

XPT9403 用户手册

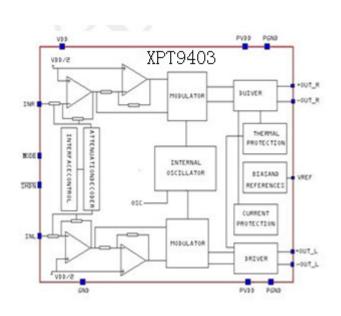
2014年05月

XPT9403

芯片功能说明

XPT9403 是一款 3W、AB/D 类可切换、双通道高效音频功率放大器。具有低 THD+N、低静态电流,具有低成本、外围电路简单(极少外围元器件),占用面积小等特点。过温、过压和过热保护有效的保护 IC 在非正常使用时不被烧毁。同时XPT9403 上电掉电杂音抑制能力强,音质优异,效率高,功耗低,具有静音功能,非常适合便携式产品的音频应用。

实物图:

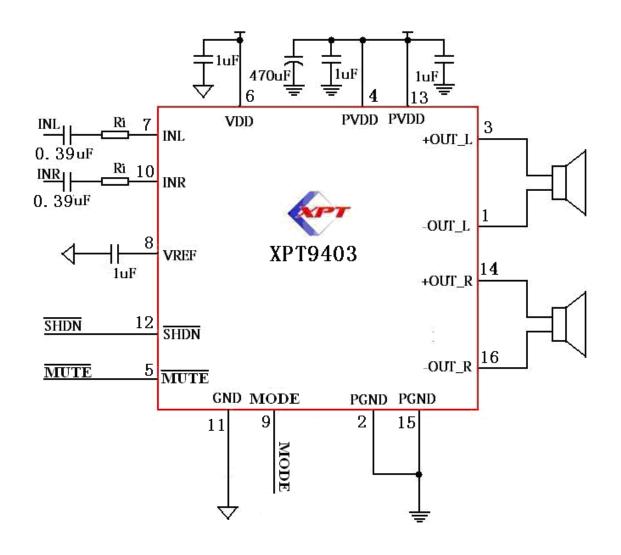

芯片功能主要特性

- 3W/CH(5V 电源、4Ω 负载, 10%THD)
- AB/D 类工作模式切换
- 宽电压工作(2.5V-5V)
- 低静态电流,低 THD,低 EMI
- 高效率(高达90%)
- 超低噪音,优异的上电掉电杂音抑制能力
- 短路保护、过热保护、过压保护
- 只需少量外围器件
- SOP16 封装

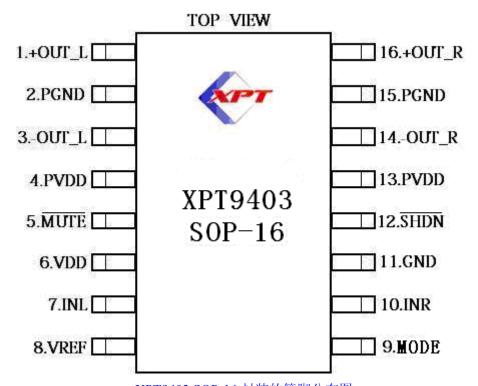
芯片的基本应用

- 笔记本电脑
- 平板电脑
- 便携式 DVD 播放器
- 便携式扬声器
- 多媒体监视器

XPT9403 原理框图



芯片定购信息


芯片型号	封装类型	包装类型	最小包装数量(PCS)	备注
XPT9403	SOP16	管装	50	

典型应用电路

引脚分布图

XPT9403 SOP-16 封装的管脚分布图

管脚描述

管脚号	管脚名称	描述		
1	+OUT_L	左通道正向输出		
2	PGND	功率地		
3	-OUT_L	左通道反向输出		
4	PVDD	功率电源		
5	MUTE	静音脚(低电平有效)		
6	VDD	模拟电源		
7	INL	左通道输入		
8	VREF	反馈脚(串一个电容到地)		
9	MODE	AB 类(高电平)、D 类(低电平)模式选择		
10	INR	右通道输入脚		
11	GND	模拟地		
12	SHDN	关断开关(低电平的效)		
13	PVDD	功率电源		
14	-OUT_R	右通道反相输出		
15	PGND	功率地		
16	+OUT_R	右通道正向输出		

芯片特性说明

极限参数

注: 在极限值之外或任何其他条件下, 芯片的工作性能不予保证。

芯片极限参数表

名称	描述	参数
VCC	供电电压	+5V
VI	输入电压	-0.3V 至 VCC+0.3V
TA	工作环境温度	-40℃至+85℃
TJ	芯片工作温度	-40℃至+125℃
Tstg	贮藏温度	-65℃至+150℃
T	焊接温度	300℃,5 秒内

推荐工作条件

推荐工作条件表

参数	描述	最小值	最大值	单位
VCC	工作电压	2.8	5	V
TA	工作环境温度	-40	85	$^{\circ}\!\mathbb{C}$
TC	焊接环境温度	-40	85	$^{\circ}$

封装额定功耗

参数	符号	封 装	最大功率	单位
额定功率 TA	θЈА	SOP-16	110	W
额定功率 TC	θЈС	SOP-16	23	W

电气工作特性

除特别说明外,环境温度 T_A=25℃。

XPT9403 电气特性表 1

参数	描述	条件		最小值	典型值	最大值	单位
VIN	供电电源电压			2.8		5.5	V
			VDD=5.0V		3		
		THD+N=10%,f=1kHz, RL=4 Ω	VDD=3.6V		1.5		W
			VDD=3.0V		1.2		
			VDD=5.0V		2.5		
		THD+N=1%,f=1kHz, RL=4 Ω	VDD=3.6V		1.3		W
Po	松山玉並		VDD=3.0V		0.85		
РО	输出功率		VDD=5.0V		1.8		
		THD+N=10%,f=1kHz, RL=8 Ω	VDD=3.6V		0.9		W
			VDD=3.0V		0.6		
			VDD=5.0V		1.4		
		THD+N=1%,f=1kHz, RL=8 Ω	VDD=3.6V		0.72		W
			VDD=3.0V		0.45		
		VDD=5.0V,Po=0.5W,RL=8 Ω	f=1kHz		0.3		%
THD+N	总失真度	VDD=3.6V,Po=0.5W,RL=8 Ω	I-IKHZ		0.3		70
тпр⊤к	心入县及	VDD=5.0V,Po=1W,RL=4 Ω	f=1kHz		0.3		%
		VDD=3.6V,Po=1W,RL=4 Ω	I-1KHZ	0.3			70
Gv	增益					30	dB
SNR	信噪比	VDD=5V, Vorms=1V,Gv=20dB	f=1kHz		85		dB

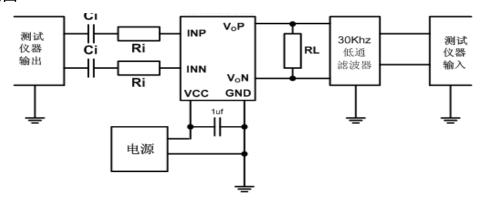
地 址:深圳市南山区高新技术产业园 R3-A 座 5 楼 网址: www.xptek.cn; 微信号: szxpt168 销 售: sales@xptek.cn 技术支持: support@xptek.cn 设计服务: design@xptek.cn

深圳市矽普特科技有限公司

XPT9403

3W、双通道 F 类、超低噪音、短路&过热保护音频功放

参数	描述	条件		最小值	典型值	最大值	单位
37	输出噪声电压	VDD=5.0V, 输入交流信号, 以	加权		143		
Vn	制山際戸 电压	Cin =0.39μF 接地	无加权		200		μV
	效率	RL=8 Ω , THD=10%	f=1kHz		87		%
η	X	RL=4Ω, THD=10%	I—I KHZ		83		70
		VDD=5.0V			16		
I_Q	静态电流	VDD=3.6V	空载		10		mA
		VDD=3.0V			8		
Imute	静音控制脚电流	VDD=5.0V	VMUTE		3		mA
I_{SD}	关断电流	VDD=2.5V to 5.5V	$V_{SD}=0.3V$		20		μΑ
Rdson		IDS =500mA,Vgs=5V	PMOS		180		m Ω
Ruson		1D3 – 300mA, v g3–3 v	NMOS		140		111 25
fsw	开关频率	VDD=3V to 5V			300		kHz
Vos	输出偏置电压	Vin=0V, VDD=5V			10		mV
VIH	启动输入电压(高电平)	VDD=5.0V		1.4			V
VIL	启动输入电压(低电平)	VDD=5.0V				1.3	V
VIH	MUTE 输入电压(高电平)	VDD=5.0V		1.4			V
VIL	MUTE 输入电压(低电平)	VDD=5.0V				1.3	V
OTP	过热保护	无负载,节点温度	VDD=5V		140		°C
OTH	过温迟滞	一	עטע∨		30		


操作说明:

- 1.如果 XPT9403 有接 LC 滤波电路时,应当先接上喇叭再上电,否则极易损坏芯片。
- 2.如果 XPT9403 没有接 LC 滤波电路时,应当在输出端增加一个磁珠,以抑制电磁干扰。
- 3.XPT9403 的工作电压为 5.5V。如果 XPT9403 要用 4 个电池供电时,建议不要使用 4 个全新的电池或者碱性电池,因为这样供电电压会超过 6V,高于 XPT9403 的工作电压,极易损坏芯片。因此我们推荐使用三个干电池供电。
- 4.使用 XPT9403 时,输入信号不要过大,大信号输入会导致输出信号出现削波失真,同时大信号大增益时将会损坏芯片。
- 5.XPT9403 没有接 LC 滤波电路时,如果用假负载电阻代替喇叭作测试,测出的 THD 及效率都会比用喇叭时测试的效果要差。因此,建议用喇叭进行测试。

测试连接示意图

XPT9403 测试连接示意图

注:

- 1. 在测试仪器与 XPT9403 之间必需加一个低通滤波器。
- 2. 测量功放的输出功率时,最好在喇叭前串个 22μH 电感。

XPT9403 应用说明

最大增益

由上功能框图可以看出,XPT9403内部设有两级的放大,第一级增益可通过外置电阻进行配置,而第二级增益是内部固定的。第一级的闭环增益可以通过Rf与Ri的比值进行设定,第二级的增益固定在两倍。如此,第一级的输出作为了第二级的输入,因此其放大效果上看与一级放大是一样的,但却有了180度的相移,因此我们得出增益的运算公式为:

$$A = 20*log [2*(Rf/Ri)]$$
 (1)

注: 又因为XPT9403: $R_{f最大}$ =180kΩ, $R_{i最\Lambda}$ =11kΩ, 因此, 我们得出XPT9403最大增益为30dB。

模式选择

XPT9403设有MODE引脚,该管脚是用来对XPT9403的模式进行选择的管脚,该脚处于低电平时,选择D类; 高电平时,选择AB类。

关断控制

为了提高效率,降低功耗,XPT9403设计特别加入了关断控制功能(SHDN)。当控制脚输入为低电平时,XPT9403就会关断内部的部份工作电流,如果把该管脚直接拉到GND时,XPT9403就会处于最小供电模式。该功能不用时,可将该管脚悬空或拉高。

供电退耦设计

XPT9403是一款高性能的D类音频功率放大器,需要适当的电源退耦以确保它的高效率和低谐波失真。 退耦电容采用低阻抗陶瓷电容,容值为1uf,尽量靠近芯片电源供电度引脚,因为电路中任何电阻,电容和 电感都可能影响到功率转换的效率。外围再加一个20uF或更大的电容放置在放大器的附近会得到更好的滤 波效果。

外围参数:输入电容(Ci)

过大的输入电容,增加成本,增加面积,这对于成本,面积紧张的应用来讲,非常不利。显然,确定使用 多大的电容来完成耦合很重要。实际上,在很多应用中,扬声器(Speaker)不能够再现低于 100Hz-150Hz 的 低频语音,因此采用大的电容并不能够改善系统的性能。

除了系统的成本和尺寸外,噪声性能被输入耦合电容大小影响,一个大的输入耦合电容需要更多的电荷以达到静态直流电压(通常为电源中点电压即 1/2V_{DD}),这些电荷来自于反馈的输出,往往在器件使能时产生噪声。因此,基于所需要的低频响应的基础上最小化输入电容,开启噪声能够被最小化。如果设计中的差分输入信号在 0.5V 到 VCC-0.8V 的范围内,如果输入信号幅度不在这个范围内,输入端是个高通滤波器或者 XPT9403 用在单端输入系统中,输入电容是必须的。输入端作为高通滤波器时,滤波器中心频率的计算公式如下:

$$f_c = \frac{1}{2\pi RiCi} \tag{2}$$

输入电阻和输入电容的参数直接影响到滤波器的下限频率,从而影响放大器的性能。输入电容的计算公式如下:

$$Ci = \frac{1}{2\pi Rifc} \tag{3}$$

如果信号的输入频率在音频范围内,输入电容的精度可以是±10%或者更高,因为电容不匹配会影响的滤波器的性能。采用大电容(1uf)可以很好的重现低频信号。但在 GSM 电话中,地面信号在 217Hz 上下摆动,但在多媒体数字信号偏解码器的信号却没有这样的摆动。

外围参数:旁路电容 (CBYP)

除了最小化输入输出电容尺寸,旁路电容的尺寸也应该详细考虑。旁路电容 C_B 是最小化开启噪声的最要的元器件,它决定了开启的快慢及输出达到静态直流电压(通常为电源中点电压即 $1/2V_{DD}$)的过程越缓慢,开启噪声越小。选择 1.0uF 的 C_B 和一个小的 Ci (在 $0.1uF \sim 0.39uF$)将实现实质上没有噪声的关断功能。在器件功能正常(没有振荡或者噼啪声)且 C_B 为 0.1uF 时,器件会更多的受到开启噪声的影响。因此,在所有的除了最高成本敏感的设计中推荐使用 1.0uF 或者更大的 C_B 。

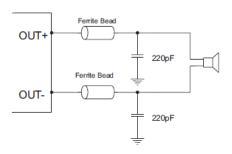
低电压保护(UVLO)

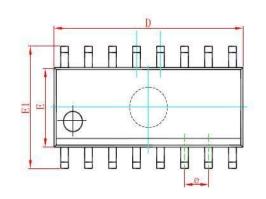
XPT9403还集成了低电压保护电路,当电压低于2.0V时就关断功放输出,该设计可有效防止低电压工作时产生的噪音。

短路保护 (SCP)

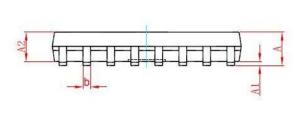
XPT9403在输出端导入了短路保护功能,可有效防止输出之间短接或者输出接地时对功放芯片造成的损害。 当输出短路,芯片马上会终止输出,直到检输出接线正常,芯片会自动恢重正常工作。

高温保护


XPT9403芯片内置过热保护电路。当芯片内部结温超过140℃,芯片将关断,直到结温低于125℃,芯片重新进入正常工作状态。


降低 EMI (Electro Magnetic Interference)设计建议

在不加输出滤波器的情况下使用 XPT9403, 放大器到扬声器的连线的长度一般在 200mm 一下。在手机等便携式通信设备, PAD 都可以不用输出滤波器。在一些环境等条件不允许和一些特殊的情况下,要加入输出滤波器,加入低通滤波器,比如 LC 滤波器



封装尺寸

1, SOP-16

0 1 1	Dimensions I	Dimensions In Millimeters		s In Inches
Symbol	Min	Max	Min	Max
Α	1. 350	1. 750	0.053	0.069
A1	0.100	0. 250	0.004	0.010
A2	1. 350	1.550	0.053	0.061
b	0. 330	0.510	0.013	0.020
С	0. 170	0. 250	0.007	0.010
D	9. 800	10. 200	0. 386	0.402
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 27	0 (BSC)	0. 050	O (BSC)
L	0. 400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

本手册内容改动及版本更新将不再另行通知,深圳市矽普特科技限公司保留所有权利。