

Introduction

LP Series

The VSC2000 and VSC4500 are LSI ASICs suited for applications which require high levels of complexity coupled with low power state-ofthe-art performance. The VSC2000 and VSC4500 are members of the LP (Low Power) Series Gate Arrays offered by Vitesse Semiconductor Corporation. Vitesse utilizes a proprietary high yielding 0.8µ GaAs enhancement/depletion MESFET process, much like silicon nMOS, to build the LP Series Gate Arrays. These arrays interface with TTL and ECL signal levels and power supplies and can easily be designed into systems utilizing these technologies without any additional system requirements. The LP Series offers the same level of performance of leading-edge ECL arrays with 1/3 to 1/4 of the power dissipation.

Applications

The LP Series can be used in a wide variety of applications including computers, workstations, communications, instrumentation, and military/aerospace systems. These arrays are intended for high performance systems requiring high speed, low power digital logic at medium to high levels of integration.

Computers

Existing mainframe systems using ECL gate arrays can improve system speed and drastically reduce power dissipation with the LP Series. The density and low power dissipation of the VSC2000 make it ideal for the consolidation of multiple PAL designs into a single chip. Systems which use standard microprocessors can bring supercomputing power to workstations by using the VSC4500. Superminicomputers can increase system performance while reducing or eliminating the need for expensive cooling systems.

Communications

Fiber optic communication links for voice or data transmission can be designed with the LP Series. These arrays offer the low power, high performance typically required in these systems while providing the high level of complexity needed to design sophisticated architectures.

VITESSE

2TV 🖬 4 6750000 166502P 🖬 🔍 306

Military/Aerospace

The inherent ability of GaAs devices to withstand extremes in temperature and radiation make the LP Series ideally suited for military/aerospace applications.

Architecture 7-42-11-90

These arrays contain three basic cell types: internal logic cells, input only cells, and input/ output cells which contain both input and output cells. A simplified layout of each array is shown on page 1-7.

Internal Logic Cells

The internal logic cells comprise the majority of the area of the array. The primitive element or building block is a "cell", which consists of a single depletion transistor and two enhancement transistors optimized to be configured as a 2-input NOR gate shown in the figure below. The internal arrays contain 1800 and 4000 of these cells respectively.

Schematic and Symbol for a 2-Input NOR Gate

Input Cells

The input only cells are located along the bottom in the VSC2000 and along the bottom and top in the VSC4500 (see page 1-7). There is also an input cell in each input/output cell. Input cells can be personalized as ECL or TTL inputs or as differential to single-ended ECL inputs. TTL inputs accept standard TTL signal levels at frequencies up to 150 MHz.

ECL inputs accept standard ECL signals at up to 1 GHz. An internal reference generator is provided to ensure that adequate noise margins will be maintained under worst case conditions. Provisions are made so that the user can provide an external reference, if larger margins are desired. ECL inputs can also be used as differential receivers.

Input/Output Cells

Input/output cells are located on the top, left and right sides of the VSC2000 and on the left and right sides of the VSC4500 (see page 1-7). I/O cells contain both input and output cells and can be configured as inputs, outputs, or bidirectionals. All Input and I/O cells contain circuitry which provides ESD protection.

Output Cells

Output cells are located in input/output cells. These cells can be personalized as ECL or TTL single-ended outputs or as ECL differential outputs.

TTL outputs will provide standard TTL signal levels at frequencies up to 150 MHz. TTL outputs are available in totem pole, tri-state or open collector configurations.

ECL outputs can provide up to 1 GHz singleended or differential 10K or 100K signal levels which can be driven across external 50 Ω loads to V_{TT} . Two output drivers can be connected in parallel to provide 25Ω drive capability.

Power Supplies

The LP Series Gate Arrays can be operated in three different interface modes: a) ECL only, b) TTL only, and c) mixed ECL/TTL. The table below summarizes the power supply requirements in these various interface configurations.

I/O	POWER
CONFIGURATION	SUPPLIES
ECL Only	-2.0 Volts and Ø Volts
TTL Only	+5.0, -2.0 and Ø Volts
Mixed ECL/TTL	+5.0, -2.0 and Ø Volts

ЗОЕ D 🛄 9502331 0000274 6 🖬 VTS F

Macrocell Library T-42-11-90

Vitesse provides a Macrocell Library featuring commonly used SSI and MSI logic functions. These macros define the optimized interconnection of transistors in one or more cells in the array. Following is a representative list of the macrocells which are currently available for the LP Series Gate Arrays. Sample performance specifications are listed on the following pages. For complete information, refer to the macrocell library in the LP Series Design Manual.

Series

LP Series Macro Library

Name	Description #	of Cells
	Output Macros	
IE	ECL input buffer	1
IEDIFF	Differential to single-ended ECL input buffe	r 1
OE	ECL output buffer	1
OEDIFF		2
IT IT	TTL input buffer	1
στ	TTL output buffer	1
otoc	TTL output buffer open drain	1
BIT	Ridirectional TTL I/O huffer	
BITOC	Bidirectional TTL VO buffer open drain	
Buffers		
CDF1	Differential clock buffer, 1x drive	
CDF1 CDF2	Differential clock buffer, 2x drive	
CDF2 CDF3	Differential clock buffer, 3x drive	
	Clock buffer, 1x drive	
CLK1 CLK2	Cleak huffor 3x drive	
CLK2 CSD1	Single-ended to differential clock buffer	
LB1	Bulfer	
LBT LB2	Inverter, 3x drive	
L82 L83	Inverter, 1x drive	
LDS LDR1	Line driver/inverting clock buffer, 1x drive.	
LDR2	Line driver/inverting dock buffer, 2x drive.	8
LDR2	Line driver/inverting clock buffer, 3x drive.	
Flip-Fl	lops	10
LF1	Negative edge triggered D flip-flop	(orod) 7
LF1L	Negative edge triggered D flip-flop (unbuf	ereaj 7
LF1LX4	4 Negative edge triggered D flip-flop	00
	4 bit register (unbuffered)	20
LF2	Negative edge triggered D flip-flop	
	w/2-input OR gate data	
LF3	Negative edge triggered D flip-flop	15
_	w/asynchronous set & dear	
LF3R	Negative edge triggered D flip-flop	10
. –	w/asynchronous clear	
LF4	Negative edge triggered D flip-flop	12
	w/3-input OR, synchronous reset	
LF5	Negative edge triggered D flip-flop	12
	w/4-input OR	
LFC1	Negative edge triggered D flip-flop	10
	w/differential clocks	
LFC2	Negative edge triggered 2-input D flip-flo	р 11
	w/differential clocks	
LFC3	Negative edge triggered D flip-flop	
	with asynchronous set/reset and	40
	differential docks	16
LFC4	Negative edge triggered D flip-flop	1
	w/2-Input OR gate data and differential of	xocks 16
LFC5	D flin-flop w/2-2 OR-AND input and	
	differential clocks	
-9	VI	TESSE
~		

LP Series

2TV 🖿 8 2750000 1EE502P 🔳 🖉 30E

Name	Description	# of Cells	Name	Description	# of Cells
Flip-flo	ps (continued)		Logic	Gates (continued)	
LSI	Negative edge triggered flip-flop,		LM5	8:1 Multiplexer	
	w/2:1 multiplexer input		LN2	2-input NOR gate	
LS2	Negative edge triggered flip-flop,		LN2B	Buffered 2-input NOR gate	
	w/2:1 multiplexer input and set & res	set 18	LN3	3-Input NOR gate	
LS3	Negative edge triggered flip-flop,		LN4	4-input NOR gate	2
	w/2:1 multiplexer Input		LN5	5-input NOR gate	
Logic (Gataa		LN6	6-Input NOR gate	
			LN8	8-input NOR gate	4
LA1	Half-adder		LNA2	2-input NAND gate	2
LA2	Full-adder		LR1	2-2 OR-AND gate	
LAND	2-input AND gate		LR2	2-2-2-2 OR-AND gate	
LD1	2:4 decoder		LR3	2-2-2 OR-AND gate	
LD2	3:8 decoder		LX1	2-input exclusive OR gate	
Ш1	Low transparent D-latch		LX2	2-input exclusive NOR gate	
LL2	Low transparent D-latch w/2-input N		Nicool	laneous	
LM1	2:1 Multiplexer				4
LM3	4:1 Multiplexer		PD	Pull-down	I

Selected Macrocell AC Performance Characteristics T - 42 - 11 - 90(Over recommended operating conditions, $V_{cc} = V_{ccA} = GND$, Load: F.O. = \emptyset ; \emptyset mm wire.)

Parameter		Min	Тур	Max	Units
ropagation Delay					
A1, A2 to ZN	Rising Signal	74	95	121	ps
	Falling Signal	50	60	73	ps
oad Dependent Delay					_
Delay/Fan-out	Rising Signal	43	55	71	ps
•	Falling Signal	11	13	16	ps
Delay/mm wire	Rising Signal	353	450	575	ps
•	Falling Signal	36	43	52	ps
ower Dissipation	·	0.18	0.34	0.53	mW
LN2B: Buffered 2-i	nput NOR - 6 (Cells			
Parameter		Min	Тур	Max	Units
ropagation Delay					
A1, A2 to ZN	Rising Signal	93	120	152	ps
•	Falling Signal	79	95	114	ps
oad Dependent Delay					
Delay/Fan-out	Rising Signal	6	8	10	ps
•	Falling Signal	7	8	10	ps
Delay/mm wire	Rising Signal	49	63	80	ps
	Falling Signal	22	27	32	ps
ower Dissipation		1.14	1.3	2.18	mW
LX1: 2-input XOR	- 6 Cells				
Parameter		Min	Тур	Мах	Units
Propagation Delay					
D0, D1 to Z	Rising Signal	254	325	414	ps
-	Falling Signal	338	405	488	ps
oad Dependent Delay					
Delay/Fan-out	Rising Signal	21	26	34	ps
-	Falling Signal	8	10	12	ps
Delay/mm wire	Rising Signal	168	215	274	ps
-	Falling Signal	28	33	40	ps
Power Dissipation		1.38	1.8	3.1	mW

LN2

ΖN

VITESSE

30E D 🗰 9502331 0000276 T 🖬 VIS

Selected Macrocell AC Performance Characteristics (Cont.)

(Over recommended operating conditions, $V_{cc} = V_{ccA} = GND$, Load: F.O. = \emptyset ; \emptyset mm wire.)

LA1: Half Adder - 1	9 Cells						. 00
Parameter		Min	Тур	Max	Units	_T-47	2-11-90
Propagation Delay			400	626		_	
A, B to S	Rising Signal Falling Signal	384 382	490 460	551	ps ps	<u>A</u>	
A, B to C	Rising Signal Falling Signal	161 295	205 355	263 426	ps ps	B	LA1
Load Dependent Delay					<u>.</u>	_	HALF
Delay/Fan-out	Rising Signal Falling Signal	21 11	26 13	34 16	р 8 р8		ADDER
Delay/mm wire	Rising Signal	168	215	274	ps		
•	Falling Signal	36	43	52	ps		
Power Dissipation		1.1	1.4	2.4	mW		

5

Series

LF1L: Unbuffered Negative Edge Triggered D Flip-flop - 7 Cells

Parameter		Min	Тур	Max	Units
Propagation Delay					
CP to Q	Rising Signal	496	635	808	ps
	Falling Signal	374	450	541	ps
CP to QN	Rising Signal	477	610	778	ps
	Falling Signal	382	460	551	ps
t _{set-up}		317	380	458	ps
t _{HOLD}	······································	93	120	156	ps
Toggle frequency		672	840	1054	MHz
Power Dissipation		1.9	3.2	4.5	mW

LFC2: Negative Edge Triggered D Flip-flop with 2-input OR & Differential Clocks - 11 Cells

Parameter		Min	Тур	Max	Units	_		
Propagation Delay CK, CKN to Q	Rising Signal Falling Signal	310 266	395 320	505 385	ps ps	$-\frac{D0}{D1}$		<u> </u>
t _{sET-UP}		245	295	354	ps		LFC2	
t _{HOLD}	· · · · · · · · · · · · · · · · · · ·	_	0	_	ps			
Toggle frequency		916	1120	1370	MHz	<u> </u>	Ţ	
Power Dissipation		2.9	4.0	6.7	mW	<u>_ ски</u> _d_		

LM3: 4:1 Multiplexer - 14 Cells

Parameter		Min	Тур	Max	Units		
Propagation Delay							
10 - 13 to Z	Rising Signal	254	325	414	ps		
	Falling Signal	346	415	499	ps	10	
S0, S1 to Z	Rising Signal	471	600	768	ps	-	†
	Falling Signal	439	530	634	ps	<u> 1</u>	LM
Load Dependent Delay						12	
Delay/Fan-out	Rising Signal	21	26	34	ps		4:
	Falling Signal	9	11	13	ps	13	_ MU
Delay/mm wire	Rising Signal	168	215	274	ps		L
	Falling Signal	30	36	43	ps	_	
Power Dissipation		1.9	2.4	4.0	mW	-	S1 \$

Notes: AC Characteristics: • MAX corresponds to worst case delay over temperature, process and power supply variations. • TYP corresponds to the delay at $T_c = 25^{\circ}$ C, typical process and power supply variations. • MIN corresponds to the delay at $T_c = 0^{\circ}$ C, worst case process and power supply variations.

 Toggle Frequency:
 • MAX corresponds to MIN delays with FO = 1, wire = 0.25mm.

 • MIN corresponds to MAX delays with FO = 1, wire = 0.25mm.

1-11

VITESSE

Z

DC Characteristics

ECL Inputs/Outputs: (Over recommended operating conditions with internal V_{REF} . $V_{CC} = GND$, Output load 50 Ω to V_{TT})

	T-42-11-9					
Parameters	Description	Min	Тур	Max	Units	Conditions
V _{OH}	Output HIGH voltage	-1020	—	-700	mV	$V_{iN} = V_{iH}$ (max)
V _{OL} Outp	Output LOW voltage -	-2000	-	-1620	mV	or V _{IL} (min)
V _{IH}	Input HIGH voltage	-1040	-	-650	mV	Guaranteed HIGH for all inputs
V _{IL}	Input LOW voltage	-2000		-1600	mV	Guaranteed LOW for all inputs
I _{IH}	Input HIGH current		10	200	μΑ	V _{IN} = V _{IH} max
	Input LOW current	-50	_	_	μA	$V_{IN} = V_{IL}$ min

Note: 1) Differential ECL output pins must be terminated identically.

TTL inputs/Outputs: (Over recommended operating con	nditions, TTLGND = GND)
---	--------------------------

Parameters	Description	Min	Тур	Max	Units	Conditions
V _{OH}	Output HIGH voltage	2.4	-		V	I _{OH} = -2.4 mA
V _{OL}	Output LOW voltage		-	0.5	V	I _{OL} = 8 mA
V _{IH}	Input HIGH voltage	2.0	-		V	Guaranteed HIGH for all inputs
V _{IL}	Input LOW voltage		_	0.8	V	Guaranteed LOW for all inputs
I _{IH}	Input HIGH current	_	-	50	μA	V _{IN} = 2.4 V
I _{IL}	Input LOW current	-500		—	μΑ	$V_{IN} = 0.5 V$
I _{OZH}	3-state output OFF current HIGH	-	-	100	μΑ	$V_{OUT} = 2.4 V$
I _{OZL}	3-state output OFF current LOW	-100	-	-	μA	$V_{OUT} = 0.5 V$
l _{ocz}	Open collector output leakage current		_	100	μΑ	<i>V_{OUT} = 2.4 V</i>

Absolute Maximum Ratings (1)

Power Supply Voltage (ECL), (V77)	-2.5V to +0.5V
Power Supply Voltage (TTL) (V _{TTL})	
ECL Input Voltage Applied ⁽²⁾ , (V _{ECLIN})	
TTL Input Voltage Applied ⁽²⁾ , (V _{TTLIN})	
ECL or TTL Output Current, Iour, (DC, output HIGH)	
Maximum Junction Temperature, (T _i)	
Case Temperature Under Bias, (T _G)	55° to +125°C
Storage Temperature ⁽³⁾ , (T _{STG})	65° to +150°C
NOTES: 1) CAUTION: Stresses listed under "Absolute Maximum Ratings" may be applied to causing permanent damage. Functionality at or above the values listed is not in values for extended periods may affect device reliability.	devices one at a time without
2) V_{TT} (V_{TTL}) must be applied before any input signal voltage and V_{ECLIN} input i	must be greater than V _{TT} - 0.5V.
3) I ower limit of specification is amblent temperature and upper limit is case tempe	

3) Lower limit of specification is ambient temperature and upper limit is case temperature.

VITESSE

Recommended Operating Conditions

Operating Temperature (2), (T)... (Commercial) 0° to 70°C, (Industrial) -40° to +85°C, (Military) -55° to +125° C

30E D

NOTE: 1) When using internal ECL 100K reference level.

Lower limit of specification is ambient temperature and upper limit is case temperature.

Packaging

The VSC2000's standard package is a 52-pin ceramic leaded (LDCC) or leadless (LCC) chip carrier. The VSC4500 may be packaged in a 149 pin ceramic pin grid array (PGA) or a 164 pin ceramic leaded chip carrier (LDCC). All three packages are multilayer ceramic packages with the cavity down and a Cu-W heat spreader on top. Particular attention has been paid to reduce crosstalk of high speed signals and to keep the trace impedance at 50Ω .

Option Development Procedure

Vitesse Semiconductor offers its customers the option of fully designing their own gate array, or having Vitesse perform a turn-key implementation of their design based on mutually agreed specifications. Regardless of the Interface, a Vitesse application engineer is assigned to the customer to answer questions and track the progress of the design from start to finish. The following steps are performed by a Vitesse application engineer.

- · Final placement and routing of the design
- Net-length extraction
- Fan-out and metal delay calculation
- Design rule check and layout vs. schematic

Through experience with many gate array designs, Vitesse has created a design automation framework and a well defined flow for smooth implementation of customer designs. The figure at right summarizes the typical gate array project flow and specifies the various task responsibilities which are delegated to the customer or to Vitesse.

CAD Tools/Support

LP Series designs are supported on MENTOR, DAISY, and VALID workstations. The Vitesse support package includes documentation and software which allows the customer to perform schematic capture,

functional simulation, front-annotated timing simulation, electrical rule checks, and back annotated simulation upon completion of place and route. Also, Vitesse has an interactive preplacement program that the customer may use.

ZTV 📰 E 8750000 1EE502P 📰

Training

Design classes are provided to help the customer understand the design methodology and tools utilized in the gate array design process, and are recommended to customers planning to implement a design in a Vitesse gate array. Classes last two days in length and are provided at Vitesse's facility or at the customer's site.

VITESSE

1-13

Ҕ

Series