

Vishay Semiconductors

Optocoupler, Phototriac Output, High dV/dt, Low Input Current

Features

- High static dV/dt 5 kV/ μ s
- High input sensitivity I_{FT} = 1.6, 2.0, and 3.0 mA
- 700 and 800 V blocking voltage
- 300 mA on-state current
- Isolation Test Voltage 5300 V_{RMS}

Agency Approvals

- UL1577, File No. E52744 System Code H or J, Double Protection
- CUL File No. E52744, equivalent to CSA bulletin 5A
- DIN EN 60747-5-2 (VDE 0884) Available with Option 1

Applications

Solid-state relays Industrial controls Office equipment Consumer appliances.

Description

The VO4257/VO4258 phototriac consists of a GaAs IRLED optically coupled to a photosensitive non-zero crossing TRIAC packaged in a DIP-6 package.

High input sensitivity is achieved by using an emitter follower phototransistor and a cascaded SCR predriver resulting in an LED trigger current of 1.6 mA for bin D, 2.0 mA for bin H, and 3.0 mA for bin M.

The new non zero phototriac family use a proprietary dV/dt clamp resulting in a static dV/dt of greater than 5 kV/ μ s.

The VO4257/VO4258 phototriac isolates low-voltage logic from 120, 240, and 380 VAC lines to control resistive, inductive, or capacitive loads including motors, solenoids, high current thyristors or TRIAC and relays.

Order Information

Part	Remarks
VO4257D	700 V V _{DRM} , I _{ft} = 1.6 mA, DIP-6
VO4257D-X006	700 V V _{DRM} , I_{ft} = 1.6 mA, DIP-6 400mil
VO4257D-X007	700 V V _{DRM} , I_{ft} = 1.6 mA, SMD-6
VO4257H	700 V V _{DRM} , I_{ft} = 2.0 mA, DIP-6
VO4257H-X006	700 V V _{DRM} , I_{ft} = 2.0 mA, DIP-6 400mil
VO4257H-X007	700 V V _{DRM} , I_{ft} = 2.0 mA, SMD-6
VO4257M	700 V V _{DRM} , I _{ft} = 3.0 mA, DIP-6
VO4257-X006	700 V V _{DRM} , I_{ft} = 3.0 mA, DIP-6 400mil
VO4257M-X007	700 V V _{DRM} , I_{ft} = 3.0 mA, SMD-6
VO4258D	800 V V _{DRM} , I _{ft} = 1.6 mA, DIP-6
VO4258D-X006	800 V V _{DRM} , I_{ft} = 1.6 mA, DIP-6 400mil
VO4258D-X007	800 V V _{DRM} , I_{ft} = 1.6 mA, SMD-6
VO4258H	800 V V _{DRM} , I _{ft} = 2.0 mA, DIP-6
VO4258H-X006	800 V V _{DRM} , I_{ft} = 2.0 mA, DIP-6 400mil
VO4258H-X007	800 V V _{DRM} , I _{ft} = 2.0 mA, SMD-6
VO4258M	800 V V _{DRM} , I _{ft} = 3.0 mA, DIP-6
VO4258M-X006	800 V V _{DRM} , I _{ft} = 3.0 mA, DIP-6 400mil
VO4258M-X007	800 V V _{DRM} , I _{ft} = 3.0 mA, SMD-6

For additional information on the available options refer to Option Information.

Vishay Semiconductors

Absolute Maximum Ratings

 T_{amb} = 25 °C, unless otherwise specified

Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability.

Input

Parameter	Test condition	Symbol	Value	Unit
Reverse voltage		V _R	6.0	V
Forward current		١ _F	60	mA
Power dissipation		P _{diss}	100	mW
Derate from 25 °C			1.33	mW/°C

Output

Parameter	Test condition	Part	Symbol	Value	Unit
Peak off-state voltage		VO4257D/H/M	V _{DRM}	700	V
		VO4258D/H/M	V _{DRM}	800	V
RMS on-state current			I _{TM}	300	mA
Power dissipation			P _{diss}	500	mW
Derate from 25 °C				6.6	mW/°C

Coupler

Parameter	Test condition	Symbol	Value	Unit
Isolation test voltage 1)	t = 1.0 sec.	V _{ISO}	5300	V _{RMS}
Storage temperature range		T _{stg}	- 55 to + 150	°C
Ambient temperature range		T _{amb}	- 55 to + 100	°C
Soldering temperature	$\begin{array}{l} max. \leq 10 \; sec. \; dip \; soldering \\ \geq 0.5 \; mm \; from \; case \; bottom \end{array}$	T _{sld}	260	°C

¹⁾ between emitter and detector, climate per DIN 50014, part 2, Nov. 74

Figure 1. Recommended Operating Condition

Vishay Semiconductors

Electrical Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

Input

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Forward voltage	I _F = 10 mA	V _F		1.2	1.4	V
Reverse current	V _R = 6.0 V	I _R		0.1	10	μA
Input capacitance	V _F = 0 V, f = 1.0 MHz	CI		40		pF

Output

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Repetitive peak off-state voltage	I _{DRM} = 100 μs	VO4257D/H/M	V _{DRM}	700			V
		VO4258D/H/M	V _{DRM}	800			V
Off-state current	$V_{D} = V_{DRM,}$		I _{DRM}			100	μΑ
On-state voltage	I _T = 300 mA		V _{TM}			3.0	V
On-current	$PF = 1.0, V_{T(RMS)} = 1.7 V$		I _{TM}			300	mA
Critical state of rise off-state voltage	$V_D = 0.67 V_{DRM}, T_J = 25 \ ^\circ C$		dV/dt _{cr}	5000			V/µs

Coupler

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
LED trigger current, current	V _D = 3 V	VO4257D	I _{FT}			1.6	mA
required to latch output		VO4257H	I _{FT}			2.0	mA
		VO4257M	I _{FT}			3.0	mA
		VO4258D	I _{FT}			1.6	mA
		VO4258H	I _{FT}			2.0	mA
		VO4258M	I _{FT}			3.0	mA
Capacitance (input-output)	f = 1.0 MHz, V _{IO} = 0 V	C _{IO}	C _{IO}		0.8		pF

Safety and Insulation Ratings

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Climatic Classification (according to IEC 68 part 1)				55/100/21		
Polution Degree (DIN VDE 0109)				2.0		
Comparative tracking index per DIN IEC 112/VDE 0303 part 1, group IIIa per DIN VDE 6110 175 399			175		399	
V _{IOTM}		V _{IOTM}	8000			V
V _{IORM}		V _{IORM}	890			V
P _{SO}		P _{SO}			500	mW
I _{SI}		I _{SI}			250	mA
T _{SI}		T _{SI}			175	°C
Creepage			7.0			mm
Clearance			7.0			mm

Vishay Semiconductors

Figure 2. Diode Forward Voltage vs. Forward Current

Figure 3. Diode Reverse Voltage vs. Temperature

Figure 4. Leakage Current vs. Ambient Temperature

SHA

Figure 5. Output On Current (ITM) vs. Voltage

Figure 6. Output Off Current (leakage) vs. Voltage

Figure 7. Normalize Trigger Input Current vs. Temperature

Vishay Semiconductors

Figure 8. Trigger Current vs. Turn On Time

Figure 9. Normalized Holding Current vs. Temperature

Figure 10. IFT vs. LED Pulse Width

Vishay Semiconductors

Package Dimensions in Inches (mm)

Option 6

Option 7

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

> We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.