

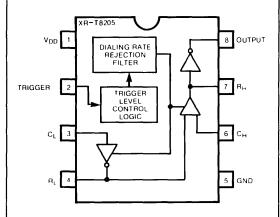
Tone Ringer

GENERAL DESCRIPTION

The XR-T8205 Tone Ringer is primarily intended as a replacement for the mechanical telephone bell. The device can be powered directly from telephone AC ringing voltage or from a separate DC supply. An adjustable trigger level is provided with an external resistor.

The XR-T8205 is designed for nominal 15 volt operation and is available in an 8 pin DIL package.

FEATURES


Low Supply Current
Operates Directly From Telephone Line
Provides Single or Dual Tone Frequencies to Simulate
Mechanical Bell
Operates from 15 to 30 Volts
Pin-to-Pin Compatible with MITEL ML8205

APPLICATIONS

Electronic Telephones Alarm or Other Alerting Devices Power Line Indicator Toys

ABSOLUTE MAXIMUM RATINGS

FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Package	Operating Temperature
XR-T8205CP	Plastic	0°C to 70°C
XR-T8205P	Plastic	0°C to 70°C

SYSTEM DESCRIPTION

The XR-T8205 Tone Ringer consists of two oscillator circuits, a dial reject filter and an amplifier to drive high impedance audio transformer or plezo-electric transducers.

The power supply control circuit provides the hysteresis required to ensure positive triggering of the device and to prevent transient triggering due to dial pulsing.

As the power supply voltage to the XR-T8205 is increased up to the supply initiation voltage (Vg), oscillation begins. The low frequency oscillator oscillates at a rate of F $_{\rm L}$ controlled by an external resistor and capacitor, connected between Pins 3 and 4. The output of F $_{\rm L}$ is internally connected to the switching threshold cicuitry of the high frequency oscillator.

XR-T8205

ELECTRICAL CHARACTERISTICS

Test Conditions: V_{DD} = 17 V T_A = 25°C, unless specified otherwise.

SYMBOL	PARAMETERS	MIN.	TYP.	MAX.	UNIT	CONDITIONS
V _{DD}	Operating Supply Voltage	15	17	30	V	
ID	Operating Current	.7	1.2	}	mA	No Load
Is	Supply Initiation Current	1.4	2.5	4.2	mA	No Load, R $ au$ = 6.8 k $oldsymbol{\Omega}$
ΙΤ	Trigger Current	10	20	1000	μΑ	
Vo	Output Voltage	17	19	21	V	No Load, V _{DD} = 21 V
Δ_{fo}	Oscillator Frequency Tolerance			10	%	

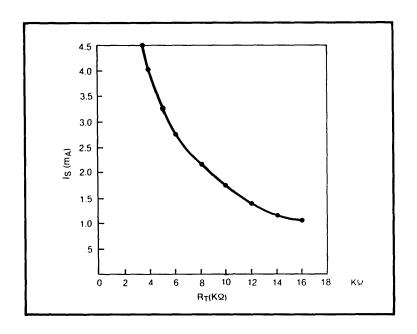


Figure 1. Supply Initiation Current (I_S) VS R_T

PIN AND FUNCTION DESCRIPTION

Pin Number

Supplies

V_{DD}, GND 1, 5

Power supply inputs — the device is designed to operate from 15 to 30 volts.

Trigger In

2

This pin is provided to adjust power supply initiation current

Rate Oscillator

3, 4

RL, C_L Low frequency oscillator external components. Oscillation rate is determined using the relation F_L = $1/(1.234 \text{ R}_{\perp}\text{C}_{\perp})$ where R is the value of the resistor connected between Pin 3 and 4, and C is the value of the capacitor connected between Pin 3 to Ground.

Ringing Oscillator

6,7

CH, RH High frequency oscillator external components. When the output of the rate oscillator is high, the high frequency oscillator oscillates at its normal rate, describes by the relation F_H = 1/(1.515 $R_HC_H)$ where R is the value of the resistor connected between Pins 6 and 7, and C is the value of the capacitor connected between Pin 6 to Ground. When the output of rate oscillator is low, high frequency oscillator oscillation changes to F_H = 1.25 F_L .

Output

8

The output amplifier of the XR-T8205 is capable of driving a wide range of load impedances, when driven from a low source impedance power supply.

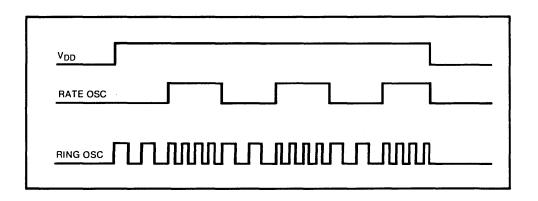


Figure 2. Ring and Rate Oscillator Relationship

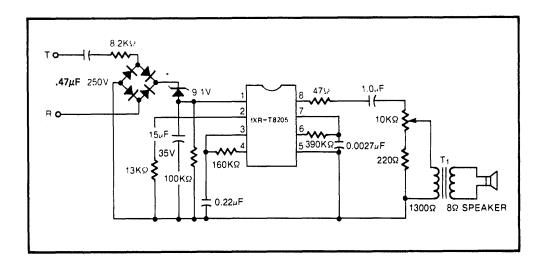


Figure 3. Typical Line Powered Tone Ringer Circuit

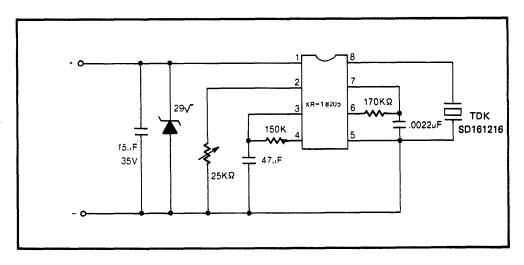


Figure 4. Typical Tone Ringer Circuit Using Piezo Electric