELL COUNT - BYTE 1 (ADDRESS = 0X1F6E)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0
Transmit User Cell Filter # 2 - Filtered Cell Count[15:8]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 2 - Filtered Cell Count[15:8]		Transmit User Cell Filter # 2 - Filtered Cell Count[15:8]: These RESET-upon-READ bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Filtered Cell Count - Bytes 3, 2 and 0" register contain a 32-bit expression for the number of User Cells that have been filtered by Transmit User Cell Fil- ter # 2 since the last read of this register.
			Depending upon the configuration settings within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter Control - Transmit User Cell Filter # 2" Register (Address = 0x1F63), these register bits will be incremented anytime Transmit User Cell Filter # 2 performs any of the following functions.
			Discards an incoming "User Cell".
			• Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Transmit Cell Extraction Buffer.
			both the above actions.
			Note: If the number of "filtered cells" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 2 - FILTERED CELL COUNT - BYTE 0 (ADDRESS = 0X1F6F)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	Віт 2	BIT 1	Віт 0	
	Transmit User Cell Filter # 2 - Filtered Cell Count[7:0]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	ΝΑΜΕ	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 2 - Filtered Cell Count[7:0]	RUR	Transmit User Cell Filter # 2 - Filtered Cell Count[7:0]: These RESET-upon-READ bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 2 - Filtered Cell Count - Bytes 3" through "1" register contain a 32-bit expression for the number of User Cells that have been filtered by Transmit User Cell Filter # 2 since the last read of this register. Depending upon the configuration settings within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter Control - Transmit User Cell Filter # 2" Register (Address = 0x1F63), these register bits will be incremented anytime Transmit User Cell Filter # 2 performs any of the following functions.
			 Discards an incoming "User Cell".
			• Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Transmit Cell Extraction Buffer.
			both the above actions.
			This particular register contains the LSB (Least Significant Byte) value for this 32-bit expression.
			Note: If the number of "filtered cells" reaches the value "0xFFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x00000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER CONTROL - FILTER 3 (ADDRESS = 0X1F63)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
	Unused			Transmit User Cell Filter # 3 Enable	Copy Cell Enable	Discard Cell Enable	Filter if Pattern Match
R/O	R/O	R/O	R/O	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 4	Unused	R/O	

PRELIMINARY

XRT79L71 *REV. P1.0.3*

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

BIT NUMBER	NAME	Түре	DESCRIPTION
3	Transmit User Cell Fil- ter # 3 Enable	R/W	 Transmit User Cell Filter # 3 - Enable: This READ/WRITE bit-field permits the user to either enable or disable Transmit User Cell Filter # 3. If the user enables Transmit User Cell Filter # 3, then Transmit User Cell Filter # 3 will function per the configuration settings in Bits 2 through 0, within this register. If the user disables Transmit User Cell Filter # 3, then Transmit User Cell Filter # 3 then all cells that are applied to the input of Transmit User Cell Filter # 3 will pass through to the output of Transmit User Cell Filter # 3. 0 - Disables Transmit User Cell Filter # 3. 1 - Enables Transmit User Cell Filter # 3.
2	Copy Cell Enable	R/W	 Copy Cell Enable - Transmit User Cell Filter # 3: This READ/WRITE bit-field permits the user to either configure Transmit User Cell Filter # 3 (within the Transmit ATM Cell Processor Block) to copy all cells that have header byte patterns that comply with the "user-defined" criteria, per Transmit User Cell Filter # 3, or to NOT copy any of these cells. If the user configures Transmit User Cell Filter # 3 to copy all cells complying with a certain "header-byte" pattern, then a copy (or replicate) of this "compliant" ATM cell will be routed to the Transmit Cell Extraction Buffer. If the user configures Transmit User Cell Filter # 3 to NOT copy all cells complying with a certain "header-byte" pattern, then NO copies (or replicates) of these "compliant" ATM cells will be made nor will any be routed to the Transmit Cell Extraction Buffer. 0 - Configures Transmit User Cell Filter # 3 to NOT copy any cells that have header byte patterns which are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 3 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 3 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 3 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 3 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 3 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 3 to copy any cells that have header byte patterns that are compliant with the "user-defined" filtering criteri
1	Discard Cell Enable	R/W	 Discard Cell Enable - Transmit User Cell Filter # 3: This READ/WRITE bit-field permits the user to either configure Transmit User Cell Filter # 3 (within the Transmit ATM Cell Processor Block) to discard all cells that have header byte patterns that comply with the "user-defined" criteria, per Transmit User Cell Filter # 3, or NOT discard any of these cells. If the user configures Transmit User Cell Filter # 3 to NOT discarded any cells that is compliant with a certain "header-byte" pattern, then the cell will be retained for further processing. 0 - Configures Transmit User Cell Filter # 3 to NOT discard any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. 1 - Configures Transmit User Cell Filter # 3 to discard any cells that have header byte patterns that are compliant with the "user-defined" filtering criteria. NOTE: This bit-field is only active if "Transmit User Cell Filter # 3" has been enabled.

PRELIMINARY

1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

XRT79L71 *REV. P1.0.3*

BIT NUMBER	NAME	Түре	DESCRIPTION
0	Filter if Pattern Match	R/W	Filter if Pattern Match - Transmit User Cell Filter # 3:
			This READ/WRITE bit-field permits the user to either configure Trans- mit User Cell Filter # 3 to filter (based upon the configuration settings for Bits 1 and 2, in this register) ATM cells with header bytes that match the "user-defined" header byte patterns, or to filter ATM cells with header bytes that do NOT match the "user-defined" header byte patterns.
			0 - Configures Transmit User Cell Filter # 3 to filter user cells that do NOT match the header byte patterns (as defined in the " " registers).
			1 - Configures Transmit User Cell Filter # 3 to filter user cells that do match the header byte patterns (as defined in the " " registers).
			Note: This bit-field is only active if "Transmit User Cell Filter # 3" has been enabled.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - PATTERN REGISTER - HEADER BYTE 1 (ADDRESS = 0X1F64)

Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0		
	Transmit User Cell Filter # 3 - Pattern Register - Byte 1 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 3 - Pattern Regis- ter - Header Byte 1	R/W	 Transmit User Cell Filter # 3 - Pattern Register - Header Byte 1: The User Cell filtering criteria (for Transmit User Cell Filter # 3) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Check Register - Header Byte 1" permits the user to define the User Cell Filtering criteria for "Octet # 1" of the incoming User Cell. The user will write the header byte pattern (for Octet 1) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Check Register - Header Byte 1" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - PATTERN REGISTER - HEADER BYTE 2 (ADDRESS = 0X1F65)

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	Віт 2	BIT 1	BIT 0	
	Transmit User Cell Filter # 3 - Pattern Register - Byte 2 [7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Fil- ter # 3 - Pattern Regis- ter - Header Byte 2	R/W	Transmit User Cell Filter # 3 - Pattern Register - Header Byte 2: The User Cell filtering criteria (for Transmit User Cell Filter # 3) is defined based upon the contents of 9 read/write registers. These reg- isters are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Registers", the four "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 3 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 3 - Check Register - Header Byte 2" permits the user to define the User Cell Filtering criteria for "Octet # 2" of the incoming User Cell. The user will write the header byte pattern (for Octet 2) that he/she wishes to use as part of the "User Cell Filtering" criteria, into this reg- ister. The user will also write in a value into the "Transmit ATM Cell Proces- sor Block - Transmit User Cell Filter # 3 - Check Register - Header Byte 2" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - PATTERN REGISTER - HEADER BYTE 3 (ADDRESS = 0X1F66)

BIT 7	BIT 6	BIT 5	BIT 5 BIT 4		BIT 2	BIT 1	BIT 0
Transmit User Cell Filter # 3 - Pattern Register - Byte 3 [7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Filter # 3 - Pattern Register - Header Byte 3	R/W	 Transmit User Cell Filter # 3 - Pattern Register - Header Byte 3: The User Cell filtering criteria (for Transmit User Cell Filter # 3) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Check Register - Header Byte 3" permits the user to define the User Cell Filtering criteria for "Octet # 3" of the incoming User Cell. The user will write the header byte pattern (for Octet 3) that he/ she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Check Register - Header Byte 3" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - PATTERN REGISTER - HEADER BYTE 4 (ADDRESS = 0X1F67)

BIT 7	BIT 6	BIT 5 BIT 4		Віт 3	BIT 2	BIT 1	Віт 0
Transmit User Cell Filter # 3 - Pattern Register - Byte 4 [7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Filter # 3 - Pattern Register - Header Byte 4	R/W	 Transmit User Cell Filter # 3 - Pattern Register - Header Byte 4: The User Cell filtering criteria (for Transmit User Cell Filter # 3) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Check Register - Header Byte 4" permits the user to define the User Cell Filtering criteria for "Octet # 4" of the incoming User Cell. The user will write the header byte pattern (for Octet 4) that he/ she wishes to use as part of the "User Cell Filtering" criteria, into this register. The user will also write in a value into the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Check Register - Header Byte 4" that indicates which bits within the first octet of the incoming cells are to be compared with the contents of this register.

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - CHECK REGISTER -BYTE 1 (ADDRESS = 0X1F68)

BIT 7	BIT 6	Віт 5	BIT 5 BIT 4		BIT 2	BIT 1	BIT 0
Transmit User Cell Filter # 3 - Check Register - Byte 1 [7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Filter # 3 - Check Register - Header Byte 1	R/W	Transmit User Cell Filter # 3 - Check Register - Header Byte 1: The User Cell filtering criteria (for Transmit User Cell Filter # 3) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Register - Header Byte 1" permits the user to define the User Cell Filter- ing criteria for "Octet # 1" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specifically, these READ/WRITE register bits permit the user to specifically, these READ/WRITE register bits permit the user to specifically the User Cell Filter # 3 - Pattern Register - Header Byte 1" porcessor Block) are to be checked against the corresponding bit-fields within the "Transmit ATM Cell Pro- cessor Block - Transmit User Cell Filter # 3 - Pattern Register - Header Byte 1" by the User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the Transmit User Cell Filter to check and compare the correspond- ing bit in "Octet # 1" (of the incoming user cell) with the corre- sponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter to treat the corresponding bit within "Octet # 1" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 1" of the incoming user cell with the corresponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Register - Header Byte 1").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - CHECK REGISTER -BYTE 2 (ADDRESS = 0X1F69)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	Віт 0
Transmit User Cell Filter # 3 - Check Register - Byte 2 [7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Filter # 3 - Check Register - Header Byte 2	R/W	Transmit User Cell Filter # 3 - Check Register - Header Byte 2: The User Cell filtering criteria (for Transmit User Cell Filter # 3) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Register - Header Byte 2" permits the user to define the User Cell Filter- ing criteria for "Octet # 2" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specifically, these READ/WRITE register bits permit the user to specifically, these READ/WRITE register bits permit the user to specifically these READ/WRITE register bits permit the user to specifically the User Cell Filter # 3 - Pattern Register - Header Byte 2" by the User Cell Filter # 3 - Pattern Register - Header Byte 2" by the User Cell Filter # 3 - Pattern Register - Header Byte 2" by the User Cell Filter # 3 - Pattern Register - Header Byte 2" by the User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the Transmit User Cell Filter to check and compare the correspond- ing bit in "Octet # 2" (of the incoming user cell) with the corre- sponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter to treat the corresponding bit within "Octet # 2" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 2" of the incoming user cell with the corresponding bit field in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Register - Header Byte 2").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - CHECK REGISTER -BYTE 3 (ADDRESS = 0X1F6A)

Віт 7	BIT 6	Віт 5	Віт 4	Віт 3	BIT 2	BIT 1	BIT 0	
Transmit User Cell Filter # 3 - Check Register - Byte 3 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Filter # 3 - Check Register - Header Byte 3	R/W	 Transmit User Cell Filter # 3 - Check Register - Header Byte 3: The User Cell filtering criteria (for Transmit User Cell Filter # 3) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Register. This READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Register - Header Byte 3" permits the user to define the User Cell Filtering criteria for "Octet # 3" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 3" of the incoming user cell (in the Transmit ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Register - Header Byte 3" by the User Cell Filter # 3 - Pattern Register - Header Byte 3" by the User Cell Filter # 3 - Pattern Register - Header Byte 3" by the User Cell Filter # 3 - Pattern Register - Header Byte 3" (of the incoming user cell) with the corresponding bit in "Octet # 3" (of the incoming user cell) with the corresponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Register causes the Transmit User Cell Filter # 3 - Pattern Register causes the Transmit User Cell Filter # 3 - Pattern Register (e.g., to forgo the comparison between the corresponding bit within "Octet # 3" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in the "Tr

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - CHECK REGISTER -BYTE 4 (ADDRESS = 0X1F6B)

Віт 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0	
Transmit User Cell Filter # 3 - Check Register - Byte 4 [7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Filter # 3 - Check Register - Header Byte 4	R/W	Transmit User Cell Filter # 3 - Check Register - Header Byte 4: The User Cell filtering criteria (for Transmit User Cell Filter # 3) is defined based upon the contents of 9 read/write registers. These registers are the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Registers", the four "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Check Registers" and the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 Control Register. This READ/WRITE register, along with the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Register - Header Byte 4" permits the user to define the User Cell Filter- ing criteria for "Octet # 4" within the incoming User Cell. More specifically, these READ/WRITE register bits permit the user to specify which bit(s) in "Octet 4" of the incoming user cell (in the Transmit ATM Cell Processor Block) are to be checked against the corresponding bit-fields within the "Transmit ATM Cell Pro- cessor Block - Transmit User Cell Filter # 3 - Pattern Register - Header Byte 4" by the User Cell Filter # 3 - Pattern Register - Header Byte 4" by the User Cell Filter, when determine whether to "filter" a given User Cell. Writing a "1" to a particular bit-field in this register, forces the Transmit User Cell Filter to check and compare the correspond- ing bit in "Octet # 4" (of the incoming user cell) with the corre- sponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Register - Header Byte 4". Writing a "0" to a particular bit-field in this register causes the Transmit User Cell Filter to treat the corresponding bit within "Octet # 4" (in the incoming user cell) as a "don't care" (e.g., to forgo the comparison between the corresponding bit in "Octet # 4" of the incoming user cell with the corresponding bit in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Pattern Register - Header Byte 4").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - FILTERED CELL COUNT - BYTE 3 (ADDRESS = 0X1F6C)

BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0	
Transmit User Cell Filter # 3 - Filtered Cell Count[31:24]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Filter # 3 - Filtered Cell Count[31:24]	RUR	 Transmit User Cell Filter # 3 - Filtered Cell Count[31:24]: These RESET-upon-READ bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Filtered Cell Count - Bytes 2" through "0" register contain a 32-bit expression for the number of User Cells that have been fil- tered by Transmit User Cell Filter # 3 since the last read of this register. Depending upon the configuration settings within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter Control - User Cell Filter # 3" Register (Address = 0x1F63), these register bits will be incremented anytime User Cell Filter # 3 performs any of the following functions. Discards an incoming "User Cell". Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Transmit Cell Extraction Buffer. both the above actions.This particular register contains the MSB (Most Significant Byte) value for this 32-bit expression. NOTE: If the number of "filtered cells" reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - FILTERED CELL COUNT - BYTE 2 (ADDRESS = 0X1F6D)

BIT 7	BIT 6	BIT 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0	
Transmit User Cell Filter # 3 - Filtered Cell Count[23:16]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Filter # 3 - Filtered Cell Count[23:16]	RUR	 Transmit User Cell Filter # 3 - Filtered Cell Count[23:16]: These RESET-upon-READ bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Filtered Cell Count - Bytes 3, 1 and 0" register contain a 32- bit expression for the number of User Cells that have been fil- tered by Transmit User Cell Filter # 3 since the last read of this register. Depending upon the configuration settings within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter Control - Transmit User Cell Filter # 3" Register (Address = 0x1F63), these register bits will be incremented anytime User Cell Filter # 3 performs any of the following functions. Discards an incoming "User Cell". Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Transmit Cell Extraction Buffer. both the above actions. NOTE: If the number of "filtered cells" reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - FILTERED CELL COUNT - BYTE 1 (ADDRESS = 0X1F6E)

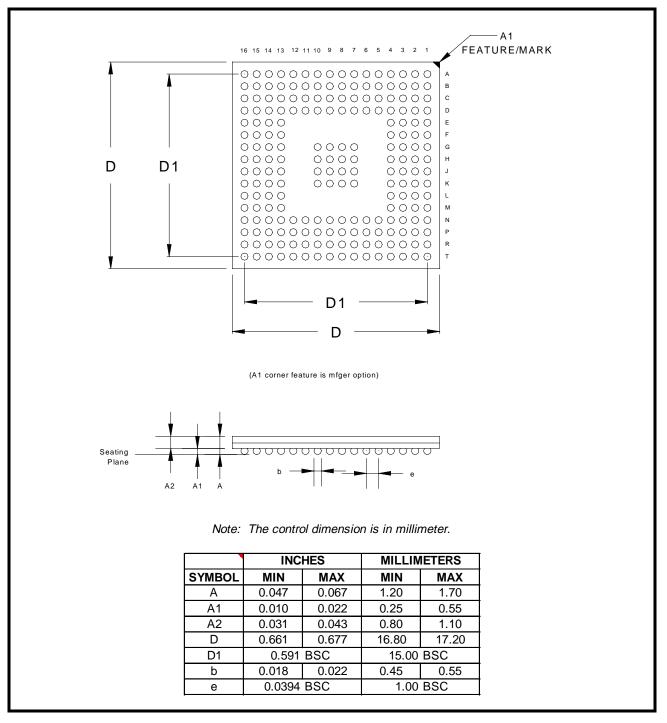
BIT 7	BIT 6	Віт 5	BIT 4	Віт 3	BIT 2	BIT 1	BIT 0	
Transmit User Cell Filter # 3 - Filtered Cell Count[15:8]								
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR	
0	0	0	0	0	0	0	0	

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Filter # 3 - Filtered Cell Count[15:8]	RUR	 Transmit User Cell Filter # 3 - Filtered Cell Count[15:8]: These RESET-upon-READ bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Filtered Cell Count - Bytes 3, 2 and 0" register contain a 32- bit expression for the number of User Cells that have been fil- tered by Transmit User Cell Filter # 3 since the last read of this register. Depending upon the configuration settings within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter Control - Transmit User Cell Filter # 3" Register (Address = 0x1F63), these register bits will be incremented anytime Transmit User Cell Filter # 3 performs any of the following functions. Discards an incoming "User Cell". Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Transmit Cell Extraction Buffer. both the above actions. NOTE: If the number of "filtered cells" reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").

TRANSMIT ATM CELL PROCESSOR BLOCK - TRANSMIT USER CELL FILTER # 3 - FILTERED CELL COUNT - BYTE 0 (ADDRESS = 0X1F6F)

BIT 7	BIT 6	Віт 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Transmit User Cell Filter # 3 - Filtered Cell Count[7:0]							
RUR	RUR	RUR	RUR	RUR	RUR	RUR	RUR
0	0	0	0	0	0	0	0

BIT NUMBER	NAME	Түре	DESCRIPTION
7 - 0	Transmit User Cell Filter # 3 - Filtered Cell Count[7:0]	RUR	 Transmit User Cell Filter # 3 - Filtered Cell Count[7:0]: These RESET-upon-READ bit-fields, along with that in the "Transmit ATM Cell Processor Block - Transmit User Cell Filter # 3 - Filtered Cell Count - Bytes 3" through "1" register contain a 32-bit expression for the number of User Cells that have been fil- tered by Transmit User Cell Filter # 3 since the last read of this register. Depending upon the configuration settings within the "Transmit ATM Cell Processor Block - Transmit User Cell Filter Control - Transmit User Cell Filter # 3" Register (Address = 0x1F63), these register bits will be incremented anytime Transmit User Cell Filter # 3 performs any of the following functions. Discards an incoming "User Cell" Copies (or Replicates) an incoming "User Cell" and routes the "copy" to the Transmit Cell Extraction Buffer. both the above actions.This particular register contains the LSB (Least Significant Byte) value for this 32-bit expression. NOTE: If the number of "filtered cells" reaches the value "0xFFFFFFF" then these registers will saturate to and remain at this value (e.g., it will not overflow to "0x0000000").


PRELIMINARY **EXAR** 1 - CHANNEL DS3/E3 ATM UNI/PPP COMBO IC

ORDERING INFORMATION

PRODUCT NUMBER	PACKAGE TYPE	OPERATING TEMPERATURE RANGE	
XRT79L71IB	17X17 mm 208 Ball Shrink Thin Ball Grid Array	-40 ⁰ C to +85 ⁰ C	

PACKAGE DIMENSIONS

208 SHRINK THIN BALL GRID ARRAY (17.0 MM X 17.0 MM, STBGA)

REVISION HISTORY

REVISION #	DATE	DESCRIPTION
P1.0.0	07/18/02	1st release of the XRT99L00 mkll.0 preliminary data sheet.
P1.0.1	02/12/03	Added package outline and pin-out diagram.
P1.0.2	05/03	Added Pin Descriptions
P1.0.3	06/03	Added Electrical Specifications and Register Information.

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2003 EXAR Corporation

Datasheet June 2003.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.