

24-bit 192kHz 2Vrms Multi-Channel CODEC

DESCRIPTION

The WM8593 is a high performance multi-channel audio CODEC with flexible input/output selection and digital and analogue volume control. Features include a 24-bit stereo ADC with digital gain control, two 24-bit DACs with independent volume control and clocking, and a range of input/output channel selection options for flexible routing within current and future audio systems.

The WM8593 has an eight stereo input selector which accepts input levels up to 2Vrms. One stereo input can be routed to the ADC. All inputs can be routed to an output selector.

The output selector inputs two DAC channels and all analogue bypass inputs, and outputs three independent stereo channels at 2Vrms line level. The DAC channels include independent digital volume control, and all three output channels include analogue volume control.

The WM8593 is ideal for audio applications requiring high performance and flexible routing options, including flat panel digital TV and DVD recorder.

The WM8593 supports up to 2Vrms analogue inputs, 2Vrms, outputs, with sample rates from 32kHz to 192kHz on the DACs, and 32kHz to 96kHz on the ADC.

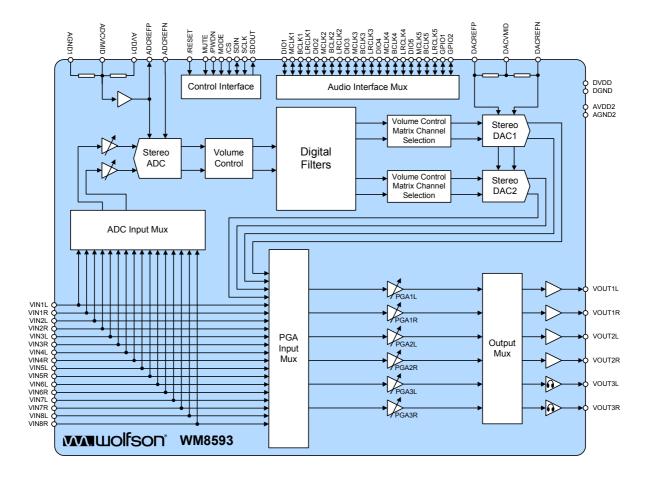
The device is controlled via a serial interface with support for 2-wire and 3-wire control with readback. Control of mute, powerdown and reset can also be achieved by pin selection.

The WM8593 is available in a 64-lead TQFP package.

FEATURES

- Multi-channel CODEC with 8 stereo input selector and 3 stereo output selector
- 4-channel DAC, 2-channel ADC
- 8x2Vrms stereo input selector with 8x2 channel analogue bypass to output selector
- 3x2Vrms stereo output selector
- Audio performance
 - DAC: 100dB SNR typical ('A' weighted @ 48kHz)
 - DAC: -90dB THD typical
 - ADC: 100dB SNR typical ('A' weighted @ 48kHz)
 ADC: -90dB THD typical
- Independent sampling rate for ADC and DACs
- Independent sampling rate for DAC1 and DAC2
- DACs sampling frequency 32kHz 192kHz
- ADC sampling frequency 32kHz 96kHz
- DAC digital volume control +12dB to -100dB in 0.5dB steps
- ADC analogue volume control from +30dB to -97dB in 0.5dB steps
- Output analogue volume control +6dB to -74dB in 0.5dB steps with zero cross or soft ramp to prevent pops and clicks
- Headphone drive capability on one stereo output with jack detect
- Digital multiplexer to interface to multiple digital sources DSP, HDMI, memory card
- 2-wire and 3-wire serial control interface with readback and hardware reset, mute and powerdown pins
- Independent master or slave clocking modes
- Programmable format audio data interface modes
 I2S, LJ, RJ, DSP
- 3.3V / 9V Analogue, 3.3V Digital Supply Operation
- 64-lead TQFP package

APPLICATIONS


- Digital Flat Panel TV
- DVD-RW
- Set Top Boxes

WOLFSON MICROELECTRONICS plc

To receive regular email updates, sign up at http://www.wolfsonmicro.com/enews/

Product Preview, January 2007, Rev 1.0

BLOCK DIAGRAM

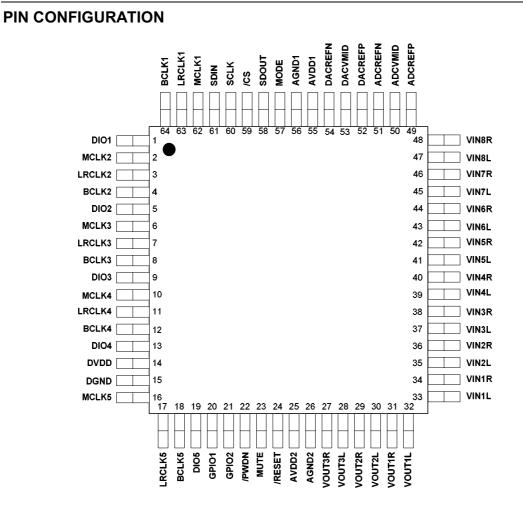


TABLE OF CONTENTS

DESCRIPTION	1
FEATURES	1
APPLICATIONS	1
BLOCK DIAGRAM	2
TABLE OF CONTENTS	
PIN CONFIGURATION	
PIN DESCRIPTION	
ABSOLUTE MAXIMUM RATINGS	
RECOMMENDED OPERATING CONDITIONS	
SUPPLY CURRENT CONSUMPTION	
ELECTRICAL CHARACTERISTICS	
TERMINOLOGY	
MASTER CLOCK TIMING	
DIGITAL AUDIO INTERFACE TIMING – SLAVE MODE	. 12
DIGITAL AUDIO INTERFACE TIMING – MASTER MODE	
CONTROL INTERFACE TIMING – 2-WIRE MODE	
CONTROL INTERFACE TIMING – 3-WIRE MODE	
POWER ON RESET (POR)	. 16
DEVICE DESCRIPTION	.17
INTRODUCTION	
CONTROL INTERFACE	
2-WIRE (SM-BUS COMPATIBLE) SERIAL CONTROL INTERFACE MODE	
3-WIRE (SPI COMPATIBLE) SERIAL CONTROL INTERFACE MODE	. 20
GLOBAL ENABLE CONTROL	
DIGITAL AUDIO INTERFACE	
DIGITAL AUDIO DATA SAMPLING RATES	
DIGITAL AUDIO DATA FORMATS DAC FEATURES	
ADC FEATURES	
ADC FEATURES	
DIGITAL ROUTING CONTROL	. 52
JACK DETECT	
POP AND CLICK PERFORMANCE	.55
REGISTER MAP	
DIGITAL FILTER CHARACTERISTICS	
APPLICATIONS INFORMATION	
RECOMMENDED EXTERNAL COMPONENTS	94
RECOMMENDED ANALOGUE LOW PASS FILTER	
EXTENDED INPUT IMPEDANCE CONFIGURATION	
EXAMPLE CONFIGURATION FOR JACK DETECT	
RELEVANT APPLICATION NOTES	
PACKAGE DIMENSIONS	.97
IMPORTANT NOTICE	.98
ADDRESS	. 98

ORDERING INFORMATION

ORDER CODE	TEMPERATURE RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL	PACKAGE BODY TEMPERATURE
WM8593SEFT/V	-25°C to +85°C	64-lead TQFP (Pb-free)	MSL3	260°C

PIN DESCRIPTION

PIN	NAME	TYPE	DESCRIPTION
1	DIO1	Digital Input/Output	Audio interface port 1 data input/output
2	MCLK2	Digital Input/Output	Audio interface port 2 master clock input/output
3	LRCLK2	Digital Input/Output	Audio interface port 2 left/right clock input/output
4	BCLK2	Digital Input/Output	Audio interface port 2 bit clock input/output
5	DIO2	Digital Input/Output	Audio interface port 2 data input/output
6	MCLK3	Digital Input/Output	Audio interface port 3 master clock input/output
7	LRCLK3	Digital Input/Output	Audio interface port 3 left/right clock input/output
8	BCLK3	Digital Input/Output	Audio interface port 3 bit clock input/output
9	DIO3	Digital Input/Output	Audio interface port 3 data input/output
10	MCLK4	Digital Input/Output	Audio interface port 4 master clock input/output
11	LRCLK4	Digital Input/Output	Audio interface port 4 left/right clock input/output
12	BCLK4	Digital Input/Output	Audio interface port 4 bit clock input/output
13	DIO4	Digital Input/Output	Audio interface port 4 data input/output
14	DVDD	Supply	Digital supply
15	DGND	Supply	Digital ground
16	MCLK5	Digital Input/Output	Audio interface port 5 master clock input/output
17	LRCLK5	Digital Input/Output	Audio interface port 5 left/right clock input/output
18	BCLK5	Digital Input/Output	Audio interface port 5 bit clock input/output
19	DIO5	Digital Input/Output	Audio interface port 5 data input/output
20	GPIO1	Digital Input/Output	General purpose input/output 1
21	GPIO2	Digital Input/Output	General purpose input/output 2
22	/PWDN	Digital Input	Hardware standby mode
23	MUTE	Digital Input	Hardware DAC mute
24	/RESET	Digital Input	Hardware reset
25	AVDD2	Supply	Analogue 9V supply
26	AGND2	Supply	Analogue ground
27	VOUT3R	Analogue Output	Output selector channel 3 right output
28	VOUT3L	Analogue Output	Output selector channel 3 left output
29	VOUT2R	Analogue Output	Output selector channel 2 right output
30	VOUT2L	Analogue Output	Output selector channel 2 left output
31	VOUT1R	Analogue Output	Output selector channel 1 right output
32	VOUT1L	Analogue Output	Output selector channel 1 left output
33	VIN1L	Analogue Input	Input selector channel 1 left input
34	VIN1R	Analogue Input	Input selector channel 1 right input
35	VIN2L	Analogue Input	Input selector channel 2 left input
36	VIN2R	Analogue Input	Input selector channel 2 right input
37	VIN3L	Analogue Input	Input selector channel 3 left input
38	VIN3R	Analogue Input	Input selector channel 3 right input
39	VIN4L	Analogue Input	Input selector channel 4 left input
40	VIN4R	Analogue Input	Input selector channel 4 right input
41	VIN5L	Analogue Input	Input selector channel 5 left input
42	VIN5R VIN6L	Analogue Input Analogue Input	Input selector channel 5 right input
43 44	VIN6L VIN6R	Analogue Input	Input selector channel 6 left input Input selector channel 6 right input
44	VINOR VIN7L	Analogue Input	Input selector channel 7 left input
	VIN7L VIN7R		Input selector channel 7 right input
46 47	VIN7R VIN8L	Analogue Input Analogue Input	Input selector channel 8 left input
			Input selector channel 8 right input
48	VIN8R	Analogue Input	mput selector channel o nynt input

Product Preview

PIN	NAME	ТҮРЕ	DESCRIPTION
49	ADCREFP	Analogue Output	Positive reference for ADC
50	ADCVMID	Analogue Output	Midrail divider decoupling pin for ADC
51	ADCREFN	Analogue Input	Ground reference for ADC
52	DACREFP	Analogue Input	Positive reference for DACs
53	DACVMID	Analogue Output	Midrail divider decoupling pin for DACs
54	DACREFN	Analogue Input	Ground reference for DACs
55	AVDD1	Supply	Analogue 3.3V supply
56	AGND1	Supply	Analogue ground
57	MODE	Digital Input	2-wire/3-wire mode select
58	SDOUT	Digital Output	Serial Data output for 3-wire readback
59	/CS	Digital Input	3-wire serial control interface latch
60	SCLK	Digital Input	Software mode: serial control interface clock signal
61	SDIN	Digital Input	Software mode: serial control interface data signal
62	MCLK1	Digital Input/Output	Audio interface port 1 master clock input/output
63	LRCLK1	Digital Input/Output	Audio interface port 1 left/right clock input/output
64	BCLK1	Digital Input/Output	Audio interface port 1 bit clock input/output

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag. MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag. MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

The Moisture Sensitivity Level for each package type is specified in Ordering Information.

CONDITION	MIN	МАХ
Digital supply voltage, DVDD	-0.3V	+4.5V
Analogue supply voltage, AVDD1	-0.3V	+7V
Analogue supply voltage, AVDD2	-0.3V	+15V
Voltage range digital inputs	DGND -0.3V	DVDD + 0.3V
Voltage range analogue inputs	TBD	AVDD1 + 2.4V
Master Clock Frequency		38.462MHz
Ambient temperature (supplies applied)	-55°C	+125°C
Storage temperature	-65°C	+150°C
Pb free package body temperature (reflow 10 seconds)		+260°C
Package body temperature (soldering 2 minutes)		+183°C

Note:

1. Analogue and digital grounds must always be within 0.3V of each other.

THERMAL PERFORMANCE

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Thermal resistance – junction to	$R_{ extsf{ heta}JA}$			TBD		°C/W
ambient				See note 1		

Notes:

1. Figure given for package mounted on 4-layer FR4 according to JESD51-7. (No forced air flow is assumed).

2. Thermal performance figures are estimated.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital power supply	DVDD		2.97	3.3	3.6	V
Analogue power supply	AVDD1		2.97	3.3	3.6	V
Analogue power supply	AVDD2		8.1	9	9.9	V
Ground	DGND/AGND1/			0		V
	AGND2					
Operating temperature	T _A		-25		+85	°C
range						

Notes:

- 1. Digital supply (DVDD) must never be more than 0.3V greater than AVDD1 in normal operation.
- 2. Digital ground (DGND) and analogue grounds (AGND1, AGND2) must never be more than 0.3V apart.

SUPPLY CURRENT CONSUMPTION

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital supply current	I _{DVDD}			TBD		mA
Analogue supply current	AVDD1			TBD		mA
Analogue supply current	I _{AVDD2}			TBD		mA
Standby current				TBD		μA

ELECTRICAL CHARACTERISTICS

Test Conditions

AVDD2=9V, AVDD1=DVDD=3.3V, AGND1=AGND2=0V, DGND=0V, TA=+25°C, 1kHz signal, fs=48kHz, MCLK=256fs unless otherwise stated

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital logic levels	•			•		
Input low level	VIL				0.3xDVDD	V
Input high level	VIH		0.7xDVDD			V
Output low level	V _{OL}				0.1 x DVDD	V
Output high level	V _{OH}		0.9 x DVDD			V
Digital input leakage current				TBD		μA
Digital input capacitance				TBD		pF
Analogue Reference Levels	•	•				
ADC Midrail Voltage	ADCVMID			AVDD1/2		V
ADC Buffered Positive Reference Voltage	ADCREFP			ADCVMID		V
DAC Midrail Voltage	DACVMID			DACREFP/2		V
Potential divider resistance		AVDD1 to ADCVMID		100		kΩ
		ADCVMID to AGND1				
		DACVREFP to DACVMID		50		kΩ
		DACVMID to DACVREFN		(Note 2)		
		VMID_SEL[1:0] = 01				
Analogue Line Outputs						
Output signal level (0dB)			TBD	2.0x AVDD2 / 9	TBD	Vrms
Maximum capacitance load					11	nF
Minimum resistance load			1			kΩ
Analogue Headphone Outputs	5	•			·	
Output signal level (0dB)		R _L = 32Ω	TBD	0.8x AVDD2 / 9	TBD	Vrms
Minimum resistance load		1	16			Ω
Analogue Inputs	1	1	1	•	LL	

Test Conditions

AVDD2=9V, AVDD1=DVDD=3.3V, AGND1=AGND2=0V, DGND=0V, T_A=+25°C, 1kHz signal, fs=48kHz, MCLK=256fs unless otherwise stated

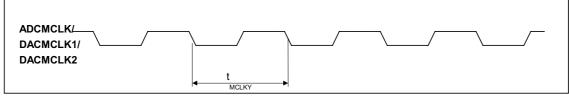
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input signal level (0dB)				2.0 x AVDD1/3.3	TBD	Vrms
Input impedance			10	11	12	kΩ
Extended input impedance (Note 3)		External resistor = 10kΩ		21		kΩ
Input capacitance				TBD		pF
DAC Performance						
Signal to Noise Ratio ^{1,5}	SNR	A-weighted @ fs = 48kHz	TBD	100		dB
		A-weighted @ fs = 96kHz		100		dB
		A-weighted @ fs = 192kHz		100		dB
Dynamic Range ^{2,5}	DNR	A-weighted, -60dB full scale input	TBD	100		dB
Total Harmonic Distortion ^{3,5}	THD	1kHz, 0dBFS @ fs = 48kHz		-90	TBD	dB
		1kHz, 0dBFS @ fs = 96kHz		-90		dB
		1kHz, 0dBFS @ fs = 192kHz		-90		dB
Channel Separation ^{4,5}				100		dB
Channel Level Matching				0.1		dB
Channel Phase Deviation				0.05		Degree
Power supply rejection ratio	PSRR	1kHz, 100mVpp	TBD	50		dB
		20Hz to 20kHz, 100mVpp		TBD		dB
ADC Performance						
Signal to Noise Ratio ^{1,5}	SNR	A-weighted, 0dB gain @ fs = 48kHz	TBD	100		dB
		A-weighted, 0dB gain @ fs = 96kHz		97		dB
Dynamic Range ^{2,5}	DNR	A-weighted, -60dB full scale input	TBD	100		dB
Total Harmonic Distortion ^{3,5}	THD	1kHz, -1dBFS @ fs = 48kHz		-90	TBD	dB
		1kHz, -1dBFS @ fs = 96kHz		-87		dB
Channel Separation ^{4,5}				100		dB
Channel Level Matching				0.1		dB
Channel Phase Deviation				0.05		Degree
Power Supply Rejection Ratio	PSRR		TBD	50 TBD		dB dB
Analogue Bypass Paths	1			I I_		1 -
Signal to Noise Ratio ^{1,5}	SNR	A-weighted		100		dB
Dynamic Range ^{2,5}	DNR	A-weighted		100		dB
Total Harmonic Distortion ^{3,5}	THD			90		dB
Channel Separation ^{4,5}				100		dB
Channel Level Matching				0.1		dB
Channel Phase Deviation				0.05		Degree

Test Conditions

AVDD2=9V, AVDD1=DVDD=3.3V, AGND1=AGND2=0V, DGND=0V, T_A=+25°C, 1kHz signal, fs=48kHz, MCLK=256fs unless otherwise stated

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Headphone Amplifier					•	•
Output signal level (0dB)				0.8		Vrms
Signal to Noise Ratio ^{1,5}	SNR	A-weighted		TBD		dB
Total Harmonic Distortion	THD	$P_0=20mW, R_L=16\Omega$		TBD		dB
		$P_0=20mW, R_L=32\Omega$		TBD		dB
Channel Separation ^{4,5}				TBD		dB
Power Supply Rejection Ratio	PSRR			TBD		dB
Digital Volume Control		•				
ADC minimum digital volume				-97		dB
ADC maximum digital volume				+30		dB
ADC volume step size				0.5		dB
DAC minimum digital volume				-100		dB
DAC maximum digital volume				+12		dB
DAC volume step size				0.5		dB
Analogue Volume Control		•			•	•
Minimum gain				-73.5		dB
Maximum gain				+6		dB
Step size				0.5		dB
Mute attenuation				TBD		dB
Crosstalk		•			•	•
DAC to ADC		1kHz signal,		100		dB
		ADC fs=48kHz,				
		DAC fs=44.1kHz				
		20kHz signal,		100		dB
		ADC fs=48kHz,				
		DAC fs=44.1kHz				
ADC to DAC		1kHz signal,		100		dB
		ADC fs=48kHz,				
		DAC fs=44.1kHz				
		20kHz signal,		100		dB
		ADC fs=48kHz,				
		DAC fs=44.1kHz				

TERMINOLOGY


- 1. Signal-to-noise ratio (dBFS) SNR is the difference in level between a reference full scale output signal and the device output with no signal applied. This ratio is also called idle channel noise. (No Auto-zero or Automute function is employed in achieving these results).
- Dynamic range (dBFS) DNR is a measure of the difference in level between the highest and lowest components of a signal. Normally a THD measurement at -60dBFS. The measured signal is then corrected by adding 60dB to the result, e.g. THD @ -60dBFS = -30dB, DNR = 90dB.
- 3. Total Harmonic Distortion (dBFS) THD is the difference in level between a reference full scale output signal and the first seven odd harmonics of the output signal. To calculate the ratio, the fundamental frequency of the output signal is notched out and an RMS value of the next seven odd harmonics is calculated.
- 4. Channel Separation (dB) Also known as Cross-Talk. This is a measure of the amount one channel is isolated from the other. Normally measured by sending a full scale signal down one channel and measuring the other.
- 5. All performance measurements carried out with 20kHz low pass filter, and where noted an A-weighted filter. Failure to use such a filter will result in higher THD and lower SNR and Dynamic Range readings than are found in the Electrical Characteristics. The low pass filter removes out of band noise; although it is not audible it may affect dynamic specification values.

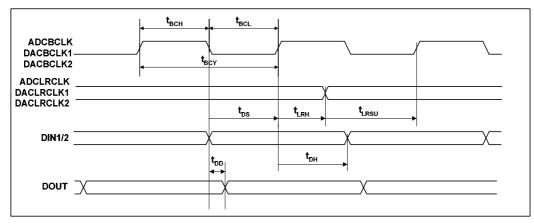
Notes:

- 1. All minimum and maximum values are subject to change.
- 2. This resistance is selectable using VMID_SEL[1:0] see Figure 51 for full details.
- 3. See p95 for details of extended input impedance configuration.

MASTER CLOCK TIMING

Figure 1 MCLK Timing

Test Conditions


AVDD1, DVDD = 3.3V, AVDD2 = 9V, AGND1, AGND2, DGND = 0V, $T_A = +25^{\circ}C$

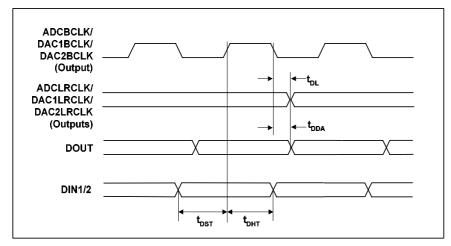
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Master Clock Timing Information					
MCLK System clock cycle time	t _{MCLKY}	27		120	ns
MCLK Duty cycle		40:60		60:40	%
MCLK Period Jitter				200	ps
MCLK Rise/Fall times				10	ns

Table 1 Master Clock Timing Requirements

DIGITAL AUDIO INTERFACE TIMING – SLAVE MODE

Figure 2 Slave Mode Digital Audio Data Timing

Test Conditions


AVDD1, DVDD = 3.3V, AVDD2 = 9V, AGND1, AGND2, DGND = 0V, T_A = $+25^{\circ}C$, Slave Mode, fs = 48kHz, ADCMCLK, DACMCLK = 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT
Audio Data Input Timing Information					
ADCBCLK / DACBCLK1 / DACBCLK2 cycle time	t _{BCY}	80			ns
ADCBCLK / DACBCLK1 / DACBCLK2 pulse width high	t _{BCH}	30			ns
ADCBCLK / DACBCLK1 / DACBCLK2 pulse width low	t _{BCL}	30			ns
ADCBCLK / DACBCLK1 / DACBCLK2 rise/fall times				5	ns
ADCLRCLK / DACLRCLK1 / DACLRCLK2 set-up time to ADCBCLK / DACBCLK1 / DACLRCLK2 rising edge	t _{LRSU}	22			ns
ADCLRCLK / DACLRCLK1 / DACLRCLK2 hold time from ADCBCLK / DACBCLK1 / DACBCLK2 rising edge	t _{LRH}	25			ns
ADCLRCLK / DACLRCLK1 / DACLRCLK2 rise/fall times				5	ns
DIN1/2 hold time from DACBCLK1 / DACBCLK2 rising edge	t _{DH}	25			ns
DOUT propagation delay from ADCBCLK falling edge	t _{DD}	4		16	ns

Table 2 Slave Mode Audio Interface Timing

DIGITAL AUDIO INTERFACE TIMING – MASTER MODE

Figure 3 Master Mode Digital Audio Data Timing

Test Conditions

AVDD1, DVDD = 3.3V, AVDD2 = 9V, AGND1, AGND2, DGND = 0V, T_A = +25°C, Slave Mode, fs = 48kHz, ADCMCLK, DACMCLK = 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Audio Data Input Timing Information					
ADCLRCLK / DACLRCLK1 / DACLRCLK2 propagation delay from ADCBCLK / DACBCLK1 / DACLRCLK2 falling edge	t _{DL}	4		16	ns
DOUT propagation delay from ADCBCLK falling edge	t _{DDA}	4		16	ns
DIN1 / DIN2 setup time to DACBCLK1 / DACBCLK2 rising edge	t _{DST}	22			ns
DIN1 / DIN2 hold time to DACBCLK1 / DACBCLK2 rising edge	t _{DHT}	25			ns

Table 3 Master Mode Audio Interface Timing

CONTROL INTERFACE TIMING – 2-WIRE MODE

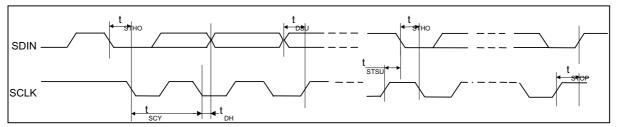


Figure 4 Control Interface Timing – 2-Wire Serial Control Mode

Test Conditions

AVDD1, DVDD = 3.3V, AVDD2 = 9V, AGND1, AGND2, DGND = 0V, T_A = +25°C, Slave Mode, fs = 48kHz, ADCMCLK, DACMCLK = 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT			
Program Register Input Information								
SCLK pulse cycle time	t _{SCY}	2500			ns			
SCLK duty cycle		40/60		60/40	%			
SCLK frequency				400	kHz			
Hold Time (Start Condition)	t _{sтно}	600			ns			
Setup Time (Start Condition)	tstsu	600			ns			
Data Setup Time	t _{DSU}	100			ns			
SDIN, SCLK Rise Time				300	ns			
SDIN, SCLK Fall Time				300	ns			
Setup Time (Stop Condition)	t _{STOP}	600			ns			
Data Hold Time	t _{DHO}			900	ns			
Pulse width of spikes that will be suppressed	t _{ps}	2		8	ns			

Table 4 Control Interface Timing – 2-Wire Serial Control Mode

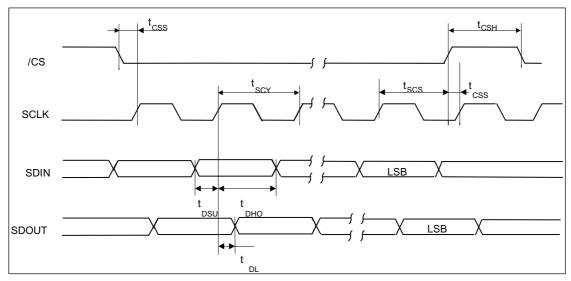
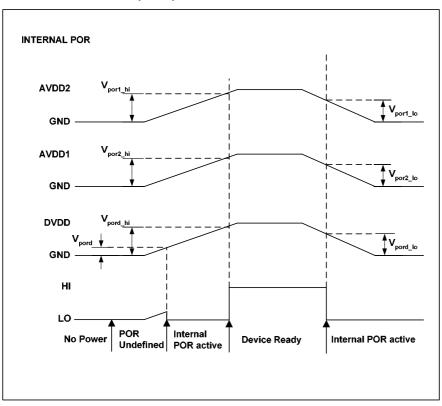


Figure 5 Control Interface Timing – 3-Wire Serial Control Mode

Test Conditions


AVDD1, DVDD = 3.3V, AVDD2 = 9V, AGND1, AGND2, DGND = 0V, T_A = +25°C, Slave Mode, fs = 48kHz, ADCMCLK, DACMCLK = 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Program Register Input Information			•		
SCLK rising edge to CSB rising edge	t _{scs}	80			ns
SCLK pulse cycle time	t _{SCY}	160			ns
SCLK duty cycle		40/60		60/40	%
SDIN to SCLK set-up time	t _{DSU}	20			ns
SDIN hold time from SCLK rising edge	t _{DHO}	40			ns
SDOUT propagation delay from SCLK rising edge	t _{DL}			5	ns
CSB pulse width high	t _{CSH}	40			ns
CSB rising/falling to SCLK rising	t _{css}	40			ns
Pulse width of spikes that will be suppressed	t _{ps}	2		8	ns

Table 5 Control Interface Timing – 3-Wire Serial Control Mode

POWER ON RESET (POR)

Figure 1 Power Supply Timing Requirements

Test Conditions

 $DVDD = 3.3V, AVDD1 = 3.3V, AVDD2 = 9V DGND = AGND1 = AGND2 = 0V, T_A = +25^{\circ}C, T_{A_max} = +125^{\circ}C, T_{A_min} = -25^{\circ}C = 4000$ $AVDD1_{max} = DVDD_{max} = 3.63V, AVDD1_{min} = DVDD_{mim} = 2.97V$

AVDD2_{max} = 9.9V, AVDD2_{min} = 8.1V

PARAMETER	SYMBOL	SYMBOL TEST CONDITIONS		TYP	MAX	UNIT				
Power Supply Input Timing Information										
VDD level to POR defined (DVDD rising)	V _{pord}	Measured from DGND	0.27	0.36	0.60	V				
VDD level to POR rising edge (DVDD rising)	V _{pord_hi}	Measured from DGND	1.34	1.88	2.32	V				
VDD level to POR falling edge (DVDD falling)	V _{pord_lo}	Measured from DGND	1.32	1.86	2.30	V				
VDD level to POR rising edge (AVDD1 rising)	V _{por1_hi}	Measured from DGND	1.65	1.68	1.85	V				
VDD level to POR falling edge (AVDD1 falling)	V _{por1_lo}	Measured from DGND	1.63	1.65	1.83	V				
VDD level to POR rising edge (AVDD2 rising)	V _{por2_hi}	Measured from DGND	1.80	1.86	2.04	V				
VDD level to POR falling edge (AVDD2 falling)	V _{por2_lo}	Measured from DGND	1.76	1.8	2.02	V				

Table 6 Power on Reset

DEVICE DESCRIPTION

INTRODUCTION

The WM8593 is a high performance multi-channel audio CODEC with 2Vrms line level inputs and outputs and flexible analogue and digital input / output switching. The device comprises a 24-bit stereo ADC, two 24-bit stereo DACs with independent sampling rates and digital volume control, a flexible analogue input and output multiplexer and a flexible analogue input and output multiplexer. Analogue inputs and outputs are all at 2Vrms line level, minimising external component count.

The DACs can operate from independent left/right clocks, bit clocks and master clocks with independent data inputs. Alternatively, the DACs can be synchronised to use the same clocks with independent data inputs. Each of the DAC audio interfaces can be configured to operate in ether master or slave clocking modes. In master mode, left/right clocks and bit clocks are all outputs. In slave mode, left/right clocks and bit clocks are all inputs.

The ADC uses a separate left/right clock, bit clock and master clock, allowing independent recording and playback in audio applications. The ADC audio interface can be configured to operate in either master or slave clocking mode. In master mode, left/right clocks and bit clocks are all outputs. In slave mode, left/right clocks and bit clocks are all inputs.

The ADC includes digital gain control, allowing signals to be gained and attenuated between +30dB and -97dB in 0.5dB steps.

The DACs include independent digital volume control, which is adjustable between +12dB and -100 dB in 0.5dB steps. The DACs can be configured to output stereo audio data and a range of mono audio options.

The input analogue multiplexer accepts eight stereo line level inputs at up to 2Vrms. One stereo input can be routed to the ADC, and all eight stereo inputs can be routed to the output multiplexer.

The output analogue multiplexer includes analogue volume control with zero cross, adjustable between +6dB and -73.5dB in 0.5dB steps, and configurable soft ramp rate. Analogue audio is output at 2Vrms line level.

The digital audio interface multiplexer allows flexible routing of the digital signals internal to the device between the independent ADC, DAC1 and DAC2 audio interfaces from any of the five digital audio ports. By integrating this functionality into the WM8593, the external component count and board space normally required to switch between various digital audio sources can be significantly reduced.

Additionally, a jack detect function is included that allows various paths within the device to be muted when a set of headphones is detected.

Control of the internal functionality of the device is by 2-wire or 3-wire serial control interface with readback. The interface may be asynchronous to the audio data interface as control data will be resynchronised to the audio processing internally. In addition, control of mute, power-down and reset may also be achieved by pin control.

Operation using system clocks of 128fs, 192fs, 256fs, 384fs, 512fs, 768fs or 1152fs is provided. ADC and DACs may be clocked independently. Sampling rates from 32kHz to 192kHz are supported for both DACs provided the appropriate master clocks are input. Sampling rates from 32kHz to 96kHz are supported for the ADC provided the appropriate master clock is input.

The audio data interface supports right justified, left justified, and I^2S interface formats along with a highly flexible DSP serial port interface format.

CONTROL INTERFACE

Control of the WM8593 is achieved by a 2-wire SM-bus-compliant or 3-wire SPI compliant serial interface with readback. Software interface mode is selected using the MODE pin as shown in Table 7 below:

MODE	INTERFACE FORMAT
Low	2 wire
High	3 wire

Table 7 Control Interface Mode Selection

2-WIRE (SM-BUS COMPATIBLE) SERIAL CONTROL INTERFACE MODE

Many devices can be controlled by the same bus, and each device has a unique 7-bit address.

REGISTER WRITE

The controller indicates the start of data transfer with a high to low transition on SDIN while SCLK remains high. This indicates that a device address and data will follow. All devices on the 2-wire bus respond to the start condition and shift in the next eight bits on SDIN (7-bit address and read/write bit, MSB first). If the device address received matches the address of the WM8593, the WM8593 responds by pulling SDIN low on the next clock pulse (ACK). If the address is not recognised, the WM8593 returns to the idle condition and waits for a new start condition with valid address.

When the WM8593 has acknowledged a correct address, the controller sends the first byte of control data (B23 to B16, i.e. the WM8593 register address). The WM8593 then acknowledges the first data byte by pulling SDIN low for one SCLK pulse. The controller then sends a second byte of control data (B15 to B8, i.e. the first 8 bits of register data), and the WM8593 acknowledges again by pulling SDIN low for one SCLK pulse. Finally, the controller sends a third byte of control data (B7 to B0, i.e. the final 8 bits of register data), and the WM8593 acknowledges again by pulling SDIN low for one SCLK pulse.

The transfer of data is complete when there is a low to high transition on SDIN while SCLK is high. After receiving a complete address and data sequence the WM8593 returns to the idle state and waits for another start condition. If a start or stop condition is detected out of sequence at any point during data transfer (i.e. SDIN changes while SCLK is high), the WM8593 reverts to the idle condition.

The WM8593 device address is 34h (0110100) or 36h (0110110), selectable by control of /CS.

/CS (PIN 45)	2-WIRE BUS ADDRESS
0	34h (0110100)
1	36h (0110110)

Table 8 2-Wire Control Interface Bus Address Selection

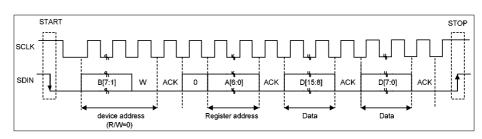


Figure 6 2-Wire Write Protocol

AUTO-INCREMENT REGISTER WRITE

It is possible to write to multiple consecutive registers using the auto-increment feature. When AUTO_INC is set, the register write protocol follows the method shown in Figure 7. As with normal register writes, the controller indicates the start of data transfer with a high to low transition on SDIN while SCLK remains high, and all devices on the bus receive the device address.

When the WM8593 has acknowledged a correct address, the controller sends the first byte of control data (A6 to A0, i.e. the WM8593 initial register address). The WM8593 then acknowledges the first control data byte by pulling SDIN low for one SCLK pulse. The controller then sends a byte of register data. The WM8593 acknowledges the first byte of register data, auto-increments the register address to be written to, and waits for the next byte of register data. Subsequent bytes of register data can be written to consecutive registers of the WM8593 without setting up the device and register address.

The transfer of data is complete when there is a low to high transition on SDIN while SCLK is high.

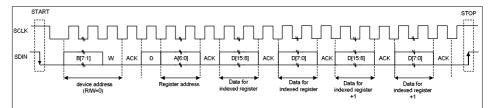


Figure 7 2-Wire Auto-Increment Register Write

REGISTER READBACK

The WM8593 allows readback of all registers with data output on the bidirectional SDIN pin. The protocol is similar to that used to write to the device. The controller will issue the device address followed by a write bit, and the register index will then be passed to the WM8593.

At this point the controller will issue a repeated start condition and resend the device address along with a read bit. The WM8593 will acknowledge this and the WM8593 will become a slave transmitter.

The WM8593 will place the data from the indexed register onto SDIN MSB first. When the controller receives the first byte of data, it acknowledges it. When the controller receives the second and final byte of data it will not acknowledge receipt of the data indicating that it will resume master transmitter control of SDIN. The controller will then issue a stop command completing the read cycle.

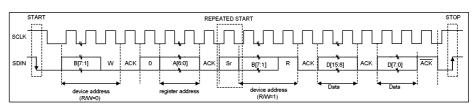


Figure 8 2-wire Read Protocol

AUTO-INCREMENT REGISTER READBACK

It is possible to read from multiple consecutive registers in continuous readback mode. Continuous readback mode is selected by setting AUTO_INC.

In continuous readback mode, the WM8593 will return the indexed register first, followed by consecutive registers in increasing index order until the controller issues a stop sequence.

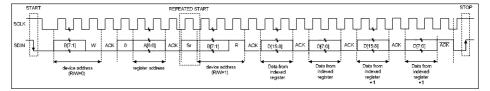


Figure 9 2-Wire Auto-Increment Register Readback

3-WIRE (SPI COMPATIBLE) SERIAL CONTROL INTERFACE MODE

REGISTER WRITE

SDIN is used for the program data, SCLK is used to clock in the program data and /CS is use to latch in the program data. SDIN is sampled on the rising edge of SCLK. The 3-wire interface write protocol is shown in Figure 10.

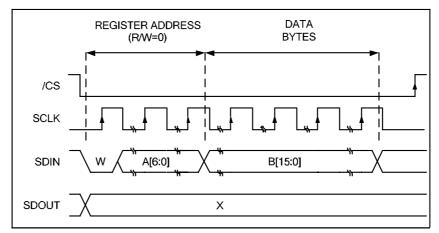


Figure 10 3-Wire Serial Interface Write Protocol

- W indicates write operation.
- A[6:0] is the register index.
- B[15:0] is the data to be written to the register indexed.
- /CS is edge sensitive the data is latched on the rising edge of /CS.

REGISTER READ-BACK

The read-only status registers can be read back via the SDOUT pin. Read Back is enabled when the R/W bit is high. The data can then be read by writing to the appropriate register address, to which the device will respond with data.

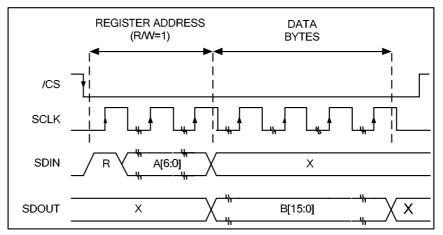


Figure 11 3-Wire Serial Interface Readback Protocol

REGISTER RESET

Any write to register R0 (00h) will reset the WM8593. All register bits are reset to their default values.

DEVICE ID AND REVISION

Reading from register R0 returns the device ID. Reading from register R1 returns the device revision number.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R0	15:0	DEVICE_ID	10000101	Device ID
DEVICE_ID		[15:0]	10010011	A read of this register will return the device
00h				ID, 0x8593.
R1	7:0	REVNUM	N/A	Device Revision
REVISION		[7:0]		A read of this register will return the device
01h				revision number. This number is sequentially incremented if the device design is updated.

Table 9 Device ID and Revision Number

GLOBAL ENABLE CONTROL

The WM8593 includes a number of enable and disable mechanisms to allow the device to be powered on and off in a pop-free manner. A global enable control bit enables the ADC, DAC and analogue paths.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R12	0	GLOBAL_	0	Device Global Enable
ENABLE 0Ch		EN		0 = ADC, DAC and PGA ramp control circuitry disabled
				1 = ADC, DAC and PGA ramp control circuitry enabled

Table 10 Global Enable Control

DIGITAL AUDIO INTERFACE

Digital audio data is transferred to and from the WM8593 via the digital audio interface. The DACs have independent data inputs and master clocks, bit clocks and left/right frame clocks, and operate in both master or slave mode The ADC has independent master clock, bit clock and left/right frame clock in addition to its data output, and can operate in both master and slave modes.

MASTER MODE

The ADC audio interface requires both a left/right frame clock (ADCLRCLK) and a bit clock (ADCBCLK). These can be supplied externally (slave mode) or they can be generated internally (master mode). Selection of master and slave mode is achieved by setting ADC_MSTR in ADC Control Register 3.

The frequency of ADCLRCLK in master mode is dependent upon the ADC master clock frequency and the ADC_SR[2:0] bits.

The frequency of ADCBCLK in master mode can be selected by ADC_BCLKDIV[1:0].

The DAC audio interfaces require both left/right frame clocks (DACLRCLK1, DACLRCLK2) and bit clocks (DACBCLK1, DACBCLK2). These can be supplied externally (slave mode) or they can be generated internally (master mode). Selection of master and slave mode is achieved by setting DAC1_MSTR in DAC1 Control Register 3 and DAC2_MSTR in DAC2 Control Register 3.

The frequency of DACLRCLK1 in master mode is dependent upon the DAC1 master clock frequency and the DAC1_SR[2:0] bits. Similarly the frequency of DACLRCLK2 in master mode is dependent upon the DAC2 master clock frequency and the DAC2_SR[2:0] bits.

The frequency of DACBCLK1 and DACBCLK2 in master mode can be selected by DAC1_BCLKDIV[1:0] and DAC2_BCLKDIV[1:0].

Product Preview

	REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
F	R3	2:0	DAC1_	000	DAC MCLK:LRCLK Ratio
	DAC1_CTRL2		SR[2:0]		000 = Auto detect
	03h				001 = 128fs
					010 = 192fs
					011 = 256fs
					100 = 384fs
					101 = 512fs
					110 = 768fs
					111 = 1152fs
		5:3	DAC1_	000	DAC1 BCLK Rate
			BCLKDIV		000 = MCLK / 4
			[2:0]		001 = MCLK / 8
					010 = 32fs
					011 = 64fs
					100 = 128fs
					All other values of DAC1_BCLKDIV[2:0] are
					reserved
	R4	0	DAC1_	0	DAC1 Master Mode Select
	DAC1_CTRL3		MSTR		0 = Slave mode, DACBCLK1 and
	04h				DACLRCLK1 are inputs to WM8593
					1 = Master mode, DACBCLK1 and
					DACLRCLK1 are outputs from WM8593
	R8	2:0	DAC2_	000	DAC MCLK:LRCLK Ratio
	DAC1_CTRL2		SR[2:0]		000 = Auto detect
	08h				001 = 128fs
					010 = 192fs
					011 = 256fs
					100 = 384fs
					101 = 512fs
					110 = 768fs
					111 = 1152fs
		5:3	DAC2_	000	DAC2 BCLK Rate
			BCLKDIV		000 = MCLK / 4
			[2:0]		001 = MCLK / 8
					010 = 32fs
					011 = 64fs
					100 = 128fs
					All other values of DAC2_BCLKDIV[2:0] are
					reserved
	R9	0	DAC2_	0	DAC2 Master Mode Select
	DAC2_CTRL3		MSTR		0 = Slave mode, DACBCLK2 and
	09h				DACLRCLK2 are inputs to WM8593
1					1 = Master mode, DACBCLK2 and
L					DACLRCLK2 are outputs from WM8593
1	R14	2:0	ADC_	000	ADC MCLK:LRCLK Ratio
	ADC_CTRL2		SR[2:0]		000 = Auto detect
1	0Eh				001 = 128fs
1					010 = 192fs
1					011 = 256fs
1					100 = 384fs
					101 = 512fs
					110 = 768fs
					110 = 768fs 111 = Reserved

Product Preview

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
		DIV[2:0]		000 = MCLK / 4 001 = MCLK / 8
				010 = 32fs 011 = 64fs 100 = 128fs
				All other values of ADC_BCLKDIV[2:0] are reserved
R15	0	ADC_	0	ADC Master Mode Select
ADC_CTRL3 0Fh		MSTR		0 = Slave mode, ADCBCLK and ADCLRCLK are inputs to WM8593
				1 = Master mode, ADCBCLK and ADCLRCLK are outputs from WM8593

Table 11 ADC Master Mode Control

SLAVE MODE

In slave mode, the master clock to left/right clock ratio can be auto-detected or set manually by register write.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R3	2:0	DAC1_	000	DAC MCLK:LRCLK Ratio
DAC1_CTRL2		SR[2:0]		000 = Auto detect
03h				001 = 128fs
R8	2:0	DAC2_	000	010 = 192fs
DAC2_CTRL2		SR[2:0]		011 = 256fs
08h				100 = 384fs
				101 = 512fs
				110 = 768fs
				111 = 1152fs
R14	2:0	ADC_	000	ADC MCLK:LRCLK Ratio
ADC_CTRL2		SR[2:0]		000 = Auto detect
0Eh				001 = reserved
				010 = reserved
				011 = 256fs
				100 = 384fs
				101 = 512fs
				110 = 768fs
				111 = Reserved

Table 12 Slave Mode MCLK to LRCLK Ratio Control

DIGITAL AUDIO DATA SAMPLING RATES

In a typical digital audio system there is one central clock source producing a reference clock to which all audio data processing is synchronised. This clock is often referred to as the audio system's master clock. The WM8593 uses independent master clocks for ADC and DACs. The external master clocks can be applied directly to the ADCMCLK, DACMCLK1 and DACMCLK2 input pins. In a system where there are a number of possible sources for the reference clock, it is recommended that the clock source with the lowest jitter be used for the master clock to optimise the performance of the WM8593.

In slave clocking mode the WM8593 has a master detection circuit that automatically determines the relationship between the master clock frequency (ADCMCLK, DACMCLK1, DACMCLK2) and the sampling rate (ADCLRCLK, DACLRCLK1, DACLRCLK2), to within +/- 32 system clock periods. The master clocks must be synchronised with the left/right clocks, although the device is tolerant of phase variations or jitter on the master clocks.

The ADC supports master clock to sampling clock ratios of 256fs to 768fs and sampling rates of 32kHz to 96kHz, provided the internal signal processing of the ADC is programmed to operate at the correct rate. The DACs support master clock to sampling clock ratios of 128fs to 1152fs and sampling rates of 32kHz to 192kHz, provided the internal signal processing of the DACs is programmed to operate at the correct rate.

Table 13 shows typical master clock frequencies and sampling rates supported by the WM8593 ADC. Table 14 shows typical master clock frequencies and sampling rates supported by the WM8593 DACs.

	MASTER CLOCK FREQUENCY (MHZ)						
Sampling Rate (ADCLRCLK)	256fs	384fs	512fs	768fs			
32kHz	8.192	12.288	16.384	24.576			
44.1kHz	11.2896	16.9344	22.5792	33.8688			
48kHz	12.288	18.432	24.576	36.864			
88.2kHz	22.5792	33.8688	Unavailable	Unavailable			
96kHz	24.576	Unavailable	Unavailable	Unavailable			

Table 13 ADC Master Clock Frequency Versus Sampling Rate

Sampling Rate		MASTER CLOCK FREQUENCY (MHZ)								
(DACLRCLK1 DACLRCLK2)	128fs	192fs	256fs	384fs	512fs	768fs	1152fs			
32kHz	Unavailable	Unavailable	8.192	12.288	16.384	24.576	36.864			
44.1kHz	Unavailable	8.4672	11.2896	16.9344	22.5792	33.8688	Unavailable			
48kHz	Unavailable	9.216	12.288	18.432	24.576	36.864	Unavailable			
88.2kHz	11.2896	16.9344	22.5792	33.8688	Unavailable	Unavailable	Unavailable			
96kHz	12.288	18.432	24.576	36.864	Unavailable	Unavailable	Unavailable			
176.4kHz	22.5792	33.8688	Unavailable	Unavailable	Unavailable	Unavailable	Unavailable			
192kHz	24.576	36.864	Unavailable	Unavailable	Unavailable	Unavailable	Unavailable			

Table 14 DAC Master Clock Frequency Versus Sampling Rate

DIGITAL AUDIO DATA FORMATS

The WM8593 supports a range of common audio interface formats:

- I²S
- Left Justified (LJ)
- Right Justified (RJ)
- DSP Mode A
- DSP Mode B

All formats send the MSB first and support word lengths of 16, 20, 24 and 32 bits, with the exception of 32 bit RJ mode, which is not supported.

Audio data for each stereo channel is time multiplexed with the interface's left/right clock indicating whether the left or right channel is present. The left/right clock is also used as a timing reference to indicate the beginning or end of the data words.

In LJ, RJ and I²S modes, the minimum number of bit clock periods per left/right clock period is two times the selected word length. The left/right clock must be high for a minimum of bit clock periods equivalent to the word length, and low for the same period. For example, for a word length of 24 bits, the left/right clock must be high for a minimum of 24 bit clock periods and low for a minimum of 24 bit clock periods. Any mark to space ratio is acceptable for the left/right clock provided these requirements are met.

In DSP modes A and B, left and right channels must be time multiplexed and input on DIN1. LRCLK is used as a frame synchronisation signal to identify the MSB of the first input word. The minimum number of bit clock periods per left/right clock period is two times the selected word length. Any mark to space ratio is acceptable for the left/right clock provided the rising edge is correctly positioned.

I2S MODE

In I²S mode, the MSB of input data is sampled on the second rising edge of bit clock following a left/right clock transition. The MSB of output data changes on the first falling edge of bit clock following a left/right clock transition, and may be sampled on the next rising edge of bit clock. Left/right clocks are low during the left channel audio data samples and high during the right channel audio data samples.

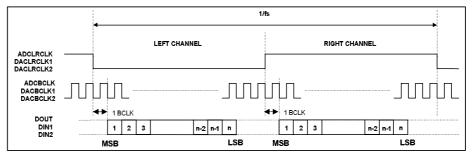


Figure 12 I2S Mode Timing

LEFT JUSTIFIED (LJ) MODE

In LJ mode, the MSB of the input data is sampled by the WM8593 on the first rising edge of bit clock following a left/right clock transition. The MSB of output data changes on the same falling edge of bit clock as left/right clock and may be sampled on the next rising edge of bit clock. Left/right clock is high during the left channel audio data samples and low during the right channel audio data samples.

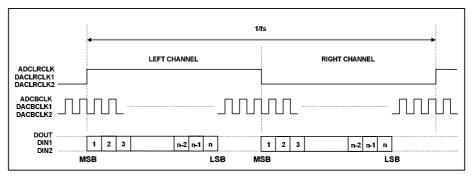


Figure 13 LJ Mode Timing

RIGHT JUSTIFIED (RJ) MODE

In RJ mode the LSB of input data is sampled on the rising edge of bit clock preceding a left/right clock transition. The LSB of output data changes on the falling edge of bit clock preceding a left/right clock transition, and may be sampled on the next rising edge of bit clock. Left/right clock is high during the left channel audio data samples and low during the right channel audio data samples.

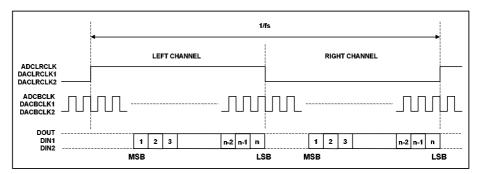


Figure 14 RJ Mode Timing

DSP MODE A

In DSP Mode A, the MSB of channel 1 left data input is sampled on the second rising edge of bit clock following a left/right clock rising edge. Channel 1 right data then follows. The MSB of output data changes on the first falling edge of bit clock following a left/right clock transition and may be sampled on the rising edge of bit clock. The right channel data is contiguous with the left channel data.

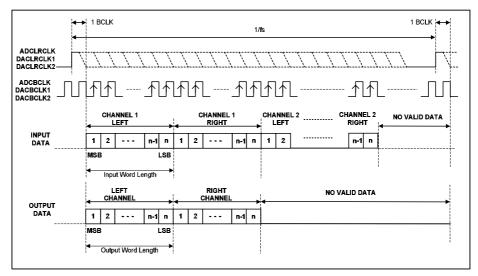


Figure 15 DSP Mode A Timing

DSP MODE B

In DSP Mode B, the MSB of channel 1 left data input is sampled on the first bit clock rising edge following a left/right clock rising edge. Channel 1 right data then follows. The MSB of output data changes on the same falling edge of BCLK as the low to high left/right clock transition and may be sampled on the rising edge of bit clock. The right channel data is contiguous with the left channel data.

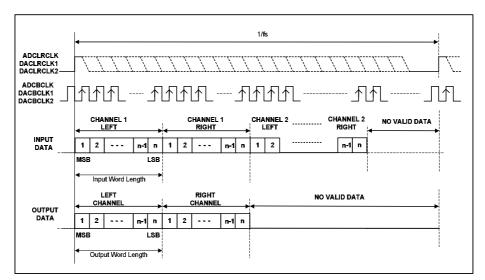


Figure 16 DSP Mode B Timing

DIGITAL AUDIO INTERFACE CONTROL

The control of the audio interface formats is achieved by register write. Dynamically changing the audio data format may cause erroneous operation and is not recommended.

Interface timing is such that the input data and left/right clock are sampled on the rising edge of the interface bit clock. Output data changes on the falling edge of the interface bit clock. By setting the appropriate bit clock and left/right clock polarity bits, the WM8593 ADC and DACs can sample data on the opposite clock edges.

The control of audio interface formats and clock polarities is summarised in Table 15.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	1:0	DAC1_	10	DAC1 Audio Interface Format
DAC1_CTRL1		FMT[1:0]		00 = Right Justified
02h				01 = Left Justified
				$10 = I^2 S$
				11 = DSP
	3:2	DAC1_	10	DAC1 Audio Interface Word Length
		WL[1:0]		00 = 16-bit
				01 = 20-bit
				10 = 24-bit
				11 = 32-bit (not available in Right Justified mode)
	4	DAC1_BCP	0	DAC1 BCLK Polarity
				0 = DACBCLK not inverted - data latched on rising edge of BCLK
				1 = DACBCLK inverted - data latched on falling edge of BCLK
	5	DAC1_LRP	0	DAC1 LRCLK Polarity
				0 = DACLRCLK not inverted
				1 = DACLRCLK inverted
R7	1:0	DAC2_	10	DAC2 Audio Interface Format
DAC2_CTRL1		FMT[1:0]		00 = Right Justified
07h				01 = Left Justified
				$10 = I^2 S$
				11 = DSP
	3:2	DAC2_	10	DAC2 Audio Interface Word Length
		WL[1:0]		00 = 16-bit
				01 = 20-bit
				10 = 24-bit
				11 = 32-bit (not available in Right Justified mode)
	4	DAC2_BCP	0	DAC2 BCLK Polarity
				0 = DACBCLK not inverted - data latched on
				rising edge of BCLK
				1 = DACBCLK inverted - data latched on
	_	D 4 00 1 		falling edge of BCLK
	5	DAC2_LRP	0	DAC2 LRCLK Polarity
				0 = DACLRCLK not inverted
	4.0	400	40	1 = DACLRCLK inverted
R13	1:0	ADC_	10	ADC Audio Interface Format
ADC_CTRL1		FMT[1:0]		00 = Right Justified
0Dh				01 = Left Justified
				$10 = 1^2 S$
				11 = DSP

Product Preview

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
	3:2	ADC_	10	ADC Audio Interface Word Length
		WL[1:0]		00 = 16-bit
				01 = 20-bit
				10 = 24-bit
				11 = 32-bit (not available in Right Justified
				mode)
	4	ADC_BCP	0	ADC BCLK Polarity
				0 = ADCBCLK not inverted - data latched on rising edge of BCLK
				1 = ADCBCLK inverted - data latched on falling edge of BCLK
	5	ADC_LRP	0	ADC LRCLK Polarity
				0 = ADCLRCLK not inverted
				1 = ADCLRCLK inverted

Table 15 Audio Interface Control

DAC FEATURES

The WM8593 includes two 24-bit DACs with independent clocks and independent data inputs. The DACs include digital volume control with zero cross and soft mute, de-emphasis support, and the capability to select the output channels to be stereo or a range of mono options. The DACs are enabled by writing to DAC1_EN and DAC2_EN.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	8	DAC1_EN	0	DAC1 Enable
DAC1_CTRL1				0 = DAC disabled
02h				1 = DAC enabled
R7	8	DAC2_EN	0	DAC2 Enable
DAC2_CTRL1				0 = DAC2 disabled
07h				1 = DAC2 enabled

Table 16 DAC Enable Control

DIGITAL VOLUME CONTROL

The WM8593 DACs include independent digital volume control, allowing the digital gain to be adjusted between -100dB and +12dB in 0.5dB steps. All four DAC channels can be controlled independently. Alternatively, global update bits allow the user to write all volume changes before the volume is updated.

Volume control includes optional zero cross functionality. When zero cross is enabled, volume changes are not applied until the output level crosses VMID. Zero cross helps to prevent pop and click noise when changing volume settings.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R5 DAC1L_VOL 05h	7:0	DAC1L _VOL[7:0]	11001000	DAC Digital Volume 0000 0000 = -100dB 0000 0001 = -99.5dB
R6 DAC1R_VOL 06h	7:0	DAC1R _VOL[7:0]		0000 0010 = -99dB 0.5dB steps 1100 1000 = 0dB
R10 DAC2L_VOL 0Ah	7:0	DAC2L _VOL[7:0]		0.5dB steps 1101 1111 = +11.5dB 111X XXXX = +12dB

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R11	7:0	DAC2R		
DAC2R_VOL		_VOL[7:0]		
0Bh				
R5	8	DAC1L_VU	0	DAC Digital Volume Update
DAC1L_VOL				0 = Latch DAC volume setting into Register
05h				Map but do not update volume
R6	8	DAC1R_VU		1 = Latch DAC volume setting into Register
DAC1R_VOL				Map and update left and right channels simultaneously
06h				Simularicously
R10	8	DAC2L_VU		
DAC2L_VOL				
0Ah				
R11	8	DAC2R_VU		
DAC2R_VOL				
0Bh				
R2	7	DAC1	1	DAC Digital Volume Control Zero Cross
DAC1_CTRL1		_ZCEN		Enable
02h				0 = Do not use zero cross
R7	7	DAC2		1 = Use zero cross
DAC2_CTRL1		_ZCEN		
07h				

Table 17 DAC Digital Volume Control

SOFTMUTE

A soft mute can be applied to DAC1 and DAC2 independently.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	9	DAC1_	0	DAC Softmute
DAC1_CTRL1		MUTE		0 = Normal operation
02h				1 = Softmute applied
R7	9	DAC2_	0	
DAC2_CTRL1		MUTE		
07h				

Table 18 DAC Softmute Control

DIGITAL MONOMIX CONTROL

Each DAC can be independently set to output a range of mono and stereo options. Each DAC output channel can output left channel data, right channel data or a mix of left and right channel data.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	11:10	DAC1_OP	00	DAC1 Digital Monomix
DAC1_CTRL1		_MUX[1:0]		00 = Stereo (Normal Operation)
02h				01 = Mono (Left data to DAC1R)
				10 = Mono (Right data to DAC1L)
				11 = Digital Monomix, (L+R)/2
R7	11:10	DAC2_OP	00	DAC2 Digital Monomix
DAC2_CTRL1		_MUX[1:0]		00 = Stereo (Normal Operation)
07h				01 = Mono (Left data to DAC2R)
				10 = Mono (Right data to DAC2L)
				11 = Digital Monomix, (L+R)/2

Table 19 Digital Monomix Control

DE-EMPHASIS

A digital de-emphasis filter may be applied to the DAC outputs when the sampling frequency is 44.1kHz. The de-emphasis filter for each DAC can be applied independently. The deemphasis filter responses and error can be seen in Figure 67 and Figure 68.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	6	DAC1	0	DAC1 De-emphasis
DAC1_CTRL1		_DEEMPH		0 = No de-emphasis
02h				1 = Apply 44.1kHz de-emphasis
R7	6	DAC2	0	DAC2 De-emphasis
DAC2_CTRL1		_DEEMPH		0 = No de-emphasis
07h				1 = Apply 44.1kHz de-emphasis

Table 20 De-emphasis Control

ADC FEATURES

The WM8593 features a stereo 24-bit sigma-delta ADC, digital volume control with zero cross, a selectable high pass filter to remove DC offsets, and support for both master and slave clocking modes.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R13	6	ADC_EN	0	ADC Enable
ADC_CTRL1				0 = ADC disabled
0Dh				1 = ADC enabled

Table 21 ADC Enable Control

DIGITAL VOLUME CONTROL

The ADC digital volume can be adjusted between +30dB and -97dB in 0.5dB steps. Left and right channels can be controlled independently. Volume changes can be applied immediately to each channel, or volume changes can be written to both channels before writing to an update bit in order to change the volume in both channels simultaneously.

Volume control includes optional zero cross functionality. When zero cross is enabled, volume changes are not applied until the output level crosses the DC level of the ADC output. Zero cross helps to prevent pop and click noise when changing volume settings.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R16	7:0	ADCL	11000011	ADC Digital Volume
ADCL_VOL		_VOL[7:0]		0000 0000 = Digital mute
10h				0000 0001 = -97dB
R17	7:0	ADCR	11000011	0000 0010 = -96.5dB
ADCR_VOL		_VOL[7:0]		0.5dB steps
11h				1100 0011 = 0dB
				…0.5dB steps
				1111 1110 = +29.5dB
				1111 1111 = +30dB
R16	8	ADCL_VU	0	ADC Digital Volume Update
ADCL_VOL				0 = Latch ADC volume setting into Register
10h				Map but do not update volume
R17	8	ADCR_VU	0	1 = Latch ADC volume setting into Register
ADCR_VOL				Map and update left and right channels
11h				simultaneously

Product Preview

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R13 ADC CTRL1	13	ADC_ZC_ EN	1	ADC Digital Volume Control Zero Cross Enable
0Dh				0 = Do not use zero cross, change volume instantly
				1 = Use zero cross, change volume when data crosses zero

Table 22 ADC Digital Volume Control

CHANNEL SWAP AND INVERSION

The WM8593 ADC input channels can be inverted and swapped in a number of ways to provide maximum flexibility of input path to the ADC. The default configuration provides stereo output data with the left and right channel data in the left and right channels. It is possible to swap the left and right channels, invert them independently, or select the same data from both channels.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R13	7	ADC_	0	ADC Left/Right Swap
ADC_CTRL1		LRSWAP		0 = Normal
0Dh				1 = Swap left channel data into right channel and vice-versa
	8	ADCR_	0	ADCL and ADCR Output Signal Inversion
		INV		0 = Output not inverted
	9	ADCL_	0	1 = Output inverted
		INV		
	11:10	ADC_	00	ADC Data Output Select
		DATA_		00 = left data from ADCL, right data from
		SEL[1:0]		ADCR
				01 = left data from ADCL, right data from ADCL
				10 = left data from ADCR, right data from ADCR
				11 = left data from ADCR, right data from ADCL

Table 23 ADC Channel Swap Control

HIGH PASS FILTER

The WM8593 includes a high pass filter to remove DC offsets. The high pass filter response is shown on page 93. It is possible to disable the high pass filter by writing to ADC_HPD.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R13	12	ADC_HPD	0	ADC High Pass Filter Disable
ADC_CTRL1				0 = High pass filter enabled
0Dh				1 = High pass filter disabled

Table 24 High Pass Filter Disable Control

ANALOGUE ROUTING CONTROL

The WM8593 has a number of analogue paths, allowing flexible routing of a number of analogue input signals and DAC output signals at levels up to 2Vrms. The analogue paths include volume control with zero cross, optional soft ramp and soft mute, and flexible routing of analogue inputs and DAC outputs to analogue outputs.

There are a total of 16 (eight stereo) analogue input channels and four (two stereo) DAC output channels. Any two of the sixteen input channels can be routed to the ADC. Any six of the 20 total channels can be routed to the analogue outputs.

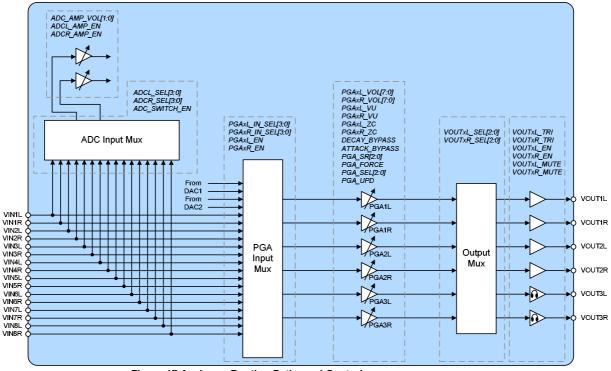


Figure 17 illustrates the various blocks of the analogue routing paths within the WM8593. The following sections describe the control bits associated with the WM8593 analogue paths. Figure 17 also shows where these control bits take affect on the WM8593.

Figure 17 Analogue Routing Paths and Control

ANALOGUE VOLUME CONTROL

Each analogue bypass channel includes analogue volume control. Volume changes can be applied to each channel immediately as they are written. Alternatively, all volume changes can be written, and then all volume changes can be applied simultaneously using the volume update feature.

Volume control includes optional zero cross functionality. When zero cross is enabled, volume changes are not applied until the output level crosses the DC level of the analogue channel (VMID). Zero cross helps to prevent pop and click noise when changing volume settings.

The zero cross function includes a timeout which forces volume changes if a zero cross event does not occur. The timeout period is a maximum of 278ms.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R19 PGA1L_VOL 13h	7:0	PGA1L_ VOL[7:0]	00001100	Input PGA Volume 0000 0000 = +6dB 0000 0001 = +5.5dB
R20 PGA1R_VOL 14h	7:0	PGA1R_ VOL[7:0]		0.5dB steps 00001100 = 0dB
R21 PGA2L_VOL 15h	7:0	PGA2L_ VOL[7:0]		1001 1110 = -73.5dB 1001 1111 = PGA Mute
R22 PGA2R_VOL 16h	7:0	PGA2R_ VOL[7:0]		

Product Preview

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R23	7:0	PGA3L_		
PGA3L_VOL		VOL[7:0]		
17h				
R24	7:0	PGA3R_		
PGA3R_VOL		VOL[7:0]		
18h				
R19	8	PGA1L_	0	Input PGA Volume Update
PGA1L_VOL		VU		0 = Latch corresponding volume setting into
13h				Register Map but do not update volume
R20	8	PGA1R_		1 = Latch corresponding volume setting
PGA1R_VOL		VU		into Register Map and update all channels simultaneously
14h				simulaneously
R21	8	PGA2L_		
PGA2L_VOL		VU		
15h				
R22	8	PGA2R_		
PGA2R_VOL		VU		
16h				
R23	8	PGA3L_		
PGA3L_VOL		VU		
17h			_	
R24	8	PGA3R_		
PGA3R_VOL		VU		
18h				
R25	2	PGA1L_	1	PGA Gain Zero Cross Enable
PGA_CTRL1		ZC	-	0 = PGA gain updates occur immediately
19h	3	PGA1R_		1 = PGA gain updates occur on zero cross
		ZC	-	
	4	PGA1L_		
		ZC	4	
	5	PGA1R_		
		ZC	-	
	6	PGA1L_		
		ZC	-	
	7	PGA1R_		
		ZC		

Table 25 Analogue Volume Control

VOLUME RAMP

Analogue volume can be adjusted by step change or by soft ramp. The ramp rate is dependent upon the sampling rate. The sampling rate upon which the volume ramp rate is based can be selected between the DAC sampling rate or the ADC sampling rate in either slave mode or master mode. The ramp rates for common audio sample rates are shown in Table 26:

SAMPLE RATE FOR PGA (kHz)	DIVIDE BY	PGA RAMP RATE (ms/dB)
32	8	0.50
44.1	8	0.36
48	8	0.33
88.2	16	0.36
96	16	0.33
176.4	32	0.36
192	32	0.33

Table 26 Analogue Volume Ramp Rate

For example, when using a sample rate of 48kHz, the time taken for a volume change from and initial setting of 0dB to -20dB is calculated as follows:

Volume Change (dB) x PGA Ramp Rate (ms/dB) = 20 x 0.33 = 6.6ms

When changing from one PGA ramp clock source to another, it is recommended that PGA_SAFE_SW is set to 0. This forces the clock switch over to occur at a point where all relevant clock signals are zero, ensuring glitch-free operation. This process can take up to 32 left/right clock cycles.

If a faster change in PGA ramp rate clock source is required, PGA_FORCE can be set to 1. This forces the change in clock source to occur immediately regardless of the state of the relevant clock signals internally. Glitch-free operation is not guaranteed under these conditions. PGA_FORCE must be set back to 0 to initialise the timing circuits with the new clock.

If the volume ramp function is not required when increasing or decreasing volume, this block can be bypassed by setting ATTACK_BYPASS or DECAY_BYPASS to 1. Figure 18 shows the effect of these register settings:

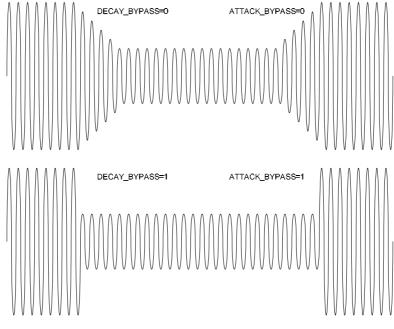


Figure 18 ATTACK_BYPASS and DECAY_BYPASS Functionality

Note: When ATTACK_BYPASS=1 or DECAY_BYPASS=1, it is recommended that the zero cross function for the PGA is used to eliminate click noise when changing volume settings.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R25	0	DECAY_	0	PGA Gain Decay Mode
PGA_CTRL1		BYPASS		0 = PGA gain will ramp down
19h				1 = PGA gain will step down
	1	ATTACK_	0	PGA Gain Attack Mode
		BYPASS		0 = PGA gain will ramp up
				1 = PGA gain will step up
R27	6:4	PGA_	001	Sample Rate for PGA
ADD_CTRL1		SR[2:0]		000 = 32kHz
1Bh				001 = 44.1kHz
				010 = 48kHz
				011 = 88.2kHz
				100 = 96kHz
				101 = 176.4kHz
				11X = 192kHz
				See Table 26 for further information on PGA
				sample rate versus volume ramp rate.
R36 PGA CTRL3	0	PGA_ FORCE	0	PGA Ramp Control Clock Source Mux Force Update
24h				0 = Wait until clocks are safe before
				switching PGA clock source
				1 = Force PGA clock source to change immediately
	3:1	PGA	000	PGA Ramp Control Clock Source
	0.1	SEL[2:0]	000	000 = LRCLK1
		022[2:0]		001 = LRCLK2
				010 = LRCLK3
				011 = LRCLK4
				100 = LRCLK5
				101 = DACLRCLK1 (when DAC1 is being
				used in master mode)
				110 = DACLRCLK2 (when DAC2 is being
				used in master mode)
				111 = ADCLRCLK (when ADC is being used in master mode)
	10	PGA_UPD	0	PGA Ramp Control Clock Source Mux Update
				0 = Do not update PGA clock source
				1 = Update clock source

Table 27 Analogue Volume Ramp Control

ANALOGUE MUTE CONTROL

The analogue channel output drivers can be muted independently and are muted by default. Alternatively, all mute bits can be set using a master mute bit, MUTE_ALL.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R26	0	MUTE_	0	Master Output Driver Mute Control
PGA_CTRL2		ALL		0 = Unmute all Output Drivers
1Ah				1 = Mute all Output Drivers
	1	VOUT1L_	1	Individual Output Driver Mute Control
		MUTE		0 = Unmute Output Driver
	2	VOUT1R_	1	1 = Mute Output Driver
		MUTE		
	3	VOUT2L_	1	
		MUTE		
	4	VOUT2R_	1	
		MUTE		
	5	VOUT3L_	1	
		MUTE		
	6	VOUT3R_	1	
		MUTE		

Table 28 Analogue Mute Control

INPUT SELECTOR CONTROL

Each left channel input PGA can select between all left channel analogue inputs, and both left and right DAC inputs. Each right channel input PGA can select between all right channel analogue inputs, and both left and right DAC inputs. All PGAs can be enabled and disabled independently.

Note: It is recommended to mute the PGA before changing the input to the PGA to avoid pop/click noises when selecting a different input source.

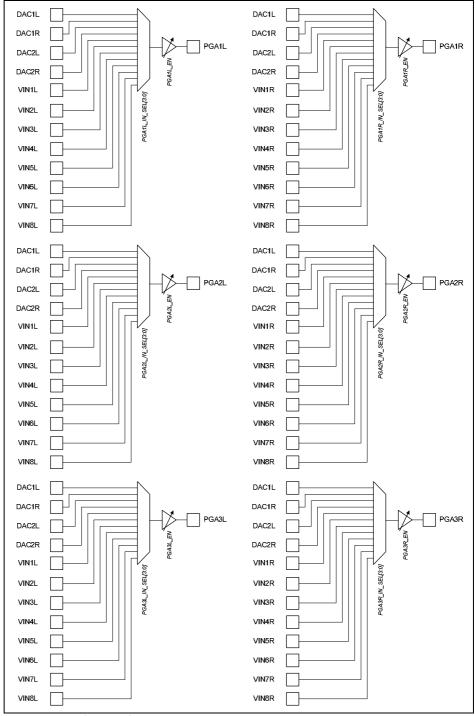
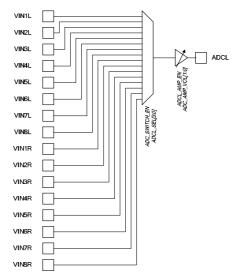


Figure 19 Input Selector Control

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R28	3:0	PGA1L_	0000	Left Input PGA Source Selection
INPUT_CTRL1		IN_		0000 = No input selected
1Ch		SEL[3:0]		0001 = VIN1L selected
	11:8	PGA2L_	0000	0010 = VIN2L selected
		IN_		0011 = VIN3L selected
		SEL[3:0]		0100 = VIN4L selected
R29	7:4	PGA3L_	0000	0101 = VIN5L selected
INPUT_CTRL2		IN_		0110 = VIN6L selected
1Dh		SEL[3:0]		0111 = VIN7L selected
				1000 = VIN8L selected
				1001 = DAC1L output selected
				1010 = DAC1R output selected
				1011 = DAC2L output selected
				1100 = DAC2R output selected
				1101 to 1111 = reserved
R28	7:4	PGA1R_	0000	Right Input PGA Source Selection
INPUT_CTRL1		IN_		0000 = No input selected
1Ch		SEL[3:0]		0001 = VIN1R selected
R29	3:0	PGA2R_	0000	0010 = VIN2R selected
INPUT_CTRL2		IN_		0011 = VIN3R selected
1Dh		SEL[3:0]		0100 = VIN4R selected
	11:8	PGA3R_	0000	0101 = VIN5R selected
		IN_		0110 = VIN6R selected
		SEL[3:0]		0111 = VIN7R selected
				1000 = VIN8R selected
				1001 = DAC1L output selected
				1010 = DAC1R output selected
				1011 = DAC2L output selected
				1100 = DAC2R output selected
				1101 to 1111 = reserved
R31	0	PGA1L_	0	Input PGA Enable Controls
INPUT_CTRL4		EN _		0 = PGA disabled
1Fh	1	PGA1R_	1	1 = PGA enabled
		EN		
	2	PGA2L_	1	
	_	EN		
	3	PGA2R_	•	
		EN		
	4	PGA3L_	-	
	-7	EN		
	5	PGA3R_	1	
	5	_		
		EN		


Table 29 PGA Input Select Control

ADC INPUT SELECTOR CONTROL

The ADC input switch can be configured to allow any combination of two inputs to be input to the ADC. Each input switch channel can be controlled independently.

The input switch also includes PGAs to provide a range of analogue gain settings between 0dB and +12dB prior to the ADC. These PGAs can be enabled and disabled independently.

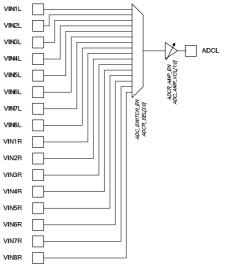


Figure 20 ADC Input Selector Control

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R30	3:0	ADCL_	0000	ADC Input Select
INPUT_CTRL3		SEL[3:0]		0000 = VIN1L
1Eh	7:4	ADCR_	0000	0001 = VIN2L
		SEL[4:0]		0010 = VIN3L
				0011 = VIN4L
				0100 = VIN5L
				0101 = VIN6L
				0110 = VIN7L
				0111 = VIN8L
				1000 = VIN1R
				1001 = VIN2R
				1010 = VIN3R
				1011 = VIN4R
				1100 = VIN5R
				1101 = VIN6R
				1110 = VIN7R
				1111 = VIN8R
	9:8	ADC_AMP	10	ADC Amplifier Gain Control
		_VOL[1:0]		00 = 0dB
				01 = +3dB
				10 = +6dB
				11 = +12dB
	10	ADC_	0	ADC Input Switch Control
		SWITCH_		0 = ADC input switches open
		EN		1 = ADC input switches closed

PP Rev 1.0 January 2007

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R31 INPUT_CTRL4	6	ADCL_ AMP_EN	0	ADC Input Amplifier Enable Controls 0 = Amplifier disabled
1Fh	7	ADCR_ AMP_EN	0	1 = Amplifier enabled

Table 30 ADC Input Switch Control

OUTPUT SELECTOR CONTROL

Any analogue PGA channel can be routed to any analogue output. All analogue outputs can be independently enabled and disabled. Additionally, all outputs can be tri-stated to allow the output to be connected to applications where ports can either be inputs or outputs.

Note: It is recommended to mute all the outputs before changing the output selector to avoid pop/click noises when selecting a different output source.

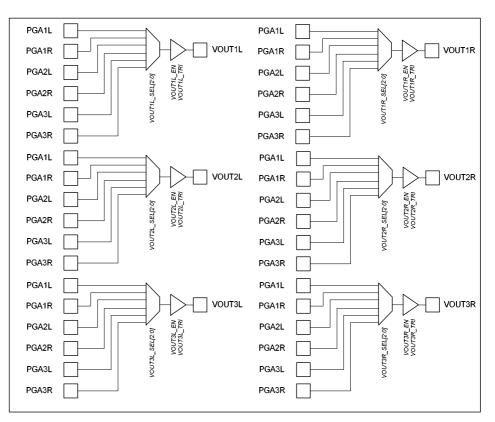


Figure 21 Output Selector Control

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R32 OUTPUT_	2:0	VOUT1L_ SEL[2:0]	000	Output Mux Selection 000 = PGA1L
CTRL1 20h	5:3	VOUT1R_ SEL[2:0]	001	001 = PGA1R 010 = PGA2L
	8:6	VOUT2L_ SEL[2:0]	010	011 = PGA2R 100 = PGA3L
R33 OUTPUT_	2:0	VOUT2R_ SEL[2:0]	011	101 = PGA3R 11X = Reserved
CTRL2 21h	5:3	VOUT3L_ SEL[2:0]	100	TTX - Reserved
	8:6	VOUT3R_ SEL[2:0]	101	
R34 OUTPUT_	0	VOUT1L_ TRI	0	Output Amplifier Tristate Control 0 = Normal operation
CTRL3 22h	1	VOUT1R_ TRI		1 = Output amplifier tristate enable (Hi-Z)
	2	VOUT2L_ TRI		
	3	VOUT1R_ TRI		
	4	VOUT3L_ TRI		
	5	VOUT3R_ TRI		
	7	VOUT1L_ EN	0	Output Amplifier Enables 0 = Output amplifier disabled
	8	VOUT1R_ EN		1 = Output amplifier enabled
	9	VOUT2L_ EN		
	10	VOUT2R_ EN		
	11	VOUT3L_ EN		
	12	VOUT3R_ EN		

Table 31 Output Selection

DIGITAL ROUTING CONTROL

The WM8593 includes a highly flexible digital routing multiplexer, allowing several independent systems to be directly connected to the WM8593 without the need for glue logic. The WM8593 consists of five digital audio 'ports', each with four pins, which can be configured to connect to any of the three internal WM8593 systems (ADC, DAC1 or DAC2) or to any other digital audio ports. Two GPIO pins are available as auxiliary bidirectional data pins when not used for jack detection. A simplified block diagram of the digital routing is shown in Figure 22:

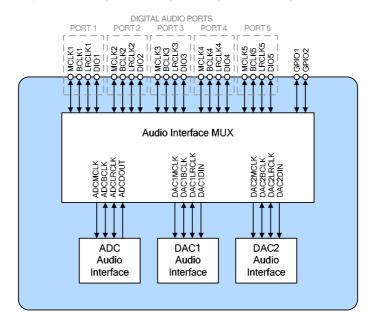


Figure 22 Digital Routing Block Diagram

DIGITAL AUDIO PORT PIN CONFIGURATION

The MCLK1 and DIO1 pins are defined individually as an input or an output using MCLK1_SEL[2:0] and DIO1_SEL[2:0] respectively. The BCLK1 and LRCLK1 pins are always defined as inputs or outputs together using WORDCLK1_SEL[2:0].

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R37	3:1	MCLK1_	000	MCLK1 Pin Function Select
AIF_MUX1		SEL[2:0]		000 = Input to WM8593
25h				001 = Output MCLK2
				010 = Output MCLK3
				011 = Output MCLK4
				100 = Output MCLK5
				101 to 111 = Reserved
	6:4	WORD	000	BCLK1 and LRCLK1 Pins Function Select
		CLK1_		000 = Inputs to WM8593
		SEL[2:0]		001 = Output BCLK2 and LRCLK2
				010 = Output BCLK3 and LRCLK3
				011 = Output BCLK4 and LRCLK4
				100 = Output BCLK5 and LRCLK5
				101 = Output DAC1BCLK and DAC1LRCLK
				(when DAC1 is in master mode)
				110 = Output DAC2BCLK and DAC2LRCLK (when DAC2 is in master mode)
				111 = Output ADCBCLK and ADCBCLK
	0.7	DIGA	000	(when ADC is master mode)
	9:7	DIO1_	000	DIO1 Pin Function Select
		SEL[2:0]		000 = Input to WM8593 001 = Source DIO2
				010 = Source DIO3
				011 = Source DIO4
				100 = Source DIO5
				101 = Source GPIO1
				110 = Source GPIO2
				111 = Source ADC Data Output

Table 32 Digital Audio Port 1 Pin Configuration

The MCLK2 and DIO2 pins are defined individually as an input or an output using MCLK2_SEL[2:0] and DIO2_SEL[2:0] respectively. The BCLK2 and LRCLK2 pins are always defined as inputs or outputs together using WORDCLK2_SEL[2:0].

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R38	3:1	MCLK2_	001	MCLK2 Pin Function Select
AIF_MUX2		SEL[2:0]		000 = Output MCLK1
26h				001 = Input to WM8593
				010 = Output MCLK3
				011 = Output MCLK4
				100 = Output MCLK5
				101 to 111 = Reserved
	6:4	WORD	001	BCLK2 and LRCLK2 Pins Function Select
		CLK2_		000 = Output BCLK1 and LRCLK1
		SEL[2:0]		001 = Inputs to WM8593
				010 = Output BCLK3 and LRCLK3
				011 = Output BCLK4 and LRCLK4
				100 = Output BCLK5 and LRCLK5
				101 = Output DAC1BCLK and DAC1LRCLK (when DAC1 is in master mode)
				110 = Output DAC2BCLK and DAC2LRCLK (when DAC2 is in master mode)
				111 = Output ADCBCLK and ADCBCLK
				(when ADC is master mode)
	9:7	DIO2_	001	DIO2 Pin Function Select
		SEL[2:0]		000 = Output DIO1
				001 = Input to WM8593
				010 = Output DIO3
				011 = Output DIO4
				100 = Output DIO5
				101 = Output GPIO1
				110 = Output GPIO2
				111 = Output ADC Data Output

Table 33 Digital Audio Port 2 Pin Configuration

The MCLK3 and DIO3 pins are defined individually as an input or an output using MCLK3_SEL[2:0] and DIO3_SEL[2:0] respectively. The BCLK3 and LRCLK3 pins are always defined as inputs or outputs together using WORDCLK3_SEL[2:0].

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R39	3:1	MCLK3_	010	MCLK3 Pin Function Select
AIF_MUX3		SEL[2:0]		000 = Output MCLK1
27h				001 = Output MCLK2
				010 = Input to WM8593
				011 = Output MCLK4
				100 = Output MCLK5
				101 to 111 = Reserved
	6:4	WORD	010	BCLK3 and LRCLK3 Pins Function Select
		CLK3_		000 = Output BCLK1 and LRCLK1
		SEL[2:0]		001 = Output BCLK2 and LRCLK2
				010 = Inputs to WM8593
				011 = Output BCLK4 and LRCLK4
				100 = Output BCLK5 and LRCLK5
				101 = Output DAC1BCLK and DAC1LRCLK
				(when DAC1 is in master mode)
				110 = Output DAC2BCLK and DAC2LRCLK
				(when DAC2 is in master mode)
				111 = Output ADCBCLK and ADCBCLK (when ADC is master mode)
	9:7	DIO3	010	DIO3 Pin Function Select
	5.1	SEL[2:0]	010	000 = Output DIO1
		022[2:0]		001 = Output DIO2
				010 = Input to WM8593
				011 = Output DIO4
				100 = Output DIO5
				101 = Output GPIO1
				110 = Output GPIO2
				111 = Output ADC Data Output

Table 34 Digital Audio Port 3 Pin Configuration

The MCLK4 and DIO4 pins are defined individually as an input or an output using MCLK4_SEL[2:0] and DIO4_SEL[2:0] respectively. The BCLK4 and LRCLK4 pins are always defined as inputs or outputs together using WORDCLK4_SEL[2:0].

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R40	3:1	MCLK4_	011	MCLK4 Pin Function Select
AIF_MUX4		SEL[2:0]		000 = Output MCLK1
28h				001 = Output MCLK2
				010 = Output MCLK3
				011 = Input to WM8593
				100 = Output MCLK5
				101 to 111 = Reserved
	6:4	WORD	011	BCLK4 and LRCLK4 Pins Function Select
		CLK4_		000 = Output BCLK1 and LRCLK1
		SEL[2:0]		001 = Output BCLK2 and LRCLK2
				010 = Output BCLK3 and LRCLK3
				011 = Inputs to WM8593
				100 = Output BCLK5 and LRCLK5
				101 = Output DAC1BCLK and DAC1LRCLK (when DAC1 is in master mode)
				110 = Output DAC2BCLK and DAC2LRCLK (when DAC2 is in master mode)
				111 = Output ADCBCLK and ADCBCLK
				(when ADC is master mode)
	9:7	DIO4_	011	DIO4 Pin Function Select
		SEL[2:0]		000 = Output DIO1
				001 = Output DIO2
				010 = Output DIO3
				011 = Input to WM8593
				100 = Output DIO5
				101 = Output GPIO1
				110 = Output GPIO2
				111 = Output ADC Data Output

Table 35 Digital Audio Port 4 Pin Configuration

The MCLK5 and DIO5 pins are defined individually as an input or an output using MCLK5_SEL[2:0] and DIO5_SEL[2:0] respectively. The BCLK5 and LRCLK5 pins are always defined as inputs or outputs together using WORDCLK5_SEL[2:0].

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R41	3:1	MCLK5_	100	MCLK5 Pin Function Select
AIF_MUX5		SEL[2:0]		000 = Output MCLK1
29h				001 = Output MCLK2
				010 = Output MCLK3
				011 = Output MCLK4
				100 = Input to WM8593
				101 to 111 = Reserved
	6:4	WORD	100	BCLK5 and LRCLK5 Pins Function Select
		CLK5_		000 = Output BCLK1 and LRCLK1
		SEL[2:0]		001 = Output BCLK2 and LRCLK2
				010 = Output BCLK3 and LRCLK3
				011 = Output BCLK4 and LRCLK4
				100 = Inputs to WM8593
				101 = Output DAC1BCLK and DAC1LRCLK
				(when DAC1 is in master mode)
				110 = Output DAC2BCLK and DAC2LRCLK (when DAC2 is in master mode)
				111 = Output ADCBCLK and ADCBCLK
				(when ADC is master mode)
	9:7	DIO5_	100	DIO5 Pin Function Select
		SEL[2:0]		000 = Output DIO1
				001 = Output DIO2
				010 = Output DIO3
				011 = Output DIO4
				100 = Input to WM8593
				101 = Output GPIO1
				110 = Output GPIO2
				111 = Output ADC Data Output

Table 36 Digital Audio Port 5 Pin Configuration

ADC AUDIO INTERFACE CLOCK CONFIGURATION

The WM8593 ADC has an independent audio interface which can be configured to select the required signals from any of the digital audio ports. The audio interface is not restricted to take each signal from the same digital audio port, although the BCLK and LRCLK signals are selected together. For example, it is possible to use MCLK1, BCLK2, LRCLK2 and DIO5 as the digital audio port pins that connect to the ADC audio interface through the audio interface mux if required.

The MCLK is always an input to the ADC audio interface is selected using ADCMCLK_SEL[2:0]. The BCLK and LRCLK are always selected together, and can be either an input to the ADC audio interface (when the ADC is in slave mode) or an output from the ADC audio interface (when the ADC is in master mode). BCLK and LRCLK are selected using ADCWORDCLK_SEL[2:0].

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R44	3:1	ADC	000	ADCMCLK Select
AIF_MUX8		MCLK_		000 = Use MCLK1
2Ch		SEL[2:0]		001 = Use MCLK2
				010 = Use MCLK3
				011 = Use MCLK4
				100 = Use MCLK5
				101 to 111 = Reserved
	6:4	ADC	000	ADC BCLK and LRCLK Select
		WORD		000 = Use BCLK1 and LRCLK1
		CLK_		001 = Use BCLK2 and LRCLK2
		SEL[2:0]		010 = Use BCLK3 and LRCLK3
				011 = Use BCLK4 and LRCLK4
				100 = Use BCLK5 and LRCLK5
				101 = Use DAC1BCLK and DAC1LRCLK
				(when DAC1 is in master mode)
				110 = Use DAC2BCLK and DAC2LRCLK
				(when DAC2 is in master mode)
				111 = Output ADCBCLK and ADCBCLK
				(when ADC is master mode)

Table 37 ADC Audio Interface Clock Configuration

DAC1 AND DAC2 AUDIO INTERFACE CLOCK CONFIGURATION

Both DACs on the WM8593 have independent audio interfaces which can be configured to select the required signals from any of the digital audio ports. The audio interfaces are not restricted to take each signal from the same digital audio ports, although the BCLK and LRCLK signals are selected together. For example, it is possible to use MCLK1, BCLK2, LRCLK2 and DIO5 as the digital audio port pins that connect to the DAC1 audio interface through the audio interface mux, while using MCLK2, BCLK1, LRCLK1 and DIO3 for DAC2 if required.

DAC1MCLK and DAC2MCLK are always inputs to the DAC1 and DAC2 audio interfaces and are selected using DAC1MCLK_SEL[2:0] and DAC2MCLK_SEL[2:0] respectively.

DAC1BCLK and DAC1LRCLK are always selected together, and can be either an input to the DAC1 audio interface (when DAC1 is in slave mode) or an output from the DAC1 audio interface (when DAC1 is in master mode). DAC2BCLK and DAC2LRCLK are always selected together, and can be either an input to the DAC2 audio interface (when DAC2 is in slave mode) or an output from the DAC2 audio interface (when DAC2 is in slave mode) or an output from the DAC2 audio interface (when DAC2 is in master mode). DAC1BCLK and DAC1LRCLK are selected using DAC1WORDCLK_SEL[2:0], while DAC2BCLK and DAC2LRCLK are selected using DAC2WORDCLK_SEL[2:0].

Finally, the data input to the DAC1 audio interface is configured using DAC1DIN_SEL[2:0] and the data input to the DAC2 audio interface is configured using DAC2DIN_SEL[2:0]

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R42 AIF_MUX6 2Ah R43 AIF_MUX7 2Bh	3:1	DAC1 MCLK_ SEL[2:0] DAC2 MCLK_ SEL[2:0]	001	DAC MCLK Select 000 = Use MCLK1 001 = Use MCLK2 010 = Use MCLK3 011 = Use MCLK4 100 = Use MCLK5 101 to 111 = Reserved
R42 AIF_MUX6 2Ah R43 AIF_MUX7 2Bh	6:4	DAC1 WORD CLK_ SEL[2:0] DAC2 WORD CLK_ SEL[2:0]	001	DAC BCLK and DAC LRCLK Select 000 = Use BCLK1 and LRCLK1 001 = Use BCLK2 and LRCLK2 010 = Use BCLK3 and LRCLK3 011 = Use BCLK4 and LRCLK4 100 = Use BCLK5 and LRCLK5 101 = Use DAC1BCLK and DAC1LRCLK (when DAC1 is in master mode) 110 = Use DAC2BCLK and DAC2LRCLK (when DAC2 is in master mode) 111 = Use ADCBCLK and ADCBCLK (when ADC is master mode)
R42 AIF_MUX6 2Ah R43 AIF_MUX7 2Bh	9:7	DAC1 DIN_ SEL[2:0] DAC2 DIN_ SEL[2:0]	001	DAC DIN Select 000 = Use DIO1 001 = Use DIO2 010 = Use DIO3 011 = Use DIO4 100 = Use DIO5 101 = Use GPIO1 110 = Use GPIO2 111 = Use ADCDOUT

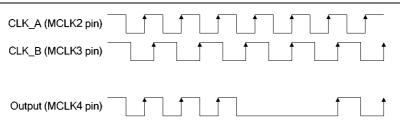
Table 38 DAC1 and DAC2 Audio Interface Clock Configuration

UPDATE FUNCTION

To prevent clock contention issues during setup of the digital audio interface mux, an update system has been implemented. This allows the registers to be configured as required and the update to be applied with the last register write synchronise the configuration of the digital audio mux. An update can be generated using any of the update bits shown in Table 39.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R37	10	PORT1_	0	Update
AIF_MUX1		UPD		0 = Latch corresponding settings into
25h				Register Map but do not update
R38	10	PORT2_		1 = Latch corresponding settings into
AIF_MUX2		UPD		Register Map and update all simultaneously
26h				
R39	10	PORT3_		
AIF_MUX3		UPD		
27h				
R40	10	PORT4_		
AIF_MUX4		UPD		
28h				
R41	10	PORT5_		
AIF_MUX5		UPD		
29h				
R42	10	DAC1_		
AIF_MUX6		UPD		
2Ah				
R43	10	DAC2_		
AIF_MUX7		UPD		
2Bh				
R44	10	ADC_		
AIF_MUX8		UPD		
2Ch				

Table 39 Audio Interface Mux Update Bits


DETAILS ON CLOCK SWITCHING

In order to avoid short clock pulses (glitches) when switching between two independent clock sources, the MCLK and BCLK switching is carefully controlled within the WM8593 using various feedback and logic mechanisms. This controlled switching applies to all MCLK and BCLK digital audio port pins, and also when switching MCLK and BCLK sources in the ADC, DAC1 and DAC2 audio interfaces.

Example: Switching from MCLK2 to MCLK3 using the MCLK4 pin

CLK_A is applied to the MCLK2 pin, and CLK_B is applied to the MCLK3 pin. Initially, MCLK4_SEL[2:0]=001, so CLK_A is output on the MCLK4 pin. To change the output clock to CLK_B, set MCLK4_SEL[2:0]=010. The logic waits until CLK_A (MCLK2 pin) is low then disconnects CLK_A from the output (MCLK4) pin. The output pin (MCLK4) now outputs logic 0 for two rising edges of CLK_B (MCLK3 pin) before starting to output CLK_B. This behaviour is shown in Figure 23:

Figure 23 Clock Switching Example

If CLK_A in the previous example is not running the logic that controls switching between clocks will not function. In this case, it is possible to force an update on any individual digital audio port or audio interface using the relevant force bit. If this functionality is required, the relevant force bit should be set to '1' and then set back to '0' again.

Example: Switching from MCLK2 to MCLK3 using the MCLK4 pin when MCLK2 is not present

CLK_A is applied to the MCLK2 pin, and CLK_B is applied to the MCLK3 pin. Initially, MCLK4_SEL[2:0]=001, so CLK_A is output on the MCLK4 pin. However, CLK_A is not running. To change the output clock to CLK_B, set MCLK4_SEL[2:0]=010 and PORT4_FORCE=1. Finally, set PORT4_FORCE=0 to complete the switch.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R37	0	PORT1_	0	Force Clocks to Change
AIF_MUX1		FORCE		0 = Wait until clocks are safe before
25h				switching between clock sources
R38	0	PORT2_		1 = Force clock sources to change
AIF_MUX2		FORCE		immediately
26h				
R39	0	PORT3_		Note: These bits must be returned to '0' before clocks will be output
AIF_MUX3		FORCE		before clocks will be output
27h				
R40	0	PORT4_		
AIF_MUX4		FORCE		
28h				
R41	0	PORT5_		
AIF_MUX5		FORCE		
29h				
R42	0	DAC1_		
AIF_MUX6		FORCE		
2Ah				
R43	0	DAC2_		
AIF_MUX7		FORCE		
2Bh				
R44	0	ADC_		
AIF_MUX8		FORCE		
2Ch				

Table 40 Audio Interface Mux Force Bits

USING GPIO PINS AS ADDITIONAL DATA PINS

There are two GPIO pins, GPIO1 and GPIO2, which can be used as additional pins to connect to external devices. GPIO1 is controlled by GPIO1_SEL[2:0] and GPIO2 by GPIO2_SEL[2:0].

BIT	LABEL	DEFAULT	DESCRIPTION
3:1	GPIO1_	000	GPIO1 Pin Function Select
	SEL[2:0]		000 = Source DIO1
			001 = Source DIO2
			010 = Source DIO3
			011 = Source DIO4
			100 = Source DIO5
			101 = Input to WM8593
			110 = Source GPIO2
			111 = Source ADC Data Output
10	GPIO1_	0	GPIO1 Update
	UPD		0 = Latch corresponding GPIO1 settings into Register Map but do not update
			1 = Latch corresponding GPIO1 settings into Register Map and update
	3:1	3:1 GPIO1_ SEL[2:0] 10 GPIO1_	3:1 GPIO1_ SEL[2:0] 000 10 GPIO1_ 0 0

Table 41 GPIO1 Audio Interface Mux Configuration

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R46	3:1	GPIO2_	000	GPIO2 Pin Function Select
AIF_MUX10		SEL[2:0]		000 = Source DIO1
2Eh				001 = Source DIO2
				010 = Source DIO3
				011 = Source DIO4
				100 = Source DIO5
				101 = Source GPIO1
				110 = Input to WM8593
				111 = Source ADC Data Output
	10	GPIO2_	0	GPIO2 Update
		UPD		0 = Latch corresponding GPIO2 settings into
				Register Map but do not update
				1 = Latch corresponding GPIO2 settings into
				Register Map and update

Table 42 GPIO2 Audio Interface Mux Configuration

When using the WM8593 with headphones, a jack detect function is available using the GPIO pins. The jack detect function is controlled using GPIO1_APP and GPIO2_APP. The polarity of the jack detect signal can be inverted using JD_INV. When a jack is detected, the WM8593 will automatically mute PGAs as defined by JD_PGA1L_MUTE, JD_PGA1R_MUTE, JD_PGA2R_MUTE, JD_PGA2R_MUTE, JD_PGA3L_MUTE and JD_PGA3R_MUTE.

See Application Information section for details of connections to the headphone jack.

Example: Mute speakers when headphone is inserted

Assume PGA1L is connected to VOUT1L, PGA1R is connected to VOUT1R and so on. VOUT1L and VOUT1R are used to drive the speaker amplifier, and VOUT3L and VOUT3R are used to drive headphones directly. Set GPIO1_APP=1 to enable jack detect on GPIO1, then set JD_PGA1L_MUTE=1 and JD_PGA1R_MUTE=1 to mute PGA1L and PGA1R when a set of headphones is inserted.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R27	0	GPIO1_	0	GPIO1 Application Select
GEN		APP		0 = Use GPIO1 as data pin for audio
1Bh				interface mux
				1 = Use GPIO1 as input for jack detect
	1	GPIO2_	0	GPIO2 Application Select
		APP		0 = Use GPIO2 as data pin for audio
				interface mux
				1 = Use GPIO2 as input for jack detect
	2	JD_INV	0	Jack Detect Polarity
				0 = Normal (active low)
				1 = Inverted (active high)
R26	7	JD_	0	Jack Detect Mute Control
PGA_CTRL2		PGA1L_		0 = Do not mute PGA when jack is detected
1Ah		MUTE		1 = Mute PGA when jack is detected
	8	JD_	0	
		PGA1R_		
		MUTE		
	9	JD_	0	
		PGA2L_		
		MUTE		
	10	JD_	0	
		PGA2R_		
		MUTE		
	11	JD_	0	
		PGA3L_		
		MUTE		
	12	JD_	0	
		PGA3R_		
		MUTE		

Table 43 Jack Detect Control

POP AND CLICK PERFORMANCE

The WM8593 includes a number of features designed to minimise pops and clicks in various phases of operation including power up, power down, changing analogue paths and starting/stopping clocks. In order to ensure optimum performance, the following sequences should be followed.

POWERUP SEQUENCE

- 1. Apply power to the WM8593 (see Power On Reset).
- 2. Set-up initial internal biases:
 - SOFT_ST=1
 - FAST_EN=1
 - POBCTRL=1
- 3. Enable output drivers to allow the AC coupling capacitors at the output stage to be precharged to DACVMID:
 - VOUTxL_EN=1
 - VOUTxR_EN=1
- 4. Enable DACVMID. 500k selected here for optimum pop reduction:
 - VMID_SEL=10
- 5. Wait until DACVMID has fully charged. The time is dependent on the capacitor values used to AC-couple the outputs and to decouple DACVMID, and the VMID_SEL value chosen. An approximate delay of 6xRCms can be used, where R is the DACVMID resistance and C is the decoupling capacitor on DACVMID. For DACVMID resistance of $50k\Omega$ and C=4.7uF, the delay should be approximately 1.5 seconds.
 - Insert delay
- 6. Enable the master bias and DACVMID buffer:
 - BIAS_EN=1
 - BUFIO_EN=1
- 7. Switch the output drivers to use the master bias instead of the power up (fast) bias:
 - POBCTRL=0
- 8. Enable all functions (DACs, ADC, PGAs) required for use. Outputs are muted by default so the write order is not important.
- 9. Unmute the outputs and switch DACVMID resistance to 50k for normal operation:
 - VOUTxL_MUTE=0
 - VOUTxR_MUTE=0
 - VMID_SEL=01

POWERDOWN SEQUENCE

- 1. Mute all outputs:
 - MUTE_ALL=1
- 2. Set up biases for power down mode:
 - FAST_EN=1
 - VMID_SEL=01
 - BIAS_EN=1
 - BUFIO_EN=1
 - VMIDTOG=1
 - SOFT_ST=0
- 3. Switch outputs to use fast bias instead of master bias:
 - POBCTRL=1
- 4. Power down all WM8593 functions (ADC, DACs, PGAs etc.). The outputs are muted so the write order is not important.
- 5. Power down VMID to allow the analogue outputs to ramp gently to ground in a pop-free manner.
 - VMID_SEL=00
- 6. Wait until DACVMID has fully discharged. The time taken depends on system capacitance.
 - Insert delay
- 7. Clamp outputs to ground.
 - APE_B=0
- 8. Power down outputs.
 - VOUTxL_EN=0
 - VOUTxR_EN=0
- 9. Disable remaining bias control bits.
 - FAST_EN=0
 - POBCTRL=0
 - BIAS_EN=0

Power supplies can now be safely removed from the WM8593 if desired. Table 44 describes the various bias control bits for power up/down control.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R35	0	POBCTRL	0	Bias Source for Output Amplifiers
BIAS				0 = Output amplifiers use master bias
23h				1 = Output amplifiers use fast bias
	1	VMIDTOG	0	VMID Power Down Characteristic
				0 = Slow ramp
				1 = Fast ramp
	2	FAST_EN	0	Fast Bias Enable
				0 = Fast bias disabled
				1 = Fast bias enabled
	3	BUFIO_	0	VMID Buffer Enable
		EN		0 = VMID Buffer disabled
				1 = VMID Buffer enabled
	4	SOFT_ST	1	VMID Soft Ramp Enable
				0 = Soft ramp disabled
				1 = Soft ramp enabled
	5	BIAS_EN	0	Master Bias Enable
				0 = Master bias disabled
				1 = Master bias enabled
				Also powers down ADCVMID
	7:6	VMID_ SEL[1:0]	00	VMID Resistor String Value Selection (DACVMID only)
				00 = off (no VMID)
				01 = 100k
				10 = 500k
				11 = 10k
				The selection is the total resistance of the string from DACREFP to DACREFN. The ADCVMID resistance is fixed at $200k\Omega$.

Table 44 Bias Control

REGISTER MAP

Dec Addr	Hex Addr	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Hex Default
0	00	DEVICE_ID								Read: DEVICE_ID[15	:0] / Write: SW_RS	ST							0x8594
1	01	REVISION	0	0	0	0	0	0	0	0				REVN	IUM[7:0]				0x0000
2	02	DAC1_CTRL1	0	0	0	0	DAC1_OP	_MUX[10]	DAC1_MUTE	DAC1_EN	DAC1_ZCEN	DAC1_DEEMPH	DAC1_LRP	DAC1_BCP	DAC	1_WL[10]	DAC1	_FMT[10]	0x008A
3	03	DAC1_CTRL2	0	0	0	0	0	0	0	0	0	0		DAC1_BCLKDIV[2:	0]		DAC1_SR[2:0]		0x0000
4	04	DAC1_CTRL3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DAC1_MSTR	0x0000
5	05	DAC1_VOL	0	0	0	0	0	0	0	DAC1L_VU		•	•	DAC1L	_VOL[7:0]		•	•	0x00C8
6	06	DAC1R_VOL	0	0	0	0	0	0	0	DAC1R_VU				DAC1R	_VOL[7:0]				0x00C8
7	07	DAC2_CTRL1	0	0	0	0	DAC2_OF	_MUX[10]	DAC2_MUTE	DAC2_EN	DAC2_ZCEN	DAC2_DEEMPH	DAC2_LRP	DAC2_BCP		2_WL[10]	DAC2	_FMT[10]	0x008A
8	08	DAC2_CTRL2	0	0	0	0	0	0	0	0	0	0	[AC2_BCLKDIV[2:	:0]		DAC2_SR[2:0]		0x0000
9	09	DAC2_CTRL3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DAC2_MSTR	0x0000
10	0A	DAC2L_VOL	0	0	0	0	0	0	0	DAC2L_VU				DAC2L	_VOL[7:0]				0x00C8
11	0B	DAC2R_VOL	0	0	0	0	0	0	0	DAC2R_VU				DAC2R	_VOL[7:0]				0x00C8
12	0C	ENABLE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	GLOBAL_EN	0x0000
13	0D	ADC_CTRL1	0	0	ADC_ZC_EN	ADC_HPD	ADC_DAT	A_SEL[10]	ADCL_INV	ADCR_INV	ADC_LRSWAP	ADC_EN	ADC_LRP	ADC_BCP	ADC	_WL[10]	ADC	FMT[10]	0x200A
14	0E	ADC_CTRL2	0	0	0	0	0	0	0	0	0			ADC_BCLKDIV[2:0	0]		ADC_SR[2:0]		0x0000
15	0F	ADC_CTRL3	0	0	0	0	0	0	0	0	0	0	0	0	0	0		ADC_MSTR	0x0000
16	10	ADCL_VOL	0	0	0	0	0	0	0	ADCL_VU			-	ADCL_	VOL[7:0]				0x00C3
17	11	ADCR_VOL	0	0	0	0	0	0	0	ADCR_VU				ADCR_	_VOL[7:0]				0x00C3
19	13	PGA1L_VOL	0	0	0	0	0	0	0	PGA1L_VU				PGA1L	_VOL[7:0]				0x000C
20	14	PGA1R_VOL	0	0	0	0	Ō	Ö	0	PGA1R_VU				PGA1R	_VOL[7:0]				0x000C
21	15	PGA2L_VOL	0	0	0	0	Ō	Ö	0	PGA2L_VU				PGA2L	_VOL[7:0]				0x000C
22	16	PGA2R_VOL	0	0	0	0	0	0	0	PGA2R_VU				PGA2R	R_VOL7:0]				0x000C
23	17	PG3L_VOL	0	0	0	0	0	0	0	PGA3L_VU				PGA3L	_VOL[7:0]				0x000C
24	18	PGA3R_VOL	0	0	0	0	Ö	0	0	PGA3R_VU				PGA3R	_VOL[7:0]				0x000C
25	19	PGA_CTRL1	0	0	0	0	0	0	0	0	PGA3R_ZC	PGA3L_ZC	PGA2R_ZC	PGA2L_ZC	PGA1R_ZC	PGA1L_ZC	ATTACK_BYPA	SDECAY_BYPASS	6 0x00FC
26	14	PGA_CTRL2	0	0	0	JD_PGA3R_MUTE	JD_PGA3L_MUTE	JD_PGA2R_MUTE	JD_PGA2L_MUTE	JD_PGA1R_MUTE	JD_PGA1L_MUTE	VOUT3R_MUTE	VOUT3L_MUTE	VOUT2R_MUTE	VOUT2L_MUTE	VOUT1R_MUTE	VOUT1_MUTE	MUTE_ALL	0x007E
27	18	GEN	0	0	0	0	0	0	0	0	0		PGA_SR[2:0]		AUTO_INC	JD_INV	GPIO2_APP	GPIO1_APP	0x0048
28	10	INPUT_CTRL1	0	0	0	0		PGA2L_I	N_SEL[3:0]			PGA1R_I	N_SEL[3:0]			PGA1_I	IN_SEL[3:0]		0x0000
29	10	INPUT_CTRL2	0	0	0	0		PGA3R_I	N_SEL[3:0]			PGA3L_I	N_SEL[3:0]			PGA2R_	IN_SEL[3:0]		0x0000
30	E	INPUT_CTRL3	0	0	0	0	0	ADC_SWITCH_EN	ADC_AN	1P_VOL[10]		ADCR_	SEL[3:0]			ADCL	_SEL[3:0]		0x0008
31	F	INPUT_CTRL4	0	0	0	0	0	0	0	0	ADCR_AMP_EN	ADCL_AMP_EN	PGA3R_EN	PGA3L_EN	PGA2R_EN	PGA2L_EN	PGA1R_EN	PGA1_EN	0x0000
32	20	OUTPUT_CTRL1	0	0	0	0	0	0	0		VOUT2L_SEL[2:0]			VOUT1R_SEL[2:0]]		VOUT1L_SEL[2:0	9	0x0088
33	21	OUTPUT_CTRL2	0	0	0	0	0	0	0		VOUT3R_SEL[2:0]	l		VOUT3L_SEL[2:0]	1		VOUT2R_SEL[2:	0	0x0163
34	22	OUTPUT_CTRL3	0	0	0	VOUT3R_EN	VOUT3L_EN	VOUT2R_EN	VOUT2L_EN	VOUT1R_EN	VOUT1L_EN	APE_B	VOUT3R_TRI	VOUT3L_TRI	VOUT2R_TRI	VOUT2L_TRI	VOUT1R_TRI	VOUT1L_TRI	0x0040
35	23	BIAS	0	0	0	0	0	0	0	0	VMID_	SEL[10]	BIAS_EN	SOFT_ST	BUFIOEN	FAST_EN	VMIDTOG	POBCTRL	0x0010
36	24	PGA_CTRL_3	0	0	0	0	0	PGA_UPD	0	0	0	0	0	0		PGA_SEL[2:0]		PGA_SAFE_SW	0x0002
37	25	AIF_MUX1	0	0	0	0	0	PORT1_UPD		DIO1_SEL[2:0]		,	NORDCLK1_SEL[2:	0]		MCLK1_SEL[2:0]	1	PORT1_FORCE	0x0000
38	26	AIF_MUX2	0	0	0	0	0	PORT2_UPD		DIO2_SEL[2:0]		١	VORDCLK2_SEL[2:	0]		MCLK2_SEL[2:0]	PORT2_FORCE	0x0092
39	27	AIF_MUX3	0	0	0	0	0	PORT3_UPD		DIO3_SEL[2:0]		١	VORDCLK3_SEL[2:	0]		MCLK3_SEL[2:0]	PORT3_FORCE	0x0124
40	28	AIF_MUX4	0	0	0	0	0	PORT4_UPD		DIO4_SEL[2:0]		1	VORDCLK4_SEL[2:	0]		MCLK4_SEL[2:0]	PORT4_FORCE	0x01B6
41	29	AIF_MUX5	0	0	0	0	0	PORT5_UPD		DIO5_SEL[2:0]		, v	VORDCLK5_SEL[2:	0]		MCLK5_SEL[2:0]	PORT5_FORCE	0x0248
42	2A	AIF_MUX6	0	0	0	0	0	DAC1_UPD		DAC1DIN_SEL[2:0]	DA	C1WORDCLK_SEL	[2:0]		DAC1MCLK_SEL[2	2:0]	DAC1_FORCE	0x0092
43	2B	AIF_MUX7	0	0	0	0	0	DAC2_UPD		DAC2DIN_SEL[2:0	0]	DA	C2WORDCLK_SEL	[2:0]		DAC2MCLK_SEL[2	2:0]	DAC2_FORCE	0x0092
44	2C	AIF_MUX8	0	0	0	0	0	ADC_UPD		ADCDOUT_SEL[2:0	0]	A	CWORDCLK_SEL	2:0]		ADCMCLK_SEL[2	:0]	ADC_FORCE	0x0248
45	2D	AIF_MUX9	0	0	0	0	0	GPIO1_UPD	0	0	0	0	0	0		GPIO1_SEL[2:0]		0	0x0000
46	2E	AIF_MUX10	0	0	0	0	0	GPIO2_UPD	0	0	0	0	0	0		GPIO2_SEL[2:0]		0	0x0000

PP Rev 1.0 January 2007

R0 (0h) –	Software Res	set / Device ID	Register (DEV	ICE_ID)								
Bit #	15	14	13	12	11	10	9	8				
Read				DEVICE	_ID[15:8]							
Write				SW	_RST							
Default	1	0 0 0 0 1 0 1										
Bit #	7	6	5	4	3	2	1	0				
Read		DEVICE_ID[7:0]										
Write				SW	_RST							
Default	1	0	0	1	0	1	0	0				
					N/A	= Not Applicat	ole (no function	implemented)				
Fu	nction				Description							
DEVIC	EID[15:0]	D[15:0] Device ID										
		A read of this register will return the device ID. In this case 0x8593.										
SW	/_RST	ST Software Reset										
		A write of any	value to this re	egister will gene	erate a software	reset.						

Figure 24 R0 – Software Reset / Device ID

. ,		vision Register	,		T		-	-		
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	0		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Default	0	0	0	0	0	0	0	0		
					•					
Bit #	7	6	5	4	3	2	1	0		
Read				REVN	UM[7:0]					
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Default	-	-	-	-	-	-	-	-		
					N/#	A = Not Applica	ble (no functior	n implemented		
Fur	oction				Description					
REVN	UM[7:0]	Device Revision								
			register will re		revision numbe	er. This number	is sequentially	incremented i		

Figure 25 R1 – Device Revision Register

Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0		1	-	-			
Write	N/A	N/A	N/A	N/A	DAC1_OF	P_MUX[1:0]	DAC1_MUTE	DAC1_EN			
Default	0	0	0	0	0	0	0	0			
20.000	•	-	-	-	•						
Bit #	7	6	5	4	3	2	1	0			
Read Write	DAC1_ZCEN	DAC1_ DEEMPH	DAC1_LRP	DAC1_BCP	DAC1_	_WL[1:0]	DAC1_FMT[1:0]				
Default	1	0	0	0	1	0	1	0			
					N/	A = Not Applica	ble (no function	implemented			
Fu	nction				Description						
DAC1	_FMT[1:0]	DAC1 Audio 00 = Right Just 01 = Left Just 10 = I ² S 11 = DSP		nat							
DAC1_WL[1:0] DAC1 Audio Interface Word Length 00 = 16-bit 01 = 20-bit 10 = 24-bit 11 = 32-bit (not available in Right Justified mode)											
DAC	C1_BCP	DAC1 BCLK		0	,						
		0 = DACBCL	<pre>< not inverted -</pre>	data latched or	rising edge o	f BCLK					
		1 = DACBCL	K inverted - dat	a latched on fall	ing edge of B	CLK					
DAG	C1_LRP	DAC1 LRCL	C Polarity								
		0 = DACLRCI	K not inverted								
		1 = DACLRCI	K inverted								
DAC1_	_DEEMPH	DAC1 Deemp									
		0 = No deemp									
			1kHz deempha								
DAC	1_ZCEN	-		rol Zero Cross	Enable						
		0 = Do not us									
		1 = Use zero									
DA	C1_EN	DAC1 Enable 0 = DAC disa									
		1 = DAC uisa									
	1_MUTE	DAC1 Softmi									
DAC		0 = Normal or									
		1 = Softmute									
	P_MUX[1:0]	DAC1 Digital									
		-	Normal Operati	on)							
			eft data to DAC								
			ight data to DAC	•							
			onomix, (L+R)								

Figure 26 R2 – DAC1 Control Register 1

R3 (03h) -	- DAC1 Conti	ol Register 2 (I	DAC1_CTRL2)										
Bit #	15	14	13	12	11	10	9	8					
Read	0	0	0	0	0	0	0	0					
Write	N/A	N/A	y/A N/A N/A N/A N/A N/A N/A										
Default	0	0	0	0	0	0	0	0					
				•	•	-							
Bit #	7	6	5	4	3	2	1	0					
Read	0	0	D4	AC1_BCLKDIV	2.01		DAC1_SR[2:0]						
Write	N/A	N/A	V/A										
Default	0	0	0	0	0	0	0	0					
		1	N/A = Not Applicable (no function implemented)										
Fur	nction		Description										
DAC1	_SR[2:0]	DAC1 MCLK:	LRCLK Ratio										
		000 = Auto de	etect										
		001 = 128fs											
		010 = 192fs											
		011 = 256fs											
		100 = 384fs											
		101 = 512fs											
		110 = 768fs											
		111 = 1152fs											
D/	AC1_	DAC1 BCLK	Rate										
BC	LKDIV	000 = MCLK /	000 = MCLK / 4										
]	2:0]	001 = MCLK /	01 = MCLK / 8										
	_	010 = 32fs											
		011 = 64fs											
		100 = 128fs											
			es of DAC1 B	CLKDIV[2:0] are	e reserved								

Figure 27 R3 – DAC1 Control Register 2

R4 (04h) -	- DAC1 Contr	ol Register 3 (I	DAC1_CTRL3)									
Bit #	15	14	13	12	11	10	9	8				
Read	0	0	0	0	0	0	0	0				
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
Default	0	0	0	0	0	0	0	0				
		_										
Bit #	7	6	5	4	3	2	1	0				
Read	0	0	0	0	0	0	0	DAC1 MSTR				
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	DACT_MISTR				
Default	0	0	0	0	0	0	0	0				
					N/A	A = Not Application	le (no function	implemented)				
Fur	nction		Description									
DAC1	I_MSTR	DAC1 Master	DAC1 Master Mode Select									
		0 = Slave mod	0 = Slave mode, DACBCLK1 and DACLRCLK1 are inputs to WM8593									
	1 = Master mode, DACBCLK1 and DACLRCLK1 are outputs from WM8593											

Figure 28 R4 – DAC1 Control Register 3

R5 (05h) -	- DAC1L Digit	al Volume Cor	trol Register (DAC1L_VOL)				
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	DAC1L_VU
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	DACIL_VU
Default	0	0	0	0	0	0	0	0
								_
Bit #	7	6	5	4	3	2	1	0
Read				DAC1L_				
Write				DACIL_	VOL[7.0]			
Default	1	1	0	0	1	0	0	0
					N/A	= Not Applicat	le (no function	implemented)
Fu	nction				Description			
DAC1L	_VOL[7:0]	DAC1L Digita	al Volume					
		0000 0000 = -	100dB					
		0000 0001 = -	·99.5dB					
		0000 0010 = -	99dB					
		0.5dB steps	3					
		1100 1000 = 0	DdB					
		0.5dB steps	6					
		1101 1111 = -	+11.5dB					
		111X XXXX =	+12dB					
DAC	C1L_VU	DAC1L Digita	al Volume Upd	ate				
		0 = Latch DAG	C1L_VOL[7:0] i	nto Register Ma	ap but do not up	odate volume		
		1 = Latch DAG	C1L_VOL[7:0] i	nto Register Ma	ap and update le	eft and right cha	annels simultar	neously

Figure 29 R5 – DAC1L Digital Volume Control Register

Bit #	15	14	13	12	11	10	9	8							
Read	0	0	0	0	0	0	0								
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	DAC1R_VU							
Default	0	0	0	0	0	0	0	0							
Bit #	7	6	5	4	3	2	1	0							
Read															
Write		DAC1R_VOL[7:0]													
Default	1	1	0	0	1	0	0	0							
					N/A	= Not Applicat	ole (no functio	n implemented)							
Fu	nction				Description										
DAC1F	R_VOL[7:0]	DAC1R Digit	al Volume												
		0000 0000 =	-100dB												
		0000 0001 =	-99.5dB												
		0000 0010 =	-99dB												
		0.5dB step	s												
		1100 1000 =	0dB												
	0.5dB steps														
		1101 1111 = +11.5dB													
		1101 1111 =	+11.5dB			111X XXXX = +12dB									
DAC	:1R_VU	111X XXXX =		late											
DAC	:1R_VU	111X XXXX = DAC1R Digit	+12dB		o but do not up	date volume									

Figure 30 R6 – DAC1R Digital Volume Control Register

Bit #	 DAC2 Control 15 	14	13	12	11	10	9	8
Read	0	0	0	0		10		
Write	N/A	N/A	0	N/A	DAC2_O	P_MUX[1:0]	DAC2_MUTE	DAC2_EN
Default	0	0	0	0	0	0	0	0
Delault	Ŭ	U	v	0	0	v	Ū	v
Bit #	7	6	5	4	3	2	1	0
Read		DAC2_						
Write	DAC2_ZCEN	DEEMPH	DAC2_LRP	DAC2_BCP	DAC2	_WL[1:0]	DAC2_F	MT[1:0]
Default	1	0	0	0	1	0	1	0
	·				N	A = Not Applica	able (no function	implemented
Fu	nction				Description			
DAC2	_FMT[1:0]	DAC2 Audio	Interface Forn	nat				
		00 = Right Ju	stified					
		01 = Left Just	ified					
		$10 = I^2S$						
		11 = DSP						
DAC2	2_WL[1:0]	VL[1:0] DAC2 Audio Interface Word Length						
	00 = 16-bit							
01 = 20-bit								
		10 = 24-bit						
		11 = 32-bit (n	ot available in F	Right Justified m	node)			
DAC	C2_BCP	DAC2 BCLK	Polarity					
				data latched on	0 0			
				a latched on fall	ing edge of B	CLK		
DAC	C2_LRP	DAC2 LRCL	-					
			K not inverted					
		1 = DACLRCI						
DAC2_	_DEEMPH	DAC2 Deemp						
		0 = No deem		_				
			1kHz deempha					
DAC	2_ZCEN			rol Zero Cross	Enable			
		0 = Do not us						
		1 = Use zero						
DA	C2_EN	DAC2 Enable						
		0 = DAC2 dis						
		1 = DAC2 ena						
DAC	2_MUTE	DAC2 Softm						
		0 = Normal op 1 = Softmute						
		1 = Softmute						
DACZ_C	P_MUX[1:0]	DAC2 Digital	Normal Operati	on)				
		•	eft data to Righ ight data to Lel	,				
			igini uala lu Lei	1 0702)				

Figure 31 R7 – DAC2 Control Register 1

Product Preview

R8 (08h) -	- DAC2 Cont	rol Register 2 (I	DAC2_CTRL2)					
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	0
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Default	0	0	0	0	0	0	0	0
							1	1
Bit #	7	6	5	4	3	2	1	0
Read	0	0	DA	C2_BCLKDIV	2:01		DAC2_SR[2:0]	1
Write	N/A	N/A	N/A					
Default	0	0	0 0 0 0 0 0					
N/A = Not Applicable (no function implement								implemented)
Fur	nction				Description			
DAC2	_SR[2:0]	DAC2 MCLK	LRCLK Ratio					
		000 = Auto de	etect					
		001 = 128fs						
		010 = 192fs						
		011 = 256fs						
		100 = 384fs						
		101 = 512fs						
		110 = 768fs						
		111 = 1152fs						
		DAC2 BCLK	Rate					
		000 = MCLK /	4					
		001 = MCLK	8					
DAC2_BC	CLKDIV[2:0]	010 = 32fs						
_		011 = 64fs						
		100 = 128fs						
1		All other value	es of DAC2 B	CLKDIV[2:0] are	e reserved			

Figure 32 R8 – DAC2 Control Register 2

R9 (09h) -	- DAC2 Cont	rol Register 3 (I	DAC2_CTRL3)									
Bit #	15	14	13	12	11	10	9	8				
Read	0	0	0	0	0	0	0	0				
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
Default	0	0	0	0	0	0	0	0				
Bit #	7	6	5 4 3 2 1 0									
Read	0	0	0	0	0	0	0					
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	DAC2_MSTR				
Default	0	0	0	0	0	0	0	0				
					N/A	= Not Applicat	ble (no function	implemented)				
Fui	nction				Description							
DAC	2_MSTR	DAC2 Master	DAC2 Master Mode Select									
		0 = Slave mo	de, DACBCLK2	and DACLRCI	K2 are inputs t	o WM8593						
	1 = Master mode, DACBCLK2 and DACLRCLK2 are outputs from WM8593											

Figure 33 R9 – DAC2 Control Register 3

Product Preview

R10 (0Ah)) – DAC2L Dig	gital Volume Co	ontrol Register	(DAC2L_VOL)					
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	DAC2L_VU		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	DAC2L_VO		
Default	0	0	0	0	0	0	0	0		
Bit #	7	6	5	4	3	2	1	0		
Read		DAC2L_VOL[7:0]								
Write				DAC2L_						
Default	1	1	0	0	1	0	0	0		
					N/A	A = Not Application	le (no functio	n implemented)		
Fu	nction				Description					
DAC2L	_VOL[7:0]	DAC2 Digital	Volume							
		0000 0000 = -	-100dB							
		0000 0001 = -	-99.5dB							
		0000 0010 =	-99dB							
		0.5dB steps	3							
		1100 1000 =	DdB							
		0.5dB steps	3							
		1101 1111 =	+11.5dB							
		111X XXXX =	+12dB							
DAC	2L_VU	DAC2 Digital	Volume Upda	te						
		0 = Latch DA	C2L_VOL[7:0] i	nto Register Ma	ap but do not u	odate volume				
		1 = Latch DA	C2L_VOL[7:0] i	nto Register Ma	ap and update I	eft and right cha	annels simulta	ineously		

Figure 34 R10 – DAC2L Digital Volume Control Register

R11 (0Bh)) – DAC2R Dig	gital Volume C	ontrol Registe	r (DAC2R_VOL	.)						
Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0	0	0				
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	DAC2R_VU			
Default	0	0	0	0	0	0	0	0			
Bit #	7	6	5	4	3	2	1	0			
Read											
Write		DAC2R_VOL[7:0]									
Default	1	1	0	0	1	0	0	0			
					N/A	= Not Applicat	ole (no functio	n implemented)			
Fui	nction				Description						
DAC2R	_VOL[7:0]	DAC2R Digit	al Volume								
		0000 0000 = -	-100dB								
		0000 0001 =	-99.5dB								
		0000 0010 =	-99dB								
		0.5dB steps	S								
		1100 1000 =	0dB								
		0.5dB steps	S								
		1101 1111 =	+11.5dB								
		111X XXXX = +12dB									
DAC	2R_VU	DAC2R Digit	al Volume Upd	late							
		0 = Latch DA	C2R_VOL[7:0]	into Register Ma	ap but do not uj	odate volume					
		1 = Latch DA	C2R_VOL[7:0]	into Register Ma	ap and update l	eft and right ch	annels simulta	aneously			

Figure 35 R11 – DAC2R Digital Volume Control Register

R12 (0Ch) – Device Ena	able Register (ENABLE)								
Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0	0	0	0			
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Default	0	0	0 0 0 0 0 0								
Bit #	7	6	6 5 4 3 2 1 0								
Read	0	0	0 0 0 0 0 0								
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	GLOBAL_EN			
Default	0	0	0	0	0	0	0	0			
					N/A	= Not Applicat	le (no function	implemented)			
Fui	nction				Description						
GLO	BAL_EN	Device Globa	Device Global Enable								
		0 = ADC, DA0	C and PGA ram	p control circuit	ry disabled						
		1 = ADC, DAC and PGA ramp control circuitry enabled									

Figure 36 R12 – Device Enable Register

R13 (0Dh)) – ADC Conti	rol Register 1 (ADC_CTRL1)								
Bit #	15	14	13	12	11	10	9	8			
Read	0	0	ADC_ZCEN				ADCL_INV				
Write	N/A	N/A	ADC_ZCEN	ADC_HPD	ADC_DAT	A_SEL[1:0]	ADCL_INV	ADCR_INV			
Default	0	0	1	0	0	0	0	0			
						_		-			
Bit #	7	6	6 5 4 3 2 1 0								
Read Write	ADC_ LRSWAP	ADC_EN	ADC_EN ADC_LRP ADC_BCP ADC_WL[1:0] ADC_FMT[1:0]								
Default	0	0	0	0	1	0	1	0			
			N/A = Not Applicable (no function implemented								
Fui	nction				Description						
ADC_	FMT[1:0]		nterface Forma	at							
		00 = Right Ju									
		01 = Left Just 10 = I^2S	lified								
		10 - 1 S 11 = DSP									
ADC	_WL[1:0]		nterface Word	l enath							
	[]	00 = 16-bit									
		01 = 20-bit									
		10 = 24-bit									
		11 = 32-bit (n	ot available in F	Right Justified m	node)						
ADO	C_BCP	ADC BCLK P			·						
		0 = ADCBCL	K not inverted -	data latched or	rising edge of	f BCLK					
		1 = ADCBCL	K inverted - dat	a latched on fall	ing edge of BO	CLK					
ADO	C_LRP	ADC LRCLK	Polarity								
		0 = ADCLRC	LK not inverted								
		1 = ADCLRC	LK inverted								
AD	C_EN	ADC Enable									
		0 = ADC disa									
		1 = ADC ena									
ADC_I	LRSWAP	ADC Left/Rig	jht Swap								
		0 = Normal									
		1 = Swap left	channel data ir	nto right channe	I and vice-vers	a					

PP Rev 1.0 January 2007

Product Preview

ADCR_INV	ADCL and ADCR Output Signal Inversion
ADCL_INV	0 = Output not inverted
	1 = Output inverted
ADC_DATA_SEL[1:0]	ADC Data Output Select
	00 = left data from ADCL, right data from ADCR (Normal Stereo)
	01 = left data from ADCL, right data from ADCL (Mono Left)
	10 = left data from ADCR, right data from ADCR (Mono Right)
	11 = left data from ADCR, right data from ADCL (Reverse Stereo)
ADC_HPD	ADC High Pass Filter Disable
	0 = High pass filter enabled
	1 = High pass filter disabled
ADC_ZC_EN	ADC Digital Volume Control Zero Cross Enable
	0 = Do not use zero cross, change volume instantly
	1 = Use zero cross, change volume when data crosses zero

Figure 37 R13 – ADC Control Register 1

R14 (0Eh)	- ADC Cont	rol Register 2 (ADC_CTRL2)							
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	0		
Write	N/A	N/A	N/A	N/A	N/A	N/A N/A N/A 0 0 0				
Default	0	0	0	0	0	0	0	0		
		-			-	-	1			
Bit #	7	6	5	4	3	2	1	0		
Read	0	0	А	DC_BCLKDIV[2	··01		ADC_SR[2:0]			
Write	N/A	N/A					7.00_01(2.0]			
Default	0	0	0	0	0	0	0	0		
		N/A = Not Applicable (no function implemented								
Fur	nction	Description								
ADC_	_SR[2:0]	ADC MCLK:L	RCLK Ratio							
		000 = Auto de								
		001 = reserve	d							
		010 = reserve	ed							
		011 = 256fs								
		100 = 384fs								
		101 = 512fs								
		110 = 768fs								
		111 = Reserv								
ADC_BC	CLKDIV[2:0]		•	C in Master Mo	ode)					
		000 = MCLK /								
		001 = MCLK /	8							
		010 = 32fs								
		011 = 64fs								
		100 = 128fs								
		All other value	es of ADC_BC	LKDIV[2:0] are	reserved					

Figure 38 R14 – ADC Control Register 2

Product Preview

R15 (0Fh)) – ADC Contr	ol Register 3 (ADC_CTRL3)								
Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0	0	0	0			
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Default	0	0	0	0	0	0	0	0			
	•										
Bit #	7	6	6 5 4 3 2 1 0								
Read	0	0	0	0	0	0	0	ADC MSTR			
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ADC_WOTK			
Default	0	0	0	0	0	0	0	0			
					N/A	= Not Applicat	ole (no function	implemented)			
Fu	nction				Description						
ADC	_MSTR	ADC Master	DC Master Mode Select								
		0 = Slave mo	= Slave mode, ADCBCLK and ADCLRCLK are inputs to WM8593								
	1 = Master mode, ADCBCLK and ADCLRCLK are outputs from WM8593										

Figure 39 R15 – ADC Control Register 3

Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0			
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ADCL_VU		
Default	0	0	0	0	0	0	0	0		
			•							
Bit #	7	6	5	4	3	2	1	0		
Read					/OL[7:0]					
Write				ABOL_						
Default	1	1	0	0	0	0	1	1		
					N/A	A = Not Applica	ble (no functio	n implemented		
Fun	oction				Description					
ADCL_	VOL[7:0]	Left ADC Digital Volume								
		0000 0000 = Digital mute								
		0000 0001 = -97dB								
		0000 0010 = -96.5dB								
		0.5dB steps								
		1100 0011 = 0dB								
		0.5dB steps								
		1111 1110 = +29.5dB								
		1111 1111 = +30dB								
	L_VU	Left DAC Digital Volume Update								
ADC		0 = Latch ADCL_VOL[7:0] into Register Map but do not update volume								
ADC		0 = Latch AD	CL_VOL[7:0] ir	nto Register Ma	p but do not up	date volume				

Figure 40 R16 – Left ADC Digital Volume Control Register

Product Preview

R17 (11h) – Right ADC Digital Volume Control Register (ADCR_VOL)											
Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0	0	0	ADCR VU			
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ADCK_V0			
Default	0	0	0	0	0	0	0	0			
Bit #	7	6	5	4	3	2	1	0			
Read				ADCR_\	/OI [7·0]						
Write				ABOR_	02[1:0]						
Default	1	1	0	0	0	0	1	1			
					N/A	A = Not Applicab	le (no function	implemented)			
Fui	nction	Description									
ADCR_	_VOL[7:0]	Right ADC Digital Volume									
		0000 0000 = Digital mute									
		0000 0001 = -97dB									
		0000 0010 = -96.5dB									
		0.5dB steps									
		1100 0011 = 0dB									
		0.5dB steps									
			1111 1110 = +29.5dB								
		1111 1111 = +30dB									
ADO	CR_VU	Right ADC D	igital Volume l	Jpdate							
		0 = Latch AD	CR_VOL[7:0] in	to Register Ma	p but do not up	date volume					
		1 = Latch ADCR_VOL[7:0] into Register Map and update left and right channels simultaneously									

Figure 41 R17 – Right ADC Digital Volume Control Register

Product Preview

								i loudot i lovio		
R19 (13h)	- PGA1L Vo	ume Control F	Register (PGA1	L_VOL)						
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	0		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PGA1L_VU		
Default	0	0	0	0	0	0	0	0		
•		•		•		•		•		
Bit #	7	6	5	4	3	2	1	0		
Read				DCA1						
Write	PGA1L_VOL[7:0]									
Default	0	0	0	0	1	1	0	0		
					N/#	A = Not Applicat	le (no functio	on implemented)		
R20 (14h)	- PGA1R Vo	lume Control F	Register (PGA1	R_VOL)						
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	0		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PGA1R_VU		
Default	0	0	0	0	0	0	0	0		
Bit #	7	6	5	4	3	2	1	0		
Read				PGA1P	VOL[7:0]					
Write				TOAIN_						
Default	0	0	0	0	1	1	0	0		
					N/#	A = Not Applicat	ole (no functio	on implemented)		
R21 (15h)	- PGA2L Vo	ume Control F	Register (PGA2	L_VOL)	1			-		
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	0		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PGA2L_VU		
Default	0	0	0	0	0	0	0	0		
		•	1	1	1			-		
Bit #	7	6	5	4	3	2	1	0		
Read				PGA2L	VOL[7:0]					
Write										
Default	0	0	0	0	1	1	0	0		
					N//	A = Not Applicat	ole (no functio	on implemented)		
		1	Register (PGA2	-	1	1	[
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	0		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PGA2R_VU		
Default	0	0	0	0	0	0	0	0		
	_				1	1 .				
Bit #	7	6	5	4	3	2	1	0		
Read				PGA2R	VOL[7:0]					
Write Default	0	0	0	0	1	1	0	0		

...Continued on next page

Product Preview

R23 (17h)	– PGA3L Vo	olume Control R	egister (PGA3	L_VOL)							
Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0	0	0	0			
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PGA3L_VU			
Default	0	0	0	0	0	0	0	0			
Bit #	7	6	5	4	3	2	1	0			
Read	/	0	5	4	3	2		0			
Write				PGA3L_	VOL[7:0]						
Default	0	0	0	0	1	1	0	0			
					N/A	A = Not Applical	ole (no functio	n implemented			
R24 (18h)	– PGA3R Vo	olume Control R	egister (PGA3	R_VOL)							
Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0	0	0	0			
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PGA3R_VL			
Default	0	0	0	0	0	0	0	0			
	r			1	•	•	1				
Bit #	7	6	5	4	3	2	1	0			
Read				PGA3R_	VOL[7:0]						
Write Default	0	0	0	0	1	1	0	0			
Delault	v	0	0	0		I = Not Applicat	•	•			
PGA1	_VOL[7:0]	Input PGA Vo	olume		11/7			in implemented,			
	[7:0] VOL[7:0]	$0000\ 0000 = +6 dB$									
	VOL[7:0]	0000 0001 = +5.5dB									
	 VOL[7:0]	0.5dB steps									
PGA3L	VOL[7:0]	00001100 = 0dB									
PGA3F	R_VOL[7:0]										
		1001 1110 = -73.5dB									
		1001 1111 = PGA Mute									
PGA	A1L_VU	Input PGA Volume Update									
PGA	1R_VU	0 = Latch corresponding volume setting into Register Map but do not update volume									
PGA	A2L_VU	1 = Latch cor	1 = Latch corresponding volume setting into Register Map and update all channels simultaneously								
PGA	2R_VU										
PGA	A3L_VU										
PGA	3R_VU										

Figure 42 R19-24 – PGA Volume Control Registers

Product Preview

R25 (19h) – PGA Control Register 1 (PGA_CTRL1)											
Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0	0	0	0			
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Default	0	0	0	0	0	0	0	0			
Bit #	7	6	5	4	3	2	1	0			
Read	PGA3R_ZC	PGA3L ZC	PGA2R ZC	PGA2L ZC	PGA1R ZC	PGA1L ZC	ATTACK_	DECAY_			
Write	FGASK_20	FGASL_20	FGAZK_ZC	FGAZL_ZC	FGAIK_20	FGAIL_20	BYPASS	BYPASS			
Default	1	1	1	1	1	1	0	0			
					N/A	= Not Applicat	ole (no function	implemented)			
Fu	nction	Description									
DECAY	_BYPASS	PGA Gain Decay Mode									
		0 = PGA gain will ramp down									
		1 = PGA gain will step down									
ATTAC	K_BYPASS	PGA Gain Attack Mode									
		0 = PGA gain will ramp up									
		1 = PGA gain will step up									
PGA	A1L_ZC	PGA Gain Zero Cross Enable									
PGA	PGA1R_ZC		0 = PGA gain updates occur immediately								
PGA	PGA2L_ZC		1 = PGA gain updates occur on zero cross								
PGA	2R_ZC	Zero cross m	ust be disabled	to use gain ran	ıp						
PGA	A3L_ZC										
PGA	A3R_ZC										

Figure 43 R25 – PGA Control Register 1

R26 (1Ah) – PGA Contr	ol Register 2 (PGA_CTRL2)					
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	JD_PGA3R_	JD_PGA3L_	JD_PGA2R_	JD_PGA2L_	JD_PGA1R_
Write	N/A	N/A	N/A	MUTE	MUTE	MUTE	MUTE	MUTE
Default	0	0	0	0	0	0	0	0
		-						
Bit #	7	6	5	4	3	2	1	0
Read	JD_PGA1L_	VOUT3R_	VOUT3L_	VOUT2R_	VOUT2L_	VOUT1R_	VOUT1L_	MUTE_ALL
Write	MUTE	MUTE	MUTE	MUTE	MUTE	MUTE	MUTE	WOTE_ALL
Default	0	1	1	1	1	1	1	0
					N/A	= Not Applicat	le (no function	implemented)
Fu	nction				Description			
MUT	FE_ALL	Master Outp	ut Driver Mute	Control				
		0 = Unmute a	Il output drivers	6				
		1 = Mute all o	utput drivers					
VOUT	1L_MUTE	Individual Ou	utput Drivers N	Aute Control				
VOUT	1R_MUTE	0 = Unmute o	utput driver					
VOUT	2L_MUTE	1 = Mute outp	out driver					
VOUT	2R_MUTE							
VOUT	3L_MUTE							
VOUT	3R_MUTE							
JD_PG/	A1L_MUTE	Jack Detect I	Mute Control					
JD_PGA	D_PGA1R_MUTE 0 = Do not mute PGA when jack is detected							
JD_PG/	A2L_MUTE 1 = Mute PGA when jack is detected							
JD_PGA	A2R_MUTE							
JD_PG/	A3L_MUTE							
JD_PGA	A3R_MUTE							

Figure 44 R26 – PGA Control Register 2

Product Preview

R27 (1Bh) – Additiona	al Control Regis	ster 1 (ADD_CT	RL1)							
Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0	0	0	0			
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Default	0	0	0	0	0	0	0	0			
Bit #	7	6	5	4	3	2	1	0			
Read	0					JD INV	GPIO2 APP	GPIO1_APP			
Write	N/A										
Default	0	1	0	0	1	0	0	0			
			N/A = Not Applicable (no function implemented)								
Fu	nction				Description						
GPIC	D1_APP		ication Select								
		0 = Use GPI	O1 as data pin f	or audio interf	ace mux						
		1 = Use GPI	O1 as input for j	ack detect							
GPIC	D2_APP		cation Select								
		0 = Use GPIO2 as data pin for audio interface mux									
		1 = Use GPIO2 as input for jack detect									
JE	D_INV	Jack Detect	•								
		0 = Normal (a	- ,								
		1 = Inverted	,								
AUT	FO_INC		are Mode Auto	Increment E	nable						
			ement disabled								
501	0.5/0.01		ement enabled								
PGA	_SR[2:0]	Sample Rate									
		000 = 32kHz									
001 = 44.1kHz 010 = 48kHz 011 = 88.2kHz											
		011 = 88.2kHz									
		100 = 96kHz 101 = 176.4kHz									
		101 = 176.4k									
		-		mation on PC	A sample rate ve	reue volumo r	amp rate				
		See Table 20		mation on PG	A sample rate ve	isus volumer	amp rate.				

Figure 45 R27 – Additional Control Register 1

Product Preview

R28 (1Ch)) – Input Con	trol Register 1	(INPUT CTRL	1)					
Bit #	15	14	13	12	11	10	9	8	
Read	0	0	0	0		10			
Write	N/A	N/A	N/A	N/A	-	PGA2L_I	N_SEL[3:0]		
Default	0	0	0	0	0	0	0	0	
Deluun	v	v	Ŭ	v	v	Ū	Ŭ	°	
Bit #	7	6	5	4	3	2	1	0	
Read			N_SEL[3:0]			PCA1L U	N_SEL[3:0]		
Write		I OAII_II				I GAIL_I	N_322[3.0]		
Default	0	0	0	0	0	0	0	0	
					N	A = Not Applica	ble (no function	implemented)	
R29 (1Dh)) – Input Con	trol Register 2	(INPUT_CTRL	2)	1		1	-	
Bit #	15	14	13	12	11	10	9	8	
Read	0	0	0	0	_	PGA3R I	N_SEL[3:0]		
Write	N/A	N/A	N/A	N/A					
Default	0	0	0	0	0	0	0	0	
	[T	T	T	T				
Bit #	7	6	5	4	3	2	1	0	
Read		PGA3L_IN	N_SEL[3:0]			PGA2R_I	N_SEL[3:0]		
Write		•		•		•		•	
Default	0	0	0	0	0	0	0	0	
F	4					A = Not Applica	able (no function	i implemented)	
	n ction IN_SEL[3:0]	L off Input P(GA Source Sel	oction	Description				
	IN_SEL[3:0]	0000 = No inj		ection					
	IN_SEL[3:0]	0001 = VIN1L	•						
	_ 1	0010 = VIN2L selected							
		0011 = VIN3L selected							
		0100 = VIN4L							
		0101 = VIN5L							
		0110 = VIN6L							
		0111 = VIN7L 1000 = VIN8L							
			L output select	ed					
			IR output selec						
			2L output select						
			2R output selec	ted					
	-	1101 to 1111							
	IN_SEL[3:0]		PGA Source So	election					
	IN_SEL[3:0]	0000 = No inj 0001 = VIN1F	•						
FGAJA_	IN_SEL[3:0]	0001 = VIN11 0010 = VIN2F							
		0011 = VIN3F							
		0100 = VIN4	R selected						
		0101 = VIN5	R selected						
		0110 = VIN6							
		0111 = VIN7F							
		1000 = VIN8F		od					
			L output select						
		1010 = DAC1R output selected 1011 = DAC2L output selected							
		1100 = DAC2R output selected							

Figure 46 R28-29 – Input Control Registers 1-2

Product Preview

-								
		trol Register 3			1	1	r	
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	ADC_		P_VOL[1:0]
Write	N/A	N/A	N/A	N/A	N/A	SWITCH_EN	7.80_7.00	_105[110]
Default	0	0	0	0	0	0	1	0
	1	1	r	•	1	-	r	
Bit #	7	6	5	4	3	2	1	0
Read		ADCR_S	SEL[3:0]			ADCL_S	SEL[3:0]	
Write		, 12 0 1 1 <u>-</u>	[0:0]				[0:0]	
Default	1	0	0	0	0	0	0	0
					N/	A = Not Applicat	ole (no function	implemented)
	nction				Description			
	_SEL[3:0]	ADC Input Se	elect					
ADCR	_SEL[3:0]	0000 = VIN1L						
		0001 = VIN2L						
		0010 = VIN3L						
		0011 = VIN4L						
		0100 = VIN5L						
		0101 = VIN6L						
		0110 = VIN7L						
		0111 = VIN8L						
		1000 = VIN1F						
		1001 = VIN2F						
		1010 = VIN3F						
		1011 = VIN4F						
		1100 = VIN5F						
		1101 = VIN6F						
		1110 = VIN7F 1111 = VIN8F						
	IP_VOL[1:0]		、 er Gain Contr	ol				
		00 = 0dB		01				
		01 = +3dB						
		10 = +6dB						
		11 = +12dB						
ADC S	WITCH_EN	_	witch Control					
	-		t switches ope					
		-	t switches clos					

Figure 47 R30 – Input Control Register 3

R31 (1Fh) – Input Cont	rol Register 4 (4)					
Bit #	15	14	13	12	11	10	9	8	
Read	0	0	0	0	0	0	0	0	
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Default	0	0	0	0	0	0	0	0	
Bit #	7	6	5	4	3	2	1	0	
Read	ADCR_AMP_	ADCL_AMP_	PGA3R_EN	PGA3L_EN	PGA2R_EN	PGA2L_EN	PGA1R_EN	PGA1L_EN	
Write	EN	EN	FGASK_EN	FGASL_EN	FGAZK_EN	FGAZL_EN	FGAIR_EN	FGAIL_EN	
Default	0	0	0	0	0	0	0	0	
					N/A	= Not Applicat	ole (no function	implemented)	
Fu	nction				Description				
PGA	A1L_EN	Input PGA Enable Controls							
PGA	1R_EN	0 = PGA disa	bled						
PGA	A2L_EN	1 = PGA enab	bled						
PGA	2R_EN								
PGA	A3L_EN								
PGA	3R_EN								
ADCL	_AMP_EN	ADC Input Ar	nplifier Enable	e Controls					
ADCR	_AMP_EN	0 = Amplifier of	disabled						
		1 = Amplifier	enabled						

Figure 48 R31 – Input Control Register 4

Product Preview

R32 (20h)	– Output Co	ntrol Register 1	OUTPUT_CT	RL1)				
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	VOUT2L_
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	SEL[2]
Default	0	0	0	0	0	0	0	0
Bit #	7	6	5	4	3	2	1	0
Read		_SEL[1:0]	VC	OUT1R_SEL[2	·01	V	OUT1L SEL[2	P•∩1
Write	V0012L	_022[1:0]	Ve		.0]			
Default	1	0	0	0	1	0	0	0
					N/A	A = Not Applicat	le (no functior	n implemented)
R33 (21h)	– Output Co	ntrol Register 2		RL2)		-		
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	VOUT3R_
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	SEL[2]
Default	0	0	0	0	0	0	0	1
		-				-		
Bit #	7	6	5	4	3	2	1	0
Read		_SEL [1:0]	V	OUT3L_SEL [2:	01	V	OUT2R_SEL[2	2.01
Write	V00101(_	_022 [1.0]	v		0]			
Default	0	1	1	0	0	0	1	1
		1			N/A	A = Not Applicat	le (no functior	n implemented)
Fu	nction				Description			
	L_SEL[3:0]	Output Mux						
	R_SEL [3:0]	000 = PGA1L						
	SEL [3:0]	001 = PGA1R						
	R_SEL [3:0]	010 = PGA2L						
	SEL [3:0]	011 = PGA2R						
VOUT3F	R_SEL [3:0]	100 = PGA3L						
		101 = PGA3R						
		11X = Reserv	ed					

Figure 49 R32-33 – Output Control Registers 1-2

R34 (22h)) – Output Cor	ntrol Register		(RL3)				
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	VOUT3R_EN	VOUT3L_EN	VOUT2R_EN	VOUT2L_EN	VOUT1R EN
Write	N/A	N/A	N/A	VOUTSK_EN	VOUTSL_EN	VOUT2R_EN	VOOT2L_EN	VOUTIK_EN
Default	0	0	0	0	0	0	0	0
	•			•	•			
Bit #	7	6	5	4	3	2	1	0
Read Write	VOUT1L_EN	APE_B	VOUT3R_TRI	VOUT3L_TRI	VOUT2R_TRI	VOUT2L_TRI	VOUT1R_TRI	VOUT1L_TRI
Default	0	1	0	0	0	0	0	0
	_			_		= Not Applicat	ble (no function	implemented)
Fu	nction				Description			· /
VOU	T1L_TRI	Output Ampl	ifier Tristate C	ontrol	-			
VOU	T1R_TRI	0 = Normal o	peration					
VOU	T2L_TRI	1 = Output an	nplifier tristate e	enable (Hi-Z)				
VOU	T2R_TRI							
VOU	T3L_TRI							
VOU	T3R_TRI							
A	PE_B	Clamp Outpu	uts to Ground					
		0 = clamp act	ive					
		1 = clamp not	active					
VOU	T1L_EN	Output Ampl	ifier Enables					
VOU	T1R_EN	0 = Output an	nplifier disabled	1				
VOU	T2L_EN	1 = Output an	nplifier enabled					
VOU	T2R_EN							
VOU	T3L_EN							
VOU	T3R_EN							

Figure 50 R34 – Output Control Register 3

Product Preview

D25 (001)	Diec Orest	al Dagister /D	46)							
. ,		rol Register (Bl	, <i>i</i>	40	44	40	0	6		
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	0		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Default	0	0	0	0	0	0	0	0		
Bit #	7	6	5	4	3	2	1	0		
Read				0057.07			1445700	DODOTDI		
Write	VMID_8	SEL[1:0]	1:0] BIAS_EN SOFT_ST BUFIO_EN FAST_EN VMIDTOG POBCTRI							
Default	0									
		N/A = Not Applicable (no function implement								
Function Description										
POBCTRL Bias Source for Output Amplifiers										
			nplifiers use ma							
1 = Output amplifiers use fast bias										
VMI	DTOG		Down Charac	teristic						
		0 = Slow ram	•							
		1 = Fast ram								
FAS	ST_EN	Fast Bias En								
		0 = Fast bias								
		1 = Fast bias								
BUF	IO_EN	VMID Buffer								
		0 = VMID But								
0.01		1 = VMID But								
501	FT_ST	VMID Soft Ramp	•							
		1 = Soft ramp								
BIA	S_EN	Master Bias								
		0 = Master bi								
		1 = Master bi								
			down ADCVMI	0						
VMID	SEL[1:0]		or String Value		ACVMID only)					
-		00 = off (no V	-	· · · · · · · · · · · · · · · · · · ·	57					
		01 = 100k	,							
		10 = 500k								
		11 = 10k								
		The selection resistance is		esistance of th	ne string from	DACREFP to	DACREFN. T	he ADCVMID		

Figure 51 R35 – Bias Control Register

Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0		0	0		
Write	N/A	N/A	N/A	N/A	N/A	PGA_UPD	N/A	N/A		
Default	0	0	0	0	0	0	0	0		
Bit #	7	6	5	4	3	2	1	0		
Read	0	0	0	0			•	PGA		
Write	N/A	N/A	N/A	N/A	-	PGA_SEL[2:0]				
Default	0	0	0	0	0	0	1	0		
			1	1	N	/A = Not Applicabl	e (no functior	n implemented)		
Fur	nction				Descriptior		,	. ,		
PGA_	FORCE	PGA Ramp C	ontrol Clock	Source Mux Fo	orce Update					
		0 = Wait until	clocks are safe	e before switchi	ing PGA clock	source				
		1 = Force P	GA clock sourc	e to change im	mediately					
		See page 36	for details of us	se.						
PGA_	SEL[2:0]	PGA Ramp Control Clock Source								
		000 = LRCLK	1							
		001 = LRCLK	2							
		010 = LRCLK	3							
		011 = LRCLK	4							
		100 = LRCLK	5							
		101 = DAC1L	RCLK (when D	AC1 is being u	sed in master	mode)				
		110 = DAC2L	RCLK (when D	AC2 is being u	sed in master	mode)				
		111 = ADCLF	CLK (when AD	C is being use	d in master m	ode)				
PGA	_UPD	PGA Ramp C	ontrol Clock	Source Mux U	pdate					
		0 = Do not up	date PGA cloc	k source						
		1 = Update cl	ock source							

Figure 52 R36 – PGA Control Register 3

Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0			
Write	N/A	N/A	N/A	N/A	N/A	PORT1_UPD	DIO1_	SEL[2:1]
Default	0	0	0	0	0	0	0	0
Bit #	7	6	5	4	3	2	1	0
Read	DIO1_			[0.0]			1	PORT1_
Write	SEL[0]	VVC	ORDCLK1_SEL	_[2:0]		MCLK1_SEL[2:0	J	FORCE
Default	0	0	0	0	0	0	0	0
					N	I/A = Not Applicab	le (no functio	n implemented
Fur	nction				Description	n		
PORT1	_FORCE	Force Port	Clocks to Ch	nange				
		0 = Wait unti	l clocks are sa	fe before switchi	ng between c	lock sources		
		1 = Force clo	ock sources to	change immedia	itely			
		See Table 4) for details of	use.				
MCLK1	_SEL[2:0]	MCLK1 Pin	Function Sele	ct				
		000 = Input t	o WM8593					
		001 = Outpu	t MCLK2					
		010 = Outpu	t MCLK3					
		011 = Outpu						
		100 = Outpu						
		101 to 111 =						
WORDCL	K1_SEL[2:0]			Function Selec	t			
		000 = Inputs						
			e BCLK2 and L					
			e BCLK3 and L					
			e BCLK4 and L					
			BCLK5 and L		(when DAC	1 io in montor mos		
						1 is in master moo 2 is in master moo	,	
				nd ADCBCLK (w				
	SEL[2:0]		nction Select					
DIO 1_		000 = Input t						
		001 = Source						
		010 = Source						
		011 = Sourc						
		100 = Source						
		101 = Source						
		110 = Source	e GPIO2					
		111 = Sourc	e ADC Data Ou	utput				
PORT	[1_UPD	Port 1 Upda	te					
		0 = Latch co	rresponding Pc	ort 1 settings into	Register Ma	p but do not updat	e	
		1 = 1 atch co	rrespondina Po	ort 1 settings into	Register Ma	n and undate all si	multaneously	,

Figure 53 R37 – Audio Interface MUX Configuration Register 1

R38 (26h) -	Audio Inter	rface MUX Con	figuration Reg	gister 2 (AIF_N	IUX2)						
Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0		DIOO				
Write	N/A	N/A	N/A	N/A	N/A	PORT2_UPD	DI02_	SEL[2:1]			
Default	0	0	0	0	0	0	0	0			
				•		- 1 1					
Bit #	7	6	5	4	3	2	1	0			
Read	DIO2_	14/0		io. 01				PORT2_			
Write	SEL[0]	000	RDCLK2_SEL[[2:0]	0] MCLK2_SEL[2:0] FC						
Default	1	0	0	1	0	0	1	0			
					N	/A = Not Applicab	le (no functior	implemented)			
Func	tion				Description	1					
PORT2_I	FORCE	Force Port 2	Clocks to Cha	ange							
		0 = Wait until	clocks are safe	e before switch	ing between c	lock sources					
		1 = Force clos	ck sources to c	hange immedia	ately						
		See Table 40	for details of u	se.							
MCLK2_S	SEL[2:0]	MCLK2 Pin F	unction Selec	t							
		000 = Output									
		001 = Input to									
		010 = Output									
		011 = Output									
		100 = Output									
		101 to 111 = I									
WORDCLK2	2_SEL[2:0]		RCLK2 Pins F		ct						
		000 = Output 001 = Inputs t	BCLK1 and LR	CLKI							
		•	BCLK3 and LR								
		•	BCLK4 and LR								
			BCLK5 and LR								
					(when DAC1	is in master mod	e)				
						is in master mod					
			ADCBCLK and				,				
DIO2_SI	EL[2:0]	DIO2 Pin Fur				,					
		000 = Output	DIO1								
		001 = Input to	WM8593								
		010 = Output	DIO3								
		011 = Output	DIO4								
		100 = Output	DIO5								
		101 = Output									
		110 = Output									
			ADC Data Out	put							
PORT2	_UPD	Port 2 Update									
						o but do not updat					
		1 = Latch corr	esponding Por	t 2 settings into	o Register Maj	o and update all si	multaneously				

Figure 54 R38 – Audio Interface MUX Configuration Register 2

Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0			
Write	N/A	N/A	N/A	N/A	N/A	PORT3_UPD	DIO3_	_SEL[2:1]
Default	0	0	0	0	0	0	0	1
Bit #	7	6	5	4	3	2	1	0
Read	DIO3_			[2:0]			1	PORT3_
Write	SEL[0]	VVC	RDCLK3_SEI	_[2:0]		MCLK3_SEL[2:0]	FORCE
Default	0	0	1	0	0	1	0	0
					N	I/A = Not Applicab	le (no functio	n implemented
Fur	nction				Description	n		
PORTS	_FORCE	Force Port 3	Clocks to Ch	nange				
		0 = Wait unti	clocks are sa	fe before switchi	ng between c	lock sources		
		1 = Force clo	ck sources to	change immedia	itely			
		See Table 40) for details of	use.				
MCLK3	_SEL[2:0]	MCLK3 Pin	Function Sele	ect				
		000 = Output	MCLK1					
		001 = Output	MCLK2					
		010 = Input t	o WM8593					
		011 = Output	MCLK4					
100 = Output MCLK5								
		101 to 111 =	Reserved					
WORDCL	K3_SEL[2:0]			Function Selec	t			
			BCLK1 and L					
			BCLK2 and L	RCLK2				
		010 = Inputs						
			BCLK4 and L					
			BCLK5 and L				-)	
						1 is in master mod	,	
				IN DACZERCER M ADCBCLK (w		2 is in master mod	e)	
	SEI [2:0]	-	nction Select		IEIT ADC IS II			
DI03_	SEL[2:0]	000 = Output						
		000 = Output 001 = Output						
		010 = Input te						
		011 = Output						
		100 = Output						
		101 = Output						
		110 = Output						
			ADC Data Ou	Itput				
POR	[3_UPD	Port 3 Updat		-				
	-			ort 3 settings into	Register Ma	p but do not updat	e	
			responding Po	•	0	• •		

Figure 55 R39 – Audio Interface MUX Configuration Register 3

Bit #			ingulation reg	gister 4 (AIF_M	0,4)					
Dit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0					
Write	N/A	N/A	N/A	N/A	N/A	PORT4_UPD	DI04_8	SEL[2:1]		
Default	0	0	0	0	0	0	0	1		
I				•		•				
Bit #	7	6	5	4	3	2	1	0		
Read	DIO4_			[0.0]			1	PORT4_		
Write	SEL[0]	000	RDCLK4_SEL	[2:0]		MCLK4_SEL[2:0	1	FORCE		
Default	1	0	1	1	0	1	1	0		
					N	/A = Not Applicab	le (no function	implemented)		
Func	tion				Description	1				
PORT4_I	FORCE	Force Port 4	Clocks to Ch	ange						
		0 = Wait until	clocks are saf	e before switchi	ng between c	lock sources				
		1 = Force clos	k sources to c	hange immedia	itely					
		See Table 40	for details of u	ise.						
MCLK4_S	SEL[2:0]	MCLK4 Pin F	unction Selec	ct						
		000 = Output	MCLK1							
		001 = Output	MCLK2							
		010 = Output	MCLK3							
		011 = Input to WM8593								
		100 = Output	MCLK5							
		101 to 111 = F	Reserved							
WORDCLK4	4_SEL[2:0]			Function Selec	t					
		000 = Output								
		001 = Output								
		010 = Output		RCLK3						
		011 = Inputs t								
			BCLK5 and LF				-)			
						is in master mod				
				d ADCBCLK (wi		is in master mod	e)			
	EI [2:0]	DIO4 Pin Fun				aster mode)				
DIO4_SI	EL[2.0]	000 = Output								
		000 = Output 001 = Output								
		001 = Output 010 = Output								
		010 = Output 011 = Input to								
		100 = Output								
		101 = Output								
		110 = Output								
			ADC Data Out	tput						
PORT4	1_UPD	Port 4 Update		•						
	-	-		rt 4 settings into	Register Mar	o but do not updat	te			
						o and update all s				

Figure 56 R40 – Audio Interface MUX Configuration Register 4

Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0					
Write	N/A	N/A	N/A	N/A	N/A	PORT5_UPD	DIO5_	_SEL[2:1]		
Default	0	0	0	0	0	0	1	0		
			•	•						
Bit #	7	6	5	4	3	2	1	0		
Read	DIO5_	WC	ORDCLK5_SEI	[2.0]		MCLK5_SEL[2:0	1	PORT5_		
Write	SEL[0]		INDOLING_GEI	L[2.0]		WOLKS_OLL[2.0]	FORCE		
Default	0	1	0	0	1	0	0	0		
					Ν	I/A = Not Applicab	le (no functio	n implemented		
Fur	nction				Description	า				
PORTS	5_FORCE	Force Port 5	i Clocks to Ch	nange						
		0 = Wait unti	l clocks are sa	fe before switchi	ng between c	lock sources				
		1 = Force clo	ock sources to	change immedia	itely					
		See Table 40) for details of	use.						
MCLK5	_SEL[2:0]	MCLK5 Pin	Function Sele	ect						
		000 = Outpu	t MCLK1							
		001 = Outpu	t MCLK2							
		010 = Outpu	t MCLK3							
		011 = Outpu								
		100 = Input t								
		101 to 111 =	Reserved							
WORDCL	K5_SEL[2:0]			Function Selec	:t					
			t BCLK1 and L							
			t BCLK2 and L							
			t BCLK3 and L							
			t BCLK4 and L	RCLK4						
		100 = Inputs					,			
						l is in master mod	,			
						2 is in master mod	e)			
DIOC	051 (0:01	-		nd ADCBCLK (w	THEN ADO IS IT	laster mode)				
DIO5_	SEL[2:0]	000 = Outpu	nction Select							
		000 = Outpu 001 = Outpu								
		001 = Outpu 010 = Outpu								
		010 = Outpu 011 = Outpu								
		100 = Input t								
		100 = mput t 101 = Output								
		110 = Outpu								
			t ADC Data Ou	ıtput						
POR	F5_UPD	Port 5 Upda		T - 2						
		-		ort 5 settinas into	Register Ma	p but do not updat	e			
		0 = Latch corresponding Port 5 settings into Register Map but do not update 1 = Latch corresponding Port 5 settings into Register Map and update all simultaneously								

Figure 57 R41 – Audio Interface MUX Configuration Register 5

R42 (2Ah)) – Audio Inte	rface MUX Con	figuration Reg	gister 6 (AIF_N	IUX6)	-			
Bit #	15	14	13	12	11	10	9	8	
Read	0	0	0	0	0			QEI [2:1]	
Write	N/A	N/A	N/A	N/A	N/A	DAC1_UPD	DAC1DIN	_366[2.1]	
Default	0	0	0	0	0	0	0	0	
				•		-			
Bit #	7	6	5	4	3	2	1	0	
Read	DAC1DIN_	DAC1	VORDCLK_SE	=1 [2:0]	D	AC1MCLK_SEL[2	2.01	DAC1_	
Write	SEL[0]	2,1011		[-:0]				FORCE	
Default	1	0	0	1	0	0	1	0	
		I				A = Not Applicat	le (no function	implemented)	
Fu	nction				Description				
DAC1	_FORCE		Clocks to Cha	•					
				e before switchi	0	ock sources			
				hange immedia	itely				
			for details of u	se.					
DAC1MC	LK_SEL[2:0]	DAC1MCLK S							
		000 = Use MC							
		001 = Use MC							
		010 = Use MCLK3 011 = Use MCLK4							
		100 = Use MC							
		100 = 030 Me							
DAC1W	ORDCLK_		nd DAC1LRC	LK Select					
	EL[2:0]		LK1 and LRCL						
			LK2 and LRCL						
		010 = Use BC	LK3 and LRCL	_K3					
		011 = Use BC	LK4 and LRCL	_K4					
		100 = Use BC	LK5 and LRCL	_K5					
		101 = Output	DAC1BCLK ar	nd DAC1LRCLK	(when DAC1	is in master mod	le)		
		110 = Use DA	C2BCLK and I	DAC2LRCLK (v	hen DAC2 is	in master mode)			
		111 = Use AD	CBCLK and A	DCBCLK (wher	n ADC is maste	er mode)			
DAC1DI	N_SEL[2:0]	DAC1DIN Sel							
		000 = Use DI0							
		001 = Use DI0							
		010 = Use DI0							
		011 = Use DI							
		100 = Use DI0 101 = Use GF							
		101 = Use GP 110 = Use GP							
		111 = Use AD							
DAC	1_UPD	DAC1 Clock							
2.10			-	C1 clock setting	as into Registe	r Map but do not	update		
						r Map and updat			

Figure 58 R42 – Audio Interface MUX Configuration Register 6

Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	D 4 00 1100	DA GODI			
Write	N/A	N/A	N/A	N/A	N/A	DAC2_UPD	DAC2DI	N_SEL[2:1]		
Default	0	0	0	0	0	0	0	0		
Bit #	7	6	5	4	3	2	1	0		
Read	DAC2DIN_		WORDCLK_S	EI [2:0]	П	AC2MCLK_SEL[2	2.01	DAC2_		
Write	SEL[0]	DACZ	WORDOLK_0	JEE[2.0]			2.0]	FORCE		
Default	1	0	0	1	0	0	1	0		
					N	/A = Not Applicat	ole (no functio	n implemente		
Fu	nction				Description	ı				
DAC2	_FORCE	Force DAC2	Clocks to Ch	ange						
				fe before switchi		lock sources				
		1 = Force clo	ck sources to	change immedia	tely					
		See Table 40	for details of	use.						
DAC2MC	LK_SEL[2:0]	DAC2MCLK	Select							
		000 = Use MCLK1								
		001 = Use M0								
		010 = Use M0								
		011 = Use M								
		100 = Use MCLK5 101 to 111 = Reserved								
	ORDCLK_		and DAC2LR							
SE	EL[2:0]		CLK1 and LRC							
			CLK2 and LRC CLK3 and LRC							
			CLK3 and LRC							
			CLK4 and LRC							
					hen DAC1 is	in master mode)				
				•		is in master mod	le)			
		-		ADCBCLK (wher			,			
DAC2DI	N_SEL[2:0]	DAC2DIN Se								
		000 = Use DI								
		001 = Use DI	02							
		010 = Use DI	03							
		011 = Use DI	04							
		100 = Use DI	05							
		101 = Use GF	PIO1							
		110 = Use GF	9102							
		111 = Use AE	CDOUT							
DAC	2_UPD	DAC2 Clock	Update							
		0 = Latch cor	responding DA	AC2 clock setting	s into Registe	er Map but do not	update			
		0 = Latch corresponding DAC2 clock settings into Register Map but do not update 1 = Latch corresponding DAC2 clock settings into Register Map and update all simultaneously								

Figure 59 R43 – Audio Interface MUX Configuration Register 7

R44 (2Ch) – Audio Inte	erface MUX Cor	figuration Reg	gister 8 (AIF_N	IUX8)					
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0		0	0		
Write	N/A	N/A	N/A	N/A	N/A	ADC_UPD	N/A	N/A		
Default	0	0	0	0	0	0	1	0		
								_		
Bit #	7	6	5	4	3	2	1	0		
Read	0		VORDCLK_SE	1 [2:0]	Δ	DCMCLK_SEL[2	·01	ADC_		
Write	N/A	Abor	VOINDOER_OE	L[2.0]	~		.0]	FORCE		
Default	0	1	0	0	1	0	0	0		
					N/	A = Not Applicab	le (no functior	implemented)		
	nction				Description					
ADC_	_FORCE		locks to Chan	•						
			clocks are safe			ock sources				
			ck sources to c	-	itely					
			for details of u	se.						
ADCMCL	_K_SEL[2:0]	ADCMCLK Select								
		000 = Use M								
		001 = Use M								
		010 = Use M								
		011 = Use M 100 = Use M								
		100 – Ose Mi 101 to 111 =								
	ORDCLK			Select						
	EL[2:0]		CLK1 and LRCL							
01			CLK2 and LRCL							
			CLK3 and LRCL							
		011 = Use B0	CLK4 and LRCL	_K4						
		100 = Use B0	CLK5 and LRCL	.K5						
		101 = Use DA	AC1BCLK and I	DAC1LRCLK (v	hen DAC1 is	in master mode)				
		110 = Use DA	C2BCLK and I	DAC2LRCLK (v	when DAC2 is	in master mode)				
		111 = Output	ADCBCLK and	ADCBCLK (wi	nen ADC is ma	aster mode)				
ADO	C_UPD	ADC Clock L	Ipdate							
		0 = Latch cor	responding AD	C clock settings	into Register	Map but do not u	ıpdate			
		1 = Latch cor	responding AD	C clock settings	into Register	Map and update	all simultaned	ously		

Figure 60 R44 – Audio Interface MUX Configuration Register 8

R45 (2Dh) – Audio Inte	rface MUX Cor	figuration Reg	gister 9 (AIF_N	1UX9)			
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	GPIO1 UPD	0	0
Write	N/A	N/A	N/A	N/A	N/A	GFIO1_OFD	N/A	N/A
Default	0	0	0	0	0	0	0	0
Bit #	7	6	5	4	3	2	1	0
Read	0	0	0	0			1	0
Write	N/A	N/A	N/A	N/A		GPIO1_SEL[2:0] N		N/A
Default	0	0	0	0	0	0	0	0
					N/	A = Not Applicab	le (no function	implemented)
Fui	nction				Description			
GPIO1	_SEL[2:0]	GPIO1 Pin Fi	unction Select					
		000 = Source	DIO1					
		001 = Source	DIO2					
		010 = Source	DIO3					
		011 = Source	DIO4					
		100 = Source	DIO5					
		101 = Input to	WM8593					
		110 = Source	GPIO2					
		111 = Source	ADC Data Out	put				
GPIC	D1_UPD	GPIO1 Updat	e					
		0 = Latch com	esponding GPI	O1 settings int	o Register Map	o but do not upda	ate	
		1 = Latch corr	esponding GPI	O1 settings int	o Register Map	o and update		

Figure 61 R45 – Audio Interface MUX Configuration Register 9

Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0		0	0
Write	N/A	N/A	N/A	N/A	N/A	- GPIO2_UPD	N/A	N/A
Default	0	0	0	0	0	0	0	0
Bit #	7	6	5	4	3	2	1	0
Read	0	0	0	0				0
Write	N/A	N/A	N/A	N/A	GPIO2_SEL[2:0]		N/A	
Default	0	0	0	0	0	0	0	0
					N	/A = Not Applicab	le (no function	implemente
Fui	nction				Description	1		
GPIO2	_SEL[2:0]	GPIO2 Pin Fu	unction Select	t				
GPIO2	_SEL[2:0]	GPIO2 Pin Fu 000 = Source		t				
GPIO2	2_SEL[2:0]		DIO1	t				
GPIO2	2_SEL[2:0]	000 = Source	DIO1 DIO2	t				
GPIO2	2_SEL[2:0]	000 = Source 001 = Source	DIO1 DIO2 DIO3	t				
GPIO2	2_SEL[2:0]	000 = Source 001 = Source 010 = Source	DIO1 DIO2 DIO3 DIO4	t				
GPIO2	?_SEL[2:0]	000 = Source 001 = Source 010 = Source 011 = Source	DIO1 DIO2 DIO3 DIO4 DIO5	t				
GPI02	?_SEL[2:0]	000 = Source 001 = Source 010 = Source 011 = Source 100 = Source	DIO1 DIO2 DIO3 DIO4 DIO5 WM8593	t				
GPIO2	?_SEL[2:0]	000 = Source 001 = Source 010 = Source 011 = Source 100 = Source 101 = Input to 110 = Source	DIO1 DIO2 DIO3 DIO4 DIO5 WM8593					
	2_SEL[2:0]	000 = Source 001 = Source 010 = Source 011 = Source 100 = Source 101 = Input to 110 = Source	DIO1 DIO2 DIO3 DIO4 DIO5 WM8593 GPIO2 ADC Data Out					
		000 = Source 001 = Source 010 = Source 011 = Source 100 = Source 101 = Input to 110 = Source 111 = Source GPIO2 Updat	DIO1 DIO2 DIO3 DIO4 DIO5 WM8593 GPIO2 ADC Data Out e	tput	o Register Ma	ip but do not upda	te	

Figure 62 R46 – Audio Interface MUX Configuration Register 10

DIGITAL FILTER CHARACTERISTICS

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ADC Filter	·	·		<u>.</u>	
Passband	± 0.05dB			0.454fs	
Passband Ripple				0.05	dB
Stopband		0.546fs			
Stopband Attenuation		-60			dB
Group Delay			16		fs
DAC Filter – 32kHz to 9	6kHz				
Passband	± 0.1dB			0.454fs	
Passband Ripple				0.1	dB
Stopband		0.546fs			
Stopband attenuation	f > 0.546fs	-50			dB
Group Delay			10		Fs
DAC Filter – 176.4kHz t	o 192kHz				
Passband	± 0.1dB			0.247fs	
Passband Ripple				0.1	dB
Stopband		0.753fs			
Stopband attenuation	f > 0.546fs	-50			dB
Group Delay			10		Fs

DAC FILTER RESPONSES

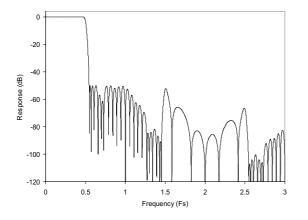


Figure 63 DAC Digital Filter Frequency Response - 44.1, 48 and 96KHz

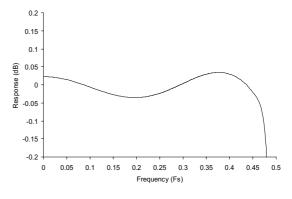
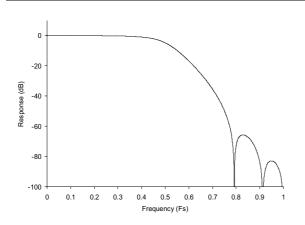



Figure 64 DAC Digital Filter Ripple -44.1, 48 and 96kHz

Product Preview

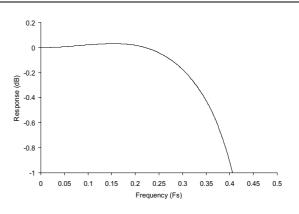
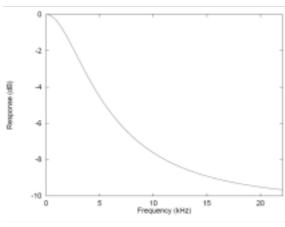



Figure 65 DAC Digital Filter Frequency Response – 192KHz

Figure 66 DAC Digital Filter Ripple – 192kHz

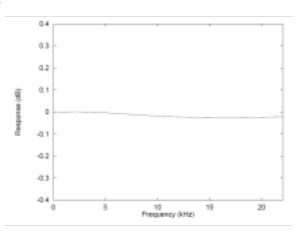
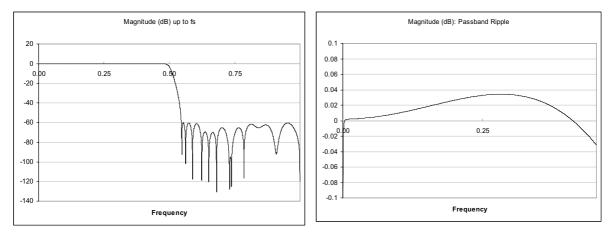



Figure 67 De-Emphasis Frequency Response (44.1KHz)

Figure 68 De-Emphasis Error (44.1KHz)

ADC FILTER RESPONSES

ADC HIGH PASS FILTER

The WM8593 has a selectable digital high pass filter to remove DC offsets. The filter response is characterised by the following polynomial.

$$H(z) = \frac{1 - z^{-1}}{1 - 0.9995 z^{-1}}$$

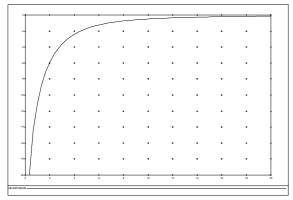
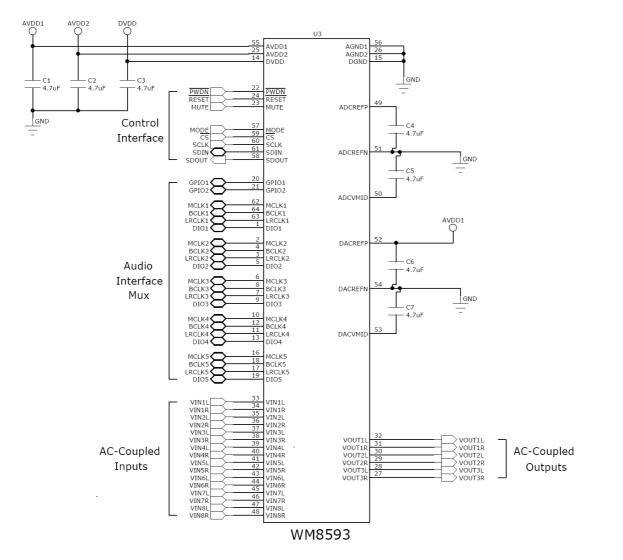
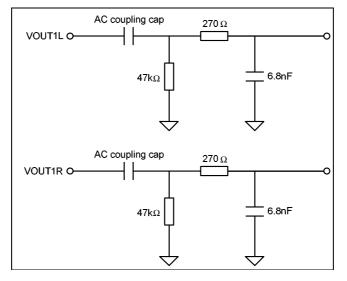



Figure 71 ADC Highpass Filter Response

APPLICATIONS INFORMATION

RECOMMENDED EXTERNAL COMPONENTS



Notes:

- 1. AGND and DGND should ideally share a continuous ground plane. Where this is not possible, it is recommended that AGND and DGND are connected as close to the WM8593 as possible.
- Decoupling capacitors shown are very low-ESR, multilayer ceramic capacitors and should be placed as near to the WM8593 as possible. Equally good results may be obtained using 0.1µF ceramic capacitors near to the WM8593, with a 10µF electrolytic capacitor nearby.

RECOMMENDED ANALOGUE LOW PASS FILTER

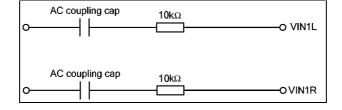


Figure 72 Recommended Analogue Low Pass Filter (shown for VOUT1L/R)

Note: See WAN0176 for AC coupling capacitor selection information.

An external single pole RC filter is recommended (see Figure 72) if the device is driving a wideband amplifier. Other filter architectures may provide equally good results.

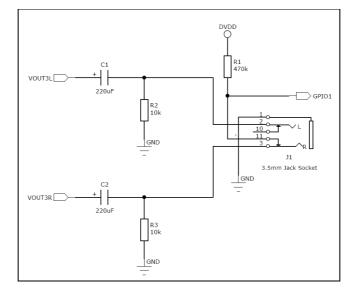
EXTENDED INPUT IMPEDANCE CONFIGURATION

Figure 73 Extended Input Impedance Configuration

Note: See WAN0176 for AC coupling capacitor selection information.

The input impedance to the WM8593 is specified in the Electrical Characteristics section beginning on p8, and is fixed across gain setting and signal routing options. If this input impedance is not enough for the intended application, an alternative input configuration (Figure 73) is possible.

This configuration increases the input impedance to the WM8593 by $10k\Omega$, but reduces the overall gain in the ADC and Bypass paths by -6dB. In order to compensate for this reduction in gain, +6dB of gain should be set in the ADC Input PGA (by using ADC_AMP_VOL[1:0]) and in the bypass PGA (by using PGAxx_VOL[7:0]).


Examples:

- If a 2V_{RMS} signal is applied to VIN1L and VIN1R and routed to VOUT1L and VOUT1R using PGA1L and PGA1R, then setting PGA1L_VOL[7:0] and PGA1R_VOL[7:0] =0x00 is necessary to see 2V_{RMS} at VOUT1L and VOUT1R.
- If a 2V_{RMS} signal is applied to VIN1L and VIN1R and routed to ADCL and ADCR, then setting ADC_AMP_VOL[1:0]=10 is necessary to see 0dBFS at the ADC outputs.

EXAMPLE CONFIGURATION FOR JACK DETECT

The WM8593 contains a jack detect function as described on page 54. In order to use this function, it is necessary to connect the required GPIO pin to the headphone connector to detect the insertion of the jack. Figure 74 shows a typical connection scheme:

Figure 74 Example Jack Detect Circuitry

When a jack is not inserted, the mechanical switch in the 3.5mm jack socket is closed and a short between pin 11 and pin 3 is present. There is a potential divider between DVDD and GND formed by R1 and R3, and this causes the voltage level at GPIO1 to be:

DVDD * [R3 / (R1 +R3)] = DVDD * [10 / (470 + 10)] = 0.02 * DVDD = logic 0

When a jack is inserted, the mechanical switch in the 3.5mm jack socket is opened and there is no longer a short between pin 11 and pin 3. The voltage level at GPIO1 is then pulled up to DVDD through R1 and is therefore logic 1. Therefore, the function of the circuit in Figure 74 is:

JACK STATUS	LOGIC LEVEL AT GPIO1
Not Inserted	Logic 0
Inserted	Logic 1

Table 45 Example Jack Detect Configuration Operation

RELEVANT APPLICATION NOTES

The following application notes, available from <u>www.wolfsonmicro.com</u>, may provide additional guidance for the use of the WM8593.

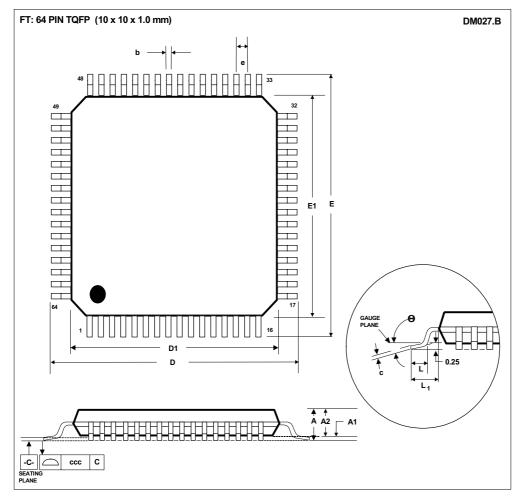
DEVICE PERFORMANCE:

WAN0129 - Decoupling and Layout Methodology for Wolfson DACs, ADCs and CODECs

WAN0144 - Using Wolfson Audio DACs and CODECs with Noisy Supplies

WAN0176 - AC Coupling Capacitor Selection

GENERAL:


WAN0108 - Moisture Sensitivity Classification and Plastic IC Packaging

WAN0109 - ESD Damage in Integrated Circuits: Causes and Prevention

WAN0158 - Lead-Free Solder Profiles for Lead-Free Components

PACKAGE DIMENSIONS

Symbols		Dimensions (mm)	
	MIN	NOM	MAX
Α			1.20
A ₁	0.05		0.15
A ₂	0.95	1.00	1.05
b	0.17	0.22	0.27
C	0.09		0.20
D		12.00 BSC	
D ₁		10.00 BSC	
E		12.00 BSC	
E1		10.00 BSC	
е		0.50 BSC	
L	0.45	0.60	0.75
L1		1.00 REF	
Θ	0°	3.5°	7°
	Tolerance	es of Form and	d Position
CCC		0.08	
REF:	JEDEC.95, N	MS-026, VARI	ATION ACD

A ALL LINEAR DIMENSIONS ARE IN MILLIMETERS. B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE. C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.25MM. D. MEETS JEDEC.95 MS-026, VARIATION = ACD. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.

IMPORTANT NOTICE

Wolfson Microelectronics plc ("Wolfson") products and services are sold subject to Wolfson's terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement.

Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.

Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty. Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

In order to minimise risks associated with customer applications, the customer must use adequate design and operating safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.

Wolfson's products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer's own risk.

Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party's products or services does not constitute Wolfson's approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document belong to the respective third party owner.

Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is not liable for any unauthorised alteration of such information or for any reliance placed thereon.

Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in Wolfson's standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person's own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person.

ADDRESS

Wolfson Microelectronics plc Westfield House 26 Westfield Road Edinburgh EH11 2QB Tel :: +44 (0)131 272 7000

Fax :: +44 (0)131 272 7001 Email :: <u>sales@wolfsonmicro.com</u>

