
VRS51L3074

www.ramtron.com page 51 of 105

9 SPI Interface
The SPI interface of the VRS51L3074’s provides
numerous enhancements compared to other vendor
offerings. The SPI interface’s key features include:

• Supports four standard SPI modes (clock
phase/polarity)

• Operates in master and slave modes
• Automatic control of up to four chip select lines
• Configurable transaction size (1 to 32 bits)
• Transaction size of >32 bits is possible
• Double Rx and TX data buffers
• Configurable MSB or LSB first transaction
• Generation frame select/load signals

FIGURE 14: SPI INTERFACE OVERVIEW

Before the SPI can be accessed it must first be
enabled by setting the SPIEN bit of the PERIPHEN1
register to 1.

9.1 SPI Control Registers
The SPICTRL register controls the operating modes of
the SPI interface in master mode.
TABLE 97:SPI CONTROL REGISTER - SPICTRL SFR C1H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 1

Bit Mnemonic Description
7 SPICLK[2:0] SPI Communication Speed (Master Mode)

000 = Sys Clk / 2 (/ 8 if SPISLOW = 1)
001 = Sys Clk / 4 (/ 16 if SPISLOW = 1)
010 = Sys Clk / 8 (/ 32 if SPISLOW = 1)
011 = Sys Clk / 16 (/ 64 if SPISLOW = 1)
100 = Sys Clk / 32 (/ 128 if SPISLOW = 1)
101 = Sys Clk / 64 (/ 256 if SPISLOW = 1)
110 = Sys Clk / 128 (/ 512 if SPISLOW = 1)
111 = Sys Clk / 256 (/ 1024 if SPISLOW = 1)

4 SPICS[1:0] SPI Active Chip Select Line (Master Mode)
00 = CS0 is active
01 = CS1 is active
10 = CS2 is active
11 = CS3 is active

2 SPICLKPH SPI Clock Phase
0 = SD0 output on rising edge and SDI
sampling on falling edge
1= SD0 output on falling edge and SDI sampling
on rising edge

1 SPICLKPOL SPI Clock Polarity
0 = SCK stays at 0 when SPI is inactive
1 = SCK stays at 1 when SPI is inactive

0 SPIMASTER SPI Master Mode Enable
0 = SPI operates in slave mode
1 = SPI operate in master mode (default)

When the SPIMASTER bit is set to 1, the SPI interface
operates in master mode. This is the default operating
mode of the VRS51L3074 SPI interface after reset.

9.2 Setting Up Clock Phase and Polarity
The clock phase and polarity is controlled by the
SPICLKPH and SPICLKPOL bits, respectively. The
following diagrams show the communication timing
associated with the clock phase and polarity.

SPI Mode 0:
FIGURE 15: SPI MODE 0

CSX

SCK

SDI

SDO

SPI MODE 0: SPICKPOL =0,SPICKPH =1 (Normal Mode Shown)

MSB LSB

*Arrows indicate the edge where the data acquisition occurs

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 52 of 105

SPI Mode 1:
FIGURE 16: SPI MODE 1

MSB LSB

CSX

SCK

SDI

SDO

SPI MODE 1: SPICKPOL =0,SPICKPH =0 (Normal Mode Shown)

*Arrows indicate the edge where the data acquisition occurs
SPI Mode 2:

FIGURE 17: SPI MODE 2

CSX

SDO

SPI MODE 2: SPICKPOL =1,SPICKPH =1 (Normal Mode Shown)

SCK

SDI

MSB LSB

*Arrows indicate the edge where the data acquisition occurs
SPI Mode 3:

FIGURE 18: SPI MODE 3

CSX

SDI

SDO

SPI MODE 3: SPICKPOL =1,SPICKPH =0 (Normal Mode Shown)

SCK

MSB LSB

*Arrows indicate the edge where the data acquisition occurs

9.3 Defining active chip select line
As previously mentioned, only one chip select line is
activated when communicating with an external SPI
slave device. The SPICS bits of the SPICTRL register
are used to select which CS line will be activated
during the transfer.

Note that with the exception of the CS0 line, the
SPICSEN bit of the PERIPHEN1 register must be set
to 1 in order for the SPI be able to control the SPI CS
lines.

9.4 Setting the SPI Communication
Speed (Master Mode)

In master mode, the SPI interface communication
speed is adjustable from “system clock /2” down to
“system clock / 1024”. Slower communication speeds
can be useful for interfacing with slower devices or to
adjust the communication speed to specific bus
conditions.

The SPICLK SFR register and the SPISLOW bit of the
of the SPICONFIG SFR register control the SPI
communication speed.

The SPI communication speed in master mode can be
calculated using the following formula:

SPI speed = Sys Clk
 [2(SPICLK[2:0] +1) x 4SPISLOW]

Where:

o Sys Clk = Processor operating clock
o SPISLOW = can be either 0 or 1
o SPICLK[2:0] = from 0 to 7

The following tables provide example setting for SPI
communication speeds with various system clock and
SPICLK[2:0] and SPISLOW bit settings.
TABLE 98:SPI COMMUNICATION SPEED EXAMPLE (SPISLOW = 0)

SPICLK Com Speed
@ 40MHz

Com Speed
@ 22.18MHz

Com Speed
@ 4MHz

000 20 MHz 11.05 MHz 2 MHz
001 10 MHz 5.53 MHz 1 MHz
010 5 MHz 2.76 MHz 500 kHz
011 2.5 MHz 1.38 MHz 250 kHz
100 1.25 MHz 691.2 kHz 125 kHz
101 625 kHz 345.6 kHz 62.5 kHz
110 312.5 kHz 172.8 kHz 31.3 kHz
111 156.3 kHz 86.4 kHz 15.6 kHz

TABLE 99:SPI COMMUNICATION SPEED EXAMPLE (SPISLOW = 1)

SPICLK Com Speed
@ 40MHz

Com Speed
@ 22.18MHz

Com Speed
@ 4MHz

000 5 MHz 2.76 MHz 500 kHz
001 2.50 MHz 1.38 MHz 250 kHz
010 1.25 MHz 691.2 kHz 125 kHz
011 625 kHz 345.6 kHz 62.5 kHz
100 312.5 kHz 172.8 kHz 31.3 kHz
101 156.3 kHz 86.4 kHz 15.6 kHz
110 78.1 kHz 43.2 kHz 7.8 kHz
111 39.1 kHz 21.6 kHz 3.9 kHz

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 53 of 105

9.5 SPI Configuration and
Status Registers

The SPI configuration and status registers allow the
activation and the monitoring of the SPI interface
interrupts. They also provide access to the advanced
features of the SPI interface such as:

o Frame select/load generation on CS3
o Activating manual control of the chip select

lines
o Bit reversed mode (Bitwise Endian Control)
o Interrupt activation and monitoring
o Monitoring the state of the SS pin

TABLE 100:SPI CONFIGURATION REGISTER - SPICONFIG - C2H

7 6 5 4 3 2 1 0
R/W W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 SPIMANCS SPI Manual CS Mode Enable

0 = SPI Chip select control is fully automatic
1 = SPI Chip select will be brought low by the
SPI interface, and will stay low until 0 is written
into SPIMANCS bit

6 SPIUNDERC SPI Clear TX Underrun Flag (SPIUNDERF)
Writing a 1 into this bit will clear the SPIUNDER
bit of the SPISTATUS register
This bit always reads 0

5 FSONCS3 Frame Select Pulse on CS3
0 = CS3 acts in standard ways
1 = The SPI interface will send an active low
 frame select pulse on CS3
Frame select has priority on SPILOAD function

4 SPILOADCS3 Load Pulse on CS3
0 = CS3 acts in standard way or as frame select
pulse, if FSONCS3 is set to 1
1 = The SPI interface sends an active low load
pulse on the CS3 pin, if FSONCS3 is cleared

3 SPISLOW SPI Slow Speed mode
0 = SPI transaction occurs at normal speed
1 = SPI transaction is 4x slower

2 SPIRXOVEN SPI RX Overrun Interrupt Enable
0 = SPI RX overrun interrupt is deactivated
1 = SPI RX overrun interrupt is enabled

1 SPIRXAVEN SPI RX Available Interrupt Enable
0 = SPI RX available interrupt is deactivated
1 = SPI RX available interrupt is enabled

0 SPITXEEN SPI TX Empty Interrupt Enable
0 = SPI TX empty interrupt is deactivated
1 = SPI TX empty interrupt is enabled

The SPISTATUS register’s role is mainly for monitoring
purposes.
TABLE 101:SPI STATUS REGISTER - SPISTATUS SFR C9H

7 6 5 4 3 2 1 0
R/W R R R R R R R

0 0 0 1 1 0 0 1

Bit Mnemonic Description
7

SPIREVERSE
SPI Reverse Mode
0 = SPI operates in normal mode (MSB First)
1 = SPI operates in reverse mode (LSB First)

6 - Not used
5 SPIUNDERF SPI TX Underrun Flag

0 = No underrun condition noticed
1 = Indicates that the SPI transmit buffer has
not been fed in time. This condition is likely to
occur when the Transaction size is > 32 bits
This bit is cleared by setting to 1, the
SPICLRTXF bit of the SPICTRL bit of the
SPICONFIG register

4 SSPINVAL Slave Select Pin Value
0 =SS pin is low
1 = SS pin is high

3 SPINOCS SPI No Chip Select
0 = At least on chip select line is active
1 = Indicates that all the chip select lines are
 inactive (high)

2 SPIRXOVF SPI RX Overrun InterruptFlag
0 = No SPI RX Overrun condition detected
1 = SPI Data collision occurred

1 SPIRXAVF SPI RX Available Interrupt Flag
0 = SPI receive buffer is empty
1 = Data is present in the SPI RX buffer

0 SPITXEMPF SPI TX Empty Interrupt Flag
0 = SPI transmit buffer is full
1 = SPI transmit buffer is ready to receive new
 data

9.6 SPI Transaction Directions
The SPI interface can perform transactions in the
standard SPI format (MSB first) as well as in the
reverse format (LSB first). In applications where data
must be transmitted (or received) in LSB first format,
the user would normally need to perform bit reversal
manually at the processor level and then send the data
through the SPI interface. The SPI interface can
automatically handle the bit reversal operations,
unloading the processor for other tasks.

When the SPIREVERSE bit of the SPISTATUS register
is set to 0, the SPI transactions will take place in MSB
first format.

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 54 of 105

The following examples show the timing related to
these transaction directions:

FIGURE 19: SPI MSB FIRST TRANSACTION

MSB LSB

CSX

SCK

SDO/SDI

MSB First SPI Transaction (Mode 0 Shown)

When the SPIREVERSE is set to 1, the SPI
transactions are done in LSB first format, as shown in
the next figure.

FIGURE 20: SPI LSB FIRST TRANSACTION

LSB MSB

CSX

SCK

SDO/SDI

LSB First SPI Transaction (Mode 0 Shown)

9.7 Manual Chip Select Control
When the SPIMANCS bit of the SPICONFIG register is
set to 1, the active chip select line will stay at a logic
low after the SPI master mode transaction is
completed, as shown in the following figure.

FIGURE 21: SPI MANUAL CHIP SELECT

Manual CSx Mode (SPI Mode 0 shown)

*Arrows indicate the edge where the data acquisition occurs

MSB LSB

SCK

SDI

SDO

CSX
Note: CSx Stays Low

The chip select will remain at logic 0 until the
SPIMANCS bit is cleared by the software.

9.8 SPI Interrupts
The SPI can trigger three interrupt sources that are
handled by two interrupt vectors, as shown in the
following table:
TABLE 102: SPI INTERRUPT SOURCES

Interrupt Interrupt
Number

Interrupt
Vector

SPI TX Empty Int_1 000Bh
SPI RX Available
SPI RX Overrun Int_2 0013h

The TX empty interrupt is set when the SPI transmit
buffer is ready to receive more data. A double buffer is
used in the SPI transmitter. Once transmission begins
(after a write to the SPIRXTX0 register), the data is
transferred to the final transmission buffer. This frees
up the SPIRXTX SFR register, raises the SPITXEMPF
flag of the status register and triggers an SPI TX empty
interrupt if enabled. The SPI TX empty interrupt is
enabled by setting the SPITXEEN bit of the
SPICONFIG register to 1.

The priority of the SPI TX empty interrupt is set high in
order to avoid buffer overrun in 32-bit SPI transfers.

 The SPI RX available interrupt is activated when
receive data has been transferred from the SPI RX
buffer to the SPIRXTX register. The SPIRXTX register
must be read by the processor before the next SPI bus
data sequence is completed. The SPI RX available
interrupt is enabled by setting the SPIRXAVEN bit of
the SPICONFIG register to 1. The SPIRXAVF flag of
the SPISTATUS register, when set to 1, indicates that
data can be read. The SPIRXAVF flag is automatically
reset when the SPIRXTX0 register is read.

The SPI RX overrun interrupt indicates that an overrun
condition has taken place. The SPI RX overrun
interrupt is enabled by setting the SPIRXOVEN bit of
the SPICONFIG register to 1. The SPIRXOVF flag of
the SPISTATUS register, when set to 1, indicates that
a data collision has occurred.

All the SPI interface interrupt flags are active even if
the associated interrupt is not activated and they can
be monitored by the user program at any time.

Please consult the Interrupt Section for more details on
the SPI interface interrupts and their interaction with
other peripherals

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 55 of 105

9.9 Alternate CS3 functions
For external SPI devices which require the use of a
load or a frame select signal, the VRS51L3074 can be
configured to either generate an active low frame
select or active high load signal when operating in
master mode.

9.9.1 Frame Select signal on CS3
When the FONCS3 bit of the SPICONFIG register is
set to 1, the SPI interface will generate an active low
frame select pulse on the CS3 pin (see the following
timing diagram).

FIGURE 22: SPI FRAME SELECT PULSE TIMING

FRAME SELECT Pulse (SPI Mode 0 shown)

*Arrows indicate the edge where the data acquisition occurs

MSB LSB

SCK

SDI

SDO

CS3

CSX

Frame Select Pulse width = 1 / Sys Clk

9.9.2 Load Signal on CS3

When the SPILOADCS3 bit of the SPICONFIG register
is set to 1 and the FSONCS3 bit is cleared, an active
low load signal will be generated on the CS3 line of the
SPI interface.

FIGURE 23: SPI LOAD PULSE TIMING

LOAD Pulse (SPI Mode 0 shown)

*Arrows indicate the edge where the data acquisition occurs

MSB LSB

SCK

SDI

SDO

CS3

CSX

Load Pulse width = 1 / Sys Clk

Note that the frame select alternate function has
priority over the load function. This means that if the
FSONCS3 bit is set, the alternate function selected
will be the frame select, independent of the value of
the SPILOAD bit.

9.10 SPI Activity Monitoring
The ability to monitor the state of communication of the
SPI interface can be useful in highly modular
applications in which the SPI interface is handled by
interrupts. The SPISTATUS register contains two flags
that can be used to monitor the CS and SS signals of
the SPI interface.

The SPINOCS bit of the SPISTATUS register returns
the logical AND of all the SPI CS lines of the
VRS51L3074. If all the CS lines are inactive (logic
high), the SPI interface sets the SPINOCS to 1. The
SPINOCS bit is used to verify that the SPI interface is
idle before reconfiguring it or starting a new
transaction.

The SPINOCS bit of the SPISTATUS register is valid
four system clock cycles after the SPI transmission
begins. This delay is independent of the SPI
transaction speed.

As such, after a write operation to the SPIRXTX0
register, which will trigger a SPI transaction in master
mode, a NOP instruction (1 cycle) must be added
before the MOV Rn, SPISTATUS instruction (3
cycles).

The SSPINVAL bit of the SPISTATUS register returns
the logic level on the SS pin.

9.11 SPI TX Underrun Flag
The SPI interface provides an underrun condition flag
that can be used to flag whether the software has
failed to update transmission buffer in time for the next
transfer. This is especially useful when the SPI
interface is used to transmit packets greater than 32
bits in length.

If an underrun condition occurs, the SPIUNDERF bit of
the SPI status register will be set to 1. This bit can be
cleared by writing a 1 to the SPIUNDERC bit of the
SPICONFIG register.

Note that SPI underrun monitoring is not linked to any
of the SPI interrupts, therefore, this flag can only be v
manually by software

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 56 of 105

9.12 SPI Transaction Size
The standard SPI protocol is based on 8-bit
transactions. However, many devices on the market,
specifically A/D and D/A converters, require
transactions greater than 8 bits. To communicate with
these types of devices using a standard SPI interface,
the user has no choice but to send multiple 8-bit
streams or to manipulate the I/Os via software to
emulate the timing control signals.
The VRS51L3074 SPI interface supports 8-bit
transactions and can also be configured to support
transactions that measure 1 to 32 bits in both transmit
and receive directions. The value written into the
SPISIZE register controls the transaction size. Upon
reset, the SPI interface is configured for 8-bit
transactions.
TABLE 103:SPI TRANSACTION SIZE – SPISIZE SFR C3H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 1 1 1

Bit Mnemonic Description
7:0 SPISIZE[7:0] SPI transaction Size

If < 32 : Transaction Size = SPISIZE + 1
If >= 32: Transaction Size = (SPISIZE *8) - 216
Default Transaction Size = 8 bits

Four formulas control the SPI transaction size:

For Transactions Size <= 32 bits

Transaction Size = SPISIZE[7:0] +1

Or

SPISIZE[7:0] = Transaction Size - 1

For Transactions Size > 32 bits

Transaction Size = [(SPISIZE[7:0] * 8) –216]

Or it can be expressed by:

SPISIZE[7:0] = [Transaction Size + 216]
 8

The following table provides examples:
TABLE 104: TRANSACTION SIZE VS. SPISIZE[7:0]

SPISIZE[7:0] Transaction Size
0x07 8-bit
0x0B 12-bit
0x0D 14-bit
0x10 17-bit
0x17 24-bit
0x1F 32-bit
0x20 40-bit
0x21 48-bit
0x23 64-bit

The transaction size must also be configured when the
operating the SPI interface in slave mode.

9.13 SPI RX/TX Data Registers
Four SFR registers provide access to the SPI
interface’s receive and transmit data buffer. Performing
a write operation to the SPI RX/TX buffer transfers the
data to the transmit portion of the SPI interface, while a
read operation reads the contents of the receive data
buffer. The SPI 32-bit receive and transmit data buffers
are double buffered to minimize the risk of data
collision and to achieve optimal performance.

The SPI RXTX0 register contains bits 7:0 of the SPI
interface RX/TX register.
TABLE 105: SPIRXTX0 REGISTER CONTENT FOR NORMAL AND REVERSED TRANSACTIONS

Operation SPI Mode SPIRXTXx Data is…
MSB First Right Justified Read
LSB First Left Justified
MSB First Left Justified Write
LSB First Right Justified

When the SPI is configured in master mode, writing to
the SPIRXTX0 will trigger a data transmission. For this
reason, when the transaction size is larger than 8 bits,
the SPIRXTX0 register must be written last.
TABLE 106:SPI RX / TX0 DATA REGISTER – SPIRXTX0 SFR C4H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description

Read: SPI RXData[7:0]
Right justified in normal mode, left justified in bit
reversed mode
Reading this register, clears the SPIAVF and
SPIRXOVF flags

7:0 SPIRXTX0[7:0]

Write: SPI TXData[7:0]
Left justified in normal mode, right justified in bit
reversed mode
In master mode, writing to SPIRXTX0 triggers
the transmission

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 57 of 105

TABLE 107:SPI RX / TX1 DATA REGISTER – SPIRXTX1 SFR C5H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description

Read: SPI RXData[15:8]
Right justified in normal mode, left justified in bit
reverse mode

7:0 SPIRXTX1[7:0]

Write: SPI TXData[15:8]
Left justified in normal mode, right justified in bit
reverse mode

TABLE 108:SPI RX / TX2 DATA REGISTER – SPIRXTX2 SFR C6H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description

Read: SPI RXData[23:16]
Right justified in normal mode, left justified in bit
reverse mode

7:0 SPIRXTX2[7:0]

Write: SPI TXData[23:16]
Left justified in normal mode, right justified in bit
reverse mode

TABLE 109:SPI RX / TX3 DATA REGISTER – SPIRXTX3 SFR C7H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description

Read: SPI RXData[31:24]
Right justified in normal mode, left justified in bit
reverse mode

7:0 SPIRXTX3[7:0]

Write: SPI TXData[31:24]
Left justified in normal mode, right justified in bit
reverse mode

9.14 SPI Data Input /Output
The VRS51L3074 SPI interface has the ability to
perform data transactions in MSB first mode or LSB
first. The SPIREVERSE bit of the SPISTATUS register
controls whether the data will be transmitted MBS first
or LSB first. Upon device reset, the SPIREVERSE bit
equals 0 and data is transmitted in MSB first format.

The SPIREVERSE bit state will also affect the data
transmission and the data reception buffer structure as
shown in the following diagrams.

FIGURE 24: SPI TRANSACTION STANDARD MODE (SPIREVERSE = 0 : MSB FIRST)

Outgoing Transaction

LSB MSB

SPIRXTX3
7 0

SPI Transmission (Standard Mode)

SPIRXTX2
07

SPIRXTX1
07

SPIRXTX0
07

SDO
Pin

SPIRXTX3
7 0

SPI Reception (Standard Mode)

SDI
PinSPIRXTX2

07
SPIRXTX1

07
SPIRXTX0

07

Incoming Transaction

MSB LSB

FIGURE 25: SPI TRANSACTION BIT REVERSE MODE (SPIREVERSE = 1: LSB FIRST)

SPI Reception (Bit Reversed Mode)

SPIRXTX3
7 0

SPIRXTX2
07

SPIRXTX1
07

SPIRXTX0
07

SDI
Pin

Incoming Transaction

LSB MSB

SPI Transmission (Bit Reversed Mode)

SPIRXTX3
7 0

SDO
PinSPIRXTX2

07
SPIRXTX1

07
SPIRXTX0

07

Outgoing Transaction

MSB LSB

The next tables gives examples of SPI transmission
and reception in different modes if the SPI SDO pin is
connected to the SDI pin.

SPISIZE = 0x0F (16 bit) / SPIREVERSE= 0 (MSB First
SPITX [3:0] SPIRX [3:0]
xx xx D3h 42h xx xx 42h D3h

xx xx 54h A6h xx xx A6h 54h

SPISIZE = 0x0F (32 bit) / SPIREVERSE= 0 (MSB First
SPITX [3:0] SPIRX [3:0]
45h A3h B2h DF DFh B2h A3h 45h

C3h 8Ah 49h 24h 24h 49h 8Ah C3h

SPISIZE = 0x0F (32 bit) / SPIREVERSE= 1 (LSB First
SPITX [3:0] SPIRX [3:0]
45h A3h B2h DF DFh B2h A3h 45h

C3h 8Ah 49h 24h 24h 49h 8Ah C3h

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 58 of 105

9.14.1 Performing Variable-Bit Data
Transmission

For a variable-bit data transmission in master mode
(when the data is not transmitted in multiples of 8 bits),
the most significant bit of the data to be transmitted
must first be placed at position 7 of the SPIRXTX0,
with the remaining bits positioned as shown in the SPI
transaction figures on the previous page.

For example if SPISIZE = 0x0B and SPIREVERSE =
0, the data transaction will measure 12 bits, MSB first.
For the transmission to occur in the correct order, the
lower 4 data bits must first be placed into bit positions
7:4 of the SPIRXTX1 register, with bits 11:8 written
into bit position 7:0 of the SPIRXTX0 register. This will
trigger the transmission.

The following is a sequence of steps to transmit 12 bits
of data contained in an integer variable called
txmitdata.

1. Clear the SPIRXTX3 and SPIRXTX2 registers
(optional)

2. Put the lower quartet of the 12-bit data (bits
3:0) into the upper quartet of the SPIRXTX1
register

3. Write bit 7:0 of the 12-bit data into the
SPIRXTX0 register

4. This will trigger a data transmission

In C, this is expressed as follows:
(…)

SPIRXTX3 = 0x00;
 SPIRXTX2 = 0x00;
 SPIRXTX1 = (txmitdata << 4)&0xF0; //Write the lower quartet of data

//into the upper quartet of SPIRXTX1 register

 readflag = SPIRXTX0 //-Dummy Read the SPI RX buffer to clear the RXAV Flag

//(Facultative if SPINOCS is monitored)

 SPIRXTX0 = dacdata >> 4; //Writing to SPIRXTX0 will trigger the transmission

For example to output 0x3A2 through the SPI interface
configured in master mode and MSB first format, write
0x20 into the SPIRXTX1 SFR register and followed by
0xA2 into the SPIRXTX0 register.

The reception of non multiple of 8 data when the SPI
interface is configured to MSB first transaction is very
straight forward as the data enters into the receiving
buffer through the bit 0 of the SPIRXTX0 register and
propagates towards the bit 7 of SPIRXTX3 register.

9.15 SPI Example Programs
9.15.1 UART to SPI Data Transmission

Example

//---//
// SPI Transmit example.c //
//--//
// This program sends characters received on the UART to the SPI Interface
//--//

#include <VRS51L3074_SDCC.h>

//----Global variables ------//

int cptr = 0x00; //general purpose counter

// --- function prototypes
void txmit0(unsigned char charact);
void uart0config(void);

//---//
// Main Function //
//---//

void main (void){

 char value = 0x00; //general purpose variable
 PERIPHEN1 = 0xC0; //Enable SPI Interface

 INTCONFIG = 0x02; //Erase Bypass global int, before configuring the INT0 pin
event
 //This fix inadvertent INT0 interrupt that occurs when
 //INT0 cause is set to Rising edge

 INTSRC1 = 0x01; //INT0 vector source = INT0 pin
 INTPINSENS1 = 0x01; //Set INT0 sensitive on edge(1) or Level(0)
 INTPININV1 = 0x00; //Set INT0 Pin sensitivity on Normal Level(0) / Inverted (1)
 INTEN1 = 0x01; //Enable INT0 (bit0) Interrupt

 INTCONFIG = 0x01; //Enable Global interrupt

 while(1);

}//end of Main

//---//
//----------------------------- Interrupt Functions -------------------------------//
//---//

//--//
// Interrupt INT0 //
// Send character received on the SPI Interface //
//---//

void INT0Interrupt(void) interrupt 0
 {
 //-- Send "EXT INT0 Received" on UART0
 cptr = 0x00; // Init cptr to pint to message beginning
 INTEN1 = 0x00; /Disable Interrupts
 SPICTRL = 0xE1; //SPI CLK = div by 256
 //SPI CS0 Active
 //SPI Mode 0
 //SPI Master

 SPISIZE = 0x07; //SPI SIZE = 8bit
 SPICONFIG = 0x10; //LOAD on CS3
 SPIRXTX0 = S0BUF; //Send Data Byte on SPI Interface

 INTEN1 = 0x01; //Enable Interrupt INT0
 }//end of INT0 interrupt

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 59 of 105

9.16 SPI Interface to 12-Bit ADC and DAC
The following example program shows the initialization
and use of the SPI module of the VRS51L3074 as an
interface to serial ADC and DAC.
.//--//
// VRS51L3074_Generic_SPI_based_ADC_DAC_Interf1.c
//--//
// DESCRIPTION:
// This Program demonstrates the configuration and use of the SPI interface
// for interface to typical serial 12 bit A/D and D/A Converters.
// The program read the A/D and output the read value out on a D/A converter
// To perform the conversion the ADC requires 16 clock cycles and
// the DAC requires 12 clock cycles.
//--//
#include <VRS51L3074_SDCC.h>

//---Functions prototypes
void ReadGEN_12BIT_ADC(void); //GEN_12BIT_ADC Read
void WriteGEN_12BIT_DAC(unsigned int); //GEN_12_BIT_DAC Write

void V2KDelay1ms(unsigned int); //Standard Delay function

// Global variables definitions

idata unsigned char cptr = 0x00;
unsigned int at 0x0060 adcdata= 0x00;

//--//
// MAIN FUNCTION
//--//
void main (void) {

 do{
 ReadGEN_12BIT_ADC(); //Read the A/D Converter
 WriteGEN_12BIT_DAC(adcdata); //write into the D/A Converter
 }while(1);

}// End of main

//--//
// NAME: ReadGEN_12BIT_ADC
//--//
// DESCRIPTION:
// Read the GEN_12BIT_ADC A/D
// ADC is connected to SPI interface using CS0
// Max clk speed is 3.2MHz, Fosc = 40MHz assumed
//--//
void ReadGEN_12BIT_ADC()
 {
 int cptr = 0x00;
 char readflag = 0x00;

 //SPI Configuration Section
 //(Can be moved to Main function if only one device is connected to the SPI Interface)

 //Make sure the SPI Interface is activated
 PERIPHEN1 |= 0xC0;

 //--Wait activity stops on the SPI interface (Monitor SPINOCS)
 while(!(SPISTATUS &= 0x08));

 SPICTRL = 0x65; //SPICLK = /16 (2.5MHz)
 //CS0 Active
 //SPI Mode 1 Phase = 1, POL = 0
 //SPI Master Mode

 SPICONFIG = 0x40; //SPI Chip select is automatic
 //Clear SPIUNDEFC Flag
 //SPILOAD = 0 -> Manual CS3 behaviour
 //No SPI Interrupt used

 SPISTATUS = 0x00; //SPI transactions are in MSB First Format

 SPISIZE = 0x0E; //SPI Transaction Size are 15 bit

 //-Dummy Read the SPI RX buffer to clear the RXAV Flag
 readflag = SPIRXTX0;
 //-Perform the SPI read
 SPIRXTX0 = 0x00; //Writing to the SPIRXTX0 will trigger the SPI

//Transaction

 while(!(SPISTATUS &= 0x02)); //Wait for the SPI RX AV Flag being set
 /*

 // -- It is possible to monitor the SPINOCS Flag instead of the SPIRXAV Flag
 //The code piece below shows how to do it. However in that case,
 //No that the reading of the SPISTATUS register must be done at
 //least 4 System clock cycles after the Write operation to the SPIRXTX0 register

 //-Wait for SPINOCS Flag have time to be updated
 _asm
 NOP;
 _endasm;

 while(!(SPISTATUS &= 0x08)); //Wait activity stops on the SPI interface
 */
 //Read SPI data
 adcdata= (SPIRXTX1 << 8);
 adcdata+= SPIRXTX0;
 adcdata&= 0x0FFF; //isolate the 12 lsb of the read value
 }//end of ReadGEN_12BIT_ADC

//--//
// NAME: WriteGEN_12BIT_DAC
//--//
// DESCRIPTION:
// Write 12bit Data into the GEN_12BIT_DAC device
// ADC is connected to SPI interface using CS1
// Max clk speed is 12.5MHz, Fosc = 40MHz assumed
// We will set the SPI prescaler to sysclk / 8
//--//
void WriteGEN_12BIT_DAC(unsigned int dacdata)
 {
 char subdata = 0x00;
 char readflag = 0x00;
 PERIPHEN1 |= 0xC0; //Make sure the SPI Interface is activated

 //--Wait activity stops on the SPI interface (Monitor SPINOCS)
 while(!(SPISTATUS &= 0x08));

 //SPI Configuration Section
 //Can be moved to Main function if only one device is connected to the SPI Interface

 SPICTRL = 0x4D; //SPICLK = /8 (MHz)
 //CS1 Active
 //SPI Mode 1 Phase = 1, POL = 0
 //SPI Master Mode

 SPICONFIG = 0x40; //SPI Chip select is automatic
 //Clear SPIUNDEFC Flag
 //SPILOAD = 0 -> Manual CS3 behaviour
 //No SPI Interrupt used

 SPISTATUS = 0x00; //SPI transactions are in MSB First Format
 SPISIZE = 0x0B; //SPI Transaction Size are 12 bit

 //-Format the 12 bit data so data bit 11 is positioned on bit 7 of SPIRXTX0
 // and data bit 0 is positioned on bit 4 of SPIRXTX1 and Perform the SPI write operation

 dacdata &= 0x0FFF; //Make sure dacdata is <= 0FFFh (12 bit)

 SPIRXTX3 = 0x00;
 SPIRXTX2 = 0x00;
 SPIRXTX1 = (dacdata << 4)&0xF0;

//-Dummy Read the SPI RX buffer to clear the RXAV Flag
 // (Facultative if SPINOCS is monitored)
 readflag = SPIRXTX0;

SPIRXTX0 = dacdata >> 4; //Writing to SPIRXTX0 will trigger the transmission

 //--Wait the SPI transaction completes
 // This section can be omitted if a check of activity on the SPI Interface
 // is made before each access to it in master mode

 //Wait for the SPI RX AV Flag being set
 while(!(SPISTATUS &= 0x02));

 // -- It is possible to monitor the SPINOCS Flag instead of the SPIRXAV Flag
 //The code piece below shows how to do it. However in that case,
 //No that the reading of the SPISTATUS register must be done at
 //least 4 System clock cycles after the Write operation to the SPIRXTX0 register
 /*
 //-Wait for SPINOCS Flag have time to be updated
 _asm
 NOP;
 _endasm;
 //--Wait activity stops on the SPI interface (monitor SPINOCS Flag)
 while(!(SPISTATUS &= 0x08));
 */
 }//end of WriteGEN_12BIT_DAC

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 60 of 105

10 I²C Interface
The VRS51L3074 includes an I²C interface that can
operate in master and slave mode. In master mode,
the communication speed on the I²C is programmable,
optimizing communication between I²C-based devices.
Long or heavily loaded I²C bus applications are likely
to require slower communication speeds.

10.1 I²C Bus Pull-Up Resistors
By definition, the I²C requires that the user include
external pull-up resistors on the SCL and SDA lines.
The pull-up voltage can be either 3.3 or 5 volts. Note
that the VRS51L3074 I/Os are 5V–tolerant making it
possible to interface 5V, I²C-based devices with the
VRS51L3074.

The proper value for the pull-up resistor and the proper
communication speed depend on bus characteristics
such as length and capacitive load.

Note that the pull-up resistor value should not be
below 1.25K ohms if running the I²C bus at 5V; and
750 ohms if operating at 3.3V. This is required in order
to limit the current to 4mA (maximum current of the I/O
port connected to the I²C interface).

10.2 I²C Phases
The I²C protocol includes five phases:

1. IDLE (SCL = 1, SDA = 1)
2. Device ID
3. Device ID Acknowledge
4. Data
5. Data Acknowledge

The VRS51L3074 I²C interface has provisions to
monitor activity on the I²C bus, particularly the data
acknowledge phase of a I²C transaction. There is also
a mechanism that enables the detection of
communication errors.

10.3 I²C Control and Status Registers
Four SFR registers are dedicated to the I²C interface.
The I²C configuration register I2CCONFIG enables:

• Selection of master or slave operation
• Forcing a start condition after an acknowledge

phase
• Manual control of the SCL line
• Activation of the master arbitration monitoring

mechanism
• Interrupt activation

TABLE 110:I2C CONFIGURATION REGISTER - I2CCONFIG SFR D1H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 1 0 0

Bit Mnemonic Description
7 MASTRARB Master Lost Arbitration and Mechanism and

Interrupt
0 = Deactivated
1 = Master lost arbitration monitoring and
 interrupt is enabled

6 I2CRXOVEN I²C RX Overrun Interrupt Enable
0 = I²C RX Overrun interrupt is deactivated
1 = I²C RX Overrun interrupt is enabled

5 I2CRXAVEN I²C RX Available Interrupt Enable
0 = I²C RX Available interrupt is deactivated
1 = I²C RX Available interrupt is enabled

4 I2CTXEEN I²C TX Empty Interrupt Enable
0 = I²C TX empty interrupt is deactivated
1 = I²C TX empty interrupt is enabled

3 I2CMASTART I²C Master Create Start
0 = No start condition is created after data
 acknowledge phase
1 = Master will create a start condition after the
 next data acknowledge phase
This bit will be cleared when the I²C is idle

2 I2CSCLLOW Keep the I²C SCL Low
Setting this bit to 1 will force the SCL line low.
This bit is read by the I²C interface when it
enters in the data I²C.
This bit must not be set during the acknowledge
phase.

1 I2CRXSTOP I²C Reception Stop
0 = The I²C received will acknowledge after
receiving a byte
1 = The I²C receiver will not acknowledge after
the next data byte is received

0 I2CMODE I2C Mode Enable
0 = I²C interface operates in slave mode
1 = I²C Interface operates in master mode

The I2CMODE bit of the I2CCONFIG register, when
set to 1, will configure the I²C interface as a master.

In master mode, the VRS51L3074 I²C interface
controls the I²C bus and initiates transmission and
reception transactions. In master mode, the I²C
interface also controls the communication speed.

Clearing the I2CMODE bit of the I2CCONFIG register
will configure the I²C interface as a slave. Slave mode
can be useful for applications in which the

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 61 of 105

VRS51L3074 operates as a peripheral in a host-
controlled system.

When in master mode, the I²C interface can be forced
to generate a start condition after the next data
acknowledge phase. This is done by setting the
I2CMASTART bit to 1.

When the MASTRARB bit is set to 1, communications
of the I²C will be monitored and an interrupt will be
generated if arbitration with slave devices on the bus is
lost. The interrupt flag associated with this process is
the I2CERROR bit of the I2CSTATUS register.

If the I2CRXSTOP bit is set to 1, the I²C interface will
not acknowledge after reception of the next byte, but
will generate a stop condition instead. This will, in
effect, end the transaction with the master device.

When the I²C interface is configured as a master and
the I2CSCLLOW bit of the I2CCONFIG register is set
to 1, the SCL line will be driven low during the next
data acknowledge phase. This feature enables the
user to add the equivalent of wait states to the transfer
in order to support “slow” devices connected to the I²C
bus.

The I²C interface includes support for four interrupt
conditions via two interrupt vectors.

• RX Data Available
• RX Overrun
• TX Empty
• Master lost arbitration

The following table summarizes the possible interrupt
sources at the I²C interface level.
TABLE 111: I²C INTERRUPT SOURCES

I²C Interrupt I2CCONFIG bit
(Set to 1 to activate)

Interrupt
Vector

RX Data
Available

I2CRXAVEN 4Bh
(Int 9)

RX Overrun I2CRXOVEN 0x4B
(Int 9)

TX Empty I2CTXEEN 0x4B
(Int 9)

Master Lost
Arbitration

MASTRARB 0x53
(Int 10)

To activate the I²C interface interrupts, the
corresponding enable bit of the I2CCONFIG register
must be set to 1. This will allow the I²C interrupt to
propagate to the VRS51L3074’s interrupt controller. In
order for the I²C interrupt to be recognized by the
processor, the corresponding bit of the INTEN2 and
INTSRC2 registers must be configured accordingly.

See the VRS51L3074 interrupt section for more
details.

10.4 I²C Timing Control Register
The I2CTIMING register controls the communication
speed when the I²C interface is configured in master
mode. When in slave mode, it defines the values of the
setup and hold times.
TABLE 112:I²C TIMING REGISTER - I2CTIMING SFR D2H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 1 1 0 0

Bit Mnemonic Description
7:0 I2CTIMING[7:0] I²C master/slave timing configuration register

See Below

The following formulas demonstrate the impact of the
I2CTIMING value on the communication speed and
setup/hold times.

In master mode:

SCL period = I2CCLK
 32*(I2CTIMING[7:0] + 1)

The following table provides examples of the
I2CTIMING values and the corresponding
communication speed:
TABLE 113: I²C COMMUNICATION SPEED VS. I2CTIMING REGISTER VALUE (FOSC = 40MHZ)

I2CTIMING I2C Com Speed
00h 1.25 MHz
02h 416.77 kHz
0Ch (Reset) 96.15 kHz
7Ch 10kHz
FFh 4.88kHz

In Slave Mode:

Set-up/Hold Time = I2CCLKperiod * I2CTIMING[7:0]

In this case, the precision is: 2 x I2CCLKperiod
TABLE 114: I²C SETUP AND HOLD TIME VS. I2CTIMING REGISTER VALUE (FOSC = 40MHZ)

I2CTIMING Setup/Hold
Time

00h 0 uS
0Ch 0.3 uS
FFh 6.38 uS

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 62 of 105

10.5 I²C Slave Device ID and Advanced
Configuration

When operating in slave mode, the device ID on the
I²C interface is configurable. The seven upper bits of
the I2CIDCFG register contain the user-selected
device ID. Bit 0 of the I2CIDCFG register has two
distinct roles.

The I2CAVCFG provides advanced control on I²C
interface operations.
TABLE 115:I²C DEVICE ID CONFIGURATION - I2CIDCFG SFR D3H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 I2CID[6:0] Slave I²C device ID as selected by user

Read: Indicates that the I²C slave has received
ID that is different from the I2CID.
This flag is cleared when the received ID
corresponds with the I2CID

0 I2CADVCFG

Writing:
Slave Mode: 1= The I2CRXAV flag is raised
when the I²C slave receives a device ID
Master Mode: 1 = Enables monitoring of the
SCL line in wait state mode in case of mismatch
of the SCL line vs. the expected value

When the I²C interface operates in master mode and
the I2CADVCFG is cleared, the I²C interface module
will continuously monitor the SCL line. If the slave
device drives the SCL line into an incorrect state, the
I²C interface will enter wait state mode until the slave
device releases the SCL line. This mode can be
useful for a I²C communication debug.

When the I2CADVCFG bit is set, no monitoring of the
SCL line will be executed by the I²C module and the
transaction will proceed independently of the level of
the SCL line.

When the VRS51L3074 I²C interface module is
configured as a slave, reading the I2CADVCFG bit as
1 indicates that the ID received does not match the
current device ID. This bit will be cleared when the
correct device ID is received.

In slave mode, writing a 1 into the I2CADVCFG bit of
the I2CIDCFG register will make the I2CRXAVF flag of
the I2CSTATUS register remain at 0, after the device
ID is received. If the I2CADVCFG bit is cleared, the
I2CRXAVF flag will be set either when a correct device
ID, or when valid data, are received.

10.6 I²C Status Register
Monitoring of the I²C interface can be done via the
I2CSTATUS register located at SFR address D4h. The
I2CSTATUS register is read only and values written
into that location have no effect.

The I2CERROR flag indicates that an error condition
occurred on the I²C interface. In master mode, the
I2CERROR flag will be set by the VRS51L3074 I²C
interface, if it loses bus arbitration.

In slave mode, if an unexpected stop is received, the
I2CERROR flag will be set. The I2CERROR flag will
be automatically reset by the I²C interface the next
time it exits an idle state.

If the I2CNOACK flag is set to 1, it signifies that the
slave device did not acknowledge the last data byte it
received.

The I²C interface also monitors the synchronization of
the SDA line. When synchronization is lost, the
I2CSDASYNC bit of the I2CSTATUS register will be
set by the I²C interface.

The I2CSDASYNC bit of the I2CSTATUS register
returns the value of the SDA line the moment a read
operation is performed on the I2CSTATUS register.

The I2CACKPH bit when set, indicates that the I²C
interface is currently in the data acknowledge phase.

Reading of the I2CSDASYNC and I2CCKPH bits can
be used to determine whether the slave device has
acknowledged. If both bits are set to 1 at a given time,
the slave device did not acknowledge.

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 63 of 105

TABLE 116: I²C STATUS REGISTER - I2CSTATUS SFR D4H

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 1 0 1 0 0 1

Bit Mnemonic Description

Slave Mode Error Flag:
0 = No Error
1 = Indicates that the I²C interface received an
unexpected stop
This flag is reset the next time the I²C interface
exits from an idle state (see below)

7

I2CERROR
Master Mode
0 = No Arbitration Error
1 = I²C interface has lost arbitration
This flag is reset the next time the I²C interface
exits from an idle state (see below)

6 I2CNOACK I²C Acknowledge Error Flag
0 = Acknowledge was received normally
1 = No acknowledge was received during the
last acknowledge phase
This flag is reset the next time the I²C interface
exit from the idle state (see below)

5 I2CSDASYNC I²C SDA Sync Status Flag
0 = SDA Pin in not in sync
1 = SDA pin is in sync

4 I2CACKPH When set, this flag indicates that the I²C
interface is in ‘Data Acknowledge Phase.’
5 phases of I²C protocol:
1. Idle
2. Device ID
3. Device ID Acknowledge
4. Data
5. Data Acknowledge

3 I2CIDLEF I²C is idle
0 = I²C interface is communicating
1 = I²C interface is inactive (idle phase) and the
SCL and SDA lines are high

2 I2CRXOVF I²C RX Overrun Interrupt Flag
0 = No I²C RX overrun condition detected
1 = I²C data collision occurred

1 I2CRXAVF I²C RX Available interrupt Flag
0 = I²C receive buffer is empty
1 = Data is present in the I²C RX buffer

0 I2CTXEMPF I²C TX Empty interrupt Flag
0 = I²C transmit buffer is full
1 = I²C transmit buffer is ready to receive new
data

When set, the I2CIDLEF indicates that the I²C bus is
idle and that a transaction can be initiated. Before
initiating an I²C data transfer, it is recommended to
check the state of the I2CIDLEF bit. This bit indicates
whether or not a data transfer is currently in progress.

When new data is received in the I²C receive buffer,
the I2CRXAVF interrupt flag will be set. Data must be
retrieved from the I2CRXTX buffer before the reception
of the next data byte is complete.

The I2CRXOVF flag when set, indicates an overrun
condition in the I²C interface receive buffer and the
data is potentially corrupted.

The I2CTXEMPF interrupt flag is set by the I²C
interface when the transmit data buffer is ready to
receive another data byte.

10.7 I²C Transmit/Receive register
The I²C interface transmit and receive buffers are
accessed via the I2CRXTX SFR register, which is
accessible at SFR address D5h.
TABLE 117:I²C DATA RX / TX REGISTER I2CRXTX - SFR D5H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description

Read: I²C Receive Buffer
Reading the I2CRXTX register will clear the
I2CRXAV and I2CRXOV flags

7:0 I2CRXTX[7:0]

Write: I²C Transmit Buffer

Writing into the I2CRXTX register will trigger the
transmission

10.8 I²C Interface alternate pins
Upon reset, the I²C interface signal SCL and SDA are
mapped into pins P3.4 and P3.5, respectively.
However it is also possible to map these signal into the
P1.6 and P1.7 pins.

Bit 5 of the DEVIOMAP register (SFR E1h) is used to
configure the mapping of the I²C interface at the I/O
level, as shown in the following table:
TABLE 118: I²C MODULE MAPPING

DEVIOMAP.5 Bit Value SCL
Mapping

SDA
Mapping

0 (Reset) P3.4 P3.5
1 P1.6 P1.7

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 64 of 105

10.9 I²C Interface Example Programs
The following programs provide example code for I²C
control of EEPROM devices

//--//
// VRS2k-I²C _EEPROM.c //
//----------------------------------//
//
// This example program demonstrate the use of the I²C
// interface to perform basic read and write operations on a
// Standard EEPROM device.
//--//

#include <VRS51L3074_SDCC.h>

//----Global variables ------//
int cptr = 0x00; //general purpose counter

// --- Function prototypes
char EERandomRead(char,int);
char EERandomWrite(char, char, int);
void WaitTXEMP(void);
void WaitRXAV(void);
void WaitI2CIDLE(void);
void wait();

//--//
//--------------- MAIN FUNCTION -------------------//
//--//
void main (void){

 PERIPHEN1 = 0x20; //Enable I²C Interface

 INTCONFIG = 0x02; //Erase Bypass global int, before configuring the INT0 pin event
 //This fix inadvertent INT0 interrupt that occurs when
 //INT0 cause is set to Rising edge

 INTSRC1 = 0x01; //INT0 vector source = INT0 pin
 INTPINSENS1 = 0x01; //Set INT0 sensitive on edge(1) or Level(0)
 INTPININV1 = 0x00; //Set INT0 Pin sensitivity on Normal Level(0) / Inverted (1)
 INTEN1 = 0x01; //Enable INT0 (bit0) Interrupt

 INTCONFIG = 0x01; //Enable Global interrupt

 while(1);
}//end of Main

//--//
//------------------------ Interrupt Functions -------------------------//
//--//

//----------------------------//
//---- Interrupt INT0 ----//
//---------------------------//
void INT0Interrupt(void) interrupt 0
 {
 char x;

 //-- Send I²C stuff
 cptr = 0x00; // Init cptr to pint to message beginning
 INTEN1 = 0x00; //Disable Interrupts

 x = EERandomWrite(0xA0, 0x36, 0x0206); //Perform Write operation
 Delay1ms(100);
 x = EERandomRead(0xA0, 0x0206); //Perform Read operation

 INTEN1 = 0x01; //Enable Interrupt INT0
 }//end of INT0 interrupt

//--//
//------------------------ Individual Functions ---------------------//
//--//

//---//
//---- Function EERandomRead(char eeidw,int address) -----//
//---//
char EERandomRead(char eeidw,int address){
 I2CTIMING = 0x20; // I²C Clock Speed = about 100kHz
 I2CCONFIG = 0x01; //I²C is Master
 I2CRXTX = eeidw; //Write I²C device ID + W
 WaitTXEMP();
 I2CRXTX = address >> 8; //Write I²C ADRSH
 WaitTXEMP();

 I2CRXTX = address; //Write I²C ADRSL

 //--Wait for I²C IDLE (This will generate a STOP)
 WaitI2CIDLE();

 //--Start a Preset ADRS read (This will generate a START)
 I2CRXTX = eeidw+1; //Write I²C device ID + R
 WaitTXEMP();
 I2CCONFIG |= 0x02; //Force I²C to Not Acknowledge after

//receiving the next data byte
 WaitRXAV(); //Wait for RX Available bit, This will trigger I²C Reception
 return I2CRXTX; //Return Data Byte

 }//End of EERandomRead

//--//
//----- Function EERandomWrite(char eeid,char data, int address) ----------//
//--//
char EERandomWrite(char eeidw, char eedata, int address){
 I2CTIMING = 0x20; // I²C Clock Speed = about 100kHz
 I2CCONFIG = 0x01; //I²C is Master
 I2CRXTX = eeidw; //Write I²C device ID + W

 WaitTXEMP();

 I2CRXTX = address >> 8; //Write I²C device ID + W
 WaitTXEMP();

 I2CRXTX = address; //Write I²C device ID + W
 WaitTXEMP();

 I2CRXTX = eedata; //Write I²C device data
 WaitTXEMP();

 return I2CRXTX; //Return Data Byte

 }//End of EERandomWrite

//--//
//-------- Function WaitTXEMP() ----------//
//--//
void WaitTXEMP()
 {
 wait();
 do{

 USERFLAGS = I2CSTATUS;
 USERFLAGS &= 0x01; //isolate the I²C TX EMPTY flag

 }while(USERFLAGS == 0x00); //Wait for I²C TX EMPTY
 }//end of Void WaitTXEMP()

//--//
//-------- Function WaitRXAV() ------------//
//--//
void WaitRXAV()
 {
 wait();
 do{

 USERFLAGS = I2CSTATUS;
 USERFLAGS &= 0x02; //isolate the I2CRXAV flag

 }while(USERFLAGS == 0x00); //Wait for I²C RX AVAILABLE

 }//end of Void WaitRXAV()

//---//
//-------- Function WaitI2CIDLE() ---------//
//---//
void WaitI2CIDLE()
 {
 wait();
 do{
 USERFLAGS = I2CSTATUS;
 USERFLAGS &= 0x08; //isolate the I²C idle flag
 }while(USERFLAGS == 0x00);

 }//end of Void WaitI2CIDLE()

//--//
//-------- Function Wait() ----------//
//--//
void wait(){
 char i=0;
 while (i<25) {i++;};
 }

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 65 of 105

11 Pulse Width Modulators (PWMs)
The VRS51L3074 includes eight independent PWM
channels, each based on a 16-bit timer.

All of the PWM modules can be configured to operate
as a regular PWM with adjustable resolution, or as a
general purpose 16-bit timer. The PWMEN register is
used to enable the different PWM modules.
TABLE 119: PWM ENABLE REGISTER - PWMEN SFR AAH

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 PWM7EN PWM7 Channel Enable

0 = PWM channel 7 is deactivated
1 = PWM channel 7 is activated

6 PWM6EN PWM6 Channel Enable
0 = PWM channel 6 is deactivated
1 = PWM channel 6 is activated

5 PWM5EN PWM5 Channel Enable
0 = PWM channel 5 is deactivated
1 = PWM channel 5 is activated

4 PWM4EN PWM4 Channel Enable
0 = PWM channel 4 is deactivated
1 = PWM channel 4 is activated

3 PWM3EN PWM3 Channel Enable
0 = PWM channel 3 is deactivated
1 = PWM channel 3 is activated

2 PWM2EN PWM2 Channel Enable
0 = PWM channel 2 is deactivated
1 = PWM channel 2 is activated

1 PWM1EN PWM1 Channel Enable
0 = PWM channel 1 is deactivated
1 = PWM channel 1 is activated

0 PWM0EN PWM0 Channel Enable
0 = PWM channel 0 is deactivated
1 = PWM channel 0 is activated

The following figure provides an overview of the PWM
modules.

FIGURE 26: PWM MODULES OVERVIEW

PWMLDPOL = 1

PWM Timer x

CLR

PWMx MID

PWMx END

PWMCLRALL

PWMx Pin

0

1< PWM MID

> PWM MID

> PWM END

PWMTMRFx

PWMTMRPR
Div Ratio:
Sys Clk / 1

Downto
Sys Clk / 16384

SYS CLK 0 15

PWMLDPOLx

PWMTMRENx

To others
PWM

Modules

11.1 PWM MID and END registers
Each PWM module includes two 16-bit registers:

o PWM MID value register
o PWM END value register

The PWM MID register is a 16-bit register that
configures the point at which the PWM output will
change it’s polarity.

The PWM END register is a 16-bit register that defines
the maximum PWM internal timer count value, after
which it rolls over to 0000h. See the following timing
diagram.

FIGURE 27: PWM POLARITY SETTING

Start
0000h

PWM MID
Value

PWM END
value

Cycle 1 Cycle 2

PWMLDPOL = 0

PWMLDPOL = 1

PWM Timer roll
over here and the

cycle repeats

This configuration allows the user to adjust the
resolution of the PWM up to 16 bits. Access to the
PWM internal registers and the PWM configuration is
handled by the PWMCFG register located at address
A9h.

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 66 of 105

TABLE 120:PWM CONFIGURATION REGISTER - PWMCFG SFR A9H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 -
6 PWMWAIT PWM Waits Before Loading New Configuration

0 = New PWM configuration is loaded at the
end of PWM cycle
1 = The update of the PWM configuration only
occurs when the end of the PWM is reached
and the bit is set to 0

5 PWMCLRALL PWM Clears All Channels
0 = No Action
1 = Simultaneously clears all the flags and all
the PWM channel timers
This bit is automatically cleared by hardware

4 PWMLSBMSB PWM LSB/MSB Select
0 = Selected PWM LSB SFR is addressed
1 = Selected PWM MSB SFR is addressed

3 PWMMIDEND PWM MID/END Register
0 = Selected PWM MID SFR is addressed
1 = Selected PWM END SFR is addressed

2:0 PWMCH[2:0] PWM Channel Select
000 = PWM0 on P2.0 (P5.0)
001 = PWM1 on P2.1 (P5.1)
010 = PWM2 on P2.2 (P5.2)
011 = PWM3 on P2.3 (P5.3)
100 = PWM4 on P2.4 (P5.4)
101 = PWM5 on P2.5 (P5.5)
110 = PWM6 on P2.6 (P5.6)
111 = PWM7 on P2.7 (P5.7)

The PWM channels are configured one at the time.
This topology has been adopted in order to minimize
the number of SFR registers required to access the
PWM modules.

In applications where multiple PWM channels need to
be configured simultaneously, the user can set the
PWMWAIT bit of the PWMCFG register, configure
each one of the PWM channels, and then clear the
PWMWAIT bit. The PWM configurations will then be
updated at the end of the next PWM cycle, after the
PWMWAIT bit has been cleared.
TABLE 121:PWM DATA REGISTER SFR ACH

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 PWMDATA[7:0] PWM Data Register

The PWM data register serves to configure the
selected channel MSB/LSB value of either the MID or
END point, as specified in the PWMCFG register.

The PWMIDx defines the actual timer value and the
PWMEND defines the maximum timer count value
before it rolls over.

The PWMLDPOL register controls the output polarity
of each one of the PWM modules or clears the timer’s

value when the PWM modules operate as general
purpose timers.
TABLE 122:PWM POLARITY AND CONFIG LOAD STATUS – PWMLDPOL ABH

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description

Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

7 PWMLDPOL7

Write
In PWM Mode
0 = PWM 7 cycle starts with a low level
1 = PWM 7 cycle starts with a high level
In Timer Mode
0 = No action
1 = PWM timer 7 value is cleared to 0
Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

6 PWMLDPOL6

Write
In PWM Mode
0 = PWM 6 cycle starts with a low level
1 = PWM 6 cycle starts with a high level
In Timer Mode
0 = No action
1 = PWM timer 6 value is cleared to 0
Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

5 PWMLDPOL5

Write
In PWM Mode
0 = PWM 5 cycle starts with a low level
1 = PWM 5 cycle starts with a high level
In Timer Mode
0 = No action
1 = PWM timer 5 value is cleared to 0
Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

4 PWMLDPOL4

Write
In PWM Mode
0 = PWM 4 cycle starts with a low level
1 = PWM 4 cycle starts with a high level

In Timer Mode
0 = No action
1 = PWM timer 4 value is cleared to 0
Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

3 PWMLDPOL3

Write
In PWM Mode
0 = PWM 3 cycle starts with a low level
1 = PWM 3 cycle starts with a high level
In Timer Mode
0 = No action
1 = PWM timer 3 value is cleared to 0
Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

2 PWMLDPOL2

Write
In PWM Mode
0 = PWM 2 cycle starts with a low level
1 = PWM 2 cycle starts with a high level

In Timer Mode
0 = No action
1 = PWM timer 2 value is cleared to 0

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 67 of 105

Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

1 PWMLDPOL1

Write
In PWM Mode
0 = PWM 1 cycle starts with a low level
1 = PWM 1 cycle starts with a high level
In Timer Mode
0 = No action
1 = PWM timer 1 value is cleared to 0
Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

0 PWMLDPOL0

Write
In PWM Mode
0 = PWM 0 cycle starts with a low level
1 = PWM 0 cycle starts with a high level

In Timer Mode
0 = No action
1 = PWM timer 0 value is cleared to 0

11.2 PWM Module Clock Configuration
Register

One system clock prescaler is associated with PWM
modules 0 to 3, while another is associated with PWM
modules 4 to 7. The PWM clock prescalers enables
the PWM output frequency to be adjusted to match
specific application needs, if required. The PWM clock
prescalers are configured via the PWMCLKCFG
register. The four upper bits of this register control the
clock for PMM modules 4 to 7, and the four lower bits
control the clock source for PWM modules 0 to 3.

The PWM module clock configuration register controls
the prescale value applied to the PWM modules’ input
clock, when the PWM modules are configured to
operate as either PWMs or general purpose timers.
TABLE 123: PWM CLOCK PRESCALER CONFIGURATION REGISTER - PWMCLKCFG AFH

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:4 U4PWMCLK3[3:0] PWM Timer 7, 6, 5,:4 Clock Prescaler

* see table below
3:0 L4PWMCLK3[3:0] PWM Timer 3, 2, 1,:0 Clock Prescaler

* see table below

The following table shows the system clock division
factor applied to the PWM modules for a given
PWMCLKCFG nibble.

TABLE 124: PWM PRESCALER VALUES

U4/L4PWMCLK
Value (4 bit)

Clock
Prescaler

U4/L4PWMCLK
Value (4 bit)

Clock
Prescaler

0000 Sys Clk / 1 1000 Sys Clk / 256
0001 Sys Clk / 2 1001 Sys Clk / 512
0010 Sys Clk / 4 1010 Sys Clk / 1024
0011 Sys Clk / 8 1011 Sys Clk / 2048
0100 Sys Clk / 16 1100 Sys Clk / 4096
0101 Sys Clk / 32 1101 Sys Clk / 8192
0110 Sys Clk / 64 1110 Sys Clk/ 16384
0111 Sys Clk / 128 1111 Sys Clk/ 16384

11.3 PWM Alternate Mapping
Bit 6 of the DEVIOMAP register (SFR E1h) controls the
mapping of the PWM module outputs, as shown in the
following table:
TABLE 125: PWM MODULES OUTPUT MAPPING

DEVIOMAP.6
Bit Value

PWM 7-0

0 (Reset) P2.7 – P2.0
1 P5.7 – P5.0

Note that the PWM5 and PWM6 outputs have priority
over the T0EX and T1EX inputs.

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 68 of 105

11.4 PWM Examples Program
11.4.1 PWM Basic Configuration

The following example program shows the basic
configuration of PWM modules #0, 1,2, 4 & 5

//---//
// VRS51L3074-PWM_basic_SDCC.c //
//////////////////////////////
//
// DESCRIPTION: VRS51L3074 PWMs Basic initialization Demonstration Program.
// Configure PWM0 as 8 bit resolution (25% duty)
// Configure PWM1 as 12 bit resolution (50% duty)
// Configure PWM2 as 16 bit resolution (75% duty)
// Configure PWM4 as 8 bit resolution and prescaler = 4 (25% duty)
// Configure PWM5 as 16 bit resolution and prescaler = 4 (75% duty)
//---//
// Rev 1.0
// Date: June 2005
//--//

#include <VRS51L3074_SDCC.h>

// --- function prototypes

void delay(unsigned int);

void main (void) {
 PERIPHEN2 = 0x02; //Enable PWM SFR

 //CLEAR All PWM Channels
 PWMCFG = 0x20;

 // Configure the PWM prescaler
 PWMCLKCFG = 0x20; // Apply a clock prescaler (div / 4) on PWM 7:4

 // Configure PWM Polarity
 PWMPOL = 0x00; //Set all PWM in normal polarity
 //PWM output = 0 until
 //PWMMID Value is reached

 //---------------------------------//
 //Configure PWM0 END value = 0x00FF (8bit)
 PWMCFG = 0x58; //Point to PWM0 END MSB
 PWMDATA = 0x00; //Set Max Count MSB = 0xFF
 PWMCFG = 0x48; //Point to PWM0 END LSB
 PWMDATA = 0xFF; //Set PWM MID MSB = 0x00 (8bit)

 //Configure PWM0 MID value (Duty = 25%)
 PWMCFG = 0x50; //Point to PWM0 MID MSB
 PWMDATA = 0x00; //Set PWM MID MSB = 0x00
 PWMCFG = 0x40; //Point to PWM0 MID LSB
 PWMDATA = 0xBF; //Set PWM MID LSB = 0xBF

 //---------------------------------//
 //Configure PWM1 END value = 0x0FFF (12bit)
 PWMCFG = 0x59; //Point to PWM1 END MSB
 PWMDATA = 0x0F; //Set Max Count MSB = 0x0F
 PWMCFG = 0x49; //Point to PWM1 END LSB
 PWMDATA = 0xFF; //Set Max Count = 0xFF

 //Configure PWM1 MID value (Duty = 50%)
 PWMCFG = 0x51; //Point to PWM0 MID MSB
 PWMDATA = 0x08; //Set PWM MID MSB = 0x08
 PWMCFG = 0x41; //Point to PWM0 MID LSB
 PWMDATA = 0x00; //Set PWM MID LSB = 0x00

 //---------------------------------//
 //Configure PWM2 END value = 0xFFFF (16bit)
 PWMCFG = 0x5A; //Point to PWM2 END MSB
 PWMDATA = 0xFF; //Set Max Count MSB = 0xFF
 PWMCFG = 0x4A; //Point to PWM2 END LSB
 PWMDATA = 0xFF; //Set Max Count = 0xFF

 //Configure PWM2 MID value (duty = 75%)
 PWMCFG = 0x52; //Point to PWM2 MID MSB
 PWMDATA = 0x40; //Set PWM MID MSB = 0x04
 PWMCFG = 0x42; //Point to PWM2 MID LSB
 PWMDATA = 0x00; //Set PWM MID LSB = 0x00

 //---------------------------------//

 //Configure PWM4 END value = 0x00FF (8 bit) (Clock Prescaler = 4)
 PWMCFG = 0x5C; //Point to PWM4 END MSB
 PWMDATA = 0x00; //Set Max Count MSB = 0xFF
 PWMCFG = 0x4C; //Point to PWM4 END LSB
 PWMDATA = 0xFF; //Set Max Count LSB = 0xFF

 //Configure PWM4 MID value (duty = 25%)
 PWMCFG = 0x54; //Point to PWM4 MID MSB
 PWMDATA = 0x00; //Set PWM MID MSB = 0x00
 PWMCFG = 0x44; //Point to PWM4 MID LSB
 PWMDATA = 0xBF; //Set PWM MID LSB = 0xBF

 //---------------------------------//
 //Configure PWM5 END value = 0xFFFF (16bit) (Clock Prescaler = 4)
 PWMCFG = 0x5D; //Point to PWM5 END MSB
 PWMDATA = 0xFF; //Set Max Count MSB = 0xFF
 PWMCFG = 0x4D; //Point to PWM5 END LSB
 PWMDATA = 0xFF; //Set Max Count = 0xFF

 //Configure PWM5 MID value (duty = 75%)
 PWMCFG = 0x55; //Point to PWM5 MID MSB
 PWMDATA = 0x40; //Set PWM MID MSB = 0x04
 PWMCFG = 0x45; //Point to PWM5 MID LSB
 PWMDATA = 0x00; //Set PWM MID LSB = 0x00

 //Enable PWM0, PWM1, PWM2, PWM4 & PWM5 Modules
 PWMEN = 0x37;

 PWMCFG &= 0x1F; //Clear the PWMWAIT bit to initiate
 //the PWMs operation
 while(1);

}// End of main

11.4.2 PWM Configuration and Control
Functions

//---//
// VRS51L3074-PWM_CFG_function_SDCC.c //
//--//
// DESCRIPTION: PWM configuration and control Functions
//---//
#include <VRS51L3074_SDCC.h>

// --- functions prototypes
void PWMConfig(char channel,int endval,int midval);
void PWMdata8bit(char,char);
void PWMdata16bit(char,int);
void delay(unsigned int);

void delay(unsigned int);

void main (void) {
 int cptr = 0x00;

 // PERIPHEN2 = 0x02; //Enable PWM SFR

 //CLEAR All PWM Channels
 PWMCFG = 0x20;

 // Configure the PWM prescaler
 PWMCLKCFG = 0x00; // Apply a clock prescaler (div / 1) on all PWM

 // Configure PWM Polarity
 PWMLDPOL = 0x00; //Set all PWM in normal polarity
 //PWM output = 0 until

 //--Configure PWM5 as 8bit resolution, END = 0xFF, PWM MID = 0x000
 PWMConfig(0x05, 0x0FF,0x000);

 //--Configure PWM0 as 8bit resolution, END = 0xFFF, PWM MID = 0x0000
 PWMConfig(0x02, 0xFFF,0x000);

 //Continuously vary the PWM2 and PWM5 values

 do{
 for(cptr = 0xFF0; cptr > 0x00; cptr--)
 {
 PWMdata16bit(0x02,cptr);
 PWMdata8bit(0x05,cptr>>4);
 delay(1);
 }
 }while(1);
}// End of main

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 69 of 105

//--
// --------- Individual Functions -------------------------
//--

//--//
// -- PWMConfig //
// ---//
// Description: configure PWM channel //
//--//
void PWMConfig(char channel,int endval,int midval)
 {
 char pwmch;
 char pwmready = 0x00;

 channel &= 0x07; //Make sure PWM ch number <= 7

 //Wait Last configuration to be loaded
 do{
 pwmready = PWMLDPOL;
 }while(pwmready != 0x00);

 //Define PWM Enable section

 PERIPHEN2 |= 0x02; //Enable PWM SFR
 //--Define the value to put into the PWMEN register
 switch(channel)
 {
 case 0x00 : pwmch = 0x01;
 break;
 case 0x01 : pwmch = 0x02;
 break;
 case 0x02 : pwmch = 0x04;
 break;
 case 0x03 : pwmch = 0x08;
 break;
 case 0x04 : pwmch = 0x10;
 break;
 case 0x05 : pwmch = 0x20;
 break;
 case 0x06 : pwmch = 0x40;
 break;
 case 0x07 : pwmch = 0x80;
 break;
 }//end of switch

 PWMEN |= pwmch; //Enable the Selected channel

 //Configure PWM END point

 PWMCFG = (channel + 0x58); //Set PWM configuration register to point to
 //the MSB of End value and set the PWMWAIT bit
 //to prevent the PWM configuration to be loaded
 //before the configure sequence is completed
 PWMDATA = endval >> 8;

 PWMCFG &= 0xEF; //Set PWM configuration register to point to
 //the LSB of End value
 PWMDATA = endval;

 //Configure PWM MID point

 PWMCFG = (channel + 0x50); //Set PWM configuration register to point to
 //the MSB of MID value and set the PWMWAIT bit
 //to prevent the PWM configuration to be loaded
 //before the configure sequence is completed
 PWMDATA = midval >> 8;

 PWMCFG &= 0xEF; //Set PWM configuration register to point to
 //the LSB of End value
 PWMDATA = midval;

 PWMCFG &= 0x3F; //Allows PWM update upon end of next PWM cycle

 }//end of PWMData16bit()

//--//
// -- PWMdata8bit //
// ---//
// Description: Allow PWM channel data update //
// (8bit data)l //
//--//
void PWMdata8bit(char channel,char pwmdata)
 {
 channel &= 0x07; //Make sure PWM ch number <= 7

 //--check that te last configuration has been loaded

 PWMCFG = (channel + 0x40); //Write new value in PWM Config
 //prevent PWM configuration to be loaded
 //before the configure sequence is completed
 PWMDATA = pwmdata; //Write new Data into the PWM registers

 PWMCFG &= 0x3F; //Allows PWM update upon end of next PWM cycle

 }//end of PWMData8bit()

//--//
// -- PWMdata16bit //
// ---//
// Description: Allow PWM channel data update //
// (16bit data)l //
//--//
void PWMdata16bit(char channel,int pwmdata)
 {

 channel &= 0x07; //Make sure PWM ch number <= 7
 PWMCFG = (channel + 0x50); //Set PWM configuration register to point to
 //the MSB of Data value and set the PWMWAIT bit
 //and set the PWMWAIT bit to prevent the
 //PWM configuration to be loaded
 //before the configure sequence is completed
 PWMDATA = pwmdata >>8;

 PWMCFG &= 0xEF; //Set PWM configuration register to point to
 //the LSB of Data value
 PWMDATA = pwmdata;

 PWMCFG &= 0x3F; //Allows PWM update upon end of next PWM cycle

 }//end of PWMData16bit()

//;--//
//;- DELAY1MSTO : 1MS DELAY USING TIMER0 //
//; //
//; CALIBRATED FOR 40MHZ //
//;--//
void delay(unsigned int dlais){

idata unsigned char x=0;
idata unsigned int dlaisloop;

 x = PERIPHEN1; //LOAD PERIPHEN1 REG
 x |= 0x01; //ENABLE TIMER 0
 PERIPHEN1 = x;

 dlaisloop = dlais;
 while (dlaisloop > 0)
 {
 TH0 = 0x63; //TIMER0 RELOAD VALUE FOR 1MS AT 40MHZ
 TL0 = 0xC0;

 T0T1CLKCFG = 0x00; //NO PRESCALER FOR TIMER 0 CLOCK
 T0CON = 0x04; //START TIMER 0, COUNT UP

 do{
 x=T0CON;
 x= x & 0x80;
 }while(x==0);

 T0CON = 0x00; //Stop Timer 0
 dlaisloop = dlaisloop-1;
 }//end of while dlais...

 x = PERIPHEN1; //LOAD PERIPHEN1 REG
 x = x & 0xFE; //DISABLEBLE TIMER 0
 PERIPHEN1 = x;
 }//End of function delais

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 70 of 105

11.5 Using PWM Modules as Timers
By appropriately configuring the PWMTMREN SFR,
the PWM modules can also operate as general
purpose 16-bit timers. The following table describes
the PWMTMREN register:
TABLE 126: PWM TIMER MODE ENABLE REGISTER - PWMTMREN SFR ADH

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description

7 PWM7TMREN
PWM 7 Module Operating Mode
0 = PWM 7 module is configured as PWM
1 = PWM 7 module is configured as timer

6 PWM6TMREN
PWM 6 Module Operating Mode
0 = PWM 6 module is configured as PWM
1 = PWM 6 module is configured as timer

5 PWM5TMREN
PWM 5 Module Operating Mode
0 = PWM 5 module is configured as PWM
1 = PWM 5 module is configured as timer

4 PWM4TMREN
PWM 4 Module Operating Mode
0 = PWM 4 module is configured as PWM
1 = PWM 4 module is configured as timer

3 PWM3TMREN
PWM 3 Module Operating Mode
0 = PWM 3 module is configured as PWM
1 = PWM 3 module is configured as timer

2 PWM2TMREN
PWM 2 Module Operating Mode
0 = PWM 2 module is configured as PWM
1 = PWM 2 module is configured as timer

1 PWM1TMREN
PWM 1 Module Operating Mode
0 = PWM 1 module is configured as PWM
1 = PWM 1 module is configured as timer

0 PWM0TMREN
PWM 0 Module Operating Mode
0 = PWM 0 module is configured as PWM
1 = PWM 0 module is configured as timer

When operating in timer mode, the PWM module timer
will count from 0000h up to the maximum PWM timer
value defined by the PWM MID sub registers, which
are accessible through the PWMCFG register.
TABLE 127: SUMMARY OF PWM MID SUB REGISTERS ACCESS

 PWMCFG bit
PWMLSBMSB

PWMCFG bit
PWMMIDEND

PWM timer MSB
max count value

0 1

PWM timer MSB
max count value

1 1

Once the PWM MID value is reached, the PWM timer
overflow is set and the PWM timer rolls over to 0000h.

The PWM timer flags are raised when the timer
reaches the maximum value set by PWMMIDH and
PWMMIDL. The PWMxTMRF bit must be cleared
manually by the interrupt service routine.
TABLE 128: PWM TIMER FLAGS REGISTER - PWMTMRF SFR AEH

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description

7 PWM7TMRF
PWM 7 Module Timer Flag
0 = No Overflow
1 = PWM Timer 7 Overflow

6 PWM6TMRF
PWM 6 Module Timer Flag
0 = No overflow
1 = PWM Timer 6 Overflow

5 PWM5TMRF
PWM 5 Module Timer Flag
0 = No Overflow
1 = PWM Timer 5 Overflow

4 PWM4TMRF
PWM 4 Module Timer Flag
0 = No Overflow
1 = PWM Timer 4 Overflow

3 PWM3TMRF
PWM 3 Module Timer Flag
0 = No Overflow
1 = PWM Timer 3 Overflow

2 PWM2TMRF
PWM 2 Module Timer Flag
0 = No Overflow
1 = PWM Timer 2 Overflow

1 PWM1TMRF
PWM 1 Module Timer Flag
0 = No Overflow
1 = PWM Timer 1 Overflow

0 PWM0TMRF
PWM 0 Module Timer Flag
0 = No Overflow
1 = PWM Timer 0 Overflow

FIGURE 28: PWM AS TIMERS OVERVIEW

PWMTMRPR(7:4)
Div Ratio:
Sys Clk / 1

Downto
Sys Clk / 16384

SYS CLK

PWMTMRPR(3:0)
Div Ratio:
Sys Clk / 1

Downto
Sys Clk / 16384

PWM7 Module

PWM6 Module

PWM5 Module

PWM4 Module

PWM7 Pin

PWM6 Pin

PWM5 Pin

PWM4 Pin

PWM3 Module

PWM2 Module

PWM1 Module

PWM0 Module

PWM3 Pin

PWM2 Pin

PWM1 Pin

PWM0 Pin

PWM6EN

PWM5EN

PWM7EN

PWM4EN

PWM2EN

PWM1EN

PWM3EN

PWM0EN

PWMEN

PERIPHEN2

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 71 of 105

11.6 Configuring the PWM Timers
Configuring the PWM modules to operate in PWM
timer mode requires the following steps:

1. Activate the PWMSFR register
2. Configure the PWM clock prescaler (if

required)
3. Set the PWMLDPOL register to 00h
4. Configure the PWM timer maximum count

value by setting the PWM MID sub-registers
5. Configure the PWM timer interrupts (if

required)
6. Configure the PWM modules as timers
7. Enable the PWM modules

Follow the code example below to perform these seven
steps :
(…)
 PERIPHEN2 |= 0x02; //Enable PWM SFR

 //--Configure the PWM prescaler
 PWMCLKCFG = 0x03; //Apply a clock prescaler (div / 8) on PWM 3:0

 //--Configure PWM Polarity
 PWMLDPOL = 0x00; //Set all PWM in normal polarity
 //PWM output = 0 until

 //--Configure PWM5 as timer
 // PWM Timer 5 counts from 0000 to F000h
 PWMCFG = 0x15; //Point to MSB MID
 PWMDATA = 0xF0; //Set PWM as Timer Max MSB

 PWMCFG = 0x05; //Point to LSB MID
 PWMDATA = 0x00; //Set PWM as Timer Max LSB

 //--Configure and Enable PWM as timer Interrupt to monitor PWM5 only
 INTSRC2 &= 0xDF; //PWM7:4 Timer module interrupt
 INTPINSENS1 = 0xDF; // sensitive on high level(0)
 INTPININV1 = 0xDF; //Set INT0 Pin sensitivity on normal level(0)
 INTEN2 |= 0x20; //Enable PWM7:4 Timer module interrupt

 //--Activate the PWM module and cofigure the PWM modules 5 as timer
 PWMEN |= 0x20; //Enable PWM 5
 PWMTMREN |= 0x20; //Enable PWM 5 as Timer

 GENINTEN = 0x03; //Enable Global interrupt

11.7 PWMs as Timers Example Programs
11.7.1 Configuring PWM0 and PWM5 as

Timers
The following example program demonstrates how to
initialize PWM0 and PWM5 as general purpose timers,
and how to monitor the PWM timer’s overflow flags by
pooling or via an interrupt.

//--//
// VRS51L3074-PWM_as_Timer1_SDCC.c.c //
//---//
// DESCRIPTION: PWM as Timer Example Program
// Enable and configure PWM Timer 0
// Apply a clock prescaler on PWM Timer 0 (div/8)
// Enable and configure PWM Timer 5
// Monitor PWM Timer 0 OV Flag by pooling
// When PWM Timer 0 Overflow, toggle P1.0 pin
// Monitor PWM Timer 5 OV Flag by interrupt

// When PWM Timer 5 Overflow interrupt occurs toggle P1.5 pin
///---//
#include <VRS51L3074_SDCC.h>
void main (void) {
 int cptr = 0x00;
 char flagread;

 PERIPHEN2 |= 0x02; //Enable PWM SFR

 //Configure Port1 as output

 P1PINCFG = 0x00;
 //Clear All PWM Channels
 // PWMCFG = 0x20;

 // Configure the PWM prescaler
 PWMCLKCFG = 0x03; // Apply a clock prescaler (div / 8) on PWM 3:0

 // Configure PWM Polarity
 PWMLDPOL = 0x00; //Set all PWM in normal polarity
 //PWM output = 0 until

 //--Configure PWM0 as Timer (will be monitored by pooling)
 // PWM Timer 0 counts from 0000 to 01F0h

 PWMCFG = 0x10; //Point to MSB MID
 PWMDATA = 0x01;

 PWMCFG = 0x00; //Point to LSB MID
 PWMDATA = 0xF0;

 //--Activate the PWM modules and configure the PWM modules as timers
 PWMEN |= 0x01;
 PWMTMREN |= 0x01; //Enable PWM 0 as Timer

 //--Configure PWM5 as Timer (will be monitored by interrupt)
 // PWM Timer 5 counts from 0000 to F000h
 PWMCFG = 0x15; //Point to MSB MID
 PWMDATA = 0xF0; //

 PWMCFG = 0x05; //Point to LSB MID
 PWMDATA = 0x00;

 //--Configure and enable PWM as timer interrupt to monitor PWM5 only
 INTSRC2 &= 0xDF; //PWM7:4 Timer module interrupt
 INTPINSENS1 = 0xDF; // sensitive on high level(0)
 INTPININV1 = 0xDF; //Set INT0 Pin sensitivity on normal level(0)
 INTEN2 |= 0x20; //Enable PWM7:4 timer module interrupt

 //--Activate the PWM modules and configure the PWM modules as timers
 PWMEN |= 0x20; //Enable PWM 5
 PWMTMREN |= 0x20; //Enable PWM 5 as Timer

 GENINTEN = 0x03; //Enable global interrupt

 while(1){

 //Wait for PWM0 as timer overflow Flag PWM0 timer flag pooled
 do
 {
 flagread = PWMTMRF;
 flagread &=0x01;
 }while(flagread == 0);

 PWMTMRF &= 0xFE; //Clear the PWM0 Timer Flag
 P1 = P1^0x01; //Toggle P1.0
 }//end of while(1)
}// End of main

//-- //
//----- Interrupt INT13 - PWM7:4 as Timer //
//--//
void INT13Interrupt(void) interrupt 13
 {
 char flagread;

 INTEN2 = 0x00; //Disable PWM7:4 Timer module interrupt

 flagread = PWMTMRF; //Read PWM Timer OV Flags
 flagread &= 0x20; //Check if PWM Timer 5 OV Flag is active
 if(flagread != 0x00)
 P1 = P1^0x20; //Toggle P1.5

 PWMTMRF &= 0xDF; //Clear the PWM Timer 5 OV Flag

 INTEN2 |= 0x20; //Enable PWM7:4 Timer module interrupt
 }//end of INT0 interrupt

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 72 of 105

12 Enhanced Arithmetic Unit
The VRS51L3074 includes a hardware-based,
calculation engine that executes very fast arithmetic
operations. With the exception of 16-bit division, which
requires 5 cycles, the enhanced arithmetic unit
performs multiplication, addition and data shifting in 1
system clock cycle.

This enables a tremendous performance gain of
approximately 30% to 50% for multiplication and
accumulation and 700% faster for 16-bit division
compared to a standard C compiler when implementing
mathematical and digital signal processing (DSP)
operations.

The enhanced arithmetic unit features:

o Hardware calculation engine
o Calculation result is ready as soon as the input

registers are loaded
o Signed mathematical calculations
o Unsigned MATH operations are possible if the

MUL engine operands are limited to 15 bits in
length

o Auto/manual reload of AU result register
o Easy implementation of complex mathematical

operations
o 16-bit and 32-bit overflow flag
o 32-bit overflow can set an interrupt
o Arithmetic unit operand registers can be

cleared individually or simultaneously
o Overflow flags can be configured to stay active

until manually cleared
o Can store and use results from previous

operations
o Hardware arithmetic unit features a 32-bit

barrel shifter in front of the AURES register,
which can be employed to scale up/down the
result of the operation being performed

o Data shifting operation is performed within the
1 cycle required for multiplication/addition

The arithmetic unit can be configured to perform the
operations in the following figure. It can also perform
data shifting.

FIGURE 29: VRS51L3074 ARITHMETIC UNIT OPERATION

ADD32 + ADD32

MULT16 + ADD32

(AUA, AUB) + AUC = AURES

Div16

(AUA x AUPREV(16lsb) + AUC = AURES
(AUA x AUPREV(16lsb) + 0 = AURES
(AUA x AUPREV(16lsb) + AUPREV = AURES

(AUA x AUA) + 0
(AUA x AUA) + AUC = AURES

= AURES

(AUA x AUA) + AUPREV = AURES

(AUA x AUB) + 0

(AUA x AUB) + AUC = AURES
= AURES

(AUA x AUB) + AUPREV = AURES

(AUA / AUB) = AURES

(1 Cycle)

(5 Cycles)

(1 Cycle)

(1 Cycle)

(1 Cycle)

(1 Cycle)

(1 Cycle)

(1 Cycle)

(1 Cycle)

(1 Cycle)

(1 Cycle)

Where AUA (multiplier), AUB (multiplicand), AUC
(accumulator), AURES (result) and AUPREV (previous
result) are 16-, 16-, 32-, 32- and 32-bits wide,
respectively.

Applications that require arithmetic and DSP
operations will benefit from the execution of such
calculations on the enhanced arithmetic unit. These
include digital filtering, data encryption, sensor output
data processing, lookup table replacement, etc. More
specifically, applications like FIR filtering that require
the repeated execution of 16-bit multiplication and
accumulation will benefit tremendously from the
arithmetic unit.

12.1 Using the Enhanced Arithmetic Unit
The VRS51L3074’s enhanced arithmetic unit operates
in signed binary. Access to its registers is executed via
the SFR registers, located on SFR Page 1. This page
is accessed by setting the SFRPAGE bit of
DEVMEMCFG register to 0x01. The DEVMEMCFG
register is located at address F6h on both SFR pages.

Before accessing the enhanced arithmetic unit SFR
registers, the module must be enabled. This is done
by setting AUEN bit 5 of the PERIPHEN2 register to 1.
AUEN bit 5 is located at address F5h on both SFR
pages.

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 73 of 105

12.2 Arithmetic Unit Control Registers
With the exception of the barrel shifter, the arithmetic
unit’s operation is controlled by two SFR registers:

o AUCONFIG1
o AUCONFIG2

The following tables describe these control registers:
TABLE 129: ARITHMETIC CONFIG REGISTER 1 – AUCONFIG1 SFR C2H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description

Read: Always Read as 0 7 CAPPREV
Capture Previous Result Enable
0 = Previous result capture is disabled
1 = Capture the previous result if CAPMODE bit
is set to 1

6 CAPMODE 0 = The capture of previous result is automatic
each time a write operation is done to the AU0
1 = The capture of the previous result is manual
and occurs when the CAPPREV bit is set to 1

5 OVCAPEN Capture Result on 32-Bit Overflow
0 = No result capture is performed
1 = The AU result is captured and stored when
a 32-bit overflow condition occurs

4 READCAP Read Stored Result
0 = AURES contains current operation result
1 = AURES contains previous result

3:2 ADDSRC[1:0] AU Adder Input n

32-bit Addition Source
B Input
00 = 0 (No Add)

01 = C (std 32-bit reg)
10 = AUPREV
11 = AUC (std 32-bit reg)
A Input
00=Multiplication
01=Multiplication
10=Multiplication
11= Concatenation of {A, B} + C for 32-bit
addition

1:0 MULCMD[1:0] AU Multiplication Command

00 = AUA x AUB
01 = AUA x AUA
10 = AUA x AUPREV (16 LSB)
11 = AUA x AUB

Notes
In Divider Mode
MULTA_IN = MULT_IN = 0x0000
In Multiplier Mode
DIVA_IN = 0x0000 and DIVB_IN = 0x0001

TABLE 130: ARITHMETIC CONFIG REGISTER 2 – AUCONFIG2 SFR C3H

7 6 5 4 3 2 1 0
W W W R/W R R R R
0 0 0 0 0 0 0 0

Bit Mnemonic Description

Read: Always read as 0 7:5 AUREGCLR
[2:0] Arithmetic Unit Operand Registers Clear

000 = No clear
001 = Clear AUA
010 = Clear AUB
011 = Clear AUC
100 = Clear AUPREV
101 = Clear all AU module registers and
overflow flags
110 = Clear overflow flags only

4 AUINTEN Arithmetic Unit Interrupt Enable
0 = Arithmetic unit interrupt is disabled
1 =-Arithmetic unit interrupt is enabled in divider
mode

3 - Not used, Read as 0
2 DIVOUTRG AU division is out of range flag

This flag is set if AUB = 0x0000 or (AUA =
0x8000 and AUB = 0xFFFF)

1 AUOV16 Arithmetic Unit 16-Bit Overflow Flag
0 = No 16 bit overflow condition detected
1 = a 16-bit overflow occurred
Will occur if there is a carry on from bit 15 to bit
1,6 but also from bit 31 to bit 32

0 AUOV32 Arithmetic Unit 32-Bit Overflow Flag
0 = No 16 bit overflow condition detected
1 = Operation result is larger than 32 bits

12.3 Arithmetic Unit Data Registers
The arithmetic unit data registers include operand and
result registers that serve to store the numbers being
manipulated in mathematical operations. Some of
these registers are uniquely for addition (such as
AUC), while others can be used for all operations. The
use of the arithmetic unit operation registers is
described in the following sections.

12.4 AUA and AUB Multiplication
(Addition) Input Registers

The AUA and AUB registers serve as 16-bit input
operands when performing multiplication.

When the arithmetic unit is configured to perform 32-bit
addition, the AUA and the AUB registers are
concatenated. In this case, the AUA register contains
the upper 16 bits of the 32-bit operand and the AUB
contains the lower 16 bits.
TABLE 131: ARITHMETIC UNIT A REGISTER BIT [7:0] - AUA0 SFR A2H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AUA[7:0] LSB of the A Operand Register

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 74 of 105

TABLE 132: ARITHMETIC UNIT A REGISTER BIT [15:8]- AUA1 SFR A3H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AUA[15:8] MSB of the A Operand Register

TABLE 133:ARITHMETIC UNIT B REGISTER BIT [7:0] - AUB0 SFR B2H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AUB[7:0] LSB of the B Operand Register for Multiplication

and Addition Operations

TABLE 134:ARITHMETIC UNIT DIVISION MODE REGISTER – AUB0DIV SFR B1H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AUB0DIV[7:0] Writing to this byte instead of AUB0 will set the

arithmetic unit to divisor mode

TABLE 135: ARITHMETIC UNIT B REGISTER BIT [15:8] - AUB1 SFR B3H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AUB[15:8] MSB of the B Operand Register

12.5 AUC Input Register
The AUC register is a 32-bit register used to perform
32-bit addition. The AUPREV register can be
substituted with the AUC register or by 0 in the 32-bit
addition.
TABLE 136:ARITHMETIC UNIT C REGISTER BIT [7:0] - AUC0 SFR A4H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AUC[7:0] Bit [7:0]of the C Operand Register

TABLE 137: ARITHMETIC UNIT C REGISTER BIT [15:8] - AUC1 SFR A5H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AUC[15:8] Bit [15:8] of the C Operand Register

TABLE 138:ARITHMETIC UNIT C REGISTER BIT [23:16] - AUC2 SFR A6H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AUC[23:16] Bit [23:16] of the C Operand Register

TABLE 139:ARITHMETIC UNIT C REGISTER BIT [31:24] – AUC3 SFR A7H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AUC[31:24] Bit [31:24] of the C Operand Register

12.6 The Arithmetic Unit AURES Register
The AURES register, which is 32 bits wide, is read-only
and contains the result of the last arithmetic unit
operation. The AURES register is located at the output
of the barrel shifter.

When the arithmetic unit is configured to perform
multiplication and/or addition, the AURES operates as
a 32-bit register that contains the result of the previous
operation(s).

However when the arithmetic unit has performed a 16-
bit division, the upper 16 bits of the AURES register
contain the quotient of the operation, while the lower
16 bits contain the remainder of the division operation.

The barrel shifter is deactivated when the arithmetic
unit is performing 16-bit division.

Four SFR registers located in SFR Page 1 provide
access to the arithmetic unit AURES register.
TABLE 140: ARITHMETIC UNIT RESULT REGISTER BIT [7:0] - AURES0 SFR B4H

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AURES[7:0] Bit [7:0]of the RESULT Register

TABLE 141: ARITHMETIC UNIT RESULT REGISTER BIT [15:8] - AURES1 SFR 5H

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AURES[15:8] Bit [15:8] of the RESULT Register

TABLE 142: ARITHMETIC UNIT RESULT REGISTER BIT [23:16] – AURES2 SFR B6H

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AURES[23:16] Bit [23:16] of the RESULT Register

TABLE 143: ARITHMETIC UNIT RESULT REGISTER BIT [31:24] – AURES3 SFR B7H

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AURES[31:24] Bit [31:24] of the RESULT Register

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 75 of 105

12.7 AUPREV Register
The AUPREV register can automatically or manually
save the contents of the AURES register and re-inject
it into the calculation. This feature is especially useful
in applications where the result of a given operation
serves as one of the operands for the next one.

As previously mentioned, there are two ways to load
the AUPREV register. This is controlled by the
CAPMODE bit value as follows:

CAPMODE = 0:
Auto AUPREV load, by writing into the AUA0 register.
Selected when CAPPREV = 0.

CAPMODE = 1:
Manual load of AUPREV when the CAPPREV bit is set
to 1.

Auto loading of the AUPREV register is useful in FIR
filter calculations. For example, it is possible to save a
total of eight MOV operations per tap calculation.
TABLE 144: ARITHMETIC UNIT PREVIOUS RESULT BIT [7:0] - AUPREV0 SFR C4H

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AUPREV[7:0] Bit [7:0]of the Previous Result Register

TABLE 145:ARITHMETIC UNIT PREVIOUS RESULT BIT [15:8] - AUPREV1 SFR C5H

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AUPREV[15:8] Bit [15:8] of the Previous Result Register

TABLE 146:ARITHMETIC UNIT PREVIOUS RESULT BIT [23:16] – AUPREV2 SFR C6H

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AUPREV[23:16] Bit [23:16] of the Previous Result Register

TABLE 147:ARITHMETIC UNIT PREVIOUS RESULT BIT [31:24] – AUPREV3 SFR C7H

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AUPREV[31:24] Bit [31:24] of the Previous Result Register

12.8 Multiplication and Accumulate
Operations

The multiplication and accumulate operations of the
arithmetic unit are defined by the MULCMD[1:0] and
ADDSRC[1:0] bits of the AUCONFIG1 register.
TABLE 148: MULTIPLICATION OPERATIONS VS. MULCMD BIT OF THE AUCONFIG1

MULCMD[1:0] Multiplication Operation
00 AUA x AUB
01 AUA x AUA
10 AUA x AUPREV (16LSB)
11 AUA x AUA

TABLE 149: ADDITION OPERATIONS VS. ADDSRC BIT OF THE AUCONFIG1

ADDSRC[1:0] Addition operation
00 No addition
01 AUC
10 AUPREV[31:0]
11 32-bit addition of

[AUA,AUB] + AUC

The following figure provides a block diagram
representation of the arithmetic unit operation for
multiplication and addition.

FIGURE 30: ARITHMETIC UNIT MULTIPLICATION AND ADDITION OVERVIEW

x

+
MSB LSB

Multiplicand 2

AUB(1:0)

AUA(1:0)

AUPREV(3:0)

AUB(1:0)

MULCMD{1:0}

AUA1 AUA0
MSB LSB

Multiplicand 1

00

01

10

11

AUB1 AUB0
LSB

AUA1 AUA0
MSB

Adder1

=

0

AUC(3:0)

AUPREV(3:0)

32 bit Add
{AUA,AUB}

+ AUC

ADDSRC{1:0}

00

01

10

11

MSB LSB

Adder

MSB LSB

Barrel Shifter

AURES(3:0)

AUSHIFTCFG

=11

ADDSRC{1:0}

10
01
00

The following table provides examples of the
AUCONFIG and AUSHIFTCFG register values and the
corresponding math operations performed by the
arithmetic unit. It also provides the value that would be
present in the AURES register if the arithmetic unit
input registers were initialized to the following values:

• AUA = 3322h
• AUB = 4411h
• AUC = 11111111h
• AUPREV = 12345678h

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 76 of 105

TABLE 150:CONFIGURATION OF THE ARITHMETIC UNIT, OPERATION AND OUTPUT RESULT

AUCONFIG1 AUSHIFTCFG Operation AURES
01h 00h AUA x AUA 0A369084h
00h 00h AUA x AUB 0D986D42h
03h 00h AUA x AUB 0D986D42h
02h 00h AUA x AUPREV15:0 114563F0h
0Ch,0Dh,0Eh
,0Fh

00h (AUA,AUB) +AUC]
32 bit addition

44335522h

04h, 07h 00h (AUA x AUB)+
AUC

1EA97E53h

04h, 07h 01h ((AUA x AUB)+
AUC) x 2 (shift 1
left)

3D52FCA6h

04h, 07h 3Eh ((AUA x AUB)+
AUC) / 4
(shift 2 right)

7AA5F94h

Multiplication and accumulate operations take place
within one system clock cycle.

12.9 Division Operation (AUA /
AUB1:AUB0DIV)

The VRS51L3074 arithmetic unit can be configured to
perform 16-bit division operations: the division of AUA
by AUB1,AUB0DIV. The quotient of this operation is
stored in the AURES3, AURES2 registers, with the
remainder stored in the AURES1, AURES0 registers
The following figure represents a 16-bit division.

FIGURE 31: ARITHMETIC UNIT DIVISION OVERVIEW

AUB1 AUB0DIV
MSB LSB

AURES3 AURES2
MSB LSB

Quotient Remainder

AURES1 AURES0
MSB LSB

AUA1 AUA0
MSB LSB

Dividend Divisor

Division operation is
triggered by writing LSB
of divisor into the
AUB0DIV register

Writing the LSB of the divisor into the AUB0DIV
register will trigger a division operation. Once the
division starts, the value written in the AUB0DIV
register will be automatically transferred into the AUB0
register.

This operation is neither affected by the barrel shifter
nor the multiplication/addition operation, defined by the
AUCONFIG register.

The division operation takes five system clock cycles
to be complete.

12.10 Barrel Shifter
The arithmetic unit includes a 32-bit barrel shifter at the
output of the 32-bit addition unit. The barrel shifter is
used to perform right/left shift operations on the
arithmetic unit output. The shift operation takes only
one cycle.

The barrel shifter can be used to scale the output result
of the arithmetic unit.

The shifting range is adjustable from 0 to 16 in both
directions. The “shifted” value can be routed to:

o AURES
o AUPREV
o AUOV32

Moreover, the shift left operation can be configured as
an arithmetic or logical shift, in which the sign bit is
discarded.
TABLE 151: ARITHMETIC UNIT SHIFT REGISTER CONFIG - AUSHIFTCFG SFR C1H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 SHIFTMODE AU Barrel SHIFTER Shift Mode

0 = Shift value is unsigned
1 = Shift value is signed

6 ARITHSHIFT AU Arithmetic Shift Enable
0 = Left shift is considered as logical shift
 (sign bit is lost)
1 = Left shift is arithmetic shift where sign bit
 is kept

5:0 SHIFT[5:0] The value of SHIFT[5:0] equals the amplitude of
the shift performed on the arithmetic unit result
register AURES
Positive value represent shift to the left
Negative value represent shift to the right

The barrel shifter section operates independently of
the multiply and accumulate sections on the arithmetic
unit. As such, if the AUSHIFTCFG register bits 5:0 are
set to a value other than 0, the value of AUPREV, if
derived from the AURES register either automatically
or manually, will be affected by the barrel shifter.

When the arithmetic unit is configured to perform
multiplication and addition operations, the barrel shifter
is active and the shift operation performed depends on
the current value of the AUSHIFTCFG register. When
the arithmetic unit is configured to perform 16-bit
division, the barrel shifter is deactivated.

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 77 of 105

12.11 VRS51L3074 Arithmetic Unit Block Diagram
The following block diagram provides a hardware description of the registers and the other components that comprise
the arithmetic unit on the VRS51L3074.

FIGURE 32: ARITHMETIC UNIT FUNCTIONAL DIAGRAM

AUA1 (MSB)

AUA0 (LSB)

AUB1 (MSB)

AUB0 (LSB)

SFR registers

AUC3 (MSB)

AUC2

AUC1

AUC0 (LSB)

AUA

AUB
MUL

(Signed)

mulcmd

ADD
MSB

ADD
LSB

addsrc

AUC

AUOV32

SHIFT

RDSTORED

AURES

AUPREV

AUA0 load

CAPPREV

MANLOOP

AURES
(SFR regs)

load

SHIFTMODE

ov16a

0

(16 LSB)

AURES2

AURES3 (MSB)

AURES1

AURES0 (LSB)

SFR registersSFR registers

AUPREV3 (MSB)

AUPREV2

AUPREV1

AUPREV0 (LSB)

AUCONFIG2

AUSHIFTCFG

AUCONFIG1

Arithmetic Unit Control SFR

addsrc

B

B

A

A

Concatenation
(A,B)

AUOV16

Stored
Result

OVCAPEN

AUOV32

AUB0DIV (LSB)
*For Division Operations Only

Previous

AUA

AUB

AUA
DIV
by

AUB

(Signed)

DIVOUTRG

AURES(1:0)

AURES(3:2)Quotient

Remainder

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 78 of 105

12.12 Arithmetic Unit Example Programs
12.12.1 Basic Arithmetic Operations Using the

Arithmetic Unit
The following example program demonstrates the
required arithmetic unit configuration to perform
mathematical operations

//--/
// VRS51L3074_MULTACCU1_SDCC.c //
//--/
//
// DESCRIPTION: VRS51L3074 Arithmetic Unit Demonstration Program
//
//--/
#include <VRS51L3074_SDCC.h>

//---/
// MAIN FUNCTION
//---/
 void main (void) {
 PERIPHEN2 = 0x20; //Enable Arithmetic Unit

 DEVMEMCFG = 0x01; //SELECT SFR PAGE 1

 //Configure Arithmetic Unit to perform math operations

 //Place Value in AUA

 AUA1 = 0x33;
 AUA0 = 0x22;

 //Place Value in AUB
 AUB1 = 0x44;
 AUB0 = 0x11;

 //Place Value in AUC

 AUC3 = 0x11;
 AUC2 = 0x11;
 AUC1 = 0x11;
 AUC0 = 0x11;

 //Place Value in AUPREV
 AUPREV3 = 0x12;
 AUPREV2 = 0x34;
 AUPREV1 = 0x56;
 AUPREV0 = 0x78;

 //--Some operation examples--

 // To perform: [(AUAxAUA)+0]
 AUCONFIG1 = 0x01; //Set operation (AUA x AUA) + 0
 //AURES = 0A369084h

 // To perform: [(AUAxAUB)+0]
 AUCONFIG1 = 0x00; //Set operation (AUA x AUB) + 0

//AURES = 0D986D42h
 // or

 AUCONFIG1 = 0x03; //Set operation (AUA x AUB) + 0
 //AURES = 0D986D42h

 // To perform: [(AUA x AUPREV[15:0]))+0]
 AUCONFIG1 = 0x02; //Set operation (AUAxAUPREV)+0
 //AURES = 114563F0h

 // To perform: [(AUA,AUB) + AUC] 32 bit addition
 AUCONFIG1 = 0x0C; //Set operation (AUA,AUB)+ AUC

 //AURES = 44335522h

 //or...
 AUCONFIG1 = 0x0D; //Set operation (AUA,AUB)+ AUC
 //AURES = 44335522h
 //or...
 AUCONFIG1 = 0x0E; //Set operation (AUA,AUB)+ AUC
 //AURES = 44335522h
 //or...
 AUCONFIG1 = 0x0F; //Set operation (AUA,AUB)+ AUC
 //AURES = 44335522h

 // To perform: [(AUA x AUB)+ AUC] No shift
 AUCONFIG1 = 0x04; //Set operation (AUA x AUB)+ AUC

 AUSHIFTCFG = 0x00; //No Shift
 //AURES = 1EA97E53h
 // To perform: [(AUA x AUB)+ AUC] x 2 (Shift one LEFT)
 AUCONFIG1 = 0x04; //Set operation (AUA x AUB)+ AUC
 AUSHIFTCFG = 0x01; //Set barrel shifter to perform one SHIFT LEFT (logical)

//No need to preset the AUSHIFTCFG register for every
//operations

 //AURES = 3D52FCA6h

 // To perform: [(AUA x AUB)+ AUC] / 2 (Shift one Right)
 AUCONFIG1 = 0x04; //Set operation (AUA x AUB)+ AUC
 AUSHIFTCFG = 0x3F; //Set barrel shifter to perform one SHIFT right
 //No need to preset the AUSHIFTCFG register for every

//operations
 //AURES = F54BF29h

 DEVMEMCFG = 0x00; //SELECT SFR PAGE 0

 while(1);

}// End of main

12.12.2 FIR Filter Function

The following example program shows the
implementation 3074of a FIR filter computation function
for one iteration; a data shifting operation; and the
definition of the FIR filter coefficient table. The FIR
computation algorithm is simple to implement, but
requires a lot of processing power. For each new data
point, multiplication with the associated coefficients and
addition operations must be performed N times
(N=number of filter taps).

Since it is hardware-based, the VRS51L3074
arithmetic unit is very efficient in performing operations
such as FIR filter computation. In the example below,
the COMPUTEFIR loop is the “heart” of the FIR
computation. Note that because of the arithmetic unit’s
features, very few instructions are needed to perform
mathematical operations and the calculation results are
ready at the next instruction. This provides a dramatic
performance improvement when compared to having to
perform all math operations manually, using general
processor instructions.
//---//
// VRS51L3074_AU_FIR_asm_c_-SDCC.c //
//---//
//
// DESCRIPTION: FIR filter demonstration program - mixed ASM and C coding to optimize
// the FIR loop speed.
//
// This program demonstrates the configuration and use of the SPI interface
// for interface to serial 12-bit A/D and D/A converters.
// The program reads the A/D and outputs the read value on a D/A converter
//
// At 40MHzm the 16-tap FIR loop + data shifting of the VRS51L3074 provide the
// following performances:
//
// FIR computation using AU module (asm) = 10.4 uSeconds
// Data shifting (asm) = 17.2 useconds
// FIR Computation + Datashift = 27.6 uSeconds (1/T = 36.2 KHz)
//
// Rev 1.0
// Date: August 2005
//---//
#include <VRS51L3074_SDCC.h>

//--FIR Filter Coefficient Tables
//;FSAMPLE 480HZ, N=16, LOW PASS 0.1HZ -78DB @ 60HZ

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 79 of 105

const int flashfircoef[] =
{0x023D,0x049D,0x086A,0x0D2D,0x1263,0x1752,0x1B30,0x1D51,
0x1D51,0x1B30,0x1752,0x1263,0x0D2D,0x086A,0x049D,0x023D};
//-- Global variables definition
int at 0x30 fircoef[16];
int at 0x50 datastack[16];
unsiged int at 0x75 dacdata;

//---- Functions Declaration ----//
//-- FIR Filter computation function
void FIRCompute(void);
void CopyFIRCoef(void);

//--Gen_ADC
void ReadGen_ADC(void); //

//- Gen_DAC
void WriteGen_DAC(unsigned int);

//---Generic functions prototype
void V2KDelay1ms(unsigned int); //Standard delay function

// Global variables definitions
idata unsigned char cptr = 0x00;

unsigned int adcdata = 0x00;

//---//
//--------- MAIN FUNCTION -----------------//
//---//
void main (void) {

PERIPHEN2 |= 0x02; //Enable PWM SFR
 P2PINCFG = 0xF0; //P2[3:0] is output

PWMCLKCFG = 0x10; //PWM Timer 7 Prescaler = Sys Clock / 2
//--Configure PWM7 as timer (will be monitored by interrupt)

// PWM Timer 7 counts from 0000 to A2C2h
PWMCFG = 0x17; //Point to MSB MID
PWMDATA = 0xA2

PWMCFG = 0x07; //Point to LSB MID
PWMDATA = 0xC2;

//--Configure and enable PWM as timer Interrupt to monitor PWM5 only

 INTSRC2 &= 0xDF; //PWM7:4 Timer module Interrupt
INTPINSENS1 = 0xDF; // sensitive on high level(0)
INTPININV1 = 0xDF; //Set INT0 Pin sensitivity on normal level(0)
INTEN2 |= 0x20; //Enable PWM7:4 Timer module interrupt

//-- Copy FIR filter coefficients to IRAM
CopyFIRCoef();

//--Activate the PWM modules and configure the PWM modules as timers
PWMEN |= 0x80; //Enable PWM 7
PWMTMREN |= 0x80; //Enable PWM 7 as Timer
GENINTEN = 0x01; //Enable global interrupt
while(1);

}// End of main

//---//
//---------------------- Interrupt Function----- ----------------------//
//---//

//---
// NAME: INT13Interrupt PWMTMR7:4 as Timer
//---
void INT13Interrupt(void) interrupt 13

{
char flagread;

INTEN2 = 0x00; //Disable PWM7:4 Timer module interrupt

flagread = PWMTMRF; //read PWM Timer OV Flags
flagread &= 0x80; //check if PWM Timer 7 OV Flag is Active
if(flagread != 0x00)

{
P2 = P2^0x01; //Toggle P2.0 (test)
ReadGen_ADC(); //Read the A/D Converter
FIRCompute(); //Perform the FIR filter computation and write into DAC
}

PWMTMRF &= 0x7F; //Clear the PWM Timer 7 OV Flag
INTEN2 |= 0x20; //Enable PWM7:4 Timer module interrupt
}//end of PWM as timer interrupt

//---//
//---------------------- Individual Functions ---------------------------//
//---//

//--
// NAME: FIRCompute
//---
void FIRCompute()

{
char *coef = &fircoef;
char *ydata = &datastack;
char fircptr = 0x00;

PERIPHEN2 |= 0x20; //Enable the Arithmetic Unit
P2 = 0xFF; //Set P2 = 0xFF to monitor duration for FIR Loop
*ydata = adcdata & 0x0FF; //Store the LSB of adc read data
ydata += 1;
*ydata = (adcdata >> 8)&0x00FF; //Store the MSB of adc read data
DEVMEMCFG = 0x01; //Switch to SFR Page 1
AUCONFIG1 = 0x08; //CAPREV = 0 : Previous Res capture is automatic

//CAPMODE = 1 : Capture of previous Result
//occurs when AUA0 is written into
//OVCAPEN = 0 : Capture on OV32 disabled
//READCAP = 0 : AURES contains current result
//ADDSRC = 10 : Add SCR = AUC
//MULCMD = 00 : Mul cmd = AUA x AUB

AUCONFIG2 = 0xA0; //Clear the Arithmetic Unit registers

_asm
MOV R0,#0x30; //Copy Start address of FIR Coefficient Table into R0
MOV R1,#0x50; //Copy Start address of FIR Data Table into R1
_endasm;

// Yn Computation mostly in assembler -- Faster...
for(fircptr = 0; fircptr < 16; fircptr++)

{
_asm
MOV 0xA2,@R0; //copy LSB of pointed coefficient to AUA0
INC R0;
MOV 0xA3,@R0; //copy MSB of pointed coefficient to AUA1
INC R0;
MOV 0xB2,@R1; //copy LSB of pointed coefficient to AUB0
INC R1;
MOV 0xB3,@R1; //copy MSB of pointed coefficient to AUB1
INC R1;
_endasm;
}//end of For cptr

//-- Performing the data stack shifting allows to save 8.8uS @ 40MHz
_asm
MOV R0,#0x6F;
MOV R1,#0x71;
_endasm;

for(fircptr = 16; fircptr > 0; fircptr--)
{

_asm
mov A,@R0;
mov @R1,A;
dec R0;
dec R1;
mov A,@R0;
mov @R1,A;
dec R0;
dec R1;
_endasm;
}//end of shift for loop

//-Scale down the AURES output by 16 using the barrel shifter
// the coefficient had been scaled up by a factor of 65536
AUSHIFTCFG = 0x30;
_asm
NOP;
_endasm;
P2 = 0x00; //Set P2 = 0x00 to signal the end of the FIR Loop

dacdata = (AURES1 << 8) + AURES0;

 //Reset the Barrel shifter

AUSHIFTCFG = 0x00;
// Note:
// In this case, 6 System clock cycles could be saved
// by reading AURES3 and AURES2 directly
DEVMEMCFG = 0x00; //Switch to SFR Page 0
WriteGen_DAC(dacdata); //Write data to SPI DAC
}//End of FIRCompute

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 80 of 105

//--
// NAME: CopyFIRCoef
//---
// DESCRIPTION: Copy the FIR Filter Coefficient into
// SRAM variable which is faster access
// than Flash
//---
void CopyFIRCoef(void)

{
char cptr = 0x00;

 for(cptr = 0x00; cptr < 16; cptr++)
fircoef[cptr]= flashfircoef[cptr];

}//End of CopyFIRCoef

//--
// NAME: ReadGen_ADC
//---
// DESCRIPTION: Read the Gen_ADC A/D
// ADC is connected to SPI interface using CS0
// Max clk speed is 3.2MHz, Fosc = 40MHz assumed
//--
void ReadGen_ADC()

{
int cptr = 0x00;
char readflag = 0x00;

//SPI Configuration Section
/(Can be moved to Main function if only one device is connected to the SPI interface)

PERIPHEN1 |= 0xC0; //Make sure the SPI interface is activated

//--Wait activity stops on the SPI interface (Monitor SPINOCS)
while(!(SPISTATUS &= 0x08));

SPICTRL = 0x65; //SPICLK = /16 (2.5MHz)

//CS0 Active
//SPI Mode 1 Phase = 1, POL = 0
//SPI Master Mode

SPICONFIG = 0x40; //SPI Chip select is automatic

//Clear SPIUNDEFC flag
//SPILOAD = 0 -> Manual CS3 behaviour
//No SPI interrupt used

SPISTATUS = 0x00; //SPI transactions are in MSB first format
SPISIZE = 0x0E; //SPI transaction size are 15-bit

//-Dummy Read the SPI RX buffer to clear the RXAV flag
readflag = SPIRXTX0;

//-Perform the SPI read
SPIRXTX0 = 0x00; //Writing to the SPIRXTX0 will trigger the SPI

//Transaction
//Wait for the SPI RX AV Flag being set
while(!(SPISTATUS &= 0x02));
/*
// -- It is possible to monitor the SPINOCS flag instead of the SPIRXAV flag
//The code piece below shows how to do it. However in that case,
//No that the reading of the SPISTATUS register must be done at
//least 4 system clock cycles after the write operation to the SPIRXTX0 register

//-Wait for SPINOCS Flag have time to be updated
_asm
NOP;
_endasm;

//--Wait activity stops on the SPI interface
while(!(SPISTATUS &= 0x08));
*/

//Read SPI data
adcdata= (SPIRXTX1 << 8);
adcdata+= SPIRXTX0;
adcdata&= 0x0FFF; //isolate the 12 lsb of the read value
}//end of ReadGen_ADC

//--//
// NAME: WriteGen_DAC
//--//
// DESCRIPTION: Write 12bit Data into the Gen_DAC device
// ADC is connected to SPI interface using CS1
// Max clk speed is 12.5MHz, Fosc = 40MHz assumed
// We will set the SPI prescaler to sysclk / 8
//
void WriteGen_DAC(unsigned int dacdata)

{
char subdata = 0x00;

char readflag = 0x00;

PERIPHEN1 |= 0xC0; //Make sure the SPI interface is activated

//--Wait activity stops on the SPI interface (Monitor SPINOCS)
while(!(SPISTATUS &= 0x08));

//SPI Configuration Section
//Can be moved to main function if only one device is connected to the SPI interface

SPICTRL = 0x4D; //SPICLK = /8 (MHz)

//CS1 Active
//SPI Mode 1 Phase = 1, POL = 0
//SPI Master Mode

SPICONFIG = 0x40; //SPI Chip select is automatic

//Clear SPIUNDEFC Flag
//SPILOAD = 0 -> Manual CS3 behaviour
//No SPI interrupt used

SPISTATUS = 0x00; //SPI transactions are in MSB first format
SPISIZE = 0x0B; //SPI transaction size are 12 bit

//-Format the 12 bit data so data bit 11 is positioned on bit 7 of SPIRXTX0
// and data bit 0 is positioned on bit 4 of SPIRXTX1 and perform the SPI write operation

dacdata &= 0x0FFF; //Make sure dacdata is <= 0FFFh (12 bit)
SPIRXTX3 = 0x00;
SPIRXTX2 = 0x00;
SPIRXTX1 = (dacdata << 4)& 0xF0;

//-Dummy read the SPI RX buffer to clear the RXAV Flag (facultative if SPINOCS is

monitored)
readflag = SPIRXTX0;

SPIRXTX0 = (dacdata >> 4); //Writing to SPIRXTX0 will trigger the transmission

//--Wait the SPI transaction completes
// This section can be omitted if a check of activity on the SPI interface
// is made before each access to it in master mode

//Wait for the SPI RX AV flag being set
while(!(SPISTATUS &= 0x02));
// -- It is possible to monitor the SPINOCS flag instead of the SPIRXAV flag
//The code piece below shows how to do it. However in that case,
//No that the reading of the SPISTATUS register must be done at
//least 4 system clock cycles after the write operation to the SPIRXTX0 register
/*
//-Wait for SPINOCS flag have time to be updated
_asm

 NOP;
_endasm;
//--Wait activity stops on the SPI interface (monitor SPINOCS Flag)
while(!(SPISTATUS &= 0x08));
*/
}//end of WriteGen_DAC

//--//
// NAME: V2KDelay1ms
//--//
// DESCRIPTION: VRS3074 specific 1 millisecond delay function
// Using Timer 0 and calibrated for 40MHz oscillator
//--//
void V2KDelay1ms(unsigned int dlais){
idata unsigned char x=0;
idata unsigned int dlaisloop;

PERIPHEN1 |= 0x01; //LOAD PERIPHEN1 REG

 dlaisloop = dlais;

while (dlaisloop > 0)
{
TH0 = 0x63; //TIMER0 RELOAD VALUE FOR 1MS AT 40MHZ

 TL0 = 0xC0;
 T0T1CLKCFG = 0x00; //NO PRESCALER FOR TIMER 0 CLOCK
 T0CON = 0x04; //START TIMER 0, COUNT UP

do{
x=T0CON;
x= x & 0x80;
}while(x==0);

T0CON = 0x00; //Stop Timer 0
dlaisloop = dlaisloop-1;
}//end of while dlais...

 PERIPHEN1 &= 0xFE; //Disable Timer 0
}//End of function V2KDelay1ms

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 81 of 105

13 Watchdog Timer
The VRS51L3074 includes a watchdog timer which
resets the processor in case of a program malfunction.
The watchdog timer is composed of a 14-bit prescaler,
which derives its source from the active system clock.
An overflow of the watchdog timer resets the
VRS51L3074. The WDTCFG SFR register controls the
watchdog timer operations.
TABLE 152: THE WATCHDOG TIMER REGISTER - WDTCFG 91H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:4 WDTPERIOD Watchdog Timer Period Configuration

*see table below
3 WTIMEROVF WDT as Timer Overflow Flag

0 = WDT as timer as not expired
1 = WDT as timer has overflow

2 ASTIMER Watchdog as Timer
0 = WDT mode
1 = WDT operate as a regular timer (no reset)
Writing to this bit will clear the timer
Read:
0 = Watchdog is counting
1 = Watchdog timer period has expired

1 WDTOVF

Write:
0 = No action
1 = Clear the watchdog timer flag
Read: No Action 0 WDTRESET

Watchdog Timer Reset
To reset the watchdog timer, two consecutive
writes to the WDTRESET bit must be made:
First clear the WDTRESET bit and second, set it
to 1

13.1 WDT Timeout Period
The watchdog timer timeout period is controlled by
adjusting bit 7:4 of the WDTCFG register. The
following table provides the approximate timeout vs.
the selected WDTPERIOD.
TABLE 153: WATCHDOG TIMER REGISTER TIMEOUT PERIOD

WDTPERIOD
Value (4 bit)

Actual WDT
Period**

Approx
Timeout**
(40MHz)

0000 0x3FFF* 409 – 600us
0001 0x3FFE 819-1000 us
0010 0x3FFD 1.23 – 1.36 ms
0011 0x3FFB 2.05 – 2.2 ms
0100 0x3FF4 4.92 ms
0101 0x3FE8 9.83 ms
0110 0x3FCF 20.07 ms
0111 0x3F86 49.97 ms
1000 0x3F49 74.96 ms
1001 0x3F0C 99.94 ms
1010 0x3E9E 249.86 ms
1011 0x3B3B 500.12 ms
1100 0x38D9 749.98 ms
1101 0x3677 999.83 ms
1110 0x2364 2.99 s
1111 0x0000 6.71s

*Not available in timer mode

The watchdog timer timeout period is calculated as
follows:

WDT Period* = 16384*(0x4000 – WDT Period)

 Fosc

*For a given configuration, the timeout period of the
watchdog timer may vary by about 200us. This delay is
caused by internal timing of the watchdog timer
module.

13.2 Resetting the Watchdog Timer
To reset the watchdog timer, two consecutive write
operations to the WDTCFG register must be
performed. During the first write operation, the
WDTRESET bit must be cleared. During the second
write operation, the WDTRESET should be set to 1.

This sequence is also required to set a new value for
WDTPERIOD. For example, if the watchdog period is
set to 100ms, the following sequence of operations will
reset the watchdog timer:
MOV WDTCFG,#92h
MOV WDTCFG,#93h

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 82 of 105

13.3 Using the Watchdog as a Timer
The VRS51L3074 watchdog timer can also be used as
a timer. In this case, the timeout period is defined by
the watchdog timer period value. Due to the presence
of the 14-bit prescaler, long timeout periods can be
achieved.

Configuring the watchdog timer operation as a general
purpose timer is achieved by:

o Setting the ASTIMER bit of the WDTCFG
register to 1

o Selecting the timer maximum time value of
WDTPeriod

o Performing a watchdog timer reset sequence
to clear the timer and apply the timer
configuration

The WTIMERFLAG bit of the WDTCFG register is
used to monitor the timer overflow. When configured in
timer mode, the watchdog timer does not reset the
VRS51L3074 and cannot trigger an interrupt.

13.4 Watchdog Timer Example Programs
13.4.1 Initialization and Reset of the Watchdog

Timer

//---//
// VRS51L3074-WDT_Demo_SDCC.c //
//---//
// DESCRIPTION: VRS51L3074 Watchdog Timer Demonstration Program
// *This Program Set P1 as output
// *P1 is set to 0xFF for 100ms
// *Initialize the watchdog timer with a timeout period of 20ms
// *Clear P1
// *Start a delay function
// *If the Delay parameter of the delay function is larger than the
// Timeout period of the watchdog timer, the WDT will reset the VRS51L3074
// which will bring back P1 to high level
//---//
#include <VRS51L3074_SDCC.h>

// --- function prototypes

void delay(unsigned int);

//---//
// MAIN FUNCTION //
//---//

void main (void) {

 PERIPHEN1 = 0x01; //Enable Timer 0
 PERIPHEN2 = 0x08; //Enable IOPORT

 P1PINCFG = 0x00; //Config port 1 as output

 //-- Enable the Watchdog Timer
 PERIPHEN2 |= 0x04;
 P1 = 0xFF; //Set P1 to output 0xFF
 delay(100); //Keep P1 high for 100ms

 //-- Configure the watchdog timer

 WDTCFG = 0x62; //Configure and Reset the Watchdog Timer
 WDTCFG = 0x63; //Bit 7:4 = WDTPERIOD : Define the timeout period (20ms)
 //Bit 3 = WTIMEROVF : WDT as timer overflow flag
 //Bit 2 = ASTIMER : WDT mode (0=WDT, 1=Timer)
 //Bit 1 = WDTOVF : WDT overflow (Timeout) Flag
 //Bit 0 = WDTRESET : WDT reset. To reset WDT
 //this bit must be cleared, then set

 P1 = 0x00; //Clear P1
 do{
 delay(10); //If delay > 20ms then the WDT will reset the VRS51L3074
 //and P1 will return to high

 WDTCFG = 0x62; //Reset the watchdog timer
 WDTCFG = 0x63;
 }while(1); //Loop Forever

}// End of main

//;--//
//;- DELAY1MSTO : 1MS DELAY USING TIMER0
//;
//; CALIBRATED FOR 40MHZ
//;---//
void delay(unsigned int dlais){

idata unsigned char x=0;
idata unsigned int dlaisloop;

 x = PERIPHEN1; //LOAD PERIPHEN1 REG
 x |= 0x01; //ENABLE TIMER 0
 PERIPHEN1 = x;

 dlaisloop = dlais;
 while (dlaisloop > 0)
 {
 TH0 = 0x63; //TIMER0 RELOAD VALUE FOR 1MS AT 40MHZ
 TL0 = 0xC0;

 T0T1CLKCFG = 0x00; //NO PRESCALER FOR TIMER 0 CLOCK
 T0CON = 0x04; //START TIMER 0, COUNT UP

 do{
 x=T0CON;
 x= x & 0x80;
 }while(x==0);

 T0CON = 0x00; //Stop Timer 0

 dlaisloop = dlaisloop-1;

 }//end of while dlais...

 x = PERIPHEN1; //LOAD PERIPHEN1 REG
 x = x & 0xFE; //DISABLEBLE TIMER 0
 PERIPHEN1 = x;
 }//End of function delais

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 83 of 105

14 VRS51L3074 Interrupts
The VRS51L3074 has a comprehensive set of 49
interrupt sources and uses 16 interrupt vectors to
handle them. The interrupts are categorized in two
distinct groups:

• Module interrupt
• Pin change interrupts

The module interrupts include interrupts that are
generated by VRS51L3074 peripherals such as the
UARTs, SPI, I²C , PWC and port change monitoring
modules.

As their name implies, the pin change interrupts are
interrupts that are generated by predefined conditions
at the physical pin level: . The pin change interrupts
can be caused by a level or an edge (rising or falling)
on a given pin. Standard 8051 INT0 and INT1
interrupts are considered pin change interrupts. The

VRS51L3074 includes INT0 and INT1, as well as 14
other pin interrupts distributed on ports 0 and 3.

The interrupt sources share 16 interrupt vectors from
00h to 7Bh. Each interrupt vector can be configured to
respond to either a pin change interrupt or a module
interrupt. The two following diagrams provide an
overview of the VRS51L3074 modules/pin interrupt
structure, the associated SFR registers and the
interaction among the interrupt management SFRs.

FIGURE 33: INTERRUPT SOURCES DETAILED VIEW

1

0Module

1

0

Pin

INTPINFx.y bit

INTSRCx.y bitINTPININVx.y bit

INTENx.y bit

To Interrupt
Controller

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 84 of 105

FIGURE 34: INTERRUPT SOURCES OVERVIEW

1

0Not Used

P3.2 - INT0 pin

1

0SPI TX Empty

P3.3 - INT1 pin

1

0SPI RX AV/OV

P3.0 pin

1

0Timer 0

P3.1 pin

1

0Port Chg 0

P3.4 pin

1

0UART0

P3.5 pin

1

0UART1

P3.6 pin

1

0Timer 1

P3.7 pin

1

0Timer 2

P0.0 pin

1

0I2C

P0.1 pin

1

0UART Collision

P0.2 pin

1

0PWC Modules

P0.3 pin

1

0PWM3:0 Timer

P0.4 pin

1

0PWM7:4 Timer

P0.5 pin

1

0
WDT Timer /
Arithmetic Unit

P0.6 pin

1

0Port Chg 1

P0.7 pin

Interrupt
Number

Interrupt
Vector

Natural
Priority

Int 0 0003h 1

Int 1 000Bh 2

Int 2 0013h 3

Int 3 001Bh 4

Int 4 0023h 5

Int 5 002Bh 6

Int 6 0033h 7

Int 7 003Bh 8

Int 8 0043h 9

Int 9 004Bh 10

Int 10 0053h 11

Int 11 005Bh 12

Int 12 0063h 13

Int 13 006Bh 14

Int 14 0073h 15

Int 15 007Bh 16

1

0
Module

1

0

Pin

INTPINFx.y
bit

INTSRCx.y bitINTPININVx.y bit

INTENx.y bit

Interrupt
Source config

Module

I/O pin

Details of Module / Pin controller

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 85 of 105

The interaction between the interrupt management configuration registers is summarized in the following table. The
paragraphs below describe each one of these registers in detail.
TABLE 154:VRS51L3074 INTERRUPT CONFIGURATION SUMMARY

Int # Prior
ity

Interrupt
Vector

Interrupt
Enable

Interrupt
Priority

Interrupt
Source

Connected Modules Connected
Pin

Pin
Inversion

Pin
Sensitivity

Pin Interrupt
Flag

INT 0 1 0003h INTEN1.0 INTPRI1.0 INTSRC1.0 None P3.2-INT0 IPINTINV1.0 IPINSENS1.0 IPINFLAG1.0
Int 1 2 000Bh INTEN1.1 INTPRI1.1 INTSRC1.1 SPI TX Empty P3.3-INT1 IPINTINV1.1 IPINSENS1.1 IPINFLAG1.1
Int 2 3 0013h INTEN1.2 INTPRI1.2 INTSRC1.2 SPI RX Available

SPI RX Overrun
P3.0 IPINTINV1.2 IPINSENS1.2 IPINFLAG1.2

Int 3 4 001Bh INTEN1.3 INTPRI1.3 INTSRC1.3 Timer 0 P3.1 IPINTINV1.3 IPINSENS1.3 IPINFLAG1.3
Int 4 5 0023h INTEN1.4 INTPRI1.4 INTSRC1.4 Port Change 0 P3.4 IPINTINV1.4 IPINSENS1.4 IPINFLAG1.4
Int 5 6 002Bh INTEN1.5 INTPRI1.5 INTSRC1.5 UART0 Tx Empty

UART0 RX Available
UART0 RX Overrun
UART0 Timer OV

P3.5 IPINTINV1.5 IPINSENS1.5 IPINFLAG1.5

Int 6 7 0033h INTEN1.6 INTPRI1.6 INTSRC1.6 UART1 Tx Empty
UART1 RX Available
UART1 RX Overrun
UART1 Timer OV

P3.6 IPINTINV1.6 IPINSENS1.6 IPINFLAG1.6

Int 7 8 003Bh INTEN1.7 INTPRI1.7 INTSRC1.7 Timer 1 P3.7 IPINTINV1.7 IPINSENS1.7 IPINFLAG1.7
Int 8 9 0043h INTEN2.0 INTPRI2.0 INTSRC2.0 Timer 2 P0.0 IPINTINV2.0 IPINSENS2.0 IPINFLAG2.0
Int 9 10 004Bh INTEN2.1 INTPRI2.1 INTSRC2.1 I²C Tx Empty

I²C RX Available
I²C RX Overrun

P0.1 IPINTINV2.1 IPINSENS2.1 IPINFLAG2.1

Int 10 11 0053h INTEN2.2 INTPRI2.2 INTSRC2.2 UART0 Collision
UART1 Collision
I²C Master Lost
Arbitration

P0.2 IPINTINV2.2 IPINSENS2.2 IPINFLAG2.2

Int 11 12 005Bh INTEN2.3 INTPRI2.3 INTSRC2.3 PWC 0 End Condition
PWC 1 End Condition

P0.3 IPINTINV2.3 IPINSENS2.3 IPINFLAG2.3

Int 12 13 0063h INTEN2.4 INTPRI2.4 INTSRC2.4 PWM3 as Timer OV
PWM2 as Timer OV
PWM1 as Timer OV
PWM0 as Timer OV

P0.4 IPINTINV2.4 IPINSENS2.4 IPINFLAG2.4

Int 13 14 006Bh INTEN2.5 INTPRI2.5 INTSRC2.5 PWM7as Timer OV
PWM6as Timer OV
PWM5as Timer OV
PWM4as Timer OV

P0.5 IPINTINV2.5 IPINSENS2.5 IPINFLAG2.5

Int 14 15 0073h INTEN2.6 INTPRI2.6 INTSRC2.6 Watchdog as Timer
OV
Arithmetic Unit OV

P0.6 IPINTINV2.6 IPINSENS2.6 IPINFLAG2.6

Int 15 16 007Bh INTEN2.7 INTPRI2.7 INTSRC2.7 Port Change 1 P0.7 IPINTINV2.7 IPINSENS2.7 IPINFLAG2.7

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 86 of 105

14.1 Interrupt Enable Registers
The interrupt enable and the general interrupt enable
registers establish the link between the peripheral
module/pin interrupt signals and the processor
interrupt system.

The GENINTEN register controls activation of the
global interrupt. On the VRS51L3074, only the least
significant bit of the GENINTEN is used. The
GENINTEN register is similar to the standard 8051 EA
bit. When the GENINTEN bit is set to 1, all the enabled
interrupts emanating from the modules/pins will reach
the interrupt controller.
TABLE 155:GENINTEN SFR REGISTER - NAME SFR E8H

7 6 5 4 3 2 1 0
- - - - - - - R/W
 0

Bit Mnemonic Description
7:2 Unused
1 CLRPININT It is recommended to set this bit to 1 before

enabling a pin interrupt to avoid receiving an
interrupt right after GENINTEN bit is set

0 GENINTEN General Interrupt Enable
0 = All enabled interrupts are masked
(deactivated)
1 = All enabled interrupt can raise an interrupt

When a given interrupt bit is set to 1, the
corresponding interrupt path is activated.
TABLE 156: INT ENABLE 1 REGISTER - INTEN1 (MODULES /PIN/INT VECTOR) SFR 88H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description

T1IEN Timer 1 Interrupt Enable
P3.7 pin P3.7 pin if interrupt source is set to pin

7

Int 7 Interrupt vector 7 at address 003Bh
U1IEN UART1 Interrupt Enable

o UART1 Tx Empty
o UART1 Rx Available
o UART1 Rx Overrun
o UART1 Baud Rate Generator as

Timer Overflow
P3.6 pin P3.6 pin if interrupt source is set to pin

6

Int 6 Interrupt vector 6 at address 0033h

U0IEN UART0 Interrupt Enable
o UART0 Tx Empty
o UART0 Rx Available
o UART0 Rx Overrun
o UART0 Baud Rate Generator as

Timer Overflow
P3.5 pin P3.5 pin if interrupt source set to pin

5

Int 5 Interrupt vector 5 at address 0002Bh

PCHGIEN0 Port Change Interrupt Module 0 Enable
P3.4 pin P3.4 pin if interrupt source is set to pin

4

Int 4 Interrupt vector 4 at address 0023h
T0IEN Timer 2 Interrupt Enable
P3.3 pin P3.3 pin if interrupt source is set to pin

3

Int 3 Interrupt vector 3 at address 001Bh
SPIRXOVIEN SPI Interrupt Enable

SPI Rx Available
SPI Rx Overrun

P3.0 P3.0 pin if interrupt source is set to pin

2

Int 2 Interrupt vector 2 at address 0013h
SPITXEIEN SPI Tx Empty Interrupt Enable
P3.3 pin P3.3 pin if interrupt source is set to pin

1

Int 1 Interrupt vector 0 at address 000Bh
No Module Unused
P3.2 pin P3.2 pin if interrupt source is set to pin

0

Int 0 Interrupt vector 0 at address 0003h

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 87 of 105

TABLE 157: INT ENABLE 2 REGISTER INTEN2 (MODULES /PIN/INT VECTOR) SFR A8H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description

PCHGIEN1 Port Change Interrupt Module 1 Enable
P0.7 pin P0.7 pin if interrupt source is set to pin

7

Int 15 Interrupt vector 8 at address 007Bh
AUWDTIEN Watchdog Timer and Arithmetic Unit Interrupt

Enable
o Watchdog as Timer Overflow
o Arithmetic Unit 32-bit Overflow

P0.6 pin P0.6 pin if interrupt source is set to pin

6

Int14 Interrupt vector 8 at address 0073h

PWMT74IEN PWM as Timer 7 to 4 Overflow Interrupt Enable
o PWM as Timer Module 7 Overflow
o PWM as Timer Module 6 Overflow
o PWM as Timer Module 5 Overflow
o PWM as Timer Module 4 Overflow

P0.5 pin P0.5 pin if interrupt source set to pin

5

Int 13 Interrupt vector 8 at address 006Bh

PWMT30IEN PWM as Timer 3 to 0 Overflow Interrupt Enable
o PWM as Timer Module 3 Overflow
o PWM as Timer Module 2 Overflow
o PWM as Timer Module 1 Overflow
o PWM as Timer Module 0 Overflow

P0.4 pin P0.4 pin if interrupt source is set to pin

4

Int 12 Interrupt vector 8 at address 0063h

PWCIEN

Pulse Width Counter Interrupt Enable
o PWC0 END condition occurred
o PWC1 END condition occurred

P0.3 pin P0.3 pin if interrupt source set to pin

3

Int 11 Interrupt vector 11 at address 005Bh
I2CUCOLIEN

I²C and UARTs Interrupts Enable
o I²C Master Lost Arbitration
o UART0 Collision Interrupt
o UART1 Collision Interrupt

P0.2 pin P0.2 pin if interrupt source is set to pin

2

Int 10 Interrupt vector 10 at address 0053h

I2CIEN

I²C Interrupts Enable
o TX Empty
o RX Available
o RX Overrun

P0.1 pin P0.1 pin if interrupt source set to pin

1

Int 9 Interrupt vector 9 at address 004Bh

T2IEN

Timer 2 Interrupt Enable (INTSCR

P0.0 pin P0.0 pin if interrupt source is set to pin

0

Int 8 Interrupt vector 8 at address 0043h

14.2 Interrupt Source
Each one of the 16 interrupt vectors on the
VRS51L3074 can be configured to function as either a
peripheral module or a pin change interrupt. The
selection of the interrupt source is handled by the
INTSRC1 and the INTSRC2 registers.

By default, the interrupt source is set to peripheral
module. However, setting the INTSRC bit to 1 will
“associate” the corresponding interrupt vector to the
corresponding pin interrupt.

When a given interrupt vector is associated with a
module, the corresponding bit of the IPINSENSx must
be set to 0, so it is level sensitive (reset value).
TABLE 158:INTERRUPT SOURCE 1 REGISTER - INTSRC1 SFR E4H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 INTSRC1.7 Interrupt 7 Source

0 = Timer 1
1 = P3.7

6 INTSRC1.6 Interrupt 6 Source
0 = UART1
1 = P3.6

5 INTSRC1.5 Interrupt 5 Source
0 = UART0
1 = P3.5

4 INTSRC1.4 Interrupt 4 Source
0 = Port Change 0
1 = P3.4

3 INTSRC1.3 Interrupt 3 Source
0 = Timer 0
1 = P3.1

2 INTSRC1.2 Interrupt 2 Source
0 = SPI RXAV, SPI RXOV
1 = P3.0

1 INTSRC1.1 Interrupt 1 Source
0 = SPI Tx EMPTY
1 = P3.3

0 INTSRC1.0 Interrupt 0 Source
0 = -
1 = P3.2

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 88 of 105

TABLE 159:INTERRUPT SOURCE 2 REGISTER - INTSRC2 SFR E5H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 INTSRC2.7 Interrupt 15 Source

0 = Port Change 0
1 = P0.7

6 INTSRC2.6 Interrupt 14
0 = WDT Timer OV, AU OV
1 = P0.6

5 INTSRC2.5 Interrupt 13 Source
0 = PWM7:4 Timer
1 = P0.5

4 INTSRC2.4 Interrupt 12 Source
0 = PWM3:0 Timer OV
1 = P0.4

3 INTSRC2.3 Interrupt 11 Source
0 = PWC0, PWC1
1 = P0.3

2 INTSRC2.2 Interrupt 10 Source
0 = UARTs Coll, I²C Lost Arbitration
1 = P0.2

1 INTSRC2.1 Interrupt 9 Source
0 = I²C
1 = P0.1

0 INTSRC2.0 Interrupt 8 Source
0 = Timer 2
1 = P0.0

14.3 Interrupt Priority
The INTPRIx registers enable the user to modify the
interrupt priority of either the module or the pin
interrupts. When the INTPRIx is set to 0, the natural
priority of module/pin interrupts prevails. Setting the
INTPRIx register bit to 1 will set the corresponding
module/pin priority to high.

If more than two module/pin interrupts are
simultaneously set to high priority, the natural priority
order will apply: Priority will be give to the module/pin
interrupts with high priority, over normal priority.

TABLE 160:INTERRUPT PRIORITY 1 REGISTER - INTPRI1 SFR E2H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 T1P37PRI Interrupt 7 Priority Level (Timer 1 / P3.7)

0 = Normal Priority
1 = High Priority

6 U1P36PRI Interrupt 6 Priority Level (UART1 / P3.6)
0 = Normal Priority
1 = High Priority

5 U0P35PRI Interrupt 5 Priority Level (UART0 / P3.5)
0 = Normal Priority
1 = High Priority

4 PC0P34PRI Interrupt 4 Priority Level (Port Chg 0 / P3.4)
0 = Normal Priority
1 = High Priority

3 T0P31PRI Interrupt 3 Priority Level (Timer 0 / P3.1)
0 = Normal Priority
1 = High Priority

2 SRP30PRI Interrupt 2 Priority Level (SPI RX / P3.0)
0 = Normal Priority
1 = High Priority

1 STP33PRI Interrupt 1 Priority Level (SPI TX / P3.3)
0 = Normal Priority
1 = High Priority

0 INT0P32PRI Interrupt 0 Priority Level (INT0 / P3.2)
0 = Normal Priority
1 = High Priority

TABLE 161:INTERRUPT PRIORITY 2 REGISTER - INTPRI2 SFR E3H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 PC1P07PRI Interrupt 15 Priority Level (Port Chg 1 / P0.0)

0 = Normal Priority
1 = High Priority

6 AIP06PRI Interrupt 14 Priority Level (WDT, AU / P0.6)
0 = Normal Priority
1 = High Priority

5 PWHP05PRI Interrupt 13 Priority Level (PWM7:4 timer / P0.5)
0 = Normal Priority
1 = High Priority

4 PWLP04PRI Interrupt 12 Priority Level (PWM3:0 timer / P0.4)
0 = Normal Priority
1 = High Priority

3 PWCP02PRI Interrupt 11 Priority Level (PWC0, PWC1 / P0.3)
0 = Normal Priority
1 = High Priority

2 INT10P01PRI Interrupt 10 Priority Level
(UARTs Coll, I²C Lost Arbitration / P0.2)
0 = Normal Priority
1 = High Priority

1 I2CP01PRI Interrupt 9 Priority Level (I²C / P0.1)
0 = Normal Priority
1 = High Priority

0 T2P00PRI Interrupt 8 Priority Level (Timer 2 / P0.0)
0 = Normal Priority
1 = High Priority

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 89 of 105

14.4 Pin Inversion Setting
TABLE 162: IMPACT OF PIN INVERSION SETTING ON PIN INTERRUPT SENSITIVITY

Pin Inversion Interrupt Condition
0 Normal Interrupt Polarity Sensitivity
1 Inverted Interrupt Polarity Sensitivity

TABLE 163:INTERRUPT PIN INVERSION 1 REGISTER - IPININV1 SFR D6H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 P37IINV Interrupt 7 Pin Polarity

0 = P3.7
1 = P3.7 Inverted

6 P36IINV Interrupt 6 Pin Polarity
0 = P3.6
1 = P3.6 Inverted

5 P35IINV Interrupt 5 Pin Polarity
0 = P3.5
1 = P3.5 Inverted

4 P34IINV Interrupt 4 Pin Polarity
0 = P3.4
1 = P3.4 Inverted

3 P31IINV Interrupt 3 Pin Polarity
0 = P3.1
1 = P3.1 Inverted

2 P30IINV Interrupt 2 Pin Polarity
0 = P3.0
1 = P3.0 Inverted

1 P33IINV Interrupt 1 Pin Polarity
0 = P3.3
1 = P3.3 Inverted

0 P32IINV Interrupt 0 Pin Polarity
0 = P3.2
1 = P3.2 Inverted

TABLE 164: INTERRUPT PIN INVERSION 2 REGISTER - IPININV1 SFR D7H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 P07IINV Interrupt 15 Pin Polarity

0 = P0.7
1 = P0.7 Inverted

6 P06IINV Interrupt 14 Pin Polarity
0 = P0.6
1 = P0.6 Inverted

5 P05IINV Interrupt 13 Pin Polarity
0 = P0.5
1 = P0.5 Inverted

4 P04IINV Interrupt 12 Pin Polarity
0 = P0.4
1 = P0.4 Inverted

3 P03IINV Interrupt 11 Pin Polarity
0 = P0.3
1 = P0.3 Inverted

2 P02IINV Interrupt 10 Pin Polarity
0 = P0.2
1 = P0.2 Inverted

1 P01IINV Interrupt 9 Pin Polarity
0 = P0.1
1 = P0.1 Inverted

0 P00IINV Interrupt 8 Pin Polarity
0 = P0.0
1 = P0.0 Inverted

14.5 Pin Interrupt Sensitivity Setting
The pin interrupt can be configured as level sensitive
or edge triggered. The pin interrupt sensitivity is set via
the IPINSENSx and IPININVx registers. The following
table summarizes the pin interrupt trigger condition
settings for IPINSENx and IPININVx.

TABLE 165:IMPACT OF PIN SENSITIVITY AND PIN INVERSION SETTING ON PIN INTERRUPT

Pin Sensitivity Pin Inversion Interrupt Condition
0 0 High level on pin
0 1 Low level on pin
1 0 Rising edge on pin
1 1 Falling edge on pin

The following tables provide the bit definitions for the
IPINSENS1 and IPINSENS2 registers. It is assumed
that the corresponding IPININVx bit is set to 0. If the
corresponding IPININVx bit is set to 1, the
corresponding interrupt event will be inverted.
TABLE 166:INTERRUPT PIN SENSITIVITY 1 REGISTER - IPINSENS1 SFR E6H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 P37ISENS Interrupt 7 Pin Sensitivity (IPININV1.7 = 0)

0 = P3.7 High Level
1 = P3.7 Rising Edge

6 P36ISENS Interrupt 6 Pin Sensitivity (IPININV1.6 = 0)
0 = P3.6 High Level
1 = P3.6 Rising Edge

5 P35ISENS Interrupt 5 Pin Sensitivity (IPININV1.5 = 0)
0 = P3.5 High Level
1 = P3.5 Rising Edge

4 P34ISENS Interrupt 4 Pin Sensitivity (IPININV1.4 = 0)
0 = P3.4 High Level
1 = P3.4 Rising Edge

3 P31ISENS Interrupt 3 Pin Sensitivity (IPININV1.3 = 0)
0 = P3.1 High Level
1 = P3.1 Rising Edge

2 P30ISENS Interrupt 2 Pin Sensitivity (IPININV1.2 = 0)
0 = P3.0 High Level
1 = P3.0 Rising Edge

1 P33ISENS Interrupt 1 Pin Sensitivity (IPININV1.1 = 0)
0 = P3.3 High Level
1 = P3.3 Rising Edge

0 P32ISENS Interrupt 0 Pin Sensitivity (IPININV1.0 = 0)
0 = P3.2 High Level
1 = P3.2 Rising Edge

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 90 of 105

TABLE 167:INTERRUPT PIN SENSITIVITY 2 REGISTER - IPINSENS2 SFR E7H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 P07ISENS Interrupt 7 Pin Sensitivity (IPININV2.7 = 0)

0 = P0.7 High Level
1 = P0.7 Rising Edge

6 P06ISENS Interrupt 6 Pin Sensitivity (IPININV2.6 = 0)
0 = P0.6 High Level
1 = P0.6 Rising Edge

5 P05ISENS Interrupt 5 Pin Sensitivity (IPININV2.5 = 0)
0 = P0.5 High Level
1 = P0.5 Rising Edge

4 P04ISENS Interrupt 4 Pin Sensitivity (IPININV2.4 = 0)
0 = P0.4 High Level
1 = P0.4 Rising Edge

3 P03ISENS Interrupt 3 Pin Sensitivity (IPININV2.3 = 0)
0 = P0.3 High Level
1 = P0.3 Rising Edge

2 P02ISENS Interrupt 2 pin Sensitivity (IPININV2.2 = 0)
0 = P0.2 High Level
1 = P0.2 Rising Edge

1 P01ISENS Interrupt 1 Pin Sensitivity (IPININV2.1 = 0)
0 = P0.1 High Level
1 = P0.1 Rising Edge

0 P00ISENS Interrupt 0 Pin Sensitivity (IPININV2.0 = 0)
0 = P0.0 High Level
1 = P0.0 Rising Edge

14.6 Interrupt Pin Flags
For each pin interrupt there is an interrupt flag that can
be monitored. When the selected interrupt event is
detected on a given pin, the corresponding pin
interrupt flag is set to 1 by the system.

The interrupt pin flags are automatically cleared when
the RETI (return from interrupt) instruction is executed.
They can also be cleared by the software at any time.

The pin interrupt flags can be monitored via the
software, even if the corresponding pin interrupt is not
activated. If all the corresponding interrupts are routed
to modules and all the interrupts are disabled, the
IPINFLAGx registers can be used as general purpose
scratchpad registers. However this is not
recommended.

TABLE 168:INTERRUPT PIN FLAG 1 REGISTER - IPINFLAG1 SFR B8H
7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 P37IF Interrupt 7 Pin Flag

Set to 1 if P3.7 pin Interrupt occurs
6 P36IF Interrupt 6 Pin Flag

Set to 1 if P3.6 pin Interrupt occurs
5 P35IF Interrupt 5 Pin Flag

Set to 1 if P3.5 pin Interrupt occurs
4 P34IF Interrupt 4 Pin Flag

Set to 1 if P3.4 pin Interrupt occurs
3 P31IF Interrupt 3 Pin Flag

Set to 1 if P3.1 pin Interrupt occurs
2 P30IF Interrupt 2 Pin Flag

Set to 1 if P3.0 pin Interrupt occurs
1 P33IF Interrupt 1 Pin Flag

Set to 1 if P3.3 pin Interrupt occurs
0 P32IF Interrupt 0 Pin Flag

Set to 1 if P3.2 pin Interrupt occurs

TABLE 169:INTERRUPT PIN FLAG 2 REGISTER - IPINFLAG2 SFR D8H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 P07IF Interrupt 15 Pin Flag

Set to 1 if P0.7 pin Interrupt occurs
6 P06IF Interrupt 14 Pin Flag

Set to 1 if P0.6 pin Interrupt occurs
5 P05IF Interrupt 13 Pin Flag

Set to 1 if P0.5 pin Interrupt occurs
4 P04IF Interrupt 12 Pin Flag

Set to 1 if P0.4 pin Interrupt occurs
3 P03IF Interrupt 11 Pin Flag

Set to 1 if P0.3 pin Interrupt occurs
2 P02IF Interrupt 10 Pin Flag

Set to 1 if P0.2 pin Interrupt occurs
1 P01IF Interrupt 9 Pin Flag

Set to 1 if P0.1 pin Interrupt occurs
0 P00IF Interrupt 8 Pin Flag

Set to 1 if P0.0 pin Interrupt occurs

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 91 of 105

15 VRS51L3074 JTAG Interface
The VRS51L3074 includes a JTAG interface that
enables programming of the on-board Flash as well as
code debugging. In order to free up as many I/Os as
possible, the JTAG interface pins are shared with
regular I/O pins that can be used as general I/Os when
the JTAG interface is not being used.

The JTAG interface is mapped into the following pins:

TABLE 170: JTAG INTERFACE PIN MAPPING

JTAG
Pin

Function Corresponding Pin

TDI JTAG Data Input P4.3
TDO JTAG Data Output P4.2
CM0 Chip Mode 0 ALE
TMS Test Mode Select P4.1
TCK JTAG Clock P2.7

Activation of the JTAG interface is controlled by the
CM0/ALE pin. The CM0/ALE pin includes an internal
pull-up resistor. When the CM0 pin is held at a logic
low and a power-on reset is performed, the JTAG
interface is activated.

15.1 Impact of JTAG interface activation
When the JTAG interface is activated, it has the
following consequences on VRS51L3074 operation:

• The PWM 7 output is deactivated. The PWM7
module can still be active.

• The P2.7, P4.3, P4.2, P4.1 I/O pins are
deactivated.

• The ALE pin is reserved for the JTAG
interface. To efficiently debug code accessing
the external SRAM memory, place a 1k Ohms
resistor in the path of CM0 to the JTAG
interface module.

15.2 Board Level JTAG Interface
Implementation

To perform in-circuit programming and debugging of
the VRS51L3074, access to the device’s JTAG port
should be provided at the board level. The following
figure demonstrates a typical setup for JTAG port
access.
FIGURE 35: JTAG INTERFACE SETUP

3

5

7

9

1

4

6

8

10

2PWRCTRL

VDD

-

-

IDC Connector

VRS51L3074 P4.3 - TDI

P4.2 – TDO

P4.1 - TMS

RESET

P2.7 - TCK

JT
A

G

CM0 - ALE

CM0 - ALE

P4.2 – TDO

P2.7 - TCK

VDD

3.3V Regulator

VDDVin

Enable

VDD

The configuration of the IDC connector shown in
Figure 35 matches that on the Versa-JTAG interface
IDC connector.

Please note that if the target PCB’s regulator includes
a power control feature, the power control line can be
routed to the JTAG IDC connector, enabling the Versa-
JTAG to control the target board power during device
programming and in-circuit debugging. The other
option is to leave the PWRCTRL pin of the IDC
connector unconnected.

For the RESET control line, the presence of an
external RC reset circuit is optional.

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 92 of 105

15.3 VRS51L3074 Debugger
The VRS51L3074 includes advanced debugging
features that enable real-time, in-circuit debugging and
emulation via the JTAG interface. When the
VRS51L3074 debugger is activated, the upper 1024
bytes of the Flash memory are not available for user
program.

The VRS51L3074 debugger is intended to be used in
conjunction with the Versa Ware JTAG software,
developed by Ramtron. This software provides an
easy-to-use interface for device programming and in-
circuit debugging. For more information on the
VRS51L3074 debugger’s features and use, please
consult the Versa Ware JTAG user guide.

16 Flash Programming
Interface (FPI)

The FPI module allows the processor to perform in-
application management of the Flash memory content.
The following operations are supported by the FPI
module :

• Mass Erase
• Page Erase
• Byte Write

Six SFR registers are associated with the FPI module
operation, as shown in the table below:
TABLE 171: FLASH PROGRAMMING INTERFACE REGISTERS

SFR Name Function Reset Value

E9h FPICONFIG
Configures the
FPI operations 34h

EAh FPIADDRL

Address for
operation

(lower byte) 00h

EBh FPIADDRH

Address for
operation

(upper byte) 00h
ECh FPIDATAL Data to write 00h

EDh FPIDATAH
Upper byte of
data to write 00h

EEh FPICLKSPD

Clock speed
during FPI
operations 00h

The FPI module is activated by setting bit 0 of the
PERIPHEN2 register. There are two ways to perform
read and write operations to the Flash using the FPI
module: the standard 8-bit mode, which writes 1 byte
at a time and an extended 16-bit mode, which writes 2
bytes at a time (1 word), effectively doubling the writing
speed. In addition, whenever a write or read is

performed, the address is incremented automatically
by the FPI module, saving processor cycles and code
space.

16.1 FPI Configuration Register
Flash operations are activated via the FPI
configuration register. The following table describes
the FPI configuration register:
TABLE 172: FPI CONFIGURATION REGISTER - FPICONFIG SFR E9H

7 6 5 4 3 2 1 0
R R R R R/W R/W R/W R/W
0 0 1 1 0 1 0 0

Bit Mnemonic Description
7:6 FPILOCK[1:0] These bits indicate the stage of the unlock

operation:
00 : IAP protection on (no unlock steps done)
01 : IAP first unlock step done: FPI_DATA_LO
received 0xAA
10 : IAP protection off: second step done
(FPI_DATA_LO received 0x55)
11 : Disables write/erase operations until the
next system reset. This occurs if a wrong
sequence is used.

5 FPIIDLE Indicates that the FPI is idle
4 FPIRDY Indicates that the FPI is idle in all modes except

"write byte" mode, in which the double buffer is
ready for a new value

3 RESERVED Keep this bit at 0
2 FPI8BIT 0 = FPI operates in 16-bit mode

1 = FPI operates in 8-bit mode
0 FPITASK[1:0] Operation:

00: Read Mode
01: Mass Erase
10: Page Erase
11: Write (Writing to FPIDATAL starts
operation)
Note that actions are only started if FPIRDY is
high, otherwise the action is cancelled

16.2 FPI Flash Address and Data
Registers

The FPIADDRH and FPIADDRL registers are used to
specify the address where the IAP function will be
performed.
TABLE 173: FPI ADDRESS HIGH FPIADDRH SFR EBH

7 6 5 4 3 2 1 0
R/W, Reset = 0x00

FPIADDR[15:8]

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 93 of 105

The FPIADDRH register contains the MSB of the
destination address. For page erase operations, it
contains the page number where page erase
operations are performed.
TABLE 174:FPI ADDRESS LOW -FPIADDRL SFR EAH

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0

R/W
FPIADDR[7:0]

The FPIADDRL register contains the LSB of the
destination address where the operation is performed.
For page erase it must contain the value 0x00.

The FPIDATAH and FPIDATAL registers contain the
data byte(s) required to perform the FPI function.
TABLE 175: FPI DATA HIGH - FPIDATAH SFR EDH

7 6 5 4 3 2 1 0
R/W, Reset = 0x00

FPIDATA[15:8]

When Read: MSB of last word read[15:8] from Flash
When Write: Byte[15:8] to write in Flash
TABLE 176:FPI DATA LOW - FPIDATAL SFR ECH

7 6 5 4 3 2 1 0
R/W, Reset = 0x00

FPIDATA[7:0]

Read: Last read byte[7:0] from Flash

Writing to this byte in 'FPI write mode' triggers the FPI
state machine to start the write action.

16.3 FPI Clock Speed Control Register
The FPI clock speed control register sets the FPI
module to an optimal speed based on the speed of the
system clock.
TABLE 177:FPI CLOCK SPEED CONTROL REGISTER - FPICLKSPD SFR EEH

7 6 5 4 3 2 1 0
R R R R R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:4 Unused
3:0 FPICLKSPD

[3:0]
Specifies speed of the system clock entering the
FPI module
Frequency range:
0000 : 20MHz to 40 MHz
0001 : 10MHz to 20 MHz
0010 : 5MHz to 10 MHz
0011 : 2.5MHz to 5 MHz
0100 : 1.25MHz to 2.5 MHz
0101 : 625kHz to 1.25 MHz
0110 : 312.5kHz to 625 kHz
0111 : 156.25kHz to 312.5 kHz
1000 : 78.12kHz to 156.25 kHz
1001 : 39.06kHz to 78.125 kHz
1010 : 19.53kHz to 39.0625 kHz
Others : 9.76kHz to 19.53125 kHz

Use the settings found in the following table when
using the FPI at a speed other than the nominal speed
of the internal oscillator.

TABLE 178: SETTING THE FPICLKSPD REGISTER

Range
Value

Minimum Maximum
0 (default) 20.000 MHz 40.000 MHz

1 10.000 MHz 20.000 MHz
2 5.000 MHz 10.000 MHz
3 2.500 MHz 5.000 MHz
4 1.250 MHz 2.500 MHz
5 625.000 KHz 1.250 MHz
6 312.500 KHz 625.000 KHz
7 156.250 KHz 312.500 KHz
8 78.125 KHz 156.250 KHz
9 39.063 KHz 78.125 KHz

10 19.531 KHz 39.063 KHz
Other 9.766 KHz 19.531 KHz

The FPICLKSPD register must be set to the
corresponding system clock speed for proper operation
of the FPI module. For example, a 20.0 MHz clock
requires FPICLKSPD to be set to 1, while a 20.1 MHz
clock requires FPICLKSPD to be set to 0. If
FPICLKSPD is set incorrectly, the Flash write operation
may not process correctly, causing data corruption.

16.4 Using the FPI Interface
16.4.1 Write protection

The VRS51L3074 provides a safety mechanism to
prevent accidental writing or erasing of the Flash. The
following sequence must be written to the FPIDATAL
register to unlock the VRS51L3074 each time a write is
performed.

FPIDATAL AAh
FPIDATAL 55h

Not performing the above sequence will lock the FPI
module until a reset of the VRS51L3074 is performed.

Bit 7 and 6 of the FPICONFIG provide the status of the
FPI write protection circuitry.

16.4.2 FPIIDLE

This bit indicates whether the previous action is
complete and the FPI is idle. The FPIIDLE bit must be
checked before performing any FPI operation, to
ensure that the module is ready.

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 94 of 105

16.4.3 FPIRDY

When writing a stream of bytes or words, this bit
indicates whether the FPI is ready for the next write.
Note that AAh then 55h must first be written in order to
unlock the FPI module.

16.4.4 FPI8BIT

The FPI8BIT bit of the FPICONFIG register defines
whether the FPI module read and write operations will
be performed in 8 or 16-bit format. When the FPI8BIT
bit is set to 1, the FPI module will operate in 8-bit
mode. The 16-bit address of the Flash memory, where
the FPI operation will be performed, is defined by the
value of the FPIADDRH and FPIADDRL registers.

When the FPI module is used to write data into the
Flash memory, the FPIDATAL register holds the value
of the data to be written. When the FPI module is used
to read the Flash, the read value is returned via the
FPIDATAL register.

When the FPI8BIT bit is cleared, the FPI module will
operate in 16-bit mode. In this case, the address range
is defined by a 15-bit address (0000h to 7FFFh) and
must be written into the FPIADDRH and FPIADDRL
registers.

When a 16-bit FPI write operation is performed, the
16-bit data must be stored in the FPIDATAH and
FPIDATAL registers. When a Flash memory read
operation is performed, the 16-bit data will be returned
to the FPIDATAH and FPIDATAL registers.

16.5 Performing a Read
There are three ways to read directly from the
VRS51L3074 Flash memory:

1. Use the MOVC instruction

2. Use the FPI in 8-bit mode

3. Use the FPI in 16-bit mode

It may be preferable to use the FPI over the MOVC
instruction, because some compilers will optimize code
that repeatedly checks the Flash. To perform a read,
perform the following steps:

o Make sure the FPI module is enabled
o Set FPIADDRH and FPIADDRL to the

appropriate address (see section 1.1.4)
o Write 00000X00 to the FPICONFIG register,

where X = 1 if reading in 8-bit mode, and X = 0
if reading in 16-bit mode

o Loop until FPIIDLE is raised
o Get the results from FPIDATAH and

FPIDATAL if in 16-bit mode, or from
FPIDATAL if in 8-bit mode

16.5.1 FPI Flash Read in 8-Bit Mode Example
The following code sequence follows the above
algorithm to read address ABCDh in 8-bit mode:
ORL PERHIPHEN2, #1 ; Enable FPI
MOV FPIADDRH, #0ABh ; Move in upper address
MOV FPIADDRL, #0CDh ; Move in lower address

MOV FPICONFIG, #004h ; Trigger the read in 8-bit mode

Wait:
 MOV A, FPICONFIG ; Get the FPI status
 JNB ACC.7, Wait ; Jump if not ready

; The read is now done. The result in FPIDATAL

16.5.2 FPI Flash Read in 16-Bit Mode Example

The following code sequence will read 16 bits from
address ABCD:
#include <VRS51L3074.h>
unsigned char ucupper;
unsigned char uclower;

void readFPI(int address)
{
 unsigned char result;

PERIPHEN2 |= 1; /* Enable FPI */
FPIADDRH = (unsigned char) (address >> 8); /* Upper address */
FPIADDRL = (unsigned char) address; /* Lower address – automatically truncates */
FPICONFIG = 0; /* Trigger the read */
do
{
 result = FPICONFIG & 0x20; /* Check for the FPI_IDLE bit */
}
while(!result)
ucupper = FPIDATAH;
uclower = FPIDATAL;
}

void main()
{
 /*** SOME CODE***/
 readFPI(0x55e6); /* This is address ABCD converted to 16 bit addressing */

/*** SOME CODE***/

while(1);
}

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 95 of 105

16.6 Erasing Flash
16.6.1 Page Erase

When storing nonvolatile data, it is necessary to erase
the Flash before writing to it. Programming is done by
byte or word boundary, while erase is done by page
boundary. A page is a contiguous block of 512
addresses. Page numbers can be calculated from the
following formula:

Page = address / 512

Page 0 contains all the addresses from 0000h to
01FFh, page 1 contains all the addresses from 0200h
to 03FFh, and so on. There are 128 Flash pages on
the VRS51L3074 (64KB Flash).

To erase a page, follow these steps:

1. Ensure that the FPI module is enabled
2. Write AAh to the FPIDATAL register
3. Write 55h to the FPIDATAL register
4. Write 0 to the FPIADDRL register
5. Write the page number to the FPIADDRH

register
6. Write 2 to the FPICONFIG register
7. Wait for FPIIDLE to go high

FIGURE 36: FPI FLASH SECTOR ERASE ALGORITHM

Done

Enable FPI Module

Flash Sector Erase

FPIIDLE == 1 ?

Write AAh, then 55h
into FPIDATAL

Write 00h, into FPIADRL

Write Sector Page Number ,
into FPIADRH

Write 0x02 into FPICONFIG

20ms

No

16.6.2 FPI Page Erase Example

This code sequence will erase page 64:
ORL PERHIPHEN2, #1 ; Enable FPI
MOV FPIDATAL, #0AAh ; UNLOCK 1
MOV FPIDATAL, #055h ; UNLOCK 2
MOV FPIADDRL, #0 ; Move in 0
MOV FPIADDRH, #64 ; Move in page number
MOV FPICONFIG, #2 ; Trigger the page erase

Wait:
 MOV A, FPICONFIG ; Get the FPI status
 JNB ACC.7, Wait ; Jump if not ready
; The page is now erased

16.6.3 Mass Erase
It is possible to completely erase the Flash memory
from within a program. To do so, the following steps
must be performed:

1. Make sure that the FPI module is enabled
2. Write AAh to the FPIDATAL register
3. Write 55h to the FPIDATAL register
4. Write 1 to the FPICONFIG register
5. If still possible, wait for FPIIDLE to go high

Warning: At this point, the Flash should be totally
erased. If running from external memory, make sure
the program is copied back to its locations in Flash
with write commands. Step 5 can only be performed if
executing code from external SRAM.

16.7 Writing to the Flash
There are two methods to write to the Flash:

o 8-bit double buffered
o 16-bit double buffered

Depending on the complexity and the amount of Flash
to be written, one mode may be more efficient than the
other: 8-bit mode is more suited to programming a few
bytes of data, while 16-bit mode is more suited to
memory dumping.

16.7.1 Writing the Flash in 8-bit mode

Follow the steps below to write in 8-bit mode:

1. Make sure the FPI module is enabled
2. Write 7 to the FPICONFIG register
3. Set FPIADDRH and FPIADDRL to the

appropriate addresses
4. Write AAh to the FPIDATAL register
5. Write 55h to the FPIDATAL register
6. Write data to the FPIDATAL register (this

triggers the operation)
7. If complete, wait for FPIDLE to go high. If there

are more bytes to be written at a different
address, return to step 3. If the next address is
contiguous, go to step 4 instead.

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 96 of 105

FIGURE 37: FPI FLASH BYTE WRITE ALGORITHM

20uS

Done

Enable FPI Module

Flash Write
(8 bit)

FPIIDLE == 1 ?

Write 07h into FPICONFIG

Set write address into
FPIADRH
FPIADRL

Write 0x02 into FPICONFIG

Write AAh, then 55h
into FPIDATAL

Write Data
into FPIDATAL

Data on Next
Address?

Yes

No

Note that the address the data is written to will be
automatically incremented for the next byte. As such,
the address only needs to be written once per data
stream (assuming that a contiguous block is written),
as shown in the following example.

16.7.2 FPI Flash Write in 8-Bit Mode Example

//***
//* FPI Flash Write 8bit Mode Example *
//***
#include <VRS51L3074.h>
/*
This function uses the FPI module to write a null terminated string to flash
*/
void copy_to_Flash(int address, char *str)
{
 unsigned char ready; /* Is the FPI idle? */

 PERIPHEN2 |= 1; /* Enable FPI */

/* Upper address */
 FPIADRH = (unsigned char) (address >> 8);
/* Lower address - automatically truncates */
 FPIADRL = (unsigned char) address;
 FPICONFIG = 7; /* Trigger the write
 in 8 bit mode */

 while(*str) /* while not null */
 {
 FPIDATAL = 0xaa; /* 1st step unlock */
 FPIDATAL = 0x55; /* 2nd step unlock */
 FPIDATAL = (unsigned char)(*str);

 /* Wait for the buffer to be ready */
/* The operation is not finished, check for FPI_READY */
 do
 {
 ready = FPICONFIG & 0x10;
 }while(!ready);
 str++;
 }

/* Null character encountered, write an
 additional 0 to memory */
 FPIDATAL = 0xaa; /* 1st step unlock */
 FPIDATAL = 0x55; /* 2nd step unlock */
 FPIDATAL = 0; /* End in null - this avoids
 having to pass the string
 length */

/* The operation is finished, check for FPI_IDLE instead of FPI_READY */
 do
{
 ready = FPICONFIG & 0x20;
 }while(!ready);

 return;
}
void main(void)
{

 /*** CODE ***/
 copy_to_Flash(0x3000, "Ramtron Inc");
 copy_to_Flash(0x4000, "Microsystems connecting two worlds");

 /*** CODE ***/

 while(1);
}

16.7.3 Writing to the Flash in 16-Bit Mode

Follow the steps below to write in 16-bit mode:

1. Make sure the FPI module is enabled
2. Write 3 to the FPICONFIG register
3. Set FPIADDRH and FPIADDRL to the

appropriate addresses (remember to convert to
16-bit addressing)

4. Write AAh to the FPIDATAL register
5. Write 55h to the FPIDATAL register
6. Write data to the FPIDATAL register (this

triggers the operation)
7. If complete, wait for FPI_IDLE to go high. If

there are more bytes to be written at a different
address, return to step 3. If the next address is
contiguous, go to step 4 instead

Note that the address the data is written to will be
automatically incremented for the next byte As such,
the address only needs to be set once per data stream
(assuming a contiguous region is written), as shown in
the following example.

16.7.4 FPI Flash Write in 16-Bit Mode Example

This routine copies 512 bytes (1 page) of external
SRAM to the Flash memory at address E000h +
XRAM. The R0 and R1 registers contain the starting
address of the page to copy.
//***
//* FPI Flash Write 16-bit Mode Example *
//***

WRITE_PAGE:

 PUSH DPH0 ;PUSH THE DATA POINTER
 PUSH DPL0
 PUSH ACC ;PUSH THE VAR. TO BE USED
 PUSH B
 MOV ACC, R2
 PUSH ACC

 MOV DPH0, R1 ;LOAD THE DATA POINTER
 MOV DPL0, R0
 MOV R2, #255 ;LOOP COUNTER (511 BYTES)
 ORL PERHIPHEN2, #1 ;ENABLE FPI MODULE
 MOV FPICONFIG, #3 ;ENABLE WRITING IN 16 BIT ;MODE
; SET THE ADDRESS MUST BE 16 BITS (ADDRESS / 2)

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 97 of 105

 CLR C ;CLEAR THE CARRY FLAG
 MOV A, R1
 RRC A ;CHECK IF THERE WILL BE A CARRY
 CLR A ;DOES NOT AFFECT CARRY BIT
 RRC A ;SETS A TO 80h IF R1 WAS ODD, OR
 ;KEEPS IT 0

MOV FPIADRL, A ;SET LOWER ADDRESS
 MOV A, R1
 RR A ;DIVIDE ADDRESS BY 2
 ADD A, #7 ;ADDS E000H TO THE ADDRESS
 ;(E000 / 2 = 7000)

 MOV FPIADRH, A ; SET UPPER ADDRESS

 WRITE_PAGE_LOOP:

 MOV FPIDATAL, #0AAh ;UNLOCK STEP 1
 MOV FPIDATAL, #055h ;UNLOCK STEP 2
 MOVX A, @DPTR
 MOV B, A
 INC DPTR ;NEXT BYTE

 MOVX A, @DPTR
 INC DPTR ;NEXT BYTE
 MOV FPIDATAH, A ;SET THE UPPER VALUE
 MOV FPIDATAL, B ;SET THE LOWER VALUE
;AND START THE WRITE

WRITE_PAGE_LOOP_WAIT:
 MOV A, FPICONFIG ;CHECK TO SEE IF THE
 ;BUFFER IS READY
 ;JUMP IF FPI_READY IS NOT HIGH
JNB ACC.4 ,WRITE_PAGE_LOOP_WAIT

DJNZ R2 ,WRITE_PAGE_LOOP

 ;NOW WRITE THE LAST WORD (BYTE 511 AND 512)

 MOV FPIDATAL, #0AAh ;UNLOCK STEP 1
 MOV FPIDATAL, #055h ;UNLOCK STEP 2

 MOVX A, @DPTR
 MOV B, A
 INC DPTR ;NEXT BYTE

 MOVX A, @DPTR
 INC DPTR ;NEXT BYTE
;(not necessary)
 MOV FPIDATAH, A ;SET THE UPPER VALUE
 MOV FPIDATAL, B ;SET THE LOWER VALUE
;AND START THE WRITE
WRITE_PAGE_LAST_WAIT:
 MOV A, FPICONFIG ;CHECK TO SEE IF THE
 ;BUFFER IS READY
 JUMP IF FPI_IDLE IS NOT HIGH (LAST WORD)
JNB ACC.5 , WRITE_PAGE_LOOP_WAIT

;RESTORE VARIABLES USED
POP B
POP ACC
 MOV R3, ACC
 POP ACC
 POP DPL0
 POP DPH0
 RET ;RETURN TO CALLER

16.8 Tips on Using the FPI Interface
The following tips can be used to get the most out of
the IAP features on the VRS51L3074.

• Shorter programming time can be achieved if
the FPI Flash write routines are run from the
4KB external SRAM, as the circuitry that reads
instructions from the Flash does not interfere
with the FPI module.

• The Flash must be erased before
reprogramming, and the same value should
not be written more than once to the same
Flash address, unless an erase cycle is
performed in between writes.

• To maximize the endurance of the
VRS51L3074 Flash memory, FPI Flash page
erase operations should be done sparingly.

• The FPI mass erase function will erase the
entire VRS51L3074 Flash memory, including
code already programmed.

• IAP can be performed even if the Flash
protection is enabled. It is the responsibility of
the programmer not to reveal the Flash
information of a secured device via the IAP.

• When write operations are performed at the
boundaries of two contiguous blocks of
memory, the address will automatically
increment to the next byte/word after a write
cycle. This can save processor cycles.

• The FPI read can be used to perform Flash
memory reads, however using the MOVC
instruction is more efficient.

• Make sure that the location being written to
does not interfere with the program running in
the Flash.

www.DataSheet4U.com

VRS51L3074

www.ramtron.com page 98 of 105

17 Crystal Consideration
By default, the VRS51L3074 derives its clock from its
internal oscillator. It is also possible to use external
crystal for the VRS51L3074 clock source. The crystal
connected to the VRS51L3074 oscillator input should
be parallel cut type, operating in fundamental mode.

The addition of 15 to 20pF load capacitors is
recommended. See the following figure for a
connection diagram.

Note: Oscillator circuits may differ with different
crystals or ceramic resonators in higher oscillation
frequency. Crystals or ceramic resonator
characteristics may also vary from one manufacturer to
another.

The user should review the technical literature
associated with specific crystal or ceramic resonator s
or contact the manufacturer to select the appropriate
values for the external components.

FIGURE 38: VRS51L3074 EXTERNAL CRYSTAL OSCILLATOR CONFIGURATION

VRS51L3074

XTAL1

XTAL2

XTAL

C1 C2

www.DataSheet4U.com

VRS51L3074

www.ramtron.com

 page 99 of 105

18 Operating Conditions

18.1 Absolute Maximum Ratings
Parameter Min. Max. Unit Notes
Supply voltage input (VDD – VSS) 0 3.6 V
I/O input voltage all except P4.6 & P4.7 -0.5V 5.5V V
I/O input voltage P4.6 & P4.7 only VCC-0.5 VCC+0.5 V
Maximum I/O current (sink/source)
QFP-64 package 100 mA Preliminary

Storage temperature -55 125 ºC

18.2 Nominal operating conditions
TABLE 179: OPERATING CONDITIONS

Symbol Description Min. Typ. Max. Unit Remarks
TA Operating temperature -40 +85 ºC
VCCV Supply voltage 3.1 3.3 3.6 V
Fextosc 40 Ext. Oscillator Frequency 0 - 40 MHz

4 40 MHz FextCY Ext. Crystal frequency
32 100 KHz

Internal Oscillator Operating frequency 39.7 40 40.3 MHz
Internal Oscillator temperature stability +/-2 % 0 to +70ºC
Internal Oscillator temperature stability +/-3 % -40 to +85ºC
FRAM data retention 45 - - Years
FRAM byte Write 1.1 uS
FRAM Byte Read 0.4 uS
Flash Endurance(Erase / Write cycles) 20K Cycles
Flash Data retention 100 Years Unser room temperature
Flash Page Erase duration 20 ms
Flash Byte/Word programming time 20 uS

18.3 DC Characteristics
VCC = 3.3V, Temp = 25ºC, No load on I/Os

TABLE 180: DC CHARACTERISTICS

Symbol Parameter Valid Min. Typ Max. Unit Test Conditions
VIL1 Input Low Voltage Po r t 0 ,1,2,3,4,5,6 -0.35 0.80 V VCC=3.3V
VIL2 Input Low Voltage RESET, XTAL1 -0.35 0.80 V VCC=3.3V
VIH1 Input High Voltage Po r t 0,1,2,3,4,5,6 2.0 5.5 V VCC=3.3V
VI H2 Input High Voltage RES, XTAL1 2.0 5.5 V VCC=3.3V
VOL1 Output Low Voltage Po r t 0 ,1,2,3,4,5,6,ALE 0.4 V IOL = Rated I/O max current

VOH2 Output High Voltage Po r t 0 ,1,2,3,4,5,6,ALE 2.4V Vcc –
0.3V V Max Rated I/O Current

ILI Input Leakage Current Po r t 0 ,1,2,3,4 10 uA (+/-)

R RES Reset Equivalent Pull-
up Resistance RES 74 104 177 Kohm

C -10 Pin Capacitance 10 pF Freq=1 MHz, Ta=25°C

17 32 mA Active mode, 40MHz
(Int. Oscillator)

7.9 12 mA Active mode, 10MHz
(Int. Oscillator)

6.2 8.5 mA Active mode 5 MHz
(Ext. Crystal)

3.6 11 mA Idle mode, oscillator running
40MHz

ICC Supply Current
 VDD

 1.1 mA OSC stop mode, 32kHz
Crystal osc mode

www.DataSheet4U.com

VRS51L3074

www.ramtron.com

 page 100 of 105

18.4 VRS51L3074 Timings Parameters
TABLE 181: AC CHARACTERISTICS

Variable Fosc
Symbol Parameter Min. Typ Max. Unit
 ALE Pulse Width nS
 Address Valid to ALE Low nS
 Address Hold after ALE Low nS
 ALE Low to Valid Instruction In nS
 ALE Low to #PSEN low nS
 #PSEN Pulse Width nS
 #PSEN Low to Valid Instruction In nS
 Instruction Hold after #PSEN nS
 Instruction Float after #PSEN nS
 Address to Valid Instruction In nS
 #PSEN Low to Address Float nS
 #RD Pulse Width nS
 #WR Pulse Width nS
 #RD Low to Valid Data In nS
 Data Hold after #RD nS
 Data Float after #RD nS
 ALE Low to Valid Data In nS
 Address to Valid Data In nS
 ALE low to #WR High or #RD Low nS
 Address Valid to #WR or #RD Low nS
 Data Valid to #WR High nS
 Data Valid to #WR Transition nS
 Data Hold after #WR nS
 #RD Low to Address Float nS
 #W R or #RD High to ALE High nS
 Clock Fall Time nS
 Clock Low Time nS
 Clock Rise Time nS
 Clock High Time nS
 Clock Period nS

www.DataSheet4U.com

VRS51L3074

www.ramtron.com

 page 101 of 105

18.5 Data Memory Read Cycle Timing – Multiplexed Mode

The following diagram shows the timing of a multiplexed external data memory read cycle.

FIGURE 39: DATA MEMORY READ CYCLE TIMING

18.6 Data Memory Write cycle Timing – Multiplexed mode

The following diagram shows the timing of a multiplexed external data memory write cycle.

FIGURE 40: DATA MEMORY WRITE CYCLE TIMING

www.DataSheet4U.com

VRS51L3074

www.ramtron.com

 page 102 of 105

18.7 Data Memory Read cycle timing – Non-Multiplexed Mode

The following diagram shows the timing of a non-multiplexed external data memory read cycle.

FIGURE 41: DATA MEMORY READ CYCLE TIMING

P2:P 6 A[14:0]

P 0 D[7:0]

RD

CLK

NON- MULTIPLEXED READ

DATA

CE-

18.8 Data Memory Write Cycle Timing – Non-Multiplexed Mode

The following diagram shows the timing of a non-multiplexed external data memory write cycle.

FIGURE 42: DATA MEMORY WRITE CYCLE TIMING

www.DataSheet4U.com

VRS51L3074

www.ramtron.com

 page 103 of 105

18.9 Timing Requirement of the External Clock

The following diagram shows the timing of an external clock driving the VRS51L3074 input.

FIGURE 43: TIMING REQUIREMENT OF EXTERNAL CLOCK (VSS= 0.0V IS ASSUMED)

CLKPER

CLKHIGH

CLKRTCLKFT

CLKLOW

Vdd - 0.5V

0.5V

TABLE 182: EXTERNAL CLOCK TIMING REQUIREMENTS

Variable Fosc
Symbol Parameter Min. Typ Max. Unit
CLKPER Ext. clock period 25 nS
CLKLOW Ext. clock low duration nS
CLKHIGH Ext. clock high duration nS
CLKFT Ext. clock fall time nS
CLKRT Ext. clock rise time nS

www.DataSheet4U.com

VRS51L3074

www.ramtron.com

 page 104 of 105

18.10 VRS51L3074 QFP-64 Packages
FIGURE 44: VRS51L3074 QFP-64 PACKAGE DRAWINGS

A2
A1 c

eb

17

32

18

19

20

21

22

23

24

25

26

27

28

29

30

31

33343536373839404142434445464748

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

D1

VRS51L3074
QFP-64

D

L

d3

d1
d2

Table 183: Dimensions of QFP-64 Packages
Symbol Description Dimension

(mm)
Tolerance
(mm, º) / Notes

D Footprint 17.2 +/- 0.25
D1 Body size 14 +/- 0.10
E Footprint 17.2 +/- 0.25
E1 Body size 14 +/- 0.10
A1 Stand-off 0.25 Max
A2 Body thickness 2.00
L Lead Length 0.88 +0.15 / -0.10
b Lead width 0.35 +/- 0.05
c L/C thickness 0.17 Max
e Lead pitch 0.8

d1 Body edge
angle 10º

d2 Lead angle 6º +/- 4º
d3 Lead angle 0º to 7º

www.DataSheet4U.com

VRS51L3074

www.ramtron.com

 page 105 of 105

19 Ordering Information
19.1 Device Number Structure

19.2 VRS51L3074 Ordering Options
TABLE 184: VRS51L3074 PART NUMBERING

Device Number Flash
Size

FRAM
Size

SRAM
Size

Package
Option

Voltage Temperature Frequency

VRS51L3074-40-QG 64KB 8KB 4352 QFP-64 3.1V to 3.6V -40°C to +85°C 40MHz
* Contact Ramtron for product availability

Errata:
Engineering samples of the VRS51L3074 have an operating voltage of 3.1 to 3.6V instead of 3.0 to 3.6V.
Readback of the content in the THx/TLx and RCAPxH/RCAPxL timer registers will return to 0x00 unless the
corresponding timer is running or, for the timers 0 and 1, the timer gating bit is set.

Disclaimers
Right to make change - Ramtron reserves the right to make changes to its products - including circuitry, software and services - without
notice at any time. Customers should obtain the most current and relevant information before placing orders.
Use in applications - Ramtron assumes no responsibility or liability for the use of any of its products, and conveys no license or title
under any patent, copyright or mask work right to these products and makes no representations or warranties that these products are
free from patent, copyright or mask work right infringement unless otherwise specified. Customers are responsible for product design and
applications using Ramtron parts. Ramtron assumes no liability for applications assistance or customer product design.
Life support – Ramtron products are not designed for use in life support systems or devices. Ramtron customers using or selling
Ramtron’s products for use in such applications do so at their own risk and agree to fully indemnify Ramtron for any damages resulting
from such applications.

I²C is a trademark of Koninklijke Philips Electronics NV.

www.DataSheet4U.com

	SPI Interface
	9.1 SPI Control registers
	9.2 Setting Up Clock phase and Polarity
	9.3 Defining active chip select line
	9.4 Setting the SPI Communication Speed
	9.5 SPI Configuration and Status registers
	9.6 SPI Transaction Directions
	9.7 Manual Chip Select Control
	9.8 SPI Interrupts
	9.9 Alternate CS3 Functions
	9.10 SPI Activity Monitoring
	9.11 SPI TX Underrun Flag
	9.12 SPI Transaction Size
	9.13 SPI RX/TX data registers
	9.14 SPI Data Input/Output
	9.15 SPI Example Programs
	9.16 SPI Interface to 12-Bit ADC and DAC

	I2C Interface
	10.1 I2C Bus Pull-Up resistors
	10.2 I2C Phases
	10.3 I2C Control and Status Registers
	10.4 I2C Timing Control Register
	10.5 I2C Slave Device ID and Advanced Configuration
	10.6 I2C Status Register
	10.7 I2C Transmit/Reciver Register
	10.8 I2C Interface Alternate pins
	10.9 I2C interface Example Programs

	Pulse Width Modulators (PWMs)
	11.2 PWM module Clock Configuration register
	11.3 PWM Alternate Mapping
	11.4 PWM Example Program
	11.5 Using PWM Modules as Timers
	11.6 Configuration the PWM Timers
	11.7 PWMs as Timers Example Programs
	11.1 PWM Mid and End Registers

	Enhanced Arithmetic Unit
	12.1 Using the Enhanced Arithmetic Unit
	12.2 Arithmetic Unit Control Registers
	12.3 Arthmetic Unit data Registers
	12.4 AUA and AUB Multiplication input registers
	12.5 AUC Input Register
	12.6 The Arithmetic Unit AURES Register
	12.7 AUPREV Register
	12.8 Multiplication and Accumulate operations
	12.9 Division Operation
	12.10 Barrel Shifter
	12.11 Arithmetic Unit Block Diagram
	12.12 Arithmetic Unit Example Programs

	Watchdog Timer
	13.1 WDT Timeout Period
	13.2 Resetting the Watchdog Timer
	13.3 Using the Watchdog as a Timer
	13.4 Watchdog timer Example Programs

	Interrupts
	14.4 Pin Inversion Seting
	14.2 Interrupt Source
	14.1 Interrupt Enable Registers
	14.6 Interrupt Pin Flags
	14.5 Pin Interrupt Sensitivity Setting
	14.3 Interrupt Priority

	JTAG Interface
	15.1 Impact of JTAG interface Activation
	15.2 Board Level JTAG Interface implementation
	15.3 Debugger

	Flash Programming Interface (FPI)
	16.1 FPI Configuration register
	16.2 FPI Flash Address and Data Registers
	16.3 FPI Clock Speed Control Register
	16.4 Using the FPI Interface
	16.5 Performing a Read
	16.6 Erasing Flash
	16.7 Writing to the Flash
	16.8 Tips on Using the FPI Interface

	Crystal Consideration
	Operatiing Conditions
	18.1 Absolute Maximum ratings
	18.2 Normal Operating conditions
	18.3 DC Characteristics
	18.4 Timing Parameters
	18.5 Data Memory Read Cycle Timing
	18.6 Data Memory Write cycle Timing
	18.7 Read cycle Timing-Non-Multiplexed mode
	18.8 Write cycle Timing- Non-Multiplexed Mode
	18.9 Timing Requirement of the External Clock

	Packages
	Ordering information

