

VS-VSMD400AW60, VS-VSMD400CW60

Vishay Semiconductors

Standard Recovery Diodes, 400 A

PRODUCT SUMMARY						
I _{F(AV)} per module	400 A					
Туре	Modules - Diode, High Voltage					

FEATURES

- · Standard rectifier
- Popular series for rough service

- Cathode and anode to base available
- UL approved file E222165
- · Designed and qualified for industrial level
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

- Welders
- · Power supplies
- Motor controls
- · Battery chargers
- · General industrial current rectification

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS VALUES		UNITS			
I _{F(AV)}	133 °C	400				
I _{F(RMS)}		628	A			
I _{FSM}	50 Hz	2500				
	60 Hz	2620				
l ² t	50 Hz	31	kA ² s			
1-1	60 Hz	28	KA-S			
I ² √t		312	kA²√s			
V _{RRM}		600	V			
T _J		-40 to 175	°C			
T _{Stg}		-40 to 175	C			

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS								
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J = 175 °C mA				
VS-VSMD400.W60	60	600	700	12				

VS-VSMD400AW60, VS-VSMD400CW60

Vishay Semiconductors

FORWARD CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average forward current at case temperature per leg	I _{F(AV)}	180° conduction, half sine wave, 133 °C			200	Α
Maximum RMS forward current per leg	I _{F(RMS)}	DC at 137 °	°C case tempera	ature	314	
		t = 10 ms	No voltage		2500	
Maximum peak, one-cycle forward,		t = 8.3 ms	reapplied		2620	А
non-repetitive surge current per leg	I _{FSM}	t = 10 ms	100 % V _{RRM}		2100	
		t = 8.3 ms	reapplied	Sinusoidal half wave, initial $T_J = T_J$ maximum	2200	
Maximum I ² t for fusing per leg	l ² t	t = 10 ms	No voltage		32	kA ² s
		t = 8.3 ms	reapplied		29	
		t = 10 ms	100 % V _{RRM}		22	
		t = 8.3 ms	reapplied		20	
Maximum I ² √t for fusing per leg	I ² √t	t = 0.1 ms t	t = 0.1 ms to 10 ms, no voltage reapplied			kA²√s
Low level value of threshold voltage per leg	V _{F(TO)1}	(16.7 % x π	(16.7 % x π x $I_{F(AV)} < I < \pi$ x $I_{F(AV)}$), $T_J = T_J$ maximum		0.73	
High level value of threshold voltage per leg	V _{F(TO)2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$		0.85	V	
Low level value of forward slope resistance per leg	r _{f1}	(16.7 % x π x $I_{F(AV)} < I < \pi$ x $I_{F(AV)}$), $T_J = T_J$ maximum			1.52	0
High level value of forward slope resistance per leg	r _{f2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$			1.36	mΩ
Maximum forward voltage drop per leg	V_{FM}	$I_{FM} = 200 \text{ A}, T_J = 25 \text{ °C}, t_p = 400 \mu \text{s square wave}$ 1.31			V	


BLOCKING						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum peak reverse leakage current per	1	T _J = 175 °C	12	mA		
leg	IRRM	$T_J = 25 ^{\circ}\text{C}$	200	μΑ		

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL		UNITS			
PARAMETER	STINIBUL	MIN.	TYP.	MAX.	UNITS	
Thermal resistance, per leg	В	-	-	0.10		
junction to case per module	R _{thJC}	-	-	0.05	°C/W	
Thermal resistance, case to heatsink per module	R _{thCS}	-	0.10	-	- G/VV	
Weight		=	68	-	g	
Weight		-	2.4	-	OZ.	
Mounting torque		30 (3.4)	-	40 (4.6)	Had in	
Mounting torque center hole		12 (1.4)	-	18 (2.1)	lbf ⋅ in (N ⋅ m)	
Terminal torque		30 (3.4)	-	40 (4.6)	(14 * 111)	
Vertical pull		=	-	80	llaf in	
2" lever pull		=	-	35	— lbf · in	
Case style			TO-244			

△R CONDUCTION PER JUNCTION											
DEVICES	SINE HALF WAVE CONDUCTION					RECTANGULAR WAVE CONDUCTION				UNITS	
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
VSMD400.W60	0.041	0.047	0.060	0.084	0.131	0.029	0.049	0.064	0.087	0.132	°C/W

Note

• Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

www.vishay.com

Vishay Semiconductors

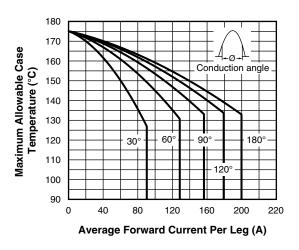


Fig. 1 - Current Ratings Characteristics Per Leg

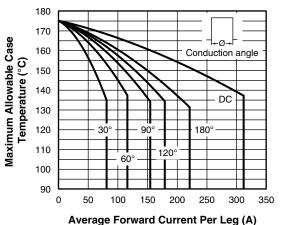
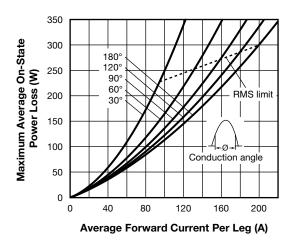



Fig. 2 - Current Ratings Characteristics Per Leg

2500 2300 2100 Peak Half Sine Wave Forward Current (A) 1900 60 Hz 0.0083 s 1700 50 Hz 0.0100 s 1500 1300 1100 900 700 500 100 **Number of Equal Amplitude Half**

Cycle Current Pulses (N)
Fig. 3 - Maximum Non-Repetitive Surge Current Per Leg



Fig. 4 - Maximum Non-Repetitive Surge Current Per Leg

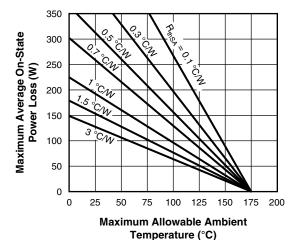
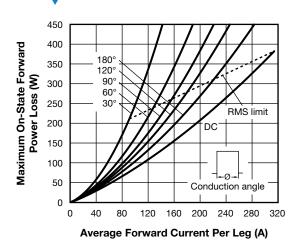



Fig. 5 - Forward Power Loss Characteristics

www.vishay.com

Vishay Semiconductors

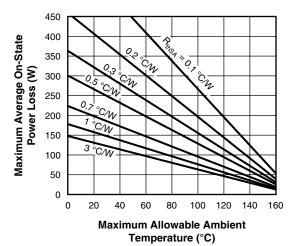


Fig. 6 - Forward Power Loss Characteristics

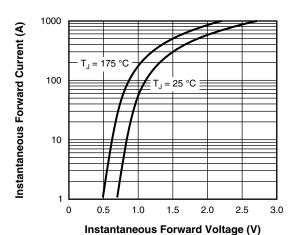


Fig. 7 - Forward Voltage Drop Characteristics Per Leg

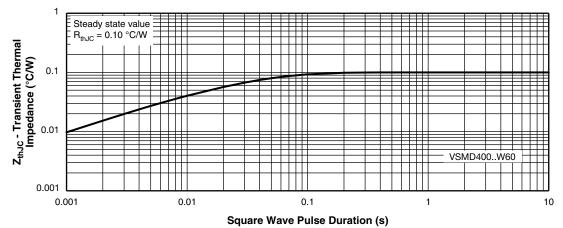
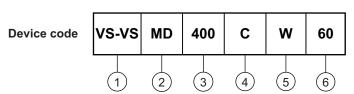



Fig. 8 - Thermal Impedance Z_{thJC} Characteristics Per Leg

VS-VSMD400AW60, VS-VSMD400CW60

Vishay Semiconductors

ORDERING INFORMATION TABLE

1 - Vishay Semiconductors product

MD = Standard recovery diode

- Current rating (400 = 400 A)

4 - Circuit configuration:

• C = Common cathode

• A = Common anode

5 - Type of device:

W = TO-244 not isolated

6 - Voltage rating (60 = 600 V)

CIRCUIT CONFIGURATION		
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING
Common anode	A	Lug Lug terminal terminal cathode 1 cathode 2
Common anode	^	Base common anode
Common cathode	С	Lug Lug terminal terminal anode 1 anode 2
		Base common cathode

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95021			

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000