

500mA Charger IC

WST4054线性锂离子电池充电器

■ 产品概述

WST4054 是一款完整的采用恒定电流/恒定电压单节锂离子电池充电管理芯片。其 SOT 小封装和较少的外部元件数目使其成为便携式应用的理想器件, WST4054可以适合 USB电源和适配器电源工作。

由于采用了内部 PMOSFET 架构,加上防倒充电路,所以不需要外部检测电阻器和隔离二极管。热反馈可对充电电流进行调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制,充电电压固定于 4.2V而充电电流可通过一个电阻器进行外部设置。当充电电流在达到最终浮充电压之后降至设定值 1/10 时,WST4054将自动终止充电循环。

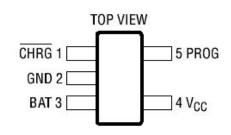
当输入电压(交流适配器或 USB 电源)被拿掉时,WST4054 自动进入一个低电流状态,将电池漏电流降至 2uA以下。也可将 WST4054 置于停机模式,以而将供电电流降至 45uA。WST4054 的其他特点包括充电电流监控器、欠压闭锁、自动再充电和一个用于指示充电结束和输入电压接入的状态引脚。

■ 主要特性

- 充电电流最大可调整到 500MA;
- 无需 MOSFET、检测电阻器或隔离二极管;
- 热带保护的恒定电流/恒定电压操作最大限度 保证充电速度而无过热的危险;
- 直接从 USB 端口给单节锂离子电池充电;
- 精度达到±1%的 4.2v 预设充电电压
- 2.9v的涓流充电门限;
- 待机模式下的供电电流为45uA;
- 集成完整的充电状态显示,简化外围电路;
- 采用5 引脚 SOT-23 封装。

■ 管脚描述

■ 封装外形



SOT23-5

■ 典型应用

- 蜂窝电话、PDA、MP3播放器
- 充电.座
- 蓝牙应用

■ 管脚配置

SOT23-5 封装

序号	符号	功能描述	序号	符号	功能描述
1	CHRG	漏极开路充电状态输出	4	Vcc	正输入电源电压
2	GND	接地引脚	5	PROG	充电电流设定、充电电流监控和停 机引脚
3	BAT	充电电流输出			

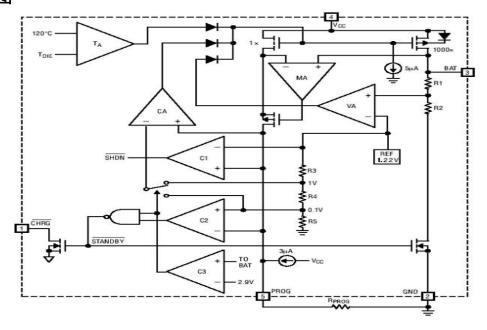
■ 电气特性

表格标注表示该指标适合整个工作温度范围,否则仅指TA=25 $^{\circ}$ C,VCC=5V,除非特别注明。

符号	参数	条件	最小值	典型值	最大值	单位
V _{CC}	输入电源电压		4. 25		6.5	٧
		充电模式(3), R _{PROG} =10k		110	500	uA
		低功耗模式(充电完成)		45		uA
I _{CC}	芯片消耗电流	关断模式(RPROG没有连 接, VCC <vbat, or="" td="" vcc<vuv)<=""><td></td><td>35</td><td>50</td><td>uA</td></vbat,>		35	50	uA
VFLOAL	稳定浮充电压	VBAT <vtrikl, rprog="10k</td"><td>4.158</td><td>4.2</td><td>4.242</td><td>٧</td></vtrikl,>	4.158	4.2	4.242	٧
		当前模式,RPROG=10k	90	100	130	mA
	BAT 电流充电电	当前模式,RPROG=2k		500		mA
	流	低功耗模式, VBAT=4. 2V		±1	±5	uA
I _{BAT}		关断模式(RPROG没有连接)		±0.5	±5	uA
		睡眠模式, V _{CC} =0V		±1	±5	uA
I _{TRIKL}	涓流充电电流	VBAT <vtrikl, rprog="10k</td"><td></td><td>10</td><td></td><td>mA</td></vtrikl,>		10		mA
V _{TRIKL}	涓流充电阈值 电压	RPROG=10k, VBAT上升	2. 8	2. 9	3. 0	V
V _{UV}	VCC欠压锁定阈 值	From VCC Low to High		3. 7		V
V _{UVHYS}	VCC欠压锁定迟 滞			130		mV
V	VCC充电	VCC从低到高		100		mV
V _{ASD}	阈值电压	VCC从高到低		30		mV
VCHRG	CHRG引脚输出 电压	I CHRG=5mA		20	50	mV
V _{PROG}	充电基准电压	当前模式,RPROG=10k	0. 9	1. 0	1. 1	٧
\triangle V _{RECHRG}	自动重充 迟滞电压	V _{FLOAT} - V _{RECHRG}		150		mV
T _{LIM}	过温关断点			150		°C
I _{PROG}	PROG上拉电流			1.5		uA

- 注: 1、超出最大工作范围可能会损坏芯片。
 - 2、芯片不建议工作在极限参数的状态下。

500mA Charger IC


- 3、芯片的工作电流包括PROG Pin外面电阻消耗的电流(约100uA),但不包括芯片通过BAT Pin给芯片充电的电流(约100mA)。
- 4、充电终止电流一般是设定充电电流的0.1倍。

5、

■ 绝对最大额定值

参数	符号	额定值	单位	
输入电源电压	Vcc	7	V	
输入电压	Vin	-0.3 to 7	V	
PROG 电压	VPROG	VCC+0. 3	V	
BAT 电压	VBAT	7	٧	
CHRG 电压	Vchrg	7	V	
BAT 短路	-	Continuous 连续	-	
热阻	Ө ЈА	75 (DIP/SOP8)	°C/W	
BAT 电流	I BAT	500	mA	
PROG 电流	I PROG	700	uA	
最高结温	TJ	125	$^{\circ}$ C	
内部结温	TJ	-40 to 85	$^{\circ}$ C	
贮藏温度	Ts	-65 to 125	°C	
焊接温度(不超过 10sec)		300	$^{\circ}$	

■ 功能框图

■ 功能说明

● 正常充电循环

当Vcc 引脚电压升至UVL0门限电平以上且在PROG引脚与地之间连接了一个精度为1%的设定电阻器或当一个电池与充电器输出端相连时,一个充电循环开始。如果BAT引脚电平低于2.9V,则充电器进入涓流充电模式。在该模式中,WST4054提供约1/10的设定充电电流,以便将电流电压提升至一个安全的电平,从而实现满电流充电。

当BAT引脚电压升至2.9V以上时,充电器进入恒定电流模式,此时向电池提供恒定的充电电流。当BAT引脚电压达到最终浮充电压(4.2V)时,WST4054进入恒定电压模式,且充电电流开始减小。当充电电流降至设定值的1/10,充电循环结

●束。充电电流的设定

充电电流是采用一个连接在PROG引脚与地之间的电阻器来设定的。设定电阻器和充电电流采用下列公式来计算:(根据需要的充电电流来确定电阻器阻值)

$$R_{PROG} = \frac{1000}{I_{RAT}}$$

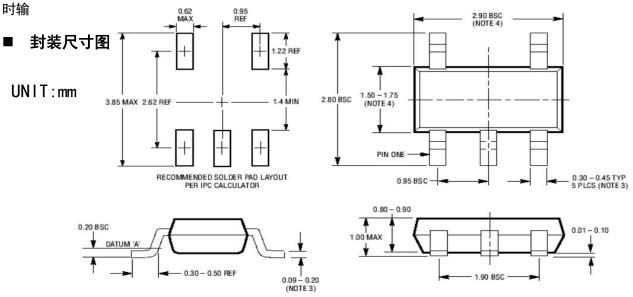
● 充电终止

当充电电流在达到最终浮充电压之后降至设定值的1/10时,充电循环被终止。该条件是通过采用一个内部滤波比较器对ROG引脚进行监控来检测的。当PROG引脚电压降至100mV,充电被终止。充电电流被锁断,WST4054进入待机模式,此

入电源电流降至45uA。(注: C/10终止在涓流充电和热限制模式中失效)

充电时,BAT引脚上的瞬变负载会使PROG引脚电压在DC充电电流降至设定值的1/10之间短暂地降至100mV以下。一旦平均充电电流降至设定值的1/10以下,WST4054即终止充电循环并停止通过BAT引脚提供任何电流。在这种状态下,BAT引脚上的所有负载都必须由电池来供电。

● 充电状态指示器


CHRG为芯片的输出状态指示端口,芯片内部设置了一个强下拉源,强下拉状态表示WST4054处于一个充电循环中,一旦充电循环被终止,则引脚状态由欠压闭锁条件来决定;

● 欠压闭锁

一个内部欠压闭锁电路对输入电压进行监控,并在 Vcc 升至欠压闭锁门限以上之前使充电器保持在停机模式。UVL0 电路将使充电器保持在停机模式。如果 UVL0 比较器发生跳变,则在 Vcc 升至比电池电压高 100mV 之前充电器将不会退出停机模式。

● 增加热调节电流

降低内部MOSFET两端的压降能够显著减少IC中的功耗。在热调节期间,这具有增加输送至电池的电流的作用。对策之一是通过一个外部元件例如一个电阻器或二极管)将一部分功率耗散掉。

