

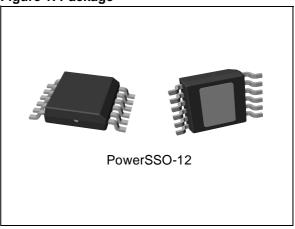
VN750PEP-E

HIGH SIDE DRIVER

TARGET SPECIFICATION

Table 1. General Features

Туре	R _{DS(on)}	Іоит	Vcc
VN750PEP-E	$60~\text{m}\Omega$	6 A	36 V


- **CMOS COMPATIBLE INPUT**
- ON STATE OPEN LOAD DETECTION
- OFF STATE OPEN LOAD DETECTION
- SHORTED LOAD PROTECTION
- UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN
- PROTECTION AGAINST LOSS OF GROUND
- VERY LOW STAND-BY CURRENT
- REVERSE BATTERY PROTECTION (*)
- IN COMPLIANCE WITH THE 2002/95/EC EUROPEAN DIRECTIVE

DESCRIPTION

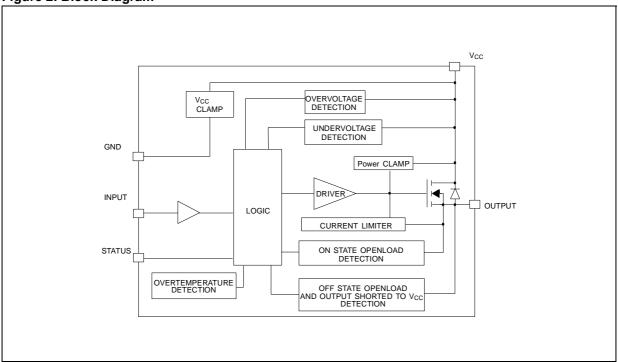
The VN750PEP-E is a monolithic device designed in STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground.

Active V_{CC} pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table).

Figure 1. Package

Active current limitation combined with thermal shutdown and automatic restart protect the device against overload.

The device detects open load condition both is on and off state. Output shorted to V_{CC} is detected in the off state. Device automatically turns off in case of ground pin disconnection.

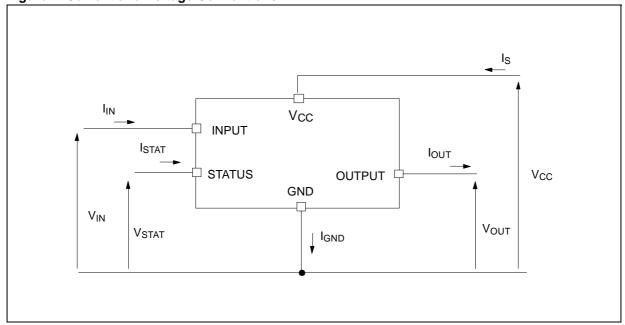

Table 2. Order Codes

Package	Tube	Tape and Reel
PowerSSO-12	VN750PEP-E	VN750PEPTR-E

Note: (*) See application schematic at page 9.

Rev. 1

Figure 2. Block Diagram


Table 3. Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _C C	DC Supply Voltage	41	V
- V _{CC}	Reverse DC Supply Voltage	-0.3	V
- I _{gnd}	DC Reverse Ground Pin Current	-200	mA
lout	DC Output Current	Internally limited	Α
- I _{OUT}	Reverse DC Output Current	-6	Α
I _{IN}	DC Input Current	+/- 10	mA
I _{STAT}	DC Status Current	+/- 10	mA
Vesd	Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF) - INPUT - STATUS - OUTPUT - V _{CC}	4000 4000 5000 5000	V V V
P _{tot}	Power Dissipation T _C =25°C	74	W
Tj	Junction Operating Temperature	Internally limited	°C
T _c	Case Operating Temperature	- 40 to 150	°C
T _{stg}	Storage Temperature	- 55 to 150	°C

Vcc 12 □ OUTPUT **GND** ı 11 ☐ OUTPUT **INPUT** 3 1 ¹ 10 □ OUTPUT N.C. 4 9 □ OUTPUT **STATUS** 5 8 □ OUTPUT Vcc OUTPUT $TAB = V_{CC}$ Connection / Pin Status N.C. Output Input Floating Χ Χ Χ Χ To Ground Χ Through $10K\Omega$ resistor

Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins

Figure 4. Current and Voltage Conventions

Table 4. Thermal Data

Symbol	Parameter		Value	Unit
R _{thj-case}	Thermal Resistance Junction-case	Max	1.7	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	70 ^(*)	°C/W

Note: (*) When mounted on a standard single-sided FR-4 board with 1 cm 2 of Cu (at least 35 μ m thick) connected to all V_{CC} pins.

$\textbf{ELECTRICAL CHARACTERISTICS} \ (8 \text{V} < \text{V}_{CC} < 36 \text{V}; \ -40 ^{\circ}\text{C} < \text{T}_{j} < 150 ^{\circ}\text{C} \ unless \ otherwise \ specified)$

Table 5. Power

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating Supply Voltage		5.5	13	36	V
V _{USD}	Undervoltage Shut-down		3	4	5.5	V
V _{USDhyst}	Undervoltage Shut-down Hysteresis			0.5		V
V _{OV}	Overvoltage Shut-down		36			V
Ron	On State Resistance	I _{OUT} =2A; T _j =25°C; V _{CC} >8V I _{OUT} =2A; V _{CC} >8V			60 120	mΩ
Is	Supply Current	Off State; $V_{CC}=13V$; $V_{IN}=V_{OUT}=0V$ Off State; $V_{CC}=13V$; $V_{IN}=V_{OUT}=0V$; $T_{j}=25^{\circ}C$ On State; $V_{CC}=13V$; $V_{IN}=5V$; $I_{OUT}=0A$		10 10 2	25 20 3.5	μA μA mA
I _{L(off1)}	Off State Output Current	V _{IN} =V _{OUT} =0V	0		50	μΑ
I _{L(off2)}	Off State Output Current	V _{IN} =0V; V _{OUT} =3.5V	-75		0	μΑ
I _{L(off3)}	Off State Output Current	V _{IN} =V _{OUT} =0V; V _{CC} =13V; T _j =125°C			5	μΑ
I _{L(off4)}	Off State Output Current	$V_{IN}=V_{OUT}=0V; V_{CC}=13V; T_j=25^{\circ}C$			3	μΑ

Table 6. Switching (V_{CC} =13V)

	<u> </u>					
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	R_L =6.5 Ω from V_{IN} rising edge to V_{OUT} =1.3 V		40		μs
t _{d(off)}	Turn-off Delay Time	R_L =6.5 Ω from V_{IN} falling edge to V_{OUT} =11.7 V		30		μs
dV _{OUT} / dt _(on)	Turn-on Voltage Slope	$R_L {=} 6.5 \Omega$ from $V_{OUT} {=} 1.3 V$ to $V_{OUT} {=} 10.4 V$		0.5		V/μs
dV _{OUT} / dt _(off)	Turn-off Voltage Slope	R_L =6.5 Ω from V_{OUT} =11.7 V to V_{OUT} =1.3 V		0.2		V/μs

Table 7. Input Pin

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{IL}	Input Low Level				1.25	V
I _{IL}	Low Level Input Current	V _{IN} =1.25V	1			μΑ
V _{IH}	Input High Level		3.25			V
I _{IH}	High Level Input Current	V _{IN} =3.25V			10	μΑ
V _{hyst}	Input Hysteresis Voltage		0.5			V
V _{ICL}	Input Clamp Voltage	I _{IN} =1mA I _{IN} =-1mA	6	6.8 -0.7	8	V V

ELECTRICAL CHARACTERISTICS (continued)

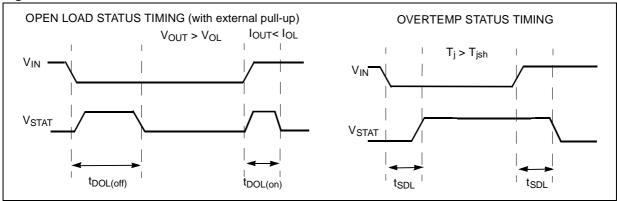
Table 8. V_{CC} - Output Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _F	Forward on Voltage	-I _{OUT} =1.3A; T _j =150°C			0.6	V

Table 9. Status Pin

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
VSTAT	Status Low Output Voltage	I _{STAT} =1.6mA			0.5	V
I _{LSTAT}	Status Leakage Current	Normal Operation; V _{STAT} =5V			10	μΑ
C _{STAT}	Status Pin Input Capacitance	Normal Operation; V _{STAT} =5V			100	pF
VscL	Status Clamp Voltage	I _{STAT} =1mA	6	6.8	8	V
v SCL	Status Clamp voltage	I _{STAT} =-1mA		-0.7		V

Table 10. Protections (see note 1)


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
T _{TSD}	Shut-down Temperature		150	175	200	°C
T _R	Reset Temperature		135			°C
T _{hyst}	Thermal Hysteresis		7	15		°C
tSDL	Status delay in overload condition	T _j >T _{jsh}			20	μs
1	Current limitation	9V <v<sub>CC<36V</v<sub>	6	9	15	Α
l _{lim}	Current ilmitation	5V <v<sub>CC<36V</v<sub>			15	Α
V.	Turn-off Output Clamp	I2A: \/0\/: I -6mH	V _{CC} -41	V 10	V 55	V
V_{demag}	Voltage	I _{OUT} =2A; V _{IN} =0V; L=6mH	VCC-41	V _{CC} -48	V _{CC} -55	V ∟

Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles.

Table 11. Openload Detection

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
1	Openload ON State	V _{IN} =5V	50	100	200	mA
l _{OL}	Detection Threshold	VIN-3V	30	100	200	ША
toou	Openload ON State	I _{OUT} =0A			200	110
t _{DOL(on)}	Detection Delay	IOU I=OA			200	μs
	Openload OFF State					
V _{OL}	Voltage Detection	V _{IN} =0V	1.5	2.5	3.5	V
	Threshold					
t _{DOL(off)}	Openload Detection Delay at Turn Off				1000	μs

Figure 5.

Table 12. Truth Table

CONDITIONS	INPUT	OUTPUT	STATUS
Normal Operation	L	L	H
	H	H	H
Current Limitation	L H H	L X X	
Overtemperature	L	L	H
	H	L	L
Undervoltage	L	L	X
	H	L	X
Overvoltage	L	L	H
	H	L	H
Output Voltage > VoL	L	H	L
	H	H	H
Output Current < I _{OL}	L	L	H
	H	H	L

Figure 6. Switching time Waveforms

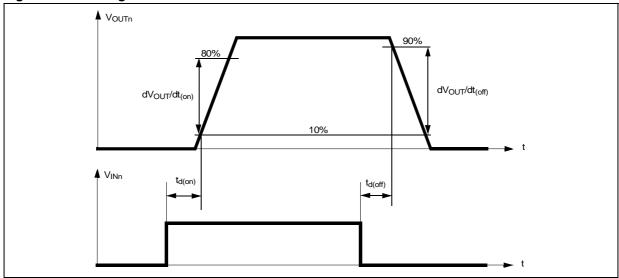


Table 13. Electrical Transient Requirements On $V_{\mbox{\scriptsize CC}}$ Pin

ISO T/R 7637/1 Test Pulse	TEST LEVELS				
	I	II	III	IV	Delays and Impedance
1	-25 V	-50 V	-75 V	-100 V	2 ms 10 Ω
2	+25 V	+50 V	+75 V	+100 V	0.2 ms 10 Ω
3a	-25 V	-50 V	-100 V	-150 V	0.1 μs 50 Ω
3b	+25 V	+50 V	+75 V	+100 V	0.1 μs 50 Ω
4	-4 V	-5 V	-6 V	-7 V	100 ms, 0.01 Ω
5	+26.5 V	+46.5 V	+66.5 V	+86.5 V	400 ms, 2 Ω

ISO T/R 7637/1	TEST LEVELS RESULTS			
Test Pulse	I	II	III	IV
1	С	С	С	С
2	С	С	С	С
3a	С	С	С	С
3b	С	С	С	С
4	С	С	С	С
5	С	E	E	E

CLASS	CONTENTS
С	All functions of the device are performed as designed after exposure to disturbance.
E	One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.

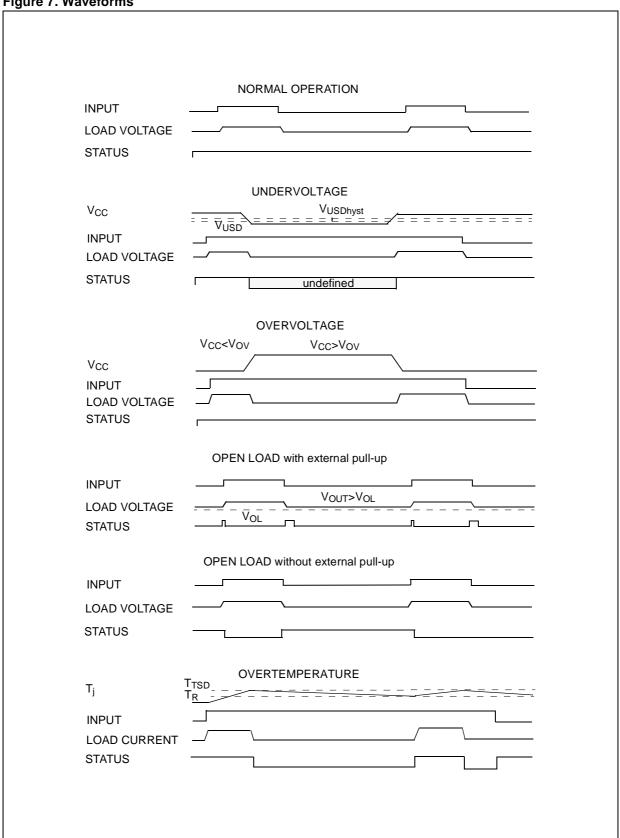
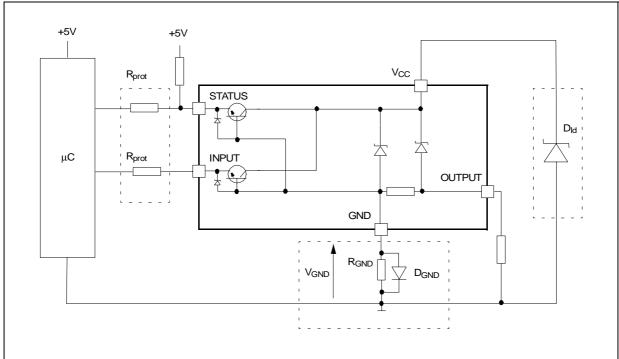



Figure 8. Application Schematic

GND PROTECTION NETWORK AGAINST REVERSE BATTERY

<u>Solution 1:</u> Resistor in the ground line (R_{GND} only). This can be used with any type of load.

The following is an indication on how to dimension the $R_{\mbox{\footnotesize GND}}$ resistor.

- 1) $R_{GND} \le 600 \text{mV} / (I_{S(on)max})$.
- 2) $R_{GND} \ge (-V_{CC}) / (-I_{GND})$

where -I_{GND} is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet.

Power Dissipation in R_{GND} (when V_{CC} <0: during reverse battery situations) is:

$P_D = (-V_{CC})^2 / R_{GND}$

This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where $I_{S(on)max}$ becomes the sum of the maximum on-state currents of the different devices.

Please note that if the microprocessor ground is not common with the device ground then the R_{GND} will produce a shift ($I_{S(on)max} \ ^*R_{GND}$) in the input thresholds and the status output values. This shift will vary depending on many devices are ON in the case of several high side drivers sharing the same R_{GND} .

If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below).

Solution 2: A diode (DGND) in the ground line.

A resistor (R_{GND} =1k Ω) should be inserted in parallel to D_{GND} if the device will be driving an inductive load.

This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network.

Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating.

Safest configuration for unused INPUT and STATUS pin is to leave them unconnected.

LOAD DUMP PROTECTION

 D_{ld} is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds V_{CC} max DC rating. The same applies if the device will be subject to transients on the V_{CC} line that are greater than the ones shown in the ISO T/R 7637/1 table.

μC I/Os PROTECTION:

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line to prevent the μC I/Os pins to latch-up.

The value of these resistors is a compromise between the leakage current of μC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of μC I/Os.

 $-V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{IHmax}$ Calculation example:

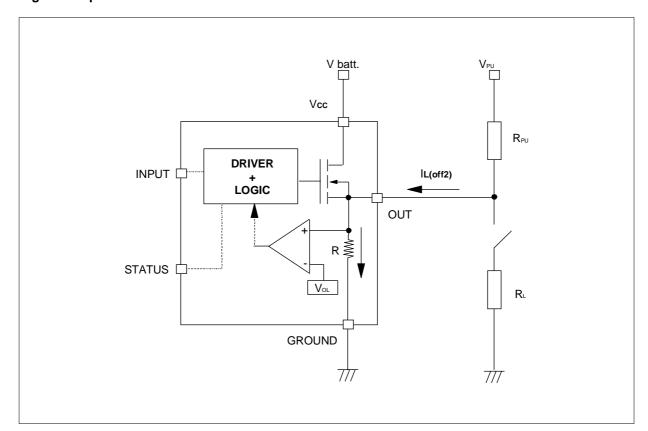
For V_{CCpeak}= - 100V and I_{Iatchup} \geq 20mA; V_{OH μ C} \geq 4.5V 5k Ω \leq R_{prot} \leq 65k Ω .

Recommended R_{prot} value is $10k\Omega$.

OPEN LOAD DETECTION IN OFF STATE

Off state open load detection requires an external pull-up resistor (R_{PU}) connected between OUTPUT pin and a positive supply voltage (V_{PU}) like the +5V line used to supply the microprocessor.

The external resistor has to be selected according to the following requirements:

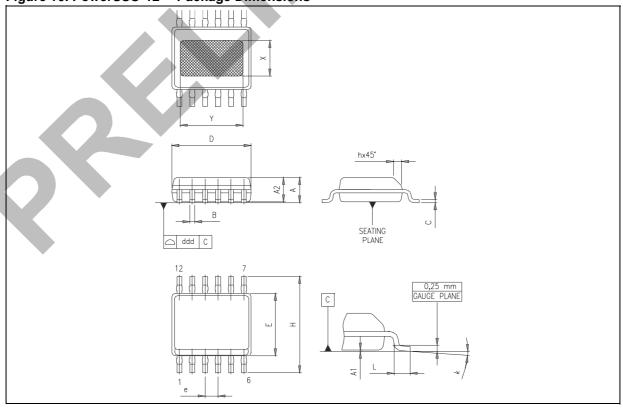

 no false open load indication when load is connected: in this case we have to avoid V_{OUT} to be higher than V_{Olmin}; this results in the following condition $V_{OUT}=(V_{PU}/(R_L+R_{PU}))R_L< V_{Olmin.}$

2) no misdetection when load is disconnected: in this case the V_{OUT} has to be higher than V_{OLmax} ; this results in the following condition R_{PU} <(V_{PU} - V_{OLmax})/ $I_{L(off2)}$.

Because $I_{s(OFF)}$ may significantly increase if V_{out} is pulled high (up to several mA), the pull-up resistor R_{PU} should be connected to a supply that is switched OFF when the module is in standby.

The values of V_{OLmin} , V_{OLmax} and $I_{L(off2)}$ are available in the Electrical Characteristics section.

Figure 9. Open Load detection in off state



PACKAGE MECHANICAL

Table 14. PowerSSO-12™ Mechanical Data

14.1 0WC1000 12	. Mconamoa bata				
Symbol	millimeters				
	Min	Тур	Max		
A	1.250		1.620		
A1	0.000		0.100		
A2	1.100		1.650		
В	0.230		0.410		
С	0.190		0.250		
D	4.800		5.000		
E	3.800		4.000		
е		0.800			
Н	5.800		6.200		
h	0.250		0.500		
L	0.400		1.270		
k	00		80		
X	1.900		2.500		
Y	3.600		4.200		
ddd		<u> </u>	0.100		

Figure 10. PowerSSO-12™ Package Dimensions

REVISION HISTORY

Table 15. Revision History

Date	Revision	Description of Changes
Oct. 2004	1	First Issue.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

47/