

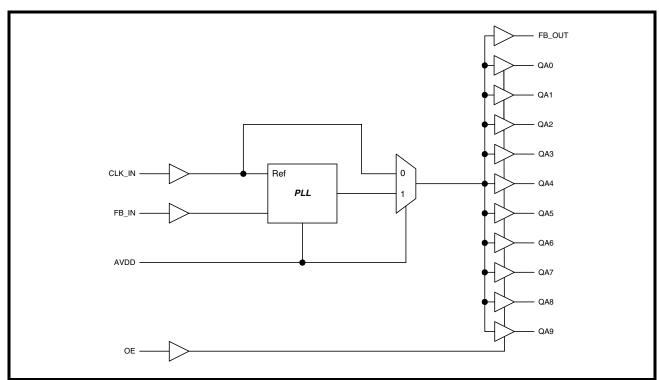
XRK32510

3.3V PHASE-LOCK LOOP CLOCK DRIVER WITH 10 CLOCK OUTPUTS

OCTOBER 2005 REV. 1.0.1

GENERAL DESCRIPTION

The XRK32510 is a high performance, low jitter, low skew clock driver. The XRK32510 uses phase-lock loop (PLL) tecnology to synthesize the CLK_IN signal into 10 output signals (QA), synchronized in both phase and frequency. XRK32510 features low skew, low jitter and 50% duty cycle making it a perfect fit in dual in line memory module (DIMM) board clocking, PC133 SDRAM designs and other server applications.

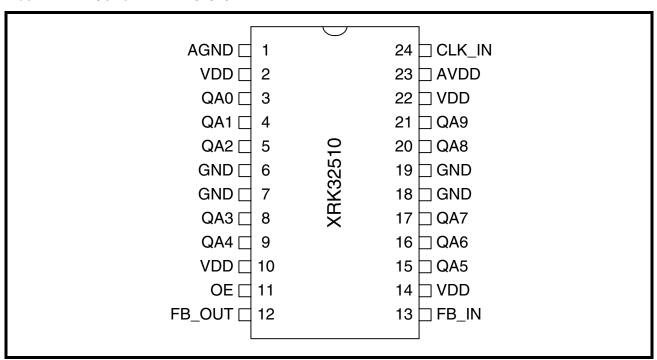

The 10 outputs can be disabled using the Output Enable (OE) pin.

By connecting the Feedback Output (FB_OUT) signal to the Feedback Input (FB_IN) signal, the propagation delay from CLK_IN to the 10 buffered Outputs is nearly zero.

FEATURES

- Spread Spectrum Clock Compatible
- Operating frequency range: 25MHz to 175MHz
- Low noise
- Low jitter internal PLL
- No external RC filter components required
- Meets or exceeds DPC133 registered DIMM specification 1.1
- Output Enable (OE) pin can be used to disable the CLCK_OUT pins
- Operating supply of 3.3V VDD
- Plastic 24 Pin TSSOP package

FIGURE 1. BLOCK DIAGRAM OF THE XRK32510



PRODUCT ORDERING INFORMATION

PRODUCT NUMBER	PACKAGE TYPE	OPERATING TEMPERATURE RANGE		
XRK32510CG	24 Pin TSSOP	0°C to +70°C		

FIGURE 2. PIN OUT OF THE XRK32510

PIN DESCRIPTIONS

PIN#	PIN NAME	Түре	PIN DESCRIPTION
1	AGND	****	Analog Ground
2	VDD	***	3.3V Power Supply
10	VDD		
14	VDD		
11	OE	INPUT	Output Enable:
			"High" = Normal operation, Clock outputs (QA[0:9]) enabled
			"Low" = Clock outputs (QA[0:9]) disabled
12	FB_OUT	OUTPUT	Feedback Output:
			When this pin is connected to FB_IN, the propagation delay from
			CLK_IN to any of the 10 QA pins will be nearly zero.
13	FB_IN	INPUT	Feedback Input
3	QA0	OUTPUT(S)	Buffered Clock Outputs:
4	QA1		These 10 outputs provide low-skew, low jitter, 50% duty cycle renditions
5	QA2		of CLK_IN
8	QA3		
9	QA4		
15	QA5		
16	QA6		
17	QA7		
20	QA8		
21	QA9		
22	VDD	***	3.3V Digital Power Supply
23	AVDD	***	3.3V Analog Supply:
			If this pin is connected to ground, the PLL is disabled and will be bypassed and the CLK_IN signal will be connected directly to the output buffers of the 10 QA pins.
24	CLK_IN	INPUT	Reference Clock Input

FUNCTIONAL OPERATION

INPU	TS		PLL		
OE	AVDD	QA[0:9]	FB_OUT	SOURCE	CONDITION
0	3.3V	0	Driven	PLL	ON
1	3.3V	Driven	Driven	PLL	ON
		BUFFER MC	DDE		
0	0	0	Driven	CLK_IN	OFF
1	0	Driven	Driven	CLK_IN	OFF

ABSOLUTE MAXIMUM RATINGS

Analog Supply Voltage (AVDD)	AVDD < (VDD +0.7V)
Supply Voltage (VDD)	4.3V
Logic Inputs	GND- 0.5V to VDD + 0.5V
Ambient Operating Temperature Range	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

ELECTRICAL CHARACTERISTICS -OUTPUT

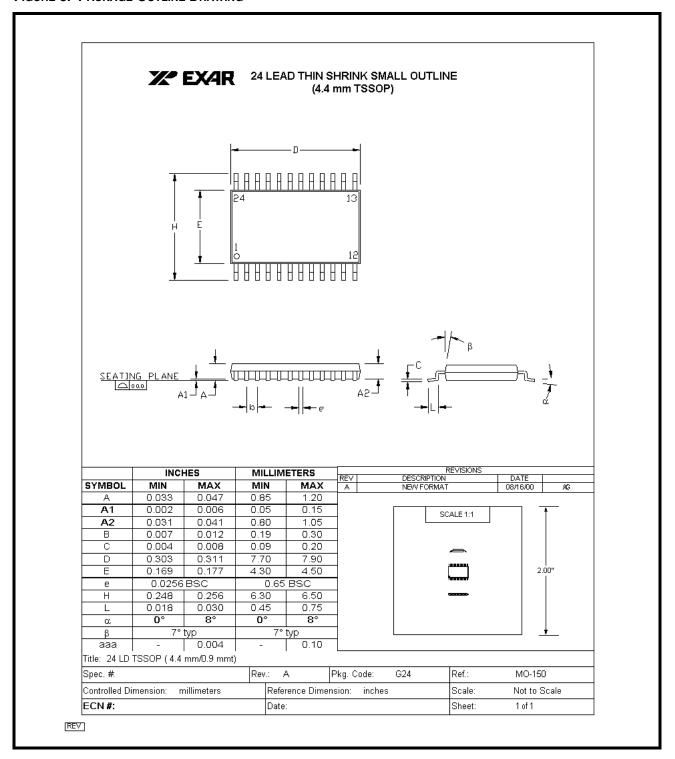
 T_A = 0 - 70°C, VDD = AVDD = 3.3V +/- 10%, C_L = 20 - 30pF, R_L = 470 Ω , (unless otherwise stated)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	Conditions	
R _{DSP}	Output Impedance		36		Ω	$V_O = VDD/2$	
R _{DSN}	Output Impedance		32		Ω	V _O = VDD/2	
V _{OH}	Output High Voltage	2.4	3.0		V	I _{OH} = -8mA	
V _{OL}	Output Low Voltage		0.2			I _{OL} = 8mA	
			-33	-13.6		V _{OH} = 2.4V	
I _{OH}	Output High Current		-48	-22	mA	V _{OH} = 2.0V	
	0	19	28			V _{OL} = 0.8V	
l _{OL}	Output Low Current	13	19		mA	V _{OL} =0.55V	
T _r	Rise Time ¹	0.5	0.8	2.1	ns	$V_{OH} = 2.0V, V_{OL} = 0.8V$	
T _f	Fall Time ¹	0.5	0.9	2.7	ns	$V_{OL} = 0.8V, V_{OH} = 2.0V$	
D _t	Duty Cycle ¹	45	50	55	%	VT = 1.5V, C _L = 30pF	
_			28.7	100		@66 - 100MHz, loaded outputs	
Tcyc-cyc	Cycle to Cycle Jitter ¹		25	75	ps	@133MHz, loaded outputs	
T _j ABS	Absolute Jitter ¹		57		ps	10,000 cycles, C _L = 30 pF	
T _{sk}	Skew ¹		29	150	ps	VT = 1.5V (Window) Output to Output	
T _{pe}	Phase Error ¹	-150		150	ps	V _T = VDD/2, CLK_IN to FB_IN	
T _{pej}	Phase Error Jitter ¹	-50	35	50	ps	V _T = VDD/2, CLK_IN to FB_IN, Delay Jitter	
D _{R1}	Delay Input to Output ¹		3.5	3.7	ns	V _T = 1.5V, PLL Disabled (AVDD = 0)	

Note:

1. Guaranteed by design, not 100% tested in production

REV. 1.0.1


ELECTRICAL CHARACTERISTICS - INPUT AND SUPPLY

 $T_A = 0 - 70$ °C, VDD= AVDD = 3.3V +/- 10% (unless otherwise stated)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	Conditions
V _{IH}	Input High Voltage	2		VDD + 0.3	V	
V _{IL}	Input Low Voltage	GND - 0.3		0.8	V	
I _{IH}	Input High Current		0.1	100	μΑ	V _{IN} = VDD
I _{IL}	Input Low Current		19	50	μΑ	V _{IN} = 0V
I _{DD}	Operating Current		140	170	mA	$C_L = 0pF, F_{IN} = 66MHz$
C _{IN}	Input Capacitance		4		pF	Logic Inputs
C _O	Output Capacitance		8		pF	Logic Outputs

FIGURE 3. PACKAGE OUTLINE DRAWING

REVISIONS

REV. #	DATE	DESCRIPTION OF CHANGES
1.0.0	9/23/05	Initial issue.
1.0.1	10/06/05	Product ordering information: Remove "F" product numbers and Lead Free column.

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2005 EXAR Corporation

Datasheet October 2005.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.