

1 General description

The WLAN7001C is a fully integrated RF front-end MMIC for 802.11a/n/ac WLAN standard with up to 80 MHz channel bandwidth. It includes a Low-Noise Amplifier, a Single Pole Double Throw Switch required for TDD operation. The WLAN7001C also includes a TX Power Amplifier and an integrated power detector covering the entire ISM band.

The WLAN7001C integrates harmonic and coexistence filtering. The WLAN7001C has RX by-pass mode for high-power signal handling and low-power TX mode to optimize power efficiency of the PA for low-power levels. Manufactured on QUBiC eighth generation SiGe:C technology of NXP Semiconductors. The WLAN7001C offers best-inclass noise figure, linearity, and power efficiency and low insertion loss CMOS switches with good process stability.

The WLAN7001C has a 1.7 mm \times 2.0 mm footprint with HX2SON10 package with 300 μ m thickness.

2 Features and benefits

- Full ISM High Band 5150 MHz to 5850 MHz
- · Fully integrated RF front end
- · Low-noise amplifier (LNA) with bypass mode
- Single Pole Double Throw switch (SPDT)
- Power amplifier (PA) with high linearity and a low-power mode
- Integrated power detector for closed loop control
- Integrated matching for 50 Ω for input & output; DC free input/output ports
- Integrated harmonic and coexistence filtering
- 4 modes of operation (RX Bypass/Stand-by, RX LNA, TX high linearity, TX low power)
- Supply voltage 3.0 V to 4.75 V
- Low supply current of 8 mA in RX mode with optimized performances
- Low RX noise figure = 2.35 dB
- High efficiency: supply current of 185 mA in TX mode at +17 dBm, MCS9
- TX output power of +15 dBm at 1.25 % DEVM (MCS9/VHT80)
- TX output power of +17.5 dBm at 2.0 % DEVM (MCS7/HT40)
- ESD protection on all pins (HBM > 2 kV)
- Small 10-pins leadless package 1.7 mm × 2.0 mm × 0.3 mm; 0.35 mm pitch

3 Applications

- IEEE 802.11a/n/ac WiFi, WLAN
- Smartphones, tablets, netbooks, and other portable computing devices
- · Access points, routers, gateways
- · Wireless video
- · General-purpose ISM applications

4 Quick reference data

Table 1. Quick reference data

 T_{amb} = 25 °C; V_{CC1} = V_{CC2} = V_{CC3} = 3.6 V; V_{IH} = 3.3 V; V_{IL} = 0 V; Z_S = Z_L = 50 Ω ; P_i = -30 dBm unless otherwise specified. All measurements done on application board with SMA connectors as reference plane. (DC-decoupling capacitor 100 nF, 470 nF, and 6.8 pF are placed nearby the pin 8, 9 and 4, respectively).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
RF perfor	mance at ANT-RX path in RX LNA mode					
I _{CC}	supply current	RX LNA mode	-	8	9.5	mA
G _p	power gain		12	14	16	dB
NF	noise figure	[1]	-	2.35	2.7	dB
P _{i(1dB)}	input power at 1 dB gain compression		-	-3	-	dBm
RLin	input return loss		-	12	-	dB
RL _{out}	output return loss		-	10	-	dB
RF perfor	mance at ANT-RX path in RX bypass mo	de		'		
I _{CC}	supply current	RX bypass mode	-	6	-	μΑ
G _p	power gain		-8.5	-7	-5.5	dB
RF perfor	mance at ANT-TX path in TX high-lineari	ty mode		'		
I _{CC}	supply current	P _L = +17 dBm, TX high mode [1]	-	185	230	mA
G _P	power gain		26	28	30.5	dB
DEVM	dynamic error vector magnitude	P _{out} = 17.5 dBm, MCS7, HT40	-	2.0	3.0	%
		P _{out} = 15.0 dBm, MCS9, VHT80	-	1.25	1.78	%

^[1] Guaranteed by device design; not tested in production

5 Ordering information

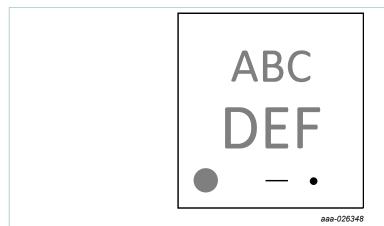
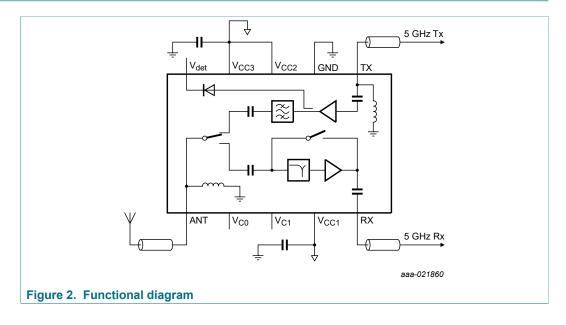
Table 2. Ordering information

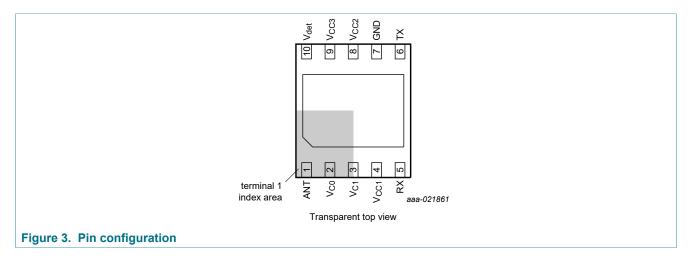
Type number	Package	Package					
	Name	Description	Version				
WLAN7001C	HX2SON10	plastic, thermal, enhanced super thin small outline package: no leads; 10 terminals: body 2.0 mm × 1.7 mm × 0.30 mm; 0.35 mm	SOT1436				

6 Marking

Table 3. Marking code

Lines	Type number	Marking code					
Line A (ABC)	WLAN7001C	458					
Line B (DEF)	date code	YWW					
Line C (H)	assembly center						


Figure 1. Marking code description

7 Functional diagram

8 Pinning information

8.1 Pinning

8.2 Pin description

Table 4. Table 4. Pin description

Symbol	Pin	Description
ANT	1	antenna in/out pin
V _{CO}	2	C ₀ control pin
V _{C1}	3	C ₁ control pin
V _{CC1}	4	supply voltage (LNA)
RX	5	RX output
TX	6	TX input
GND	7	ground
V _{CC2}	8	supply voltage (PA)
V _{CC3}	9	supply voltage (PA)
V _{det}	10	detection voltage
GND	exposed die pad	ground

Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Mi	in Max	Unit
V _{CC}	supply voltage	1	·] -0	.5 +6	V
V _{I(C0)}	input voltage on pin C0	digital control signals for RX, TX modes	-0	.5 +4.2	V
V _{I(C1)}	input voltage on pin C1	digital control signals for RX, TX, and LNA control signals	-0	.5 +4.2	V
P _{i(ANT)}	input power-on pin ANT	RX LNA mode; 802.11ac MCS7 signal, +10 dBm	l _	10	dBm
		RX bypass mode	-	20	dBm
P _{i(TX)}	input power-on pin TX	continuous wave; TX mode; 802.11ac MCS7 signal, +10 dBm	-	10	dBm
T _{amb}	ambient temperature	air temperature	-4	0 +85	°C
T _j	junction temperature		-4	0 +155	°C
T _{stg}	storage temperature		-4	0 +150	°C
V _{ESD}	electrostatic discharge voltage	Human Body Model (HBM) according to ANSI/ ESDA/JEDEC standard JS-001	-	±200	0 V
		Charged Device Model (CDM) according to ANSI/ESDA/JEDEC standard JS-002	-	±500	V

 $^{6\,\}mathrm{V}$ is authorized for 250 s over the product life time as transient operational voltage. Guaranteed by device design; not tested in production

10 Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Recomme	ended operation	,			'	
f _{oper}	operating frequency		5150	-	5850	MHz
V _{CC}	supply voltage	V _{CC1} , operating	3.2	3.6	4.5	V
		V _{CC2} , operating	3.2	3.6	4.5	V
		V _{CC3} , operating	3.2	3.6	4.5	V
V _{IH}	HIGH-level input voltage		1.8	-	3.6	V
V _{IL}	LOW-level input voltage		0	-	0.4	V
T _{oper}	operating temperature	surrounding temperature	-20	+25	+70	°C
Functiona	operating range [1]	,			'	
V _{CC}	supply voltage	V _{CC1} , extended	3.0	3.6	4.75 ^[2]	٧
		V _{CC2} , extended	3.0	3.6	4.75 ^[2]	٧
		V _{CC3} , extended	3.0	3.6	4.75 ^[2]	٧
V _{IH}	HIGH-level input voltage		1.6	-	3.6	V
V _{IL}	LOW-level input voltage		0	-	0.4	٧
T _{oper}	operating temperature	surrounding temperature	-20	+25	+85	°C

^[1] Functional with reduced performance.[2] During battery charging only

11 Thermal characteristics

Table 7. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient		65	°C/W

12 Characteristics

Table 8. Static Characteristics

 T_{amb} = 25 °C; V_{CC1} = V_{CC2} = V_{CC3} = 3.6 V; V_{IH} = 3.3 V; V_{IL} = 0 V; Z_S = Z_L = 50 Ω ; P_i = -30 dBm, f = 5150 MHz to 5850 MHz. Unless otherwise specified. All measurements done on application board with SMA connectors as reference plane. (DC-decoupling capacitor 100 nF, 470 nF, and 6.8 pF are placed nearby the pin 8, 9 and 4, respectively).

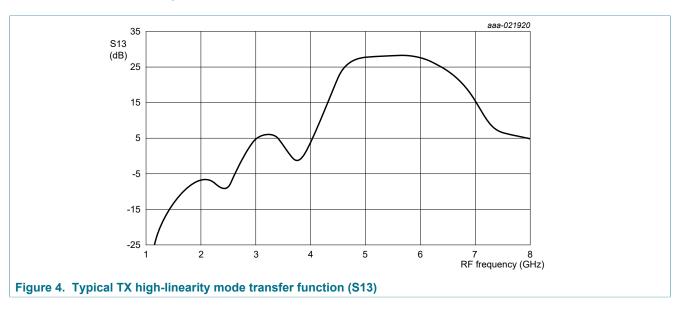
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{CC}	supply current	RX LNA gain mode	-	8	9.5	mA
		RX bypass mode	-	6	-	μΑ
		RX bypass mode, Vcc1 = Vcc2 = Vcc3 = 4.8 V	-	-	35	μΑ
		TX high-linearity quiescent	-	145	-	mA
		TX low-power mode quiescent	-	90	-	mA
		TX high-linearity mode at +17 dBm	-	185	230	mA
		TX low-power mode at +12 dBm	-	115	-	mA
I _{ctrl}	control current	internal pull-down resistor, pin C0	-	10	-	μΑ
		internal pull-down resistor, pin C1	-	10	-	μΑ

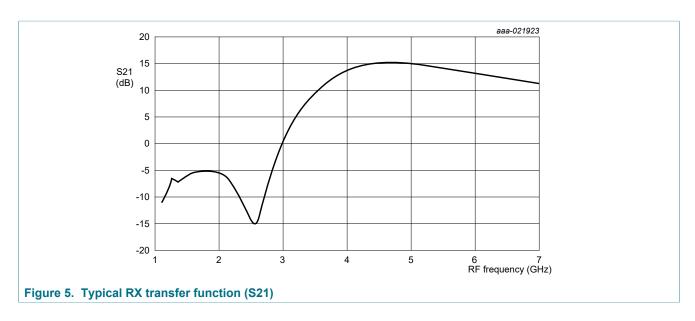
Table 9. Transient Characteristics

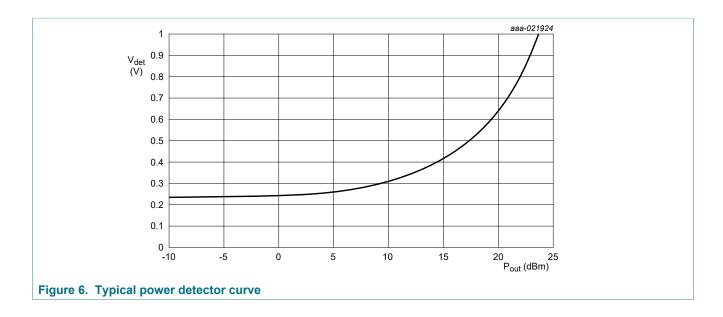
 T_{amb} = 25 °C; V_{CC1} = V_{CC2} = V_{CC3} = 3.6 V; V_{IH} = 3.3 V; V_{IL} = 0 V; Z_S = Z_L = 50 Ω ; P_i = -30 dBm, f = 5150 MHz to 5850 MHz. Unless otherwise specified. All measurements done on application board with SMA connectors as reference plane. (DC-decoupling capacitor 100 nF, 470 nF, and 6.8 pF are placed nearby the pin 8, 9 and 4, respectively).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{on(LNA)}	LNA turn-on time	from 90 % of control signal to 90 % LNA output level		-	300	ns
t _{off(LNA)}	LNA turn-off time	from 10 % of control signal to 90 % bypass output level	-	-	400	ns
t _{on(PA)}	PA turn-on time	From 90 % of control signal to 90 % PA output level		-	500	ns
t _{off(PA)}	PA turn-off time	from 10 % of control signal to 90 % bypass output level	-	-	500	ns

Table 10. Dynamic Characteristics


 T_{amb} = 25 °C; V_{CC1} = V_{CC2} = V_{CC3} = 3.6 V; V_{IH} = 3.3 V; V_{IL} = 0 V; Z_S = Z_L = 50 Ω ; P_i = -30 dBm, f = 5150 MHz to 5850 MHz. Unless otherwise specified. All measurements done on application board with SMA connectors as reference plane. (DC-decoupling capacitor 100 nF, 470 nF, and 6.8 pF are placed nearby the pin 8, 9 and 4, respectively).


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
RF perfor	mance at ANT-RX	path in RX LNA gain mode				
f _{oper}	operating frequency		5150	-	5925	MHz
Gp	power gain		12.5	14	16	dB
$G_{p(flat)}$	power gain flatness	peak-to-peak over any 80 MHz band	-	0.3	-	dB
NF	noise figure	[1]	-	2.35	2.7	dB
IP2 _i	input second- order intercept point	1 MHz tone spacing; P_{in} = -13 dBm per tone, f_{in} = 2500 MHz to 2700 MHz	15	-	-	dBm
IP3 _i	input third-order intercept point	1 MHz tone spacing; P_{in} = -13 dBm per tone, f_{in} = 1690 MHz to 2000 MHz	0	-	-	dBm
P _{i(1dB)}	input power at 1 dB gain compression	in-band	-	-4	-	dBm
IP3 _i	input third-order intercept point.	r 20 MHz tone spacing; P _i = -20 dBm per tone [1]		4.0	-	dBm
	OOB gain	2400 MHz to 2480 MHz	-	-13	-6	dB
		2480 MHz to 3600 MHz	-	-	11.5	dB
RLin	input return loss		-	-12.5	-10	dB
RL _{out}	output return loss		-	-10.5	-7.5	dB
RF perfor	mance at ANT-RX	path in RX bypass mode				
f _{oper}	operating frequency		5150	-	5925	MHz
Gp	power gain		-8.5	-7	-5.5	dB
$G_{p(flat)}$	power gain flatness	peak-to-peak over any 80 MHz band	-	0.3	-	dB
P _{i(1dB)}	input power at 1 dB gain compression	in-band		13	-	dBm
IP3 _i	input third-order intercept point.	20 MHz tone spacing; P _i = -3 dBm ^[1]	25	28	-	dBm
RLin	input return loss		-	-10	-7.5	dB
RL _{out}	output return loss		-	-12	-9.5	dB


Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
RF perfori	mance at ANT-TX	path in TX High-Linearity mode					
Gp	power gain		26	28.5	30.5	dB	
G _{p(flat)}	power gain flatness	peak-to-peak over any 80 MHz band	-	0.5	-	dB	
ISL	isolation	measured between ANT and RX ports, while applying signal on TX port in TX mode	33	45	-	dB	
SEM	spectral emission mask- compliant maximum power	IEEE mask compliance Figure 7, 11n, MCS0	19	20	-	dBm	
RLin	input return loss		-	10	-	dB	
a _{2H}	second harmonic level	P _L = 20 dBm; 20; 40; 80 MHz all MCS	-	-31	-26	dBm/ MHz	
a _{3H}	third harmonic level	P _L = 20 dBm; 20; 40; 80 MHz all MCS	-	-40	-31	dBm/ MHz	
DEVM	dynamic	P _{out} = 19.5 dBm, 802.11a, 6 Mbp/s	-	4.0	8.75	%	
	error vector magnitude	D = 18.5 dRm 64 OAM 54 Mhn/e		-	2.9	4.6	%
		P _{out} = 18.5 dBm MCS7, HT40		3.2	5.0	%	
		P _{out} = 17.5 dBm, MCS7, HT40		-	2.0	3.0	%
		P _{out} = 17 dBm MCS9, VHT80 P _{out} = 15 dBm, MCS9, VHT80		-	1.8	2.8	%
				-	1.25	1.78	%
		P _{out} = 14 dBm, MCS9, VHT160	-	1.0	1.78	%	
	stability, spurious levels.	P _{out} = 19 dBm, MCS7, HT40, 500 MHz to 12 GHz, source/load VSWR ≤ 6:1		-	-42	dBm/ MHz	
	ruggedness	V_{CC} = 4.75 V, T_{amb} = -30 °C, + 85 °C, P_{out} is set to ≤ 23 dBm_MCS0 at 50 Ω load and given T_{amb}	-	-	10:1	VSW R	
RF perfori	mance at ANT-TX	path in TX Low-power mode					
G _p	power gain		21	23	26	dB	
G _{p(flat)}	power gain flatness	peak-to-peak over any 80 MHz band	-	0.2	-	dB	
DEVM	dynamic error vector magnitude	P _{out} = 12 dBm, MCS7, HT40 [1]	-	3.2	-	%	
a _{2H}	second harmonic level	P _L = 20 dBm; 20; 40; 80 MHz all MCS	-	-35	-	dBm/ MHz	
a _{3H}	third harmonic level	P _L = 14 dBm, 20; 40; 80 MHz all MCS	-	-40	-	dBm/ MHz	
Power det	ector at V _{det} pin i	n TX High-linearity mode				,	
V _{det}	detection	No RF	0.19	0.22	-	V	
	voltage	P _L = 21 dBm [2]	-	0.75	0.95	V	

Guaranteed by device design, not tested in production. Measured at the peak of the preamble of OFDM

12.1 Graphics

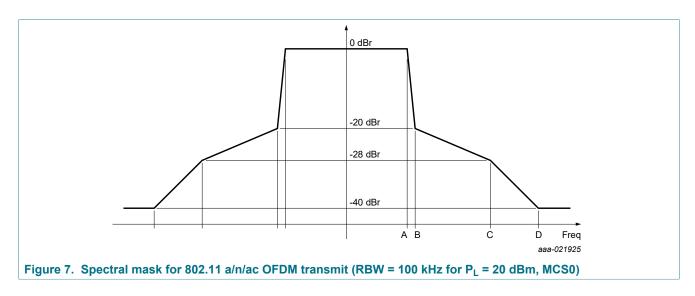
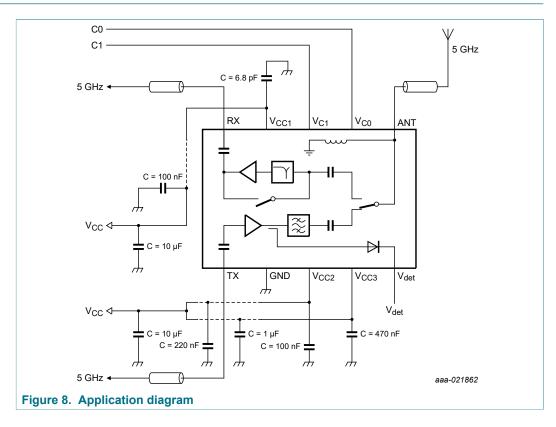
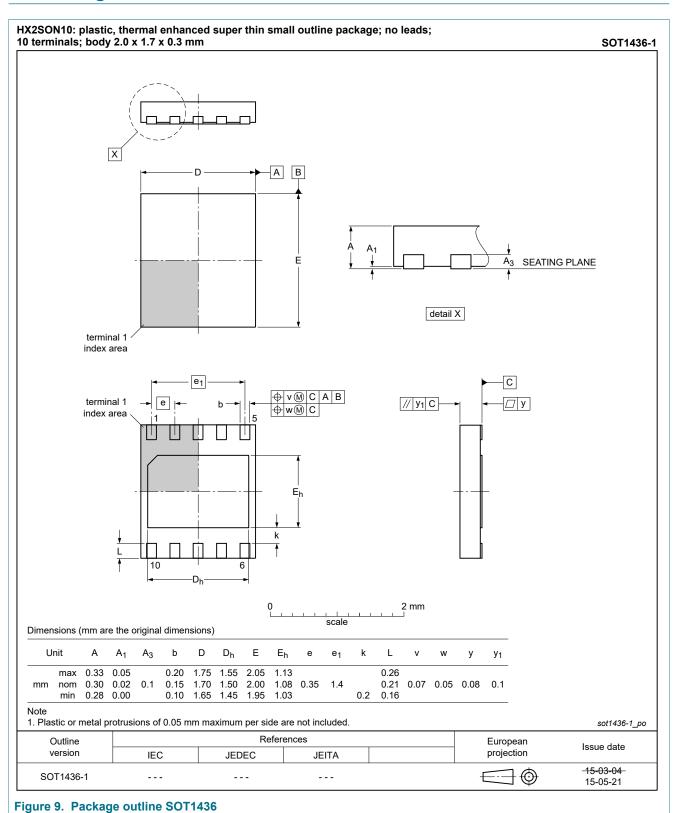


Table 11. Spectral mask distance for 20; 40 MHz bandwidth


Channel size	Α	В	С	D	Frequency channel center
20 MHz	9 MHz	11 MHz	20 MHz	30 MHz	5180 MHz to 5825 MHz
40 MHz	19 MHz	21 MHz	40 MHz	60 MHz	5190 MHz to 5795 MHz


Table 12. Control signal truth table

Pin status		Mode of o	peration			Mode name
C0	C1	Switch		LNA	PA	
(pin2)	(pin3)	ANT-RX	ANT-TX			
LOW	LOW	ON	OFF	OFF	OFF	RX bypass mode
LOW	HIGH	ON	OFF	ON	OFF	RX LNA
HIGH	LOW	OFF	ON	OFF	ON	TX high-Linearity
HIGH	HIGH	OFF	ON	OFF	ON	TX Low power

13 Application information

14 Package outline

15 Handling information

15.1 Moisture sensitivity

Table 13. Moisture sensitivity level

Test methodology	Class
JESD-22-A113	1

15.2 ESD information

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

16 Abbreviations

Table 14. Abbreviations

Table 14. Apple	Tation 1
Acronym	Description
ATM	automated teller machine (cash dispenser)
CDM	charge device model
CMOS	complementary metal oxide semiconductors
CW	continuous wave
DEVM	dynamic error vector magnitude
ESD	electrostatic discharge
EVM	error vector magnitude
НВМ	human body model
IEEE	institute of electrical and electronics engineers
ISM	industrial scientific medical
LNA	low-noise amplifier
MCS	modulation & code scheme
MMIC	monolithic microwave-integrated circuit
MSL	moisture sensitivity level
PA	power amplifier
RX	receiver
SiGe:C	silicon germanium carbon
SPDT	single pole double throw
TDD	time duplex division
TX	transmitter
VHT	very high throughput
VSWR	voltage standing wave ratio
WLAN	wireless local area network

17 Revision history

Table 15. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
WLAN7001C v.3	20180907	Product data sheet	-	WLAN7001C v.2	
Modification	 Changed status from Company confidential to Public updated the ESD condition on CDM with the correct description of the used ESD standard 				
WLAN7001C v.2	20180815	Product data sheet	-	WLAN7001C v.1	
Modification	Put extra condition at Dynamic characteristics DEVM: P _{out} = 14 dBm				
WLAN7001C v.1	20180213	Product data sheet	-	-	

18 Legal information

18.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

WLAN7001C

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive

applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1	General description	1
2	Features and benefits	1
3	Applications	
4	Quick reference data	3
5	Ordering information	4
6	Marking	
7	Functional diagram	
8	Pinning information	
8.1	Pinning	
8.2	Pin description	6
9	Limiting values	7
10	Recommended operating conditions	8
11	Thermal characteristics	
12	Characteristics	9
12.1	Graphics	12
13	Application information	15
14	Package outline	16
15	Handling information	17
15.1	Moisture sensitivity	
15.2	ESD information	
16	Abbreviations	18
17	Revision history	19
18	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.