

This series of N-Channel Enhancement-mode Power MOSFETs utilizes GE's advanced Power DMOS technology to achieve low on-resistance with excellent device ruggedness and reliability.

This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors.

Applications

- · Switching power supplies
- DC to DC inverters
- CMOS and TTL to high current interface
- Line drivers
- Logic buffers
- Pulse amplifiers

Features

- · High speed, high current switching
- Current sharing capability when paralleled
- Directly interface to CMOS, DTL, TTL logic
- Simple DC biasing
- Extended safe operating area
- Inherently temperature stable

maximum ratings (T_A = 25°C) (unless otherwise specified)

RATING	SYMBOL	VN30ABA/ VN35ABA	VN67ABA	VN89ABA	VN90ABA	UNITS
Drain-Source Voltage	V _{DSS}	35	60	80	90	Volts
Drain-Gate Voltage, R_{GS} = 1M Ω	VDGR	35	60	80	90	Volts
Continuous Drain Current @ T _A = 25°C	۱ _D	1.2	1.2	1.2	1.2	А
Peak Drain Current ⁽¹⁾	IDM	3.0	3.0	3.0	3.0	A
Gate-Source Voltage	V _{GS}	±30	±30	±30	±30	Volts
Total Power Dissipation @ T _A = 25°C Derate Above 25°C	PD	6.25 50	6.25 50	6.25 50	6.25 50	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{STG}	-55 to 150	-55 to 150	-55 to 150	-55 to 150	°C

thermal characteristics

Thermal Resistance, Junction to Ambient	R _{∂JA}	20	20	20	20	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/16" from Case for 10 Seconds	ΤL	300	300	300	300	°C

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

electrical characteristics ($T_A = 25^{\circ}C$) (unless otherwise specified)

CHARACTERIS	TIC	SYMBOL	MIN	ТҮР	MAX	UNIT
off characteristics						
Drain-Source Breakdown Voltage (V _{GS} = 0V, I _D = 10 μA)	VN30ABA;VN35ABA VN67ABA VN89ABA VN90ABA	BVDSS	35 60 80 90	 		Volts
Zero Gate Voltage Drain Current (V _{DS} = 25, V _{GS} = 0V)		IDSS	_	_	10	μA
Gate-Source Leakage Current (V _{GS} = 15V, V _{DS} = 0V)		IGSS	_		100	nA

on characteristics*

Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 1 mA)		V _{GS(TH)}	0.8	1.2	-	Volts
Static Drain Source On-State Resistance (V _{GS} = 5V) (I _D = 0.3A)	VN30ABA VN35ABA VN67ABA VN89ABA VN90ABA	R _{DS(ON)}			6.0 4.5 5.1 5.1 6.0	Ohms
Static Drain-Source On-State Resistance (V _{GS} = 10V, I _D = 1.0A)	VN30ABA VN35ABA VN67ABA VN89ABA VN90ABA	R _{DS(ON)}			5.0 2.5 3.5 4.5 5.0	Ohms
On-State Drain Current (V _{DS} = 25V, V _{GS} = 10V)		ID(ON)	1	_		Amp
Forward Transconductance (V _{DS} = 25V, I _D = 0.5A)		9fs	_	.25		mhos

dynamic characteristics

Input Capacitance	V _{GS} = 0V	C _{iss}	_		50	pF
Output Capacitance	V _{DS} = 24V	C _{oss}	—		40	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	—	—	10	pF

switching characteristics*

Turn-on Delay Time	See switching times	t _{d(on)}	<u> </u>	—	10	ns
Turn-off Delay Time	waveforms below	t _{d(off)}	—	—	10	ns

*Pulse Test: Pulse width \leq 300 μ s, duty cycle \leq 2%

SWITCHING TIME TEST WAVEFORMS