

modules.

FEATURES

- 175 °C T_{.1} operation
- Low forward voltage drop
- High frequency operation
- Guard ring for e nhanced ru ggedness an d lo ng term reliability
- UL pending
- Totally lead (Pb)-free, RoHS compliant
- Designed and qualified for industrial level

DESCRIPTION

The VSKDS303.. Schottky rectifier doubler module has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175 °C junction temperature. Typical applications are in high curren t switchi ng po wer supp lies, pla ting pow er supplies, UPS systems, converters, freewheeling diodes, welding, and reverse battery protection.

SYMBOL	CHARACTERISTICS VAL	UES	UNITS	
F(AV)	Rectangular waveform	150	A	
/ _{RRM}		100	V	
FSM	$t_p = 5 \ \mu s \ sine$	22 000	A	
/ _F	150 Apk, T _J = 125 °C	0.8	V	
J	Range	- 55 to 175	°C	
J	Range	- 55 to 175	1	

VOLTAGE RATINGS				
PARAMETER SYMBOL		VSKDS303/100P	UNITS	
Maximum DC reverse voltage	V _R	100	V	
Maximum working peak reverse voltage	V _{RWM}	100 1		

Schottky Rectifier, 150 A

PRODUCT SUMMARY

MECHANICAL DESCRIPTION

baseplate at the bottom side of the device.

I_{F(AV)}

and improved thermal spread.

stress on the leads.

ADD-A-PAK

The Gene ration 5 of ADD-A-PAK modul e combi ne the

excellent th ermal performance obtained by the usage of

direct bond ed co pper substrate with supe rior mechanical

ruggedness, than ks to the insertion of a soli d copper

The Cu baseplate allow an easier mounting on the majority

of heatsink with in creased tole rance of surface roughness

The Generation 5 of ADD-A-PAK module is manufactured without hard mold, eliminating in this way any possible direct

The electrical terminals are secured against axial pull-out: they are fixed to the module housing via a click-stop feature already tested and proved as reliable on other Vishay HPP

150 A

Vishay High Power Products

Vishay High Power Products Schottky Rectifier, 150 A

ABSOLUTE MAXIMUM RATINGS						
PARAMETER SYMBO		L	TEST CONDITIONS		VALUES	UNITS
Maximum average forward current	per module	I =	50 % duty avala at T = 06 %C reations	rootongular wavoform	300	
	per leg	$I_{F(AV)}$ 50 % duty cycle at $T_C = 96$ °C, rectange	rectangular wavelonn	150		
Maximum peak one cycle non-repetitive surge current		I _{FSM}	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated V _{RRM} applied	22 000	A
			10 ms sine or 6 ms rect. pulse		2500	
Non-repetitive avalanche energy		E _{AS}	$T_J = 25 \text{ °C}, I_{AS} = 5.5 \text{ Amps}, L = 1 \text{ mH}$		15	mJ
Repetitive avalanche current		I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical		1A	

ELECTRICAL SPECIFICATIONS					
PARAMETER SYMBOL		TEST CONDITIONS VALUES		UNITS	
Maximum forward voltage drop		150 A	T _J = 25 °C	0.95	V
	V _{FM} ⁽¹⁾	300 A		1.28	
	VFM (")	150 A	- T _J = 125 °C	0.8	
		300 A		1.06	
Maximum reverse leakage current	I _{RM} ⁽¹⁾	T _J = 25 °C	V _R = Rated V _R	4.5	mA
	'RM \''	T _J = 125 °C		60	
Maximum junction capacitance	CT	V_R = 5 V_{DC} (test signal range 100 kHz to 1 MHz) 25 °C		4150	pF
Typical series inductance	L _S	From top of terminal hole to mounting plane		7.0	nH
Maximum voltage rate of change	dV/dt	Rated V _R		10 000	V/µs
RMS insulation voltage	V _{INS}	50 Hz, circuit to base, all terminals shorted (1 s)		3500	V

Note

 $^{(1)}$ Pulse width < 500 μ s

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER SYMBOL			TEST CONDITIONS	VALUES	UNITS	
Maximum junction and storage temperature range	9	T _J , T _{Stg}		- 55 to 175	°C	
Maximum thermal resistance, junction to case per leg		R _{thJC} D	C operation	0.45	°C/W	
Maximum thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.1		
				110	g	
Approximate weight				40	Z.	
Mounting torque ± 10 %	to heatsink			5	Nm	
	busbar			4	INITI	
Case style			JEDEC	TO-2	40AA	

Schottky Rectifier, 150 A

Vishay High Power Products

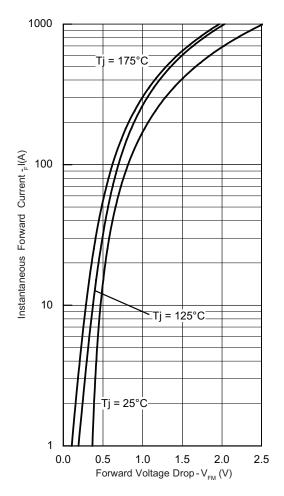


Fig. 1 - Maximum Forward Voltage Drop Characteristics

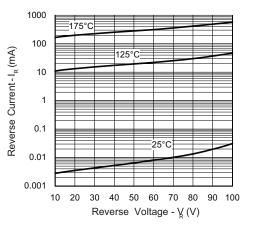


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

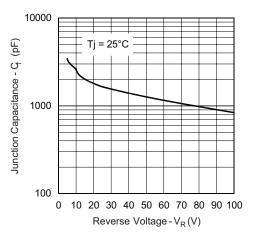


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

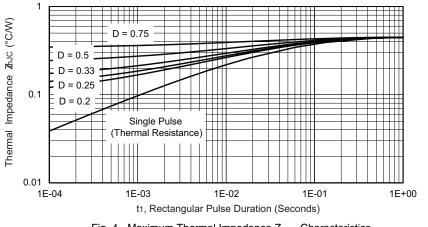
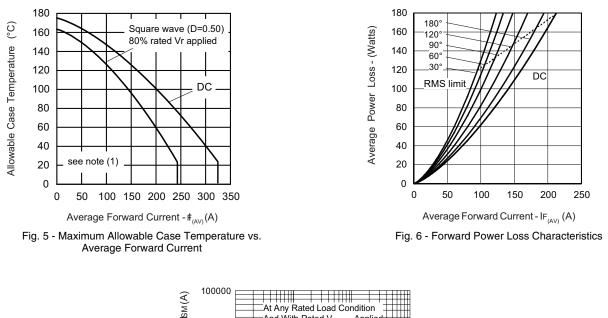
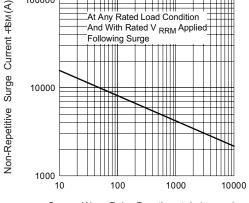




Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

VSKDS303/100P

Vishay High Power Products Schottky Rectifier, 150 A

Square Wave Pulse Duration - t_p (microsec)

Fig. 7 - Maximum Non-Repetitive Surge Current

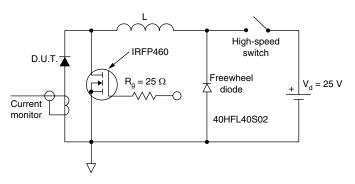
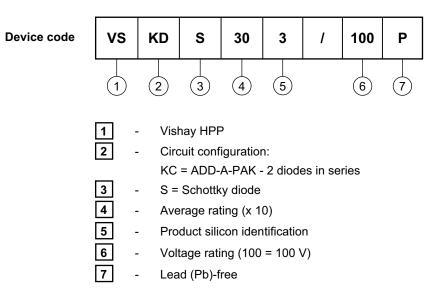
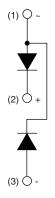


Fig. 8 - Unclamped Inductive Test Circuit

Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;


 $\begin{array}{l} \mathsf{Pd} = \mathsf{Forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \ x \ \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see} \ \mathsf{fig.} \ \mathsf{6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{Inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \ x \ \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} - \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{80} \ \% \ \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$


Schottky Rectifier, 150 A

Vishay High Power Products

ORDERING INFORMATION TABLE

CIRCUIT CONFIGURATION

LINKS TO RELATED DOCUMENTS				
Dimensions	http://www.vishay.com/doc?95174			

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, a gents, and employees, and all p ersons acting on it s or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No lice nse, express or implied, by est oppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.