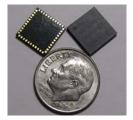
Data Sheet SKYTRAQ

VENUS634LPx 65 Channel Ultra Low Power GPS Receiver - ROM

FEATURES


- GPS receiver in 10mm x 10mm x 1.1mm size
- Tests 8 million time-frequency hypothesis per sec
- Open sky cold start 29 second
- Signal detection better than -161dBm
- Reacquisition sensitivity –155dBm
- Accuracy 2.5m CEP
- ~23mA in tracking and navigation mode
- Multipath detection and suppression
- Data logging with external SPI serial Flash
- Supports active or passive antenna
- LGA44 package with 0.8 pitch
- Pb free RoHS compliant

The Venus634LPx is a module-in-a-chip design targeting mobile consumer and cellular handset applications. It offers very low current consumption, high sensitivity, and best in class signal acquisition and time-to-first-fix performance.

The Venus634LPx contains all the necessary components of a complete GPS receiver module, includes GPS RF front-end, GPS baseband signal processor, 0.5ppm TCXO, 32.768kHz RTC crystal, RTC LDO regulator, and passive components. It requires very low external component count and takes up only 100mm² PCB footprint.

Dedicated massive-correlator signal parameter search engine within the baseband enables rapid search of all the available satellites and acquisition of very weak signal. An advanced track engine allows weak signal tracking and positioning in harsh environments such as urban canyons and under deep foliage.

With very fast signal acquisition speed, the Venus634LPx has very low average power consumption for locate on demand type of applications.

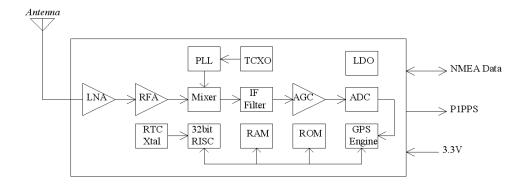


Figure-1 GPS Receiver based on Venus634LPx

TECHNICAL SPECIFICATIONS

Receiver Type L1 Frequency

GPS C/A code SBAS Capable

51 Channel Acquisitions14 Channel Tracking

Accuracy Position 2.5m CEP

Velocity 0.1m/sec Timing 300ns

Open Sky TTFF Hot start 1 second

Cold start 29 seconds average

Reacquisition < 1s

Sensitivity Tracking -161dBm

Update Rate 1Hz standard

Dynamics 4G

Operational Limits Altitude < 18,000m^{*1} or

Velocity < 515m/s*

Datum Default WGS-84

Interface UART LVTTL level

Baud Rate 4800 / 9600 / 38400 / 115200 hardware configurable

Protocol NMEA-0183 V3.01, GGA, GLL, GSA, GSV, RMC, VTG (default GGA, GSA, GSV, RMC, VTG)

SkyTraq Binary

Main Supply Voltage 2.8V ~ 3.6V

Backup Voltage 1.5V ~ 6V

Current Consumption ~23mA tracking

Operating Temperature -40 ~ +85 deg-C

Storage Temperature -40 ~ +125 deg-C

Package LGA44 10mm x 1.1mm, 0.8mm pitch

^{*1:} COCOM limit, either may be exceeded but not both

PIN-OUT DIAGRAM

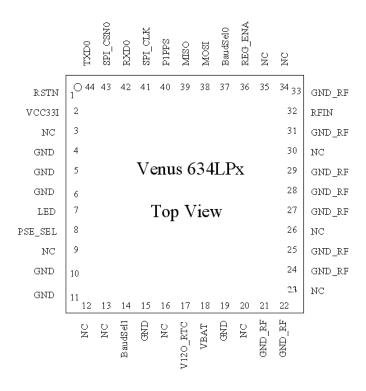


Figure-2 Venus634LPx Pin-Out Diagram

PIN DEFINITION

Pin Number	Signal Name	Туре	Description
1	RSTN	Input	Active LOW reset input. 3.3V LVTTL
2	VCC33I	Power Input	Main voltage supply input, 2.8V ~ 3.6V
3	NC		Not connected, empty pin
4	GND	Power	System ground
5	GND	Power	System ground
6	GND	Power	System ground
7	LED	Output	Navigation status indicator.
8	PSE_SEL	Input	Search engine mode selection
			1: low power mode
			0: enhanced acquisition mode
			3.3V LVTTL
9	NC		Not connected, empty pin
10	GND	Power	System ground
11	GND	Power	System ground
12	NC		Not connected, empty pin
13	NC		Not connected, empty pin
14	BAUDSEL1	Input	Hardware baud rate selection, used with BaudSel0.
			BaudSel[1:0] = 00 for 9600 baud, 01 for 4800 baud,
			10 for 38400 baud, 11 for 115200 baud
			3.3V LVTTL
15	GND	Power	System ground
16	NC		Not connected, empty pin
17	V12O_RTC	Power Output	1.2V LDO output for RTC & backup memory. Normally unused.
18	VBAT	Power Input	RTC & backup memory voltage input, 1.5V ~ 6.0V
19	GND	Power	System ground
20	NC		Not connected, empty pin
21	GND_RF	Power	RF section system ground
22	GND_RF	Power	RF section system ground
23	NC		Not connected, empty pin
24	GND_RF	Power	RF section system ground
25	GND_RF	Power	RF section system ground

26	NC		Not connected, empty pin
27	GND_RF	Power	RF section system ground
28	GND_RF	Power	RF section system ground
29	GND_RF	Power	RF section system ground
30	NC		Not connected, empty pin
31	GND_RF	Power	RF section system ground
32	RFIN	Input	GPS signal input, connect to GPS antenna.
33	GND_RF	Power	RF section system ground
34	NC		Not connected, empty pin
35	NC		Not connected, empty pin
36	REG_ENA	Input	Tie to pin-2 VCC33I
37	BAUDSEL0	Input	Hardware baud rate selection. See BaudSel1 3.3V LVTTL
38	MOSI	Output	SPI data output, for data logging with external serial flash. 3.3V LVTTL
39	MISO	Input	SPI data input, for data logging with external serial flash. 3.3V LVTTL
40	P1PPS	Output	1 pulse per second output. Active after position fix; goes HIGH for about 1msec. 3.3V LVTTL
41	SPI_CLK	Output	SPI clock, for data logging with external serial flash. 3.3V LVTTL
42	RXD0	Input	Received input of the asynchronous UART port. Used to input binary command to the GPS receiver. 3.3V LVTTL
43	SPI_CSN	Output	SPI chip select, for data logging with external serial flash. 3.3V LVTTL
44	TXD0	Output	Transmit output of the asynchronous UART port. Used to output standard NMEA-0183 sentence or response to input binary command. 3.3V LVTTL

DC CHARACTERISTICS OF DIGITAL INTERFACE

Below is when VCC3I is at nominally 3.3V

Parameter	Min.	Тур.	Max.	Units
Input Low Voltage			0.8	Volt
Input High Voltage	2.0			Volt
Output Low Voltage, Iol = 2 ~ 16mA			0.4	Volt
Output High Voltage, Ioh = 2 ~ 16mA	2.9			Volt

MECHANICAL DIMENSION

Unit =	= mil		Pac	kage Pa	ze = 393. ad = 15 x tch= 0.8	21 mil	93.7 mil : 5 mil	x 43.3 m	il = 10 m	m x 10m	ım x1.1 r	nm	
 -	21						393.7						31.83
393.7			Pin 1										
LG.	A44 F	Pac	kage	Тор	View	(tran	spare	ent, so	ee th	rougl	n to p	ads)	
		 _											
													_

Side View

RECOMMENDED PCB FOOTPRINT

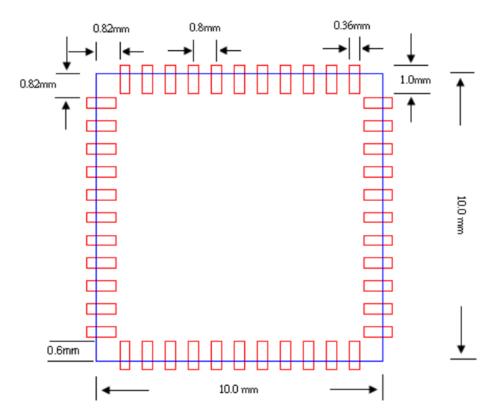
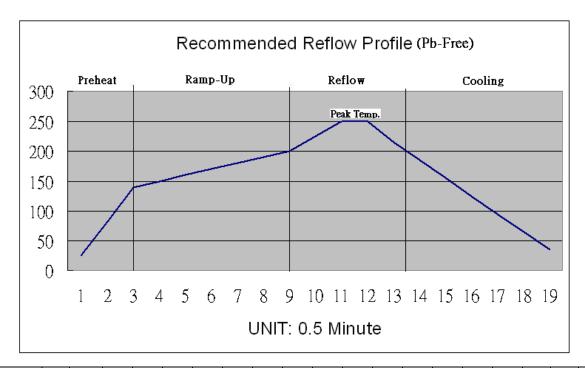
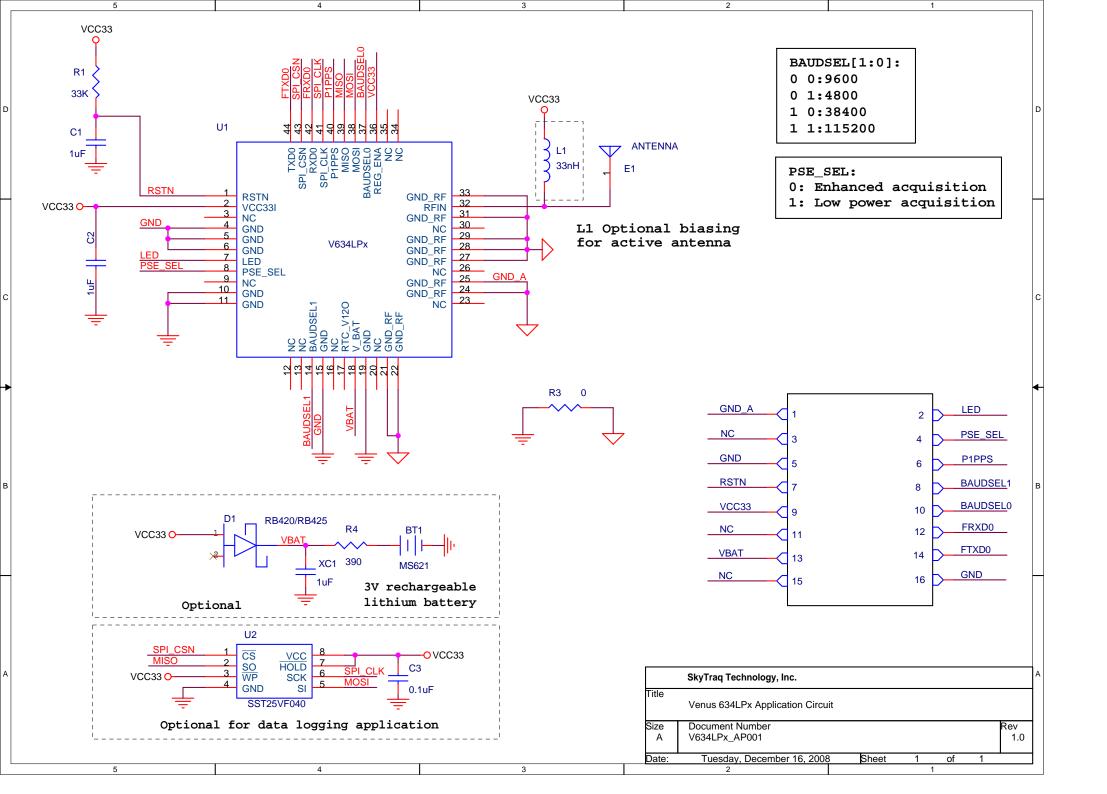



Figure-3 Recommended PCB Footprint.


Blue part is outline of the IC package. Red part is outline of the recommended PCB pad layout.

RECOMMENDED REFLOW PROFILE

$^{\circ}$ C	25	82.5	140	150	160	170	180	190	200	225	250	250	215	185	155	125	95	65	35
T(minute)	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8	8.5	9

Profile Description	SnPb Eutectic Process	Lead Free Process		
Preheat				
Maximum Temperature	100+/-10 ℃	140+/-10 °C		
$Time(\Delta T)$	40~60s	50~70s		
Ramp-Up				
Ramp-Up Rate	1 °C/s Max.	1 °C/s Max.		
$Time(\Delta T)$	120~150s	160~200s		
Reflow				
Maximum Temperature	Peak Temp.	Peak Temp.		
Minimum Temperature	180+/-5℃	200+/-10°C		
Peak Temperature	220+/-2℃	250+/-2℃		
Time(∆T) during Peak	10~30s	20~40s		
Temp.+/-2°C				
Reflow Time(Δ T)	120~150s	120~150s		
Cooling				
Cooling Rate	1.5 °C/s Max	1.5 °C/s Max		
$Time(\Delta T)$	60~120s	150~180s		

APPLICATION CIRCUIT INTERFACE SIGNALS

GND_A: RF ground

LED: Signal to indicate GPS position status (3.3V LVTTL), active LOW.

PSE_SEL: Acquisition engine search mode

Pull-high for low-power mode, pull-low for faster TTFF (3.3V LVTTL)

GND: Digital ground

P1PPS: 1 pulse per second time-mark (3.3V LVTTL)

RSTN: Active low reset input

BAUDSEL1, BAUDSEL0: Baud rate selection

BaudSel[1:0] = 00 for 9600 baud

01 for 4800 baud 10 for 38400 baud 11 for 115200 baud

VCC33: 3.3V power input

FRXD0: UART input (3.3V LVTTL)

FTXD0: UART output (3.3V LVTTL)

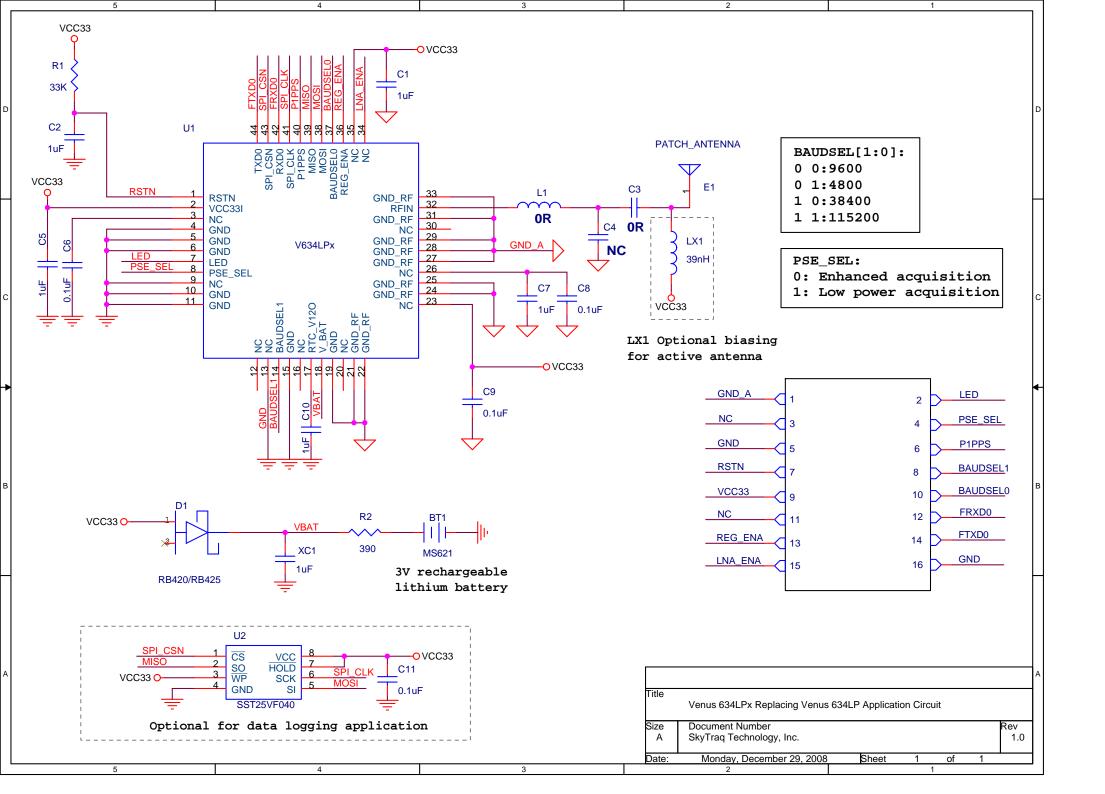
VBAT: Battery-backed RTC and SRAM supply input. Must not be left unconnected.

APPLICATION INFORMATION

- 1. For fast-rising power supply, a simple series R/C reset to pin-1, RSTN, as indicated in the application circuit is suitable. For system having slow-rising power supply, a reset IC providing 2~5ms reset duration may be necessary.
- 2. Pin-14 and pin-37 hardware-selects baud rate of the UART at power on.

BaudSel[1:0] = 00 for 9600 baud 01 for 4800 baud 10 for 38400 baud 11 for 115200 baud

The baud rate can still be changed via issuing SkyTraq binary command.


- 3. The RF input of Venus634LPx is already matched to 50-ohm. Passive antenna matched to 50-ohm can be directly applied.
- 4. For using Venus634LPx with active antenna, one with gain in range of 10~30dB and noise figure < 2dB can be used. Power to the active antenna needs to be applied externally.
- 5. Pin-18 VBAT supplies backup power to the real-time clock and backup SRAM for fast startup. For portable applications where there is battery with voltage in range of 1.5V ~ 6.0V as the main source, the VBAT pin can be directly connected to it.
- 6. To put Venus634LPx in power-down mode, an external 3V LDO regulator with enable control can be used to provide 3V to pin-2 and pin-36. Disabling the regulator reduces the total current to < 10uA, consumed by the RTC circuitry and backup SRAM through VBAT pin.

When using the described power-down mode, add a pull-up 10K resistor on pin-44, and add a series 10K resistor on pin-42.

7. The supported SPI Flash memory verified for data logging application are:

Manufacturer	Device ID	Size
EON	EN25F040	4Mbit
EON	EN25F080	8Mbit
MXIC	MX25L400	4Mbit
MXIC	MX25L800	8Mbit
MXIC	MX25L1605	16Mbit
MXIC	MX25L3205	32Mbit
MXIC	MX25L6405	64Mbit
WINBOND	W25X40	4Mbit
WINBOND	W25X80	8Mbit
WINBOND	W25X16	16Mbit
WINBOND	W25X32	32Mbit
WINBOND	W25X64	64Mbit
SST	SST25LF040	4Mbit
SST	SST25LF080	8Mbit
SST	SST25VF016	16Mbit
SST	SST 25VF032	32Mbit

- 8. Like BGA device, the Venus634LPx is moisture sensitive. It needs to be handled with care to void damage from moisture absorption and SMT re-flow. The device should be baked for 24 hours at 125-degC before mounting for SMT re-flow if it has been removed from the protective seal for more than 48hours.
- 9. For applications already designed using Venus634LP, the Venus634LPx can be a direct drop replacement if power down mode is not implemented, or power-down has been implemented by disabling a LDO regulator powering the entire circuit. Venus634LPx already contains the input matching network, thus the matching L1 and C3 in the Venus634LP reference design need to be change to 0-ohm resistor, and C4 need to be left open as shown in the following schematic. Pin-23, pin-34, and pin-35 has no function in Venus634LPx.
- 10. The Flash version Venus634FLPx, with default firmware, can be used in place of Venus634LPx if a 10Kohm pull-down resistor is added to pin-9. Adding pull-down resistor to pin-9 allows possibility of using customized-firmware Venus634FLPx if ever needed.

NMEA MESSAGES

The full descriptions of supported NMEA messages are provided at the following paragraphs.

GGA - Global Positioning System Fix Data

Time, position and fix related data for a GPS receiver.

Structure:

GPGGA,hhmmss.sss,ddmm.mmmm,a,x,xx,x.x,x.x,x.x,x.x,x.x,hh< CR> < LF>

1 2 3 4 56789 10 11

Example:

 $\$\mathsf{GPGGA}, 111636.932, 2447.0949, \mathsf{N}, 12100.5223, \mathsf{E}, 1, 11, 0.8, 118.2, \mathsf{M}, , , , 0000*02 < \mathsf{CR} > < \mathsf{LF} > \mathsf{M}, \mathsf$

Field	Name	Example	Description
1	UTC Time	111636.932	UTC of position in hhmmss.sss format, (000000.000 ~ 235959.999)
2	Latitude	2447.0949	Latitude in ddmm.mmmm format
			Leading zeros transmitted
3	N/S Indicator	N	Latitude hemisphere indicator, 'N' = North, 'S' = South
4	Longitude	12100.5223	Longitude in dddmm.mmmm format
			Leading zeros transmitted
5	E/W Indicator	E	Longitude hemisphere indicator, 'E' = East, 'W' = West
6	GPS quality	1	GPS quality indicator
	indicator		0: position fix unavailable
			1: valid position fix, SPS mode
			2: valid position fix, differential GPS mode
			3: GPS PPS Mode, fix valid
			4: Real Time Kinematic. System used in RTK mode with fixed integers
			5: Float RTK. Satellite system used in RTK mode. Floating integers
			6: Estimated (dead reckoning) Mode
			7: Manual Input Mode
			8: Simulator Mode
7	Satellites Used	11	Number of satellites in use, (00 ~ 12)
8	HDOP	0.8	Horizontal dilution of precision, (00.0 ~ 99.9)
9	Altitude	108.2	mean sea level (geoid), (-9999.9 ~ 17999.9)
10	DGPS Station ID	0000	Differential reference station ID, 0000 ~ 1023
			NULL when DGPS not used
11	Checksum	02	

GLL - Latitude/Longitude

Latitude and longitude of current position, time, and status.

Structure:

\$GPGLL, ddmm.mmmm, a, dddmm.mmmm, a, hhmmss.sss, A, a*hh < CR > < LF >

1 2 3 4 5 678

Example:

\$GPGLL,2447.0944,N,12100.5213,E,112609.932,A,A*57<CR><LF>

Field	Name	Example	Description
1	Latitude	2447.0944	Latitude in ddmm.mmmm format
			Leading zeros transmitted
2	N/S Indicator	N	Latitude hemisphere indicator
			'N' = North
			'S' = South
3	Longitude	12100.5213	Longitude in dddmm.mmmm format
			Leading zeros transmitted
4	E/W Indicator	E	Longitude hemisphere indicator
			'E' = East
			'W' = West
5	UTC Time	112609.932	UTC time in hhmmss.sss format (000000.000 ~
			235959.999)
6	Status	А	Status, 'A' = Data valid, 'V' = Data not valid
7	Mode Indicator	А	Mode indicator
			'N' = Data not valid
			'A' = Autonomous mode
			'D' = Differential mode
			'E' = Estimated (dead reckoning) mode
			'M' = Manual input mode
			'S' = Simulator mode
8	Checksum	57	

GSA - GNSS DOP and Active Satellites

GPS receiver operating mode, satellites used in the navigation solution reported by the GGA or GNS sentence and DOP values.

Structure:

Example:

Field	Name	Example	Description
1	Mode	А	Mode
			'M' = Manual, forced to operate in 2D or 3D mode
			'A' = Automatic, allowed to automatically switch 2D/3D
2	Mode	3	Fix type
			1 = Fix not available
			2 = 2D
			3 = 3D
3	Satellite used 1~12	05,12,21,22,3	Satellite ID number, 01 to 32, of satellite used in solution,
		0,09,18,06,14,	up to 12 transmitted
		01,31,,	
4	PDOP	1.2	Position dilution of precision (00.0 to 99.9)
5	HDOP	0.8	Horizontal dilution of precision (00.0 to 99.9)
6	VDOP	0.9	Vertical dilution of precision (00.0 to 99.9)
7	Checksum	36	

GSV - GNSS Satellites in View

Number of satellites (SV) in view, satellite ID numbers, elevation, azimuth, and SNR value. Four satellites maximum per transmission.

Structure:

\$GPGSV,x,x,xx,xx,xx,xx,xx,xx,xx,xx,xx,xx *hh<CR><LF>
1 2 3 4 5 6 7 4 5 6 7 8

Example:

\$GPGSV,3,1,12,05,54,069,45,12,44,061,44,21,07,184,46,22,78,289,47*72<CR><LF>
\$GPGSV,3,2,12,30,65,118,45,09,12,047,37,18,62,157,47,06,08,144,45*7C<CR><LF>
\$GPGSV,3,3,12,14,39,330,42,01,06,299,38,31,30,256,44,32,36,320,47*7B<CR><LF>

Field	Name	Example	Description
1	Number of message	3	Total number of GSV messages to be transmitted (1-3)
2	Sequence number	1	Sequence number of current GSV message
3	Satellites in view	12	Total number of satellites in view (00 ~ 12)
4	Satellite ID	05	Satellite ID number, GPS: 01 ~ 32, SBAS: 33 ~ 64 (33 =
			PRN120)
5	Elevation	54	Satellite elevation in degrees, (00 ~ 90)
6	Azimuth	069	Satellite azimuth angle in degrees, (000 ~ 359)
7	SNR	45	C/No in dB (00 ~ 99)
			Null when not tracking
8	Checksum	72	

RMC - Recommended Minimum Specific GNSS Data

Time, date, position, course and speed data provided by a GNSS navigation receiver.

Structure:

 $\$\mathsf{GPRMC}, \mathsf{hhmmss.sss}, \mathsf{A}, \mathsf{dddmm.mmmm}, \mathsf{a}, \mathsf{dddmm.mmmm}, \mathsf{a}, \mathsf{x}. \mathsf{x}, \mathsf{x}. \mathsf{x}, \mathsf{ddmmyy}, ,, \mathsf{a*hh} < \mathsf{CR} > < \mathsf{LF} > \mathsf{CR} >$

1 2 3 4 5 678 9 1011

Example:

 $\$\mathsf{GPRMC}, 111636.932, \mathsf{A}, 2447.0949, \mathsf{N}, 12100.5223, \mathsf{E}, 000.0, 000.0, 030407, .,, \mathsf{A}^*61 < \mathsf{CR} > < \mathsf{LF} > \mathsf{CR} > \mathsf{CR}$

Field	Name	Example	Description
1	UTC time	0111636.932	UTC time in hhmmss.sss format (000000.00 ~
			235959.999)
2	Status	А	Status
			'V' = Navigation receiver warning
			'A' = Data Valid
3	Latitude	2447.0949	Latitude in dddmm.mmmm format
			Leading zeros transmitted
4	N/S indicator	N	Latitude hemisphere indicator
			'N' = North
			'S' = South
5	Longitude	12100.5223	Longitude in dddmm.mmmm format
			Leading zeros transmitted
6	E/W Indicator	E	Longitude hemisphere indicator
			'E' = East
			'W' = West
7	Speed over ground	000.0	Speed over ground in knots (000.0 ~ 999.9)
8	Course over ground	0.000	Course over ground in degrees (000.0 ~ 359.9)
9	UTC Date	030407	UTC date of position fix, ddmmyy format
10	Mode indicator	А	Mode indicator
			'N' = Data not valid
			'A' = Autonomous mode
			'D' = Differential mode
			'E' = Estimated (dead reckoning) mode
			'M' = Manual input mode
			'S' = Simulator mode
11	checksum	61	

VTG - Course Over Ground and Ground Speed

The Actual course and speed relative to the ground.

Structure:

 $\mathsf{GPVTG}, \mathsf{x}.\mathsf{x}, \mathsf{T}, \mathsf{,M}, \mathsf{x}.\mathsf{x}, \mathsf{N}, \mathsf{x}.\mathsf{x}, \mathsf{K}, \mathsf{a}^*\mathsf{hh} {<\!} \mathsf{CR} {>\!} {<\!} \mathsf{LF} {>\!}$

1 2 3 4 5

Example:

GPVTG, 000.0,T,,M,000.0,N,0000.0,K,A*3D<CR><LF>

Field	Name	Example	Description
1	Course	0.000	True course over ground in degrees (000.0 ~ 359.9)
2	Speed	000.0	Speed over ground in knots (000.0 ~ 999.9)
3	Speed	0000.0	Speed over ground in kilometers per hour (0000.0 ~
			1800.0)
4	Mode	A	Mode indicator
			'N' = not valid
			'A' = Autonomous mode
			'D' = Differential mode
			'E' = Estimated (dead reckoning) mode
			'M' = Manual input mode
			'S' = Simulator mode
5	Checksum	3D	

ORDERING INFORMATION

Part Number	Description
Venus634LPx	Single chip GPS module, ROM version

SkyTraq Technology, Inc.

4F, No.26, Minsiang Street, Hsinchu, Taiwan, 300

Phone: +886 3 5678650 Fax: +886 3 5678680 Email: info@skytrag.com.tw

© 2008 SkyTraq Technology Inc. All rights reserved.

Not to be reproduced in whole or part for any purpose without written permission of SkyTraq Technology Inc ("SkyTraq"). Information provided by SkyTraq is believed to be accurate and reliable. These materials are provided by SkyTraq as a service to its customers and may be used for informational purposes only. SkyTraq assumes no responsibility for errors or omissions in these materials, nor for its use. SkyTraq reserves the right to change specification at any time without notice.

These materials are provides "as is" without warranty of any kind, either expressed or implied, relating to sale and/or use of SkyTraq products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right. SkyTraq further does not warrant the accuracy or completeness of the information, text, graphics or other items contained within these materials. SkyTraq shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials.

SkyTraq products are not intended for use in medical, life-support devices, or applications involving potential risk of death, personal injury, or severe property damage in case of failure of the product.

Change Log

Version 0.5, January 30, 2009

- 1. Supply voltage changed from $2.7 \sim 3.3 \text{V}$ to $2.8 \sim 3.6 \text{V}$
- 2. Operating temperature changed from -30 ~ +85degC to -40 ~ +85degC

Version 0.4, December 28, 2008

1. Pin-19 Changed from RF ground to system ground.

Version 0.3, November 30, 2008

- 1. Reflow maximum temperature changed from 240+/-2degC to 250+/-2degC.
- 2. Added item #10 in Application Information section on Venus634LPx and Venus634FLPx compatibility issue.

Version 0.2, November 13, 2008

1. Changed 4800 / 9600 baud rate setting in Application Circuit Interface Signals section and item #2 of Application Information

Version 0.1, November 6, 2008

1. Initial release