

$64K \times 16$ HIGH-SPEED CMOS STATIC RAM

GENERAL DESCRIPTION

The W26L010A is a high-speed, low-power CMOS static RAM organized as $65,536 \times 16$ bits that operates on a single 3.3-volt power supply. This device is manufactured using Winbond's high performance CMOS technology.

The W26L010A has an active low chip select, separate upper and lower byte selects, and a fast output enable. No clock or refreshing is required. Separate byte select controls (\overline{LB} and \overline{UB}) allow individual bytes to be written and read. \overline{LB} controls I/O1-I/O8, the lower byte. \overline{UB} controls I/O9–I/O16, the upper byte. This device is well suited for use in high-density, high-speed system applications.

FEATURES

- High speed access time: 10/12 nS (max.)
- Low power consumption:
- Active: 530 mW (max.)
- Single +3.3V power supply
- Fully static operation
- No clock or refreshing

PIN CONFIGURATION

- All inputs and outputs directly TTL compatible
- Three-state outputs
- Data byte control
 - $-\overline{LB}$ (I/O1–I/O8), \overline{UB} (I/O9–I/O16)
- Available packages: 44-pin 400 mil SOJ and 44-pin TSOP(II)

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0–A15	Address Inputs
I/O1–I/O16	Data Inputs/Outputs
CS	Chip Select Inputs
WE	Write Enable Input
ŌĒ	Output Enable Input
LB	Lower Byte Select I/O1–I/O8
UB	Upper Byte Select I/O9–I/O16
Vdd	Power Supply
Vss	Ground
NC	No Connection

TRUTH TABLE

CS	ŌĒ	WE	LB	ŪB	MODE	I/O1- I/O8	I/O9- I/O16	VDD CURRENT
Н	Х	Х	Х	Х	Not Selected	High Z	High Z	ISB, ISB1
L	Н	Н	Х	Х	Output Disable	High Z	High Z	Idd
L	L	Н	L	L	2 Bytes Read DOUT		Dout	Idd
L	L	Н	L	Н	Lower Byte Read	Dout	High Z	Idd
L	L	Н	Н	L	Upper Byte Read	High Z	Dout	Idd
L	Х	L	L	L	2 Bytes Write	DIN	DIN	Idd
L	Х	L	L	Н	Lower Byte Write DIN High		High Z	Idd
L	Х	L	Н	L	Upper Byte Write High Z DIN		Idd	
L	Х	Х	Н	Н	Output Disable	Output Disable High Z High Z		IDD

DC CHARACTERISTICS

Absolute Maximum Ratings

PARAMETER	RATING	UNIT
Supply Voltage to Vss Potential	-0.5 to +4.6	V
Input/Output to Vss Potential	-0.5 to VDD +0.5	V
Allowable Power Dissipation	1.5	W
Storage Temperature	-65 to +150	٥C
Operating Temperature	0 to +70	°C

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

Operating Characteristics

(VDD = 3.3V \pm 5%, VSS = 0V, TA = 0 to 70° C)

PARAMETER	SYM.	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Input Low Voltage	VIL	-	-0.5	-	+0.8	V	
Input High Voltage	Vін	-	+2.0	-	Vdd +0.3	V	
Input Leakage Current	ILI	VIN = VSS to VDD	-10	-	+10	μA	
Output Leakage Current	Ilo	VI/O = Vss to VDD Output Pins in High Z, See Truth Table	-10	-	+10	μA	
Output Low Voltage	Vol	IOL = +8.0 mA		-	-	0.4	V
Output High Voltage	Кон	Юн = -4.0 mA		2.4	-	-	V
Operating Power	Idd	$\overline{CS} = VIL (max.), Cycle = 10$ min.		-	-	160	mA
Supply Current		I/O = open, Duty = 100% 12		-	-	140	
Standby Power	ISB	$\overline{CS} = VIH (min.), Cycle = min.$		-	-	30	mA
Supply Current	ISB1	$\overline{\text{CS}}$ = VDD -0.2V, I/O = open		-	-	10	mA
		All other pins = VDD -0.2V/GND)				

Note: Typical characteristics are evaluated at VDD = 3.3V, TA = 25° C.

CAPACITANCE

(Vdd = 3.3V, TA = 25° C, f = 1 MHz)

PARAMETER	SYM.	CONDITIONS	MAX.	UNIT
Input Capacitance	CIN	VIN = 0V	6	pF
Input/Output Capacitance	CI/O	Vout = 0V	8	pF

Note: These parameters are sampled but not 100% tested.

AC CHARACTERISTICS

AC Test Conditions

PARAMETER	CONDITIONS
Input Pulse Levels	0V to 3V
Input Rise and Fall Times	2 nS
Input and Output Timing Reference Level	1.5V
Output Load	CL = 30 pF, IOH/IOL = -4 mA/8 mA

AC Test Loads and Waveform

(VDD = 3.3V $\pm 5\%,$ Vss = 0V, TA = 0 to 70° C)

(1) Read Cycle

PARAMETER	SYM.	W26L0	W26L010A-10		10A-12	UNIT
		MIN.	MAX.	MIN.	MAX.	
Read Cycle Time	TRC	10	-	12	-	nS
Address Access Time	ΤΑΑ	_	10	_	12	nS
Chip Select Access Time	TACS	-	10	_	12	nS
Output Enable to Output Valid	TOE	_	5	_	6	nS
UB, LB Access Time	Тва	_	5	_	6	nS
Output Hold from Address Change	Тон	3	-	3	-	nS
Chip Select to Output in Low Z	Tclz*	3	-	3	-	nS
Chip Deselect to Output in High Z	TCHZ*	-	5	_	6	nS
Output Enable to Output in Low Z	Tolz*	0	-	0	-	nS
Output Disable to Output in High Z	Тонz*	_	5	_	6	nS
\overline{UB} , \overline{LB} Select to Output in Low Z	TBLZ [*]	0	_	0	-	nS
\overline{UB} , \overline{LB} Deselect to Output in High Z	Твнz*	-	5	-	6	nS

* These parameters are sampled but not 100% tested.

AC Characteristics, continued

(2) Write Cycle

PARAMETER		SYM.	W26L	010A-10	W26L0	10A-12	UNIT
			MIN.	MAX.	MIN.	MAX.	
Write Cycle Time	Twc	10	_	12	_	nS	
Chip Select to End of W	rite	Tcw	9	_	10	_	nS
Address Valid to End of	Write	TAW	9	_	10	_	nS
Address Setup Time	TAS	0	_	0	_	nS	
UB, LB Select to End of Write		Твw	9	_	10	_	nS
Write Pulse Width		Twp	9	_	10	_	nS
Write Recovery Time	$\overline{CS}, \overline{WE}$	Twr	0	-	0	_	nS
Data Valid to End of Wri	Tow	6	_	7	_	nS	
Data Hold from End of V	Трн	0	-	0	_	nS	
Write to Output in High 2	Twhz*	_	6	_	7	nS	
End of Write to Output A	Active	Tow*	3	_	3	-	nS

* These parameters are sampled but not 100% tested.

Timing Waveforms

Read Cycle 1

(Address Controlled, $\overline{CS} = \overline{OE} = \overline{UB} = \overline{LB} = VIL, \overline{WE} = VIH$)

Read Cycle 2

(Chip Select Controlled, $\overline{OE} = VIL$, $\overline{WE} = VIH$)

Notes:

- 1. $\overline{\text{WE}}$ is high for read cycle.
- 2. Device is continuously selected.

 $\overline{CS} = \overline{OE} = \overline{LB} = Low$

$$\overline{CS} = \overline{OE} = \overline{LB} = Low$$

3. Address valid prior to or coincident with $\overline{\text{CS}}$ transition low.

Timing Waveforms, continued

Read Cycle 3

Write Cycle 1

Publication Release Date: July 1998 Revision A3

Timing Waveforms, continued

Write Cycle 2

(OE = VIL Fixed)

Notes:

1. During this period, I/O pins are in the output state, so input signals of opposite phase to the outputs should not be applied.

2. The data output from DOUT are the same as the data written to DIN during the write cycle.

3. Dout provides the read data for the next address.

4. Transition is measured \pm 500 mV from steady state with CL = 5 pF. This parameter is guaranteed but not 100% tested.

PART NO.	ACCESS TIME (nS)	OPERATING CURRENT MAX. (mA)	STANDBY CURRENT MAX. (mA)	PACKAGE
W26L010AJ-10	10	160	10	44-pin 400 mil SOJ
W26L010AJ-12	12	140	10	44-pin 400 mil SOJ
W26L010AT-10	10	160	10	44-pin TSOP
W26L010AT-12	12	140	10	44-pin TSOP

ORDERING INFORMATION

Notes:

1. Winbond reserves the right to make changes to its products without prior notice.

2. Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in applications where personal injury might occur as a consequence of product failure.

PACKAGE DIMENSIONS

44-pin Small Outline J Band

44-pin Standard Type Two TSOP

VERSION HISTORY

VERSION	DATE	PAGE	DESCRIPTION
A1	May 1995		Initial Issued
A2	Feb. 1998	1, 3, 4, 5, 8	Change the relative specification from 15/20 nS to 10/12 nS
		1, 8, 9	Add TSOP package
		6, 7	Modify timing waveforms
A3	Jul. 1998	3, 4	Revise Vcc from 3.3V $\pm 10\%$ to 3.3V $\pm 5\%$

HeadquartersNo. 4, Creation Rd. III,FScience-Based Industrial Park,1Hsinchu, TaiwanFTEL: 886-3-57700661FAX: 886-3-5796096Fhttp://www.winbond.com.tw/Voice & Fax-on-demand: 886-2-27197006

 Taipei Office

 11F, No. 115, Sec. 3, Min-Sheng East Rd.,

 Taipei, Taiwan

 TEL: 886-2-27190505

 FAX: 886-2-27197502

Winbond Electronics (H.K.) Ltd. Rm. 803, World Trade Square, Tower II, 123 Hoi Bun Rd., Kwun Tong, Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064 Winbond Electronics North America Corp. Winbond Memory Lab. Winbond Microelectronics Corp. Winbond Systems Lab. 2727 N. First Street, San Jose, CA 95134, U.S.A. TEL: 408-9436666 FAX: 408-5441798

Note: All data and specifications are subject to change without notice.