w VLSI TECHNOLOGY, INC.

PRELIMINARY
T-Hq.(7-32

VL86C020

32-BIT RISC MICROPROCESSOR WITH CACHE MEMORY

FEATURES

» On-chip 4 Kbyte (1K x 32 bits) cache
memory

~ Instructions and data in a single
memory

— 64-way set associative with
random replacement

—Linse size of 16 bytes {4 words)

» Compatible with existing support
devices

Upwardly software compatible with
VL86Co10

+ Samaphore Instruction added for
muftiprocessor support

Full-speed operation up to 20 MHz
using typical DRAM devices

Low interrupt fatency for real-time
application requirements

CMOS Implementation - low power
consumption

160-pin plastic quad flatpack package
(PQFP)

DESCRIPTION

The VL86C020 Acorn RISC Machine
(ARM) is a second generation 32-bit
general purpose microprocessor
system. The device contains both a
gensral purpose CPY and a full cache
memory subsystem in tha same pack-
age. Several benefits are attained by
having the CPU and cache within the
same device. First, the processor clock
is effectively decoupled from the
memory system. This lowers the
processor bandwidth demands on the
memory and allows most memory
cycles to remain on-chip where buffer
delays are minimized. Second, a high
levs! of integration is maintained as
external components are not required to
implement the cache subsystem.

Third, package sizes are reduced as
bus widths can remain at reasonable
widths. Fourth, memory system design
is greatly simplified because most
critical timings are handled internally to
the davice.

The processor is targeted for use in
microcomputer and embedded control-
ler applications that require high per- ~
formance and high integration solutions.
Applications where the processor is
bast applied are: laser printers,
graphics engines, natwork protocol
adapters, and any other system that
requires quick response to external
avents and high processing throughput.

Since the VL86C020 typically utilizes
only about 14% of the available bus
bandwidth, it is particularly well suited
to applications where the memory is
shared with another high bandwidth
device, e.g. a graphics system where
the screen refresh occurs from the
same memory devices. In addition,
systems with more than one processor
attached to a single memory system
become feasible and are supported with
the new semaphore instruction. The
instruction performs an indivisible read-
modify-write cycle to the memory to
allow for management of globally
allacated resources reliably.

BLOCK DIAGRAM ORDER INFORMATION
) Part Clock
ABE A25-M0 ALE -WAT ‘i"”‘ FCLK "TET' 'TSET e Number Frequency | Package
L g Plastic Quad
Jcn.ocx L: ;l::so VL86C020-20FC| 20 MHz Flatpack (PQFP)
GENERATOR je— ABORT Plastic Pin
INTEFNAL ADDRESS 5US c?‘ggnlcq_ — -IFQ VL86C020-20GC| 20 MHz Grid Array (PGA)
le— —F10
1o _uns (Note: Operating temperature range is 0°C to +70°C.
~M1, MO
E 2 oy
CACH - aw
A cPU L» LocK
DATAAND -~ LNE
INSTRUGTION ! S
g oFE
— CPCLK
> CPSPV
< S I [
g INTERNAL DATA BUS S rereace || o
f D PO
| cPDO
DATA BUS INTERFACE v/ [«— CPA
jt—. CPB
pBE
03100
Datasheet4U.com
3.3 A F

www.DataSheet4U.com

W VLSI TecrnoLocy, iNc. PRELIMINARY
VL86C020

-
PIN DIAGRAM - PLASTIC QUAD FLATPACK 7-'-'49' /7'3 2.
VL86C020
GVDDDOD DDDGD DDDODDYGVDDD G v
ND22222N221NINIT{11{1{DNDI11TI1DNDDDDNNDDDODODTODTPD
DD6 643 2C109 DB8C766 43DDD21029CGCB7 660DGC43210T0D0DO0
ponoppooponoonnopooopooonoonoanoooopoooopnoooan
1111114111810 11 1444111111111 111414419111111
8 6655650505505 44444444 443233233323338222222222
o7y 0 9878643210987 654321008785 43271098785 432H1
120 3 CPOY
028142 118 | cpo2
D293 118 |z oPo3
D30CH 4 117 | OPD4
D3teds 116 = GND
-awge 115 }=1 6PDS
W7 114 k3 cPDe
NG]8 113 FING
~TRANSC{ 9 112 |3 oPD7
LINE 5 10 111 | cros
LOCK 3 11 110 =1 6PD9
-Moc 12 109 |2 cPD10
oo 19 108 =3 CPD14
Nef 14 107 Ne
GNDF 15 108 | cpot2
-Micq1e 105 {1 CPD13
~Flae] 7 104 =1 CPD14
-IRQ] 18 TOP VIEW 103 |1 GND
MSE = 16 102 |3 VDD
SsEQr] 20 101 |2 cpPois
-MREQ 21 100 | cPo1e
FOLK =] 22 99 [CPOIT7
MCLK =] 23 98 1 CPO18
GNDf24 97 |1 CPD19
VDD 26 96 |2 cPD20
CBE)26 95 3 cPD21
NG =27 sdkne
ABEL] 28 93 1 cPD22
ALE =]29 92 |1 CPO23
DBE 130 91 i1 opp24
ABORT 4 a1 80 |1 GND
-HESET 432 89 |1 crozs
Nc =443 88 NG
~WAIT = 34 87 Fa VoD
~TEST 35 86 | aND
A0 38 85 |1 CPD26
A1937 84 |1 cPO27
A2} 39 83 |21 oPD28
GND 439 82 141 GPD2g
A4y 4 4 4 4 4 4 4 4655565666556 660666666677 77777777gbOoR00
123 466789012346 867889 0123468678901 23 4866728280
g do oo ddo gl Ty i T o000 00000000 0O000a0
VAAAAAANAAAAGNYAAAAAAAAAAANAGGCGCCNOCGGY CG
D456789GC111 I NCGD1T1111122222C2NPPPCPPPPDEPN
D 012 3D D4667 8090 1234 50081 CEABDDD
I KV 1

34

® VLSI TECHNOLOGY, INC.

T T el el e et el Tl el Nl ¥

PRELIMINARY

VL86C020
PIN DIAGRAM - PLASTIC PIN GRID ARRAY T-49-)7-3 2
1 2 3 4 5 & 7 8 9 10 #1213 14]
/ GND D24 D20 D19 D8 D4 DI3 VDD DIf D10 D7 GND D3 DO CPDI
A ©144 @140 @136 @135 @133 @120 @128 ©)125 (D123 E122 @119 @116 @114 @111 Bios
D20 VoD D23 D2t GND Di6 DI5 D2 D8 D8 D4 Di VDD CPD2 GND
B @3 @ @13 @137 @13 @181 @130 @124 120 118 @115 @112 @110 @107 D104
-BW D28 D2 D25 D22 DI7 VDD GND D9 D5 D2 CPDO CPD3 CPD5 GPDs
c @6 @2 @142 @141 @138 ©132 @127 @126 @121 @117 @118 ©109 @106 ©)103 B)100
. ~TRANS D30 D27 CPD4 CPD7 CPD9
] @8 @4 @1 © (©105 (@101 @)%
Mo -RW D31 \ CPDE CPD10 CPD11
E @11 @7 ©s (IINR%){ICB ©102 @9 (@97
M LOCK LINE CPD12 CPD13 GND
F ©1u @1 @9 ©@% @ (xs
-Fl? VDD GND CPD15 GPD14 VDD
G @15 @12 @13 @91 (@9 ()92
MSE -lRQ S$EQ CPD16 CPDi8 GPD17
H @17 @16 @18 TOP VIEW @9 (@8 (@8
FCLK GND -MREQ CPD21 CPD22 GPD19
J @20 @22 @19 (@85 (@84 ()87
MCLK VDD O©BE GND CPD24 GPD20
K @21 (@23 (©)24 @81 @82 (D8
ABE ALE -WAIT CPD26 VDD CPD23
L ©2 @ @30 ©7 ©n @
DBE -RESET Af GPD30 GPD27 CPD25
M @27 @2 @31 @71 @7n @80
ABORT -TEST A2 VDD A7 A1t VDD AI8 A9 A24 -OPC CPB VDD CPD28 GND
N @2 @31 @4 E7 @4 @45 @4 @©% @5 @0 O @& @ @1 @B
A0 GND A4 A8 A9 Ai2 GND A16 A22 A28 GND -CPi CPE CPD31 GPD28
P @2 @3 @3 @0 @6 @4 @4 @2 8 @» @, @6 @ @1 @5
A3 A5 A8 A10 AI3 A14 A5 A17 A20 A21 A2 CPCLK CPSPV CPA GND
Q @3 @n @2 @« @7 @% 5 @8 @6 @57 @6 (@ @ @ @7

®VLSI TECHNOLOGY, INC. PRELIMINARY
VL86C020

T=49-17-3 2

CPU BLOCK DIAGRAM

ADDRESS

AN

@

| ADDRESS REG!STER

ADDRESS
‘ , INCREMENTER
REGISTER BANK
(27 32-BIT REGISTERS)
_ INSTRUCTION
: DECODER
AND

CONTROL
N “soorHs Loalc
| MULTIPLER

R

BARREL
SHIFTER

NZ {} |
2 watay

5

[wAiTe DATA ReGiSTER] & READ DATA REGISTER

m]

I 1

wCw —AZmLmMmIO

wcwo O7T

4

nCcw Cry»

owco >
oCcw w

5 , , S
7S
Vv

DATA

36

® VLSI TECHNOLOGY, INC. PRELIMINARY

FUNCTIONAL DIAGRAM T=49-11-32
- ADDRESS
:Azs AQ >> BUS
FOLK
CLOCKS MCLK ‘m DATA
—WAIT BUS
| R
INTERRUPTS | —02 :ggY(
—-fla LINE CONTROL
—TRANS BUS
VL88C020 — ~TEST | ~M1, -M0
CONTROLS (—RESET VL8eCo20 J
. -MREQ __\ memoRy
SEQ MANAGEMENT
ALE ABORT) INTERFACE
ABE ‘ ;
BUS _DBE | CPCLK
CONTROLS CBE CPSPV
MSE ' —OPC
CPE —CP COPROCESSOR
CPA INTERFACE
CPB
VDD(11) '
POWER | ano(a L)

37

* IRV I, VR tm G W - - & = &~ R e

W VLSI TECHNOLOGY, INC. E@I}%EL[I[MII][N] AE’}Y
VL86C020

SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK T=49-17-32
Signal Pin Signal Slgnal
Name Number Type Description
A0-A25 42-47,49-52, OCZ Processor Address Bus - If ALE (address latch enable) is high, the
56-66, 68, 36, addresses change while MCLK is high, and remain valid while
38-40 MCLK is low; their stable period can be modified by using ALE.
ABE 28 TP Address Bus Enabla - When this input Is low, the address bus drivers (AO-

A25) are put into a high impedance state (Note 1). ABE may bae left
unconnected when there is no system requirement to turn off the address
drivers (ABE is pulled high internally - ses Note 2).

ABORT 31 T Memory Abort - This input allows the memory system to signal the proces-
. sor that a requested access is not allowed, This input is only monitored
when the VL86C020 is accessing externial memory.

ALE 29 ITP Address Latch Enable - This input is used to control transparent latches on
the address outputs, Normally the addresses change while MCLK is high.
However, when interfacing directly to ROMs, the address must remaln
stable throughout the whole cycle; taking ALE low until MCLK goes low will
ensure that this happens. If the system does not require address lines to
be held in this way, ALE may be laft unconnected (it Is pulied high internally
- see Note 2). The ALE latch is dynamic, and ALE should not be held low
indefinitely.

~-BW 6 ocz NOT Byte/Word - This Is an output signal used by the processor to indicate
to the external memoty system when a data transfer of a byte length is
required. —~BW ls high for word transfers and low for byte transfers, and is
valid for both read and write operations. The signal changes while MCLK is
high, and s valid by the start of the active cycle to which it refers.

CBE 26 ITP Control Bus Enable - When this input is low, the following control bus
drivers are put into a high impadance state (Note 1):

~BMW, LINE, LOCK, -M1, -Mo, ~R/W, -TRANS

CBE may be left unconnected when thers is no system requirement to turn
off the contral bus drivers (CBE is pulled high internally - ses Note 2).

CPA 76 TP Coprocessor Absent - A coprocessar which is capable of performing the
oparation which the VL86C020 Is requesting (by asserting ~CP1) should
take CPA low immediately. The VL86C020 samples CPA when CPCLK
and -CP1 are both low, the VL86C020 will busy-wait until CPB is low and
then complete the coprocessor instruction. If no coprocessors ars fitted,
CPA may be left unconnected (it is pulled high internally - see Note 2).

cP8 77 ITP Coprocessor Busy - A coprocessor which is capable of performing the
operation which the VL86C020 is raquesting (by asserting ~CPI), but
cannot commit to starting it inmediately, should indicate this by taking CPB
high. When the coprocessor is ready to start it should take CPB low. The
VL86C020 samples CPB when CPCLK and -CPl are both low. If no
coprocessors are fitted, CPB may be left unconnected (it is pulled high
internally - see Note 2).

CPCLK - 70 ocz Coprocassor Clock - This pin provides the clock by which all VL86C020
coprocessor Interactlons are timed. GPCLK is derived from MCLK or FCLK
depending on whether the processor is accessing external memory or the
cache; the coprocessors must, therefore, be able to operate at FCLK
speeds.

3-8

w VLSI TECHNOLOGY, INC. PRELIMINARY
VL86C020

SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK (Cont) T=Y9-17- 32
Slgnal Pin Slignal Signal
Name Number Type Description))
CPDO-CPD31 121-117,115, ITOTZ Coprocessor Data Bus - These are bidirectional signal paths which are
114, 112-108, used for data transfers between the procassor and external coprecessors,
106-104, 101- . as fallows:
95, 93-91, 89, . . .
85.81, 79 « For processor instruction fetches (when —OPC = 0), the opcode is sent
H

to the coprocessors by driving CPD0-CPD31 while CPCLK is high.
Coprocessor instructlons are broadcast unalterad, but non coprocessor
instructions are replaced by &FFFFFFFF.

During data transfers from VL86C020 to a coprocessor, the data fs
driven onio CPD0-CPD31 while CPCLK is high.

+ During register and data transfers from the coprocessor to VL86C020,
CPDO-CPD31 are inputs, and the data must be setup to the falling edge
of CPCLK.

CPE 75 I Coprocessor Bus Enable - When this input is low, the following coproces-
sor bus drivers are put Into a high impadance state (see Note 1):

CPCLK, CPD0-CPD31, -CPI, CPSPV, -OPC

CPE is provided to allow the coprocessor outputs to be disabled whils
testing the VL86C020 in-circuit, and CPE should be left unconnected for
normal operation (it is pulled high internally - see Note 2), If no coproces-
sor is to be connacted 1o the VL86C020, CPE may bae tied low, but CPCLK,
CPDO0-CPD31, -CPI, CPSPV and —OPC must not be left floating.

~cPl 72 ocz NOT Coprocessor Instruction - When VL86C020 executes a coprocessor
Instruction, it will take this output low and wait for a response from the
appropriate coprocessor. The action taken will depend on this response,
which the coprocesscr signals on the CPA and CPB Inputs. ~CPi changes
while CPCLK is low.

CPSPV " Qcz Coprocessor Supervisor Mode - As instructions ate broadcast to the
coprocessors on CPDO-CPD31, this output reflects the mode in which
each instruction was fetched by the processor (CPSPV = 1 for supervisor/
IRQ/FIQ mode fetches, CPSPV = 0 for user mode fetches). The coproces-
sors may use this information to prevent user-mode programs executing
protected coprocessor instructions. CPSPV changes while CPCLK is high.

Do-D31 123-127, 130- ITOTZ Data Bus - Thesa ars bidirectional signal paths which are used for data
133, 135-138, transfers between the processor and external memory, as foliows:
142-146, 148, '
150-1562, 154- * For read operations (when —R/W = 0), the input data must be valid
158, 1-5 before the falling edge of MCLK.

= For write operations (when —-R/W = 1), the output data will become valid
while MCLK [s low.

DBE 30 TP Data Bus Enable - When this input Is low, the data bus drivers (D0-D31)
are put into a high impedance state (Note 1). The drivers will always be
high impedance except during write operations, and DBE may be left
unconnected in systems which do not require the data bus for DMA or
similar activitios (DBE is pulled high intérnally - see Note 2).

FCLK 22 IC Fast Clock Input - When the VL86C020 CPU is accessing the cache, per-
forming an Internal cycle, or communicating directly with the coprocessor, it
is clocked with the fast clock, FCLK. This Is a fres-running clock which is
independent of MCLK; the maximum FCLK frequency is determined by the
speed of the processor/coprocessor combination.

® VLSI TECHNOLOGY, INC.

PRELIMINARY
VL86C020

SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK (Cont)

T-49-17- 3.

Signal
Name

Pin
Number

Signal
Type

Signal
Description

-FiQ

-RQ

LINE

LOCK

-Mo, -M1

MCLK

~MREQ

MSE

-OPG

-RESET

17

18

10

i1

12, 16

23

21

19

74

32

T

oczZ

NOT Fast Interrupt Request - f FIQs are enabled, the processor will
respond to a low level on this input by taking the FIQ Interrupt exception.
This Is an asynchronous, level-sensitive input, and must be held low until a
suitable response is received from the processor.

Not Inferrupt Request - As ~F1Q, but with lower pricrity, May be taken low
asynchronausly to interrupt the processor when the ~IRQ enable Is active.

Line Fotch Oparation - This signal Is driven high to signal that the CPU is
fetching a line of information for the cache. Line felch operations always
read four words of data (aligned on a quad-word boundary), so the LINE
signal may be used 1o start a fast quad-word read from memory. The
signal changes while MCLK is high, and remalns high throughaut the line
fetch operation.

Locked Oparation - When LOCK Is high, the pracessor is performing a
“locked” memory accass, and the memory manager should watt until LOCK
goes low balore allowing another device to access the memory. LOCK
changes while MCLK is high, and remains high for the duration of the
locked memory accesses (data swap operation),

NOT Processor Made - Thesa output signals are the Inverses of the
Internal status bits Indicating the processor operation mode {(-M0, —M1):
11 = User Modae, 10 = FIQ Mode, 01 = IRQ Mode, 00 = Supervisor Mode).
-Mo, -M1 change while MCLK is high,

Memory Clock Input - This clock times all VL86C020 memory accesses.
The low pericd of MCLK may ba sireiched when accessing slow peripher-
als; alternatively, the ~WAIT input may be used with a free-running MGLK
to achieve the same effect.

NOT Memory Request - This is a pipelined signal that changes while
MCLK [s low to Indicate whether the following cycle will be active (proces-
sor accessing external memoty) or latent (processor not accessing
external memory). An active cycle is flagged when ~MREQ = 0,

Memory Request/Sequential Enable - When this input is low, the -MREQ
and SEQ cycle control outputs are put into a high impedance state (Note
1). MSE is ptovided to allow the memory request/sequential outputs to be
disabled while testing the VL86C020 in-circuit, and it should be left uncon-
nected for normal operation (MSE is pulled high intarnally - see Note 2).

Opcode Fetch - —OPC Is driven low to indicate to the coprocessors that an
instruction will be broadcast on CPD0-CPD31 when CPCLK goes high.
~OPC is held valid when CPCLK is low, and changes when CPCLK is
high,

NOT Reset - This is a level sensitive input signal which is used to start the
processor from a known address. A low lava! will cause the instruction
baing exscuted to terminate abnarmally, and the cache to be flushed and
disabled, When ~RESET bacomes high, the processor will re-start from
address 0. ~RESET must remain low for at least two FCLK ¢lack cycles,
and eight MCLK clock cycles. During the low period the processor will
perform dummy Instruction fetches from external memory with the address
incrementing from the point where ~-RESET was activated. The address
value will wrap around to zero if -RESET is held beyond the maximum
address limit.

3-10

) V11 Tecnorooy, iNc. PRELIMINARY

, , , VL86C020
SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK (Cont,) T 49-17- 32
Signal Pin Signal Slgnal
Name Number Type Description
-RW 7 ocz NOT Read/Writa - When high this signal Indicates a processor write

operation; when low, a read operation. The signal changes while MCLK is
high, and is valid by the start of the active cycle fo which it refers.

SEQ 20 ocz Sequential Addrass - This signal is the inverse of -MREQ, and Is provided
for compatibility with existing ARM memory systems (VL86C020 has a
subset of VL86C010 bus aperations; see Memory Interface saction).

-TEST 35 ITP NOT Test - When this input is low, the VL86C020 enters a special test
mode which is only used for off-board testing. —TEST must not be driven
low while the VL86C020 is in-circuit, but may be left unconnected as it is
pulled high internslly (see Note 2).

-TRANS 9 ocz NOT Memory Translate - When this signal Is low it indicates that the _
processor is in user mode, or that the supervisor is using a single transfer
Instruction with the force translate bit active, It may be used to tell memory
managemant hardwars when translation of the addresses should be turned
on, or as an indicator or non-user mode activity,

-WAIT 34 TP NOT Wait - When accessing slow peripherals, the VL86C020 can be made
to wait for an integer number of MCLK cycles by driving ~WAIT low. Inter-
nally, ~-WAIT is ANDed with the MCLK clock, and must only change when
MCLK is low. [f —-WAIT is not used In a systam, it may be left unconnected
(it is pulled high internally - see Note 2).

vDD 13, 25, 41, 55, Power supply: +5 V
78,87, 102, 122,
189, 141, 159

GND 15, 24, 39, 53, Ground
69, 80, 86, 90,
103, 116, 129,
140, 149, 160

NC 8, 14,27, 33, No connect
48, 54, 67, 73,
88, 94, 107, 113,
128, 134, 147, 183

Key fo Signal Types:

IC CMOS-level input

T TTi-level input

iTP TTL-level Input with pull-up resistor (Note 2)

ocz 3-state CMOS-laval output

ITOTZ Bidirectional: 3-state TTL-level output; TTL-leve! Input

Notes:
1. When output pads ate placed In the high Impedance state for long periods, care must be taken to ensure that they do not
float to an undsfined logic level, as this can dissipate a lot of power, especially in the pads.

2, The “ITP" class of pads incorporate a pull-up resistor which allows signals with normally high Inputs to be left unconnected.
The value of the pull-up resistor will fall within the range 10 k2 - 100 kQ.

3-11

w VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

PROGRAMMERS' MODEL
The VL86C020 processor has a 32-bit
data bus and a 26-bit address bus. The
processor supports two data types,
eight-bit byte and 32-bit words, where
words must be aligned on four byte
boundaries. Instructions are exactly
one word, and data operations (e.g.
ADD) are only performed on word
quantitles. Load and store operations
can transfer either bytes or wards, The
VL86C020 supports four modes of
operation, including protected supervi-
sor and Interrupt handling modes.

BYTE SIGNIFICANCE

Some programming techniques may
write a 32-bit (Word) quantity to mem-
ory, but will later retrieve the data as a
sequence of byte (8-bit) items. For
thase purposes, the processor storas
word data in least-significant-first (LSB

tirst) order. This means that the least
significant bytas of a 32-bit word
occupiss the lowest byte address. (The
VLS| Technology, Inc. assemblers,
none the less, display compiled data in
MSBs-first order, but for the sake of
clarity only. The internal machine
representation is preserved as LSBs-
first.)

REGISTERS

The processor has 27 registers (32-bits
each), 16 of which are visible to the pre-
grammer at any time. The visible
subset depends on the current proces-
sor mode; special registers are
switched In to support interrupt and
supervisor processing. The register
bank organizatlon Is shown In Table 1.

User mode is the normal program
executlon state; registers R15-R0 are
directly accessible.

T=49-17-32

All registers are general purpose and
may be used to hold data or address
values, except that register R15
cantains the Program Caunter (PC) and
the Processor Status Register (PSR).
Speclal bits in some instructions allow
the PC and PSR to be treated together
or separately as required. Figure 1
shows the allocation of bits within R15.

R14 is used as the subroutine fink
register, and receives a copy of R15
when a Branch and Link instruction is
executed. It may be treated as a
general purpose register at all other
times. R14_sve, R14_irq and R14_fiq
are used similarly to hold the return
values of R15 when interrupts and
exceptions arise, or when Branch and
Link instructions are executed within
supervisor or interrupt routines,

TABLE 1. REGISTER ORGANIZATION

Typical Use

RO General -1T-

R1 General

R2 General

R3 General

R4 General

RS General

General Usage

R6 General

R7 i General

R General FlQ

R9 General FlQ

R10 General FlQ

Ri1 Goeneral FiQ —_
R12(FP) ~ General FlQ Data Frame (by convention)
R13 (SP) General Supervisor IRQ FlQ Stack Pointer (by convention)
R14 (LK) General Supervisor IRQ FlQ R15 Save Area for BL or Interrupts
R16 (PC) (Shared by all Modes) System Program'Counter
TABLE 2. BYTE ADDRESSING " Word

Address
31 0 Value
Byte Addr, 0003 Byte Addr. 0002 Byte Addr. 0001 Byte Addr, 0000 0000
Byte Addr. 0007 Byte Addr, 0006 Byte Addr. 0005 Byte Addr. 0004 0001

312

w VLSI TECHNOLOGY, INC.

FlQ Processing - The FIQ mode
{described in the Exceplions section)
has seven private reglsters mapped to
R14-R8 (R14_fiq-R8_fig). Many FIQ
programs will not need to save any
reglsters.

IRQ Processing - The IRQ state has
two private registers mapped to R14
and R13 (R14_irq and R13_irq).

Supervisor Mode - The SVC mode
(entered on SW!instructlons and other
traps) has two private registers mapped
to R14 and R13 (R14_svc and
R13_sve),

The two private registers allow the IRQ
and Supervisor modes each to have a
private stack pointer and line register.
Suparvisor and IRQ mode programs
are expacted to save the user state on
their respactive stacks and then use the
user registers, remembering to restore
the user state before returning.

In user mode only the N, Z, Cand V
bits of the PSR may be changed. Thel,
F and Mode flags will change only when
an exception arises. In supervisor and
interrupt modes, all flags may be ma-
nipulated directly.

EXCEPTIONS

Exceptions arise whenever there Is a
need for the normal flow of program
execution to be broken, so that {for
instance) the processor can be diverted
to handle an intertupt from a peripheral.

The processor state just prior to
handling the exception must be
preserved so that the original program
can be resumed when the exception
toutine has completed. Many excep-
tions may arise at the same time.

The processor handles exceptions by
using the banked registers to save
state. The old PC and PSR are copied
into the appropriate R14, and the PC
and processor mode bits are forced to a
value which depends on the exception.
Interrupt disable flags are set where
required to prevent unmanageable
nestings of excaptlons. Inthe caseof a
re-entrant interrupt handler, R14 should
be saved onto a stack in main memory
before re-enabling the interrupt,. When
multiple exceptions arise simultane-
ously, a fixed priority determines the
order in which they are handled. |

FIQ - The FIQ (Fast Interrupt Request)
exception is externally generated by
taking the —FIQ pin low. This input can
accept asynchronous transitions, and is
delayed by one clock cycle for synchro-
nization before it can affect the proces-
sor execution flow. {tis designed to
support a data transfer or channel
procsss, and has sufficient private
registers to remove the need for
register saving in such applications, so
that the overhead of context switching
is minimized. The FIQ exception may
be disabled by setting the F flag In the

FIGURE 1. PROGRAM COUNTER AND PROCESSOR STATUS REGISTER

31 26 25 16 15 210
N R T Y I W A A O T Y I T O Y U IO
[nlzlclv]ile] " ! I [| [[T 4|
| |
Program Counter
FIQ Disable {Word Aligned) Proggss%r Mode
0 = Enable = User Mode
1 = Disable 01 = FlQ Mode
10 = IRQ Mode
IRQ Disable 11 = Supervisor Mode
0 = Enable
1 = Disable
L Overflow
Carry/Not Borrow/Rotate Extend
Zero

Negative/Signed Less Than

PRELIMINARY
T=40.)7 ~32_ VL86C020

PSR (but note that this is not possible
from user mode). |f the F flag Is clear,
the processor checks for a low level on
the output of the FIQ synchronizer at
the end of each instruction.

Tha impact upon execution of an FIQ
interrupt is defined in Table 3, The
return-from-intsriupt sequence is also
definad there. This will resume
exeacution of the interrupted code
sequence, and restora the original
processor state.

IRQ - The IRQ (Interrupt Request)
exception is a normal interrupt caused
by a low lsvel on the ~<IRQ pin. Ithas a
lower priority than FIQ, and Is masked
out when a FIQ sequence is entered.
its effect may be masked out at any
time by setting the | bit in the PC (but
note that this is not possible from user
mode). If the 1 flag is clear, the procas-
sor checks for a low lsvel on the output
of the IRQ synchronizer at the end of
each instruction.

S |

The impact upon execution of an IRQ
interrupt is defined in Table 3. The
return-from-interrupt sequence is also
defined there. This will cause execution
to resume at the instruction following
the interrupted one, restore the original
processor state, and re-enable the {RQ
interrupt,

Address Exceptlon Trap - An address
exception arises whenever a data
transfer is attempted with a calculated
address above 3FFFFFFH. The
VL86C020 address bus is 26-bits wids,
and an address calculation will have a
32-bit resuft. If this result has a logic
one in any of the top six bits, it is as-
sumed that the address is an etror and
the address exception trap Is taken.

Note that a branch cannot cause an
address exception, and a block data
transfer Instruction which starls in the
legal area but increments into the illegal
area will not trap. The check is
performed only on the address of the
first word to be transferred.

When an address exception is seen,
the processor will respond as defined in
Table 3. The return-from-interrupt
sequence is also defined there. This
will resume execution of the interrupted
code sequence, and restare the original
processor state.

3-13

® VLSI TECHNOLOGY, INC.

Normally, an address exception is
caused by erronaous code, and it is
inappropriate to resume exacution. If a
return is required from this trap, use
SUBS PC, R14_svc, 4, as defined in
Table 3. This will return to the instruc-
tion after the one causing the trap.

Abort - The ABORT signal comes from
an external memory management
system, and Indicates that the current
memory access cannot be completad.
For instance, in a virtual memory
system the data corresponding to the
current address may have been moved
out of memotry onto a disc, and consid-
arable processor activity may be
required to recover the data before the
access can be performed successfully.
The processor checks for an abort at
the end of the first phase of each bus
cycle. When succassfully aborted, the
VL86C020 will respond In one of three
ways:

1. I the abort occurred during an
Instruction prefetch (a prefetch
abort), the prefetched instruction is
marked as Invalid; when it comes
to execution, it Is reinterpreted as
below. (if the instruction is not
executed, for example as a result
of a branch baing taken while it is
In the pipeline, the abort will have
no effect.)

2. If the abort occurred during a data
access (a data abort), the action
depends on the instruction type.
Data transfer instructions (LDR,
STR, SWP) are aborted as though
the instruction had not executed.
The LDM and STM instructions
complete, and if write back Is set,
the base is updated. If the
Instruction would normally have
overwritten the base with data (i.e.
LDM with the base In the transfer
list), this overwriting is prevented.
All register overwriting Is prevented
after the abort is indicated, which
means in particular that R15 (which
is always last ta be transferred) is
preserved in an abarted LDM
Instruction.

3, [f the abort occurred during an
internal cycle it is ignored.

Then, in cases (1) and (2), the proces-
sor will respond as defined in Table 3.

The return from Prefetch Abort defined
in Table 3 will attempt to execute the
aborting instruction (which will only be
offective if action has been taken ta
remove the cause of the original abort).
A Data Abort requires any auto-
indexing to be reversed before returing
to re-execute the offending instruction.
The return is performed as defined in
Table 3.

The abort mechanism allows a demand
paged virtual memory system to be
implemented when a suitable memory
management unit (such as the
VL86C110) is available, The processor

PRELIMINARY
T=49-17-3.VL86C020

is allowed to generate arbitrary ad-
dresses, and when the data at an
address is unavailable the memory
manager signals an abort. The
procassor fraps inta system software
which must work out the cause of the
abort, make the requssted data
available, and retry the aborted
instruction. The application program
needs no knowledge of the amount of -
memiory avallable to it, nor is its state in
any way affected by the abort.

Software Interrupt - The software
Interrupt is used for getting into supervi-
sor mode, usually to requast a particu-
lar supervisor function. The processor

TABLE 3. EXCEPTION TRAP CONSIDERATIONS

Trap Type

CPU Trap Activity

Program Return Sequence

Resat

1. Save R15 in R14 (SVC).

2. Force M1, MO to SVC modes,
and set F & | status bits in PC.

3, Force PC to 0x000000.

{wa)

Undefined
Instruction

1. Save R15 in R14 (SVC).

2. Force Mt, M0 to SVC mode,
and set | status bitin the PC.

3. Force PC to 0x000004.

MOVS PC,Rt4 ;SVC'sRi4.

Software
Interrupt

1. Save R15 in R14 (SVC).

2, Force M1, M0 to SVC mode,
and set | status bit in the PC.

3. Force PC to 0x000008.

MOVS PC,Ri4 ;SVC'sRi4.

Prefetch
and Data
Aborts

1. Save R15 in R14 (SVC).

2. Force M1, MO to SVC mode,
and set | status bitin the PC,

3. Force PC 1o 0x000010-data.
Force PC to 0x0000C-Pre-,

Prefetch Abor:

SUBS PC,Ri4,4 ,SVC'sRi4,

Data Abort:

SUBS PC,R14,8 ;SVC'sRi4.

Address
Exception

1. Convert Stores to Loads.

2. Complets the instruction (see
text for details).

3, Save R15 in R14 (SVC),

4. Force M1, MO to SVC mode,
and set | status bitin the PC.

5. Force PC to 0x000014,

SUBS PC,R144 ;SVC'sRi4,

{Returns CPU to address following
the one causing the trap.)

IRQ

1. Save R15 in R14 (IRQ),

2. Force M1, MO to IRQ mode,
and set | status bitin the PC,

4. Force PC to 0x000018,

SUBS PC,Ri44 ;IRQ'sR14,

FlQ

1. Save R15in R14 (FIQ).

2. Force M1, M0 to FIQ mode,
and set the F and | status bits
inthe PC.

3. Force PG to 0x00001C.

SUBS PC,Ri44 ;FlQ'sRi4

3-14

w VLSI TECHNOLOGY, INC.

PRELIMINARY

T=49-,7-32_VL86C020

responss to the (SWI) instruction is
defined In Table 3, as Is the methad of
returning. The Indicated return method
will return to the Instruction fallowing the
SWI.

Undefined Instruction Trap - When
VL88C020 exscutes a coprocassor
instruction or the undefined instruction,
it offers it o any coprocessors which
may be present, If a coprocessor can
petform this instruction but is busy at
that moment, the processor will wait
until the coprocassor is ready. If no
coprocessor can handle the instruction
the VL86C020 will take the undefined
instruction trap,

The trap may be usad far software
emulation of a coprocessor in a system
which does not have the coprocessor
hardware, or for general purpose
Instruction set extension by software
emulation.

Whaen the undefined instruction trap is
taken the VL86C020 will respond as
defined in Table 3, The return from this
trap (after performing a suitable
emulatlon of the required function),
defined in Table 3 will return to the
Instruction following the undefined
instruction,

Reset - When —-RESET goes high, the
processor will stop the currently
executing Instruction and start execut-
ing no-ops. When -RESET goes low
again it will respond as defined in Table
8. There I3 no meaningful return from
this condition,

Vector Tabla - The conventlonal
means of implementing an interrupt
dispatch function is to provide a table of
jumps to the appropriate processing
table, as follows:

Eunction
0000000 Resat
0000004 Undefined Instruction
0000008 Software Interrupt
000000C- Abort (Prefetch)
0000010 Abort {Data)
0000014 Address Exception
0000018 IRQ
000001C Fla

These are byte addresses, and each
contains a branch instruction pointing to
the relevant routine. The FIQ routine
might réside at 000001C onwards, and
thereby avoid the need for (and
execution time of) a branch instruction.

Exception Prioritles - When multiple
exceptions arise at the same time, a
fixed priority system determines the
order in which they will be handled:

1. Reset (highest priority)

2. Address Exception, Data Abort
3. FiQ

4. RQ

5. Prefetch Abort

6.

Undefined Instruction, Software
Interrupt (lowest priority)

Note that not all exceptions can occur
atonce. Address exception and data
abort are mutually exclusive, sinca if an
address Is illegal, the processor ignores
the ABORT Input. Undefined instruc-
tion and software interrupt are also
mutually exclusive since they each
corréspond to particular (non-overlap-
ping) decodings of the current instruc-
tion.

If an address exception or data abort
oceurs at the same time as a FIQ, and
FIQs are enabled l.e. the F flag in the
PSR s cleat, the processor will enter
the address exception or data abort
handler and then immediately proceed
fo the FIQ vector, A normal return from
FIQ will cause the address axcaption or
data abort handler to resume execution.
Placing address exception and data

abart at a higher priority than FIQ is
necessary to ensure that the transfer
error does not escape dstection, but the
time for this exception entry should be
reflected in worst case FIQ latency cal-
culations.

Interrupt Latencles - The worst case
latency for FIQ, assuming that it is
enabled, consists of the longest time
the request can take to pass through
the synchronizer (Tsyncmax), plus the
time for the longest instruction to
complete (Tidm, the langest instruction
is load multiple registers), plus the time
for address exception or data abort
entry (Texc), plus the time for FIQ entry

" (Tfig). Atthe end of this time the

processor will be executing the instrue-
tion at 1C.

Tsyncmax is 2.5 processor cycles, Tldm
is 18 cycles, Texc is three cycles, and
Tfiq is two cycles. The total time ls,
therefore, 25.5 processor cycles, which
Is just over 2.5 microseconds in a
system using a continuous 10 MHz
processor clock. In a DRAM based
system running at 4 and 8 MHz, for
example using the VLL86C110, this time
becomes 4.5 microseconds, and if bus
bandwidth is being used to support
vidso or other DMA activity, the time will
increase accordingly.

The maximum IRQ latency calculation
Is similar, but must allow for the fact
that FIQ has higher priority and could
delay entry Into the IRQ handling
routine for an arbitrary length of time,

The minimum lag for interrupt recogni-
tion for FIQ or IRQ consists of the
shortest time the request can take
through the synchronizer (Tsynemin)
plus Tfiq. This is 3.5 processor cycles.
The FIQ should be held until the mode
bits indicate FIQ mode. It may be
safoly held until cleared by an 1O
instruction in the FIQ service routine.

w VLSI TECHNOLOGY, INC.

PRELIMINARY
VL86C020

INSTRUCTION SET

All VLBBC020 instructions are candi-
tionally executed, which means that
their execution may or may not take
place depending on the values of the N,
Z, C and V flags in the PSR at the end
of the praceding instruction,

If the ALways condition is specified, the
instruction wili be executed irraspective
of the flags, and likewise the Never
condition wil cause it not to be exe-
cuted (it will be a nc-op, i.e. taking ane
cycle and having no effect on the proc-
essor state).

The other condition codes have
meanings as detailed above, for
instance, code 0000 (EQual) causes
the instruction to be executed only if the
Zflag is sat. This would correspond to
the case where a compare (CMP)
instruction had found the two operands
were different, the compare instruction
would have cleared the Z flag, and the
instruction would not be executed.

T=¥9-17-3>

8 7 [¢]
Illllfrllff]

FIGURE 2. CONDITION FIELD

31 24 23
| T 11 I LI I I B
Condx i

I: Conditian Field

0000 = EQ - Z set (equal)

0001 = NE - Z clear (not equal)

0010 =CS - C set (unsigned higher or same)

0011 =CGC - G clear (unsigned [ower)

0100 =M! - N set (negativa)

0101 =PL - N clear (positive or zero)

0110 =VS - V set (overflow)

0111 = VG - V clear (no overflow)

1000 =H! - C setand Z clear (unsigned higher)

1001 =LS - Cclear or Z set (unsigned lower or same)

1010 = GE - N set and V set, or N clear and V clear (greater or equal)

1011 =LT - Nsetand Vclear, or N clear and V set (less than)

1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 = LE -Z set, or N setand V clear, or N clear and V set (less than or equal)
1110 = AL - Always

1111 =NV - Never

16 16
TTTT T T
(Any Instruction)

Branch and Branch with Link (B, BL)
The B, BL instructions are only exe-
cuted # the condition field Is true,

All branches take a 24-bit offset. The
offset Is shifted left two bits and added
to the PC, with ovarflows being ignored,
The branch can therefore reach any
word aligned address within the
address space, The branch offset must
take account of the prefetch oparation,
which causes the PC to be two words
ahead of the current instruction.

Link Bit - Branch with Link writes the
old PC and PSR into 14 of the current
bank. The PC value written into the link

FIGURE 3, BRANCH AND BRANCH WITH LINK (B, BL)
31 28 27 24 23 0
III[[II"IIFIIII[IIIIFII|
Condx |10 1L PC-Relative Ofiset
I—d |—- Link BIt-
COndlgon 0 = Branch

Flale 1 = Branch With Link (Subroutine call)

register (R14) is adjusted to allow for
the prefeich, and contains the address
of the instruction following the branch
and link Instruction.

Return from Subroutine - When
returning to the caller, thers is an option
to restore or to not restore the PSR,
The following table illustrates the
available combinations,

ter Va Link Saved to a Stack
Restoring PSR: MOVS PC,R14 LDM Rnl, (PC)r
Not Restoring PSR: MOV PC,Ri4 LDM Rni, (PC)

Assembler Syntax:
B(L){cond}
where L

<expresslon>

is used to request the Branch-with-Link form of the instruction.

It absent, R14 will not be affected by the instruction.

cond

- Is a two-character mnemonic as shown in Condition Code section (EQ, NE, .

VS, etc.). If absent then AL (Always) will be used.

expression

Is the destination. The assembler calculates the relative (word) offset.

ltems In { } are optional. tems in <> must be present.

3-18

w VLSI TECHNOLOGY, INC.

PRELIMINARY
VL86C020

Examples:

Here

BAL
B

CMP
BEQ

BL

ADDS
BLCC

BLNV

Here
Thera

R1,0
Fred

ROM + Sub

R1,1
Sub

Sub

T=49-17-32

; Assembles to EAFFFFFE. (Note effect of PC offset)
; Always condition used as default

; Compare register one with zero, and branch to Fred i
; register one was zero. Else continue next instruction.

; Unconditionally call subroutine at computed address.

; Add one to register one, setting PSR flags on the result,
; Call Sub if the C flag is clear, which will be the case unless
; R1 contained FFFFFFFFH. Else continue next instruction.

; Never call subroutine (this is a NO-OP).

317

® VLSI TECHNOLOGY, INC.

PRELIMINARY
VL86C020

FIGURE 4. ALU INSTRUCTION TYPES

31 28

T-49-77-32

12
[onex o o] 1] Jpdoce |s| nr | "Fa’ [rrr[o

0
s L7
a2 ||

I | l L i____J L
I Destination Register

Cocné!éﬁeon 1st Operand Raglster
Immediate Value Set Conditlon Codes

0 = Da not alter condition codes

0= Qperand 21s a reglster. 1 = Set condition codes (S suffix)

1= Operand 2[s an
Immediate value.

Operation Codeg ———
0000 = AND - Rd = Opt AND Op2
0001 = EOR - Rd = Op1 EOR Op2
0010 = SUB - Rd = Op1 - Op2
0011 = RSB - Rd = Op2 - Op1
0100 = ADD - Rd = Opt + Op2
0101 =ADC -Rd=0Op1 +Op2 +C
0110 =SBC - Rd=Op1-0p2 +C
0111 =RSC -Rd = 0p2-Op1 +C
1000 = TST - set condition codes on Op1 AND Op2
1001 = TEQ - set condition ¢odes on Op1 EOR Op2
1010 = CMP - set condition codes on Opi - Op2
1011 = CMN. - set condition codes on Op1 + Op2

fmm =1 -> Operand 2 Is an Inmediate value,
11 8 7 e 9

T T 1 T T 1T 1T
— I Rotate I Immediate l

Unsigned 8-bit Immediate value

Right-rotate amount to be applied
to 8-bit Imm {2-bit shift units).

Imm=0-> Operand 2 Is In a register.
11 0

| |
Shlﬂ Flsld

1100 = ORR - Rd = Op1 OR Op2 Hm
1101 = MOV -Rd = Op2
1110 = BIC 7-Rd;—.-0p1oAND not Op2 I l——EJ
1111 = MVN - R = not Op2 r or 2nd Operand Register
Shlft applied to Rm (as shown
1 TTT 5 4 1 4 In below expanslon figures).
I [" lol | Iol l

Shift Amount
Shift amount Is a 5-bit
unsigned Integer.

Shift Amount
Shift amount is specified
in bottom byte of Rs.

Shift Type
00 = Logical Left (LsL)
01 = Logical Right (LSR)
10 = Arithmetic Right (ASR)
11 = Rotate Right (ROR)

ALU Instructlons - The ALU-type
instruction Is only executed if the
condition is true. The varlous condi-
tions are defined in Condition Fleld
Section.

The Instruction produces a result by
performing a specified arithmetic or
logical operation on one or two oper-
ands. The first operand s always a

register (Rn). The secand operand may
be a shifted reglster (Rm) or a rotated
8-bit immediate value {lmm) according
to the value of the | bit in the instruction.
The condition codes In the PSR may be
praserved or updated as a result of this
instruction, according to the value of the
S bit in the Instruction. Certain opera-
tions (TST, TEQ, CMP, CMN) do not

write the result to Rd. They are used
only to perform tests and to set the
condition codes on ths result, and
therefore, should always have the S bit
set, {The assembler treats TST, TEQ,
CMP and CMN as TSTS, TEQS, CMPS
and CMNS by default.)

3-18

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

DATA PROCESSING OPERATIONS

Assembler
Mnemonlie Opcode
AND 0000
EOR 0001
suB 0010
RSB 0011
ADD 0100
ADC 0101
SBC 0110
RSC 0111
TST 1000
TEQ 1001
CMP 1010
CMN 1011
ORR 1100
Mov 1101
BIC 1110
MVN 1111

Action

Bit-wise logical AND of operands
Bit-wise logical Exclusive Or of operands
Subtract operand 2 from operand 1
Subtract operand 1 from opsrand 2

Add operands

Add oparands plus carry (PSR C flag)

T=49~1)-35.

Subtract operand 2 from operand 1 plus carry
Subtract operand 1 from operand 2 plus carry

as AND, but result is not written
as EOR, but result is not written
as SUB, but result is not written
as ADD, but result is not written
Bit-wise logical OR of operands
Move operand 2 (operand 1 is ignored)

Bit clear (bit-wise AND of operand 1 and NOT operand 2)
Move NOT operand 2 (operand 1 is ignored)

PSR Flags - The operations may be
classified as logical or arithmetic. The
logical operations (AND, EOR, TST,
TEQ, ORR, MOV, BIC, MVN) perform
the lkegical action on all corresponding
bits of the aperand or operands to
produce the result. If the S bit Is set
{(and Rd is not R15), the V flag in the
PSR will be unaffected, the C flag will
be set to the carry out from the barral
shifter (or preserved when the shift
operation is LSL 0), the Z flag will be
set if and only if the result is all zeros,
and the N flag will be set to the logical
value of bit 31 of the result,

The arithmetic operations (SUB, RSB,
ADD, ADC, SBC, RSC, CMP, CMN)
treat each operand as a 32-bit integer
(either unsigned or 2's complement
signed, the two are equivalent). [f the S
bit Is set (and Rd Is not R15) the V flag
in the PSR will be set if an overflow
occurs into bit 31 of the result; this may
be Ignored if the operands were
considered unsigned, but warns of a
possible error if the operands were 2's
complement signed, The C flag wil be
set to the carty out of bit 31 of the ALU,
the Z flag will be set if and only if the
result was zero, and the N flag will be
set to the value of bit 31 of the result
(indicating a negative result if the
operands are considered to be 2's
complement signed).

Shifts - When the second operand Is
specified to be a shifted register, the

operation of the barrel shifter is
controlled by the shift field in the in-
struction. This field indicates the type
of shift to be performed (logical left or
right, arithmetic right or rotate right).
The amount by which the register
should be shifted may be contained in
an iImmediate field In the instruction, or
In the bottom byte of another register as
shown in Figure 4.

When the shift amount Is specified in
the instruction, it is contained in a 5-bit
field which may take any value from 0

to 31. Alogical shift left (LSL) takes the
contents of Rm and moves each bit by
the specified amount to a more signifi-
cant position. The least significant bits
of the result are filled with zeros, and
the high bits of Rm which do not map
into the result are discarded, except
that the least significant discarded bit
becomes the shifter carry output which
may be latched into the C bit of the
PSR when the ALU operation Is in the
logical class. (See Data Pracessing
Operations above.) For example, the
effect of LEL 5 is:

FIGURE 5. LOGICAL SHIFT LEFT (LSL)
31 2423 16 16

0

1 8
Illlrllllllllll

lﬁéﬂd‘_uilllll|lllll|l|

“+—-0

Contents of Rm, which will appear (shifted) in Operand 2

Carry Flag a1

llfllll24%§IlI[l1ISI15I[IIIIf8{I III[o
lBIt27| 4—[| Lower 27 bits of Rm [|ooou oI

Example of shifted result in Operand 2 (shifted content of Rm)

Note that LSL 0 is a spacial case,
where the shifter carry out is the old
value of the PSR C flag. The contents
of Rm are used directly as the second
operand.

A Logical Shift Right (LSR) is similar,
but the contents of Rm are moved to
less significant positions in the result.
LSR5 has the effect shown in Figure 6.

Y VLSI TECHNOLOGY, INC. | PRELIMINARY

FIGURE 6. LOGICAL SHIFT RIGHT (LSR) ‘ 49 -17- 3 2
31 24 23 16 8 7 T 0
rrrrrdytfrertry e tritiregt | L
o—* I ! | |] - barryl
Contents of Rm, which will appear (shifted) in Operand 2
31 2420 1815 8 7 o CanyFlag
ITUNRA RN LR 11T TTprerrey
|ooooo[[Upper 27 bits of Rm | r|—>|Bnt4|
Example of shifted result in Operand 2 (shifted content of Rm)
The form of the shift field which might converts LSR 0, and ASR 0, and ROR the sign bit (bit 31) of the Rm register,
be expected to correspond to LSRO is 0into LSL 0, and allows LSR 3210 be instead of zeros. This signed shift
used to encode LSR 32, which has a specifiad. preserves the corract representation of
zero result with bit 31 of Rm as the . s Qs B . a (signed) negative integer to be
carry output. Logical shift right zero is T.he. Amhmet_lc Sh'f? R'.ght (ASR) s divided by powers of two via a right
b . similar to logical shift right, except that !
redundant as it is the same as logical the high bits are filad with replicates of shift. For example, ASR 5 has the
shift left zero. Therefore, the assembler following effect:
FIGURE 7. ARITHMETIC SHIFT RIGHT (ASR)
31 24 23 16 15 8 7
ﬂllllrrlnlrrrllllillllllrrr
[' ' ' e
s
el Contents of Rm, which will appear (shifted) in Operand 2
extend
Carry Flag
31 24 23 16 15 8 7
Tslialsa(l IR NN
N ' | (Slgn extended) upoer 27 bits of Rm 5| —> rBit—l
Example of shifted result in Operand 2 (shifted content of Rm)
The form of the shift fleld which might operand 2 Is also equal to the sign bit Rotate Right (ROR) operations reuse
be expected to give ASR 0 is used to (bit 31) of Rm. The result is, therefors, the bits which "ovarshaot” in a logical
encode ASR 32. Bit 31 of Rm is again all ones or all zeros according to the shift right operation by wrapping them
used as the carry output, and each bit of ~ value of bit 31 of Rm. around at the high end of the result.

For example, the effect of a ROR 5 is:

FIGURE 8. ROTATE RIGHT (ROR)

31 24 23 16 15 8 0
> IlIIIIl]ll[lfllllllllff[llll[rll

rCarryl
Contents of Rm, which will appear (shifted) in Operand 2

2423 16 15 87 o CarmyFlag
olollolojal T J T T T 11 111 TTTTTT 1T
|4 32 10‘ I Upper 27 blts of Rm value ?,I IjMI '

Example of shifted resuit in Operand 2 (shifted content of Rm)

3-20

w VLSI TECHNOLOGY, INC.

Tha form of the shift field which might
be expected to give ROR 0 is used to
encode a special function of the barrel

shifter, rotate right extendsd (RRX).
This is a rotate right by one-bit position

PRELIMINARY
T-49-17-32 YL86C020

of the 33-blt quantity formed by append-
ing the PSR C flag to the most signifi-
cant end of the contents of Bm:

FIGURE 9. ROTATE RIGHT EXTENDED (RRX)

31 2423

16 156 87 0

Contents of Rm, which will appear (shifted) in Operand 2

l__.l—FllIlIIIFF[IIII[FFIFTII'IIIIIIlI_»ICarry

Reglster-Based Shift Counts - Only
the least significant byte of the contents
of Rs is used to determine the shift
amount. [f this byte is zero, the un-
changed contents of Rm will be used as

Shift
LSL by 32

LSL by more than 32

LSR by 32

LSR by more than 32

ASR by 32 or mare
ROR by 32

ROR by mote than 32

Note:

the second operand, and the old value
of the PSR C flag will be passed on as
the shifter carry output.

if the byte has a value between 1 and
31, the shifted result will exactly match

Action

that of an Instruction specified shift with
the same value and shift operation.

Shifts of 32 or More - The resuit will
be a logical extension of the shifting
processes described above:

Result zero, carry out equal to bit zero of Rm,

Result zero, carry out zero.

Result zero, carry out equal to bit 31 of Rm.

Result zero, carry out zero.

Result filled with, and carry out equal fo, bit 31 of Rm.

Result equal to Rm, and carry out equal to, bit 31 of Rm,

Same result and carry out as ROR by n-32, Therefore, repeatedly
subtract 32 from count until within the range one to 32,

to be a muitiply or an undefined instruction.

The zero in bit 7 of an Instruction with a register controlled shift Is compulsory; a one In this bit will cause the Instruction

Immedlate Operand Rotatlon - The
Immaediate oparand rotate field is a 4-bit
unsigned integer which specities a shift
operation on the 8-bit Inmediate value,
The immaediate value is zero extended
1o 32 bits, and then subject to a rotate
right by twice the value In the rotate
field. This enables many common
constants to be generated, for example
all powers of 2. Another example is
that the 8-bit constant may be aligned
with the PSR flags (bits 0, 1, and 26 to
31). Allthe flags can thereby be
initialized in one TEQP instruction,

Writing to R15 - When Rd Is a register
other than R18, the condition code flags
in the PSR may be updated from the
ALU flags as described above. When
Rd is R15 and the S flag in the instruc-
tlon is set, the PSR is overwritten by the

corrasponding bits in the ALU result, so
bit 31 of the resuit goes to the N flag, bit
30 1o the Z flag, and 29 to the C flag
and bit 28 to the V flag. In user mode
the other flags (I, F, M1, MO) are
protected from direct change, but in
non-user modes these will also be
affected, accepting copies of bits 27,
26, 1 and 0 of the result respectively.

When one of these instructions Is used
ta change the processor mode {which is
only possible in a non-user mode), the
{ollowing instruction should not access
a banked register (R8-R14) during its
first cycle. A no-op should be inserted if
the next Instruction must access a
banked register. Accesses to the
unbanked registers (R0-R7 and R15)
are safe. This rastriction is required for
the VLB6C010 processor and does not

apply to VL86C020, but should be
adhered to for compatibility.

If the S flag Is clear when Rd is R15,
only the 24 PC bits of R15 will be
written. Conversaly, if the instruction is
of atype which does not normally
produce a result (CMP, CMN, TST,
TEQ) but Rd is R15 and the S bit is set,
the result will be used to update those
PSR flags which are not protected by
virtue of the processor mode.

Setting PSR Blts - 1t is suggested that
TEQP be used to set PSR bits in SVC
mode. Because these bits are not
presented 10 the ALU input (even when
R15 is the oparand), the TEQP's
operands replace all current PSR bits,
For example, to remain in SVC mode
but set the interrupt-disable bifs, use a
"TEQP PC, 0x C000003" instruction,

3-21

w VLSI TECHNOLOGY, INC.

R15 as an Operand - f Ri5 is used as
an operand in a data processing
instruction it can present diffarent
values depending on which oparand
position it occupies. & will always
contain the value of the PC. It may or
may not contain the values of the PSR
{lags as they ware at the completion of

When R15 appears in the Rm position it
will give the value of the PC together
with the PSR flags to the barre! shifter,

When R15 appears in either of the Rn
or Rs positions it will give the value of
the PG alone, with the PSR bits
raplaced by zeros.

PRELIMINARY
T-49-17-52

VL86C020

The PC value will ba the address of the
instruction, plus 8 ot 12 bytes due to
instruction prefetching. If the shift
amount is spscified in the instruction,
the PC will be 8 bytes ahead, a
register is used to specify the shift
amount, the PC will be 8 bytes ahead
when used as Rs, and 12 bytes ahead
when used a Rn or Rm.

the previous instruction,

Assembler Syntax:
MOV, MVN single operand instructions:
<opcedex{cond){S} Rd,<Op2>

CMP, CMN, TEQ, TST - instructions not praducing a result:
<opcodes{cond}{P} Rn,<0p2>

AND, EOR, SUB, RSB, ADD, ADC, SBC, RSC, ORR, BIC:
<opcodex{cond}{S} Rd, Rn, <Op2>)

whereOp2 Is Rm{<shift>} or, <expression>

cond Two-character condition mnemonic, see Condition Code section,

S Set condition cades if S present {implied for CMP, CMN, TEQ, TST),

P Make Rd = R15 in instructions where Rd is not specified, otherwise Rd will
defautt to RO. (Used for changing the PSR directly from the ALU resutt.)

Rd, Anand Rm Are any valid register name, such as R0-R15, PC, SP, or LK.

<shift> Is <shiftname> <register> or <shiftname> expression, or RAX (rotate right
one bit with extend).

<shiftname>s Are any of: ASL, LSL, LSR, ASR, or ROR.

Note: If <expressions is used, the assembler will attempt to generate a shifted ihmediate eight-bit field to match the expression.
if this is impossible, it will give an error.

Examples:
" AD R2, R4, RS

R4,3

; Equivalent to: if (ZFLAG) R2 = R4+RS.

; Test R4 for squality with 3 (The S is redundant, as the assembler
; assumes it). Equivalent to: ZFLAG = R4==3.

; Logical Right Shift R7 by the number in the bottom byte of R2, subtract
; the result from R5, and put the answer into R4.

: Equivalent to: R4 = RS - (R7>>R2).

; (Assume non-user mods here). Change to

; user mode and clear the N,2,C,V,1, and F

; flags. Note that R15 is in the Rn position, so

; it comes without the PSR flags.

; Equivalent to: R15 = FLAGS = 0.

; Is a no-op, avolding mode-change hazard.

; Equivalent to: RO = RO.

; Equivalentto: PC =LK, or PC=R14,

; Return from subroutine (R14 Is an active one).

; Equivalentto: PC, PSR « R14.
; Return from subroutine, restoring the status.

TEQS

suB R4, R5, R7 LSR R2

TEGQP R15, 0;

MOVNV Ro, Ro
MoV PG, LK

MOVS PC, R14

3-22

N VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

FIGURE 10. MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA)

31 28 27 22 19

16 15

T-49-17 -3

8 7
|_conex 0’0 0'0lo ofals] "Ad' ["Ra' [TR TiTo'0e]

Am_ |

L_'___l

Conditional Executlon
Control Fleld

MUL: Rd=Rm*Rs
MLA: Rd=Rm*Rs +Rn

Set Conditlon Codes
0 = Do not alter Condition Codes
1 = Set Condition Codes

Accumulate bit (MLA speclfler)
0 = Muitiply (MUL)
1 = Multiply and Accumulate (MLA)

(Rn Is Ignored)

) gy

L Operand registers

The multiply and multiply-accumulate
instructions use & 2-bit Booth's alge-
rithm to perform integer multipllcation.
They give the least significant 32 bits of
the product of two 32-bit operands, and
may be used to synthesiza higher
precision multiplications.

The multiply form of the instruction
gives Rd = Rm*Rs. Rnis Ignored, and
should be set to zero for compatibility
with possibla future upgrades to the
instruction set.

The multiply-accumulate form gives
Rd = Bm*Rs+Rn, which ¢an save an
axplicit ADD instruction in some
circumstances,

Both forms of the instruction work on
operands which may be considered as
signad (2's complement) or unsigned
integers.

Operand Restrictions - Due to the way
the Booth's algorithm has been
Implemented, certain combinations of
operand registers should be avoided.
(The assembler will lssue a warning if
these rastrictions are violated.)

The destination register (Rd) should not
be the same as the Rm operand
register, as Rd Is used to hold Interme-
diate values and Rm Is used repeatedly
during the multiply. A MUL will give a
zero result if Rm=Rd, and a MLA will
give a meaningless result,

The destination register Rd should also
not be R15, as itis protected from
modification by these instructions, The
Instruction will have no effect, except
that meaningless values will be placed
In the PSR fiags if the S bit is set. All
other register combinations will give
correct results, and Rd, Rn and Rs may
use the same register when required.

PSR Flags - Sefting the PSR flags is
optional, and is controlled by the S bitin
the instruction. Tha N and Z flags are
set correctly on the result (N is equal to
bit 31 of the result, Z Is set if and only if
the result is zero), the V flag is unaf-
facted by the instruction (as for logical
data processing instructions), and the C
flag Is set to a meaningless value.

Wiiting to R15 - As mentioned previ-
ously, R16 must not be used as the
destination register (Rd). If it is so
used, the instruction will have no effect
except possibly to scramble the PSR
flags.

R15 As an Operand - R15 may be
used as one or more of the operands,
though the result will rarely be useful.
When used as Rs the PC bits will be
used without the PSR flags, and the PC
value will be 8 bytes advanced from the
address of the multiply instruction.
When used as Rn, the PC bits will be
used along with the PSR flags, and the
PG will again be 8 bytes advanced from
the address of the instruction. When
used as Rm, the PC bits will be used
together with the PSR flags, but the PC
will be the address of the instruction
plus 12 bytes in this case.

3-23

w VLSI TeCHNOLOGY, INC. PRELIMINARY

VL86C020
A
- -
Assembler Syntax: I 4 9’/ 7 5 -
MUL{cond}{S} Rd, Rm, Rs
MLA {cond}{S} Rd, Rm, Rs, An
where cond Is a two-character condition code mnemonic
S Set condition codes if present.
Ad, Am, As and Rn Are valid register mnemonics, such as RO- R15 SP, LK, or PC.
Notes:
Rd must not be R15 (PC), and must not be the same as Rm.
ltams in {} are optional. Thoss in <> must be present.
Examples:
MUL R1,R2, R3 + R1 =« A2 * R3, (A1,A2,R3 = Rd,Am,Rs)
MLAEQS R1, R2, R3, R4 ; Equivalent to: if (ZFLAG) R1 = R2*'R3 + R4,
; Conditlon codes are set, based on the resuit.
; The multiply instruction may be used to synthesize higher precision multiplications.
; For instance, multiply two 32-bit integers and generate a 64-bit result:
Mov RO, R1 LSR 16 ; RO (temporary) = top half of Ri.
MOV R4, R2LSR 16 ; R4 = top half of R2.
BIC R1,R1, ROLSL 16 ; R1 = battom half of R1.
BIC R2, R2, R4LSL 16 ; R2 = bottom half of R2.
MUL R3, Ro, R2 ; Low section of result.
MUL R2, Ro, R2 ; Middle section of result.
MUL R1, R4, Ri ; Middle section of result,
MUL R4, Ro, R4 ; High section of resuit.
ADDS Rt, R2, Ri ; Add middle sections. (MLA not used, as we nesd R3 correct).
ADDCS R4, R4, 0x10000 ; Carry from above add.
ADDS R3, R3,R1 LSL 16 ; R3 is now bottom 32 product bits.
ADC R4, R4, R1 LSR 16 ; R4 is now top 32 bits.

Notes: ’
1. R1, R2 are registers containing the 32-bit integers. R3, R4 are registers for the 64-bit result.
2. RO Is a temporary register.

3. R1 and R2 are overwritten during the multiply.

3-24

w\/Lﬂ TECHNOLOGY, INC.

Load/Store Value from Memory
(LDR,STRY) - The register load/store
instructions are used to load or store
single bytes or words of data. The LDR
and STR instructions differ from MOV
instructions in that they move data
between registers and a spacified
memory address. In contrast, the MOV
instructions move data between
registers, or move a constant (con-
tained In the instruction) into a register.

The memory address used in LDR/STR
transfers is calculated by adding an
offset to or subtracting an offset from a
base register. Typically, a load of a
labeled memory location Involves the
loading via a (signed) offset from the
currant PC. Regardless of the base
register used, tha result of the offset
calculation may be written back into the
base register if "auto-indexing” is
required.

Oftsets and Auto-Indexing - The
offset from the base may be ether a 12-
bit binary immediate value in the
Instruction, or a second register
(possibly shifted in some manner)., The
offset may be added to {U=1) or
subtracted from (U=0) the base register
Rn. The offset modification may be
performed aither before (pre-indexed,
P=1) or after (post-indexed, P=0) the
base is used as the transfer address.

The W bit gives optlonal auto increment
and decrement addressing modes. The
modified base value may be written
back into the base (W=1), or the old
base value may be kept (W=0). In the
case of post-indexad addressing, the
write back bit is redundant, since the
old base value can be retained by
setting the offset to zero, Therefore,
post-indexed data transfers always
write back the modified base.

PRELIMINARY
T-49-/7-32. VL86C020

Hardware Address Translation - The
only use of the W bit in a post-indexed
data transfer Is in non-user mode code,
where setting the W bit forces the
~TRANS pln 1o go low for the transfer,
allowing the operating system to
generate a user addrass in a system
where the memory management
hardware makas suitable use of this
pin, as when the MEMC chip is used.

Shifted Raeglster Offset - The eight
shift control bits are described in the
data processing instructions, but the
register specified shift amounts are not
available in this instruction class.

Bytes and Words - This instruction
class may be used to transfer a byte
(B=1) or a word (B=0) between a
VL86C020 register and memory. In the
discussion, remember that the
VL86C020 stores words into memory
with the Least Significant Byte at the
lowest address (i.e., LSB first).

FIGURE 11. SINGLE DATA TRANSFER (LDR, STR)

Source/Destination Reglster

31 28 25 20 16 15 12 11
[Eoras Jo s [1]plulalwlL] "ha' | ' ' operandz ' W
l | I | 1 | !
Condition Base Register
Code

Load/Store: 0= STR, 1=LDR

Imm = 0 --> Operand 2 Is an Immediate value.

11 0
Write Back Bit L I I AL AU L
0 = No write back —L Unsigned 12-bit value I
1 = Write address back Into base ().
Byte/Word Bit Imm=1-->Operand2isina reglster.
0 = Word transfer
1 = Byte transfer (B) LL M- 7 A 5 43, T
UplDogg Bnl -{ | |
0 set Is negative
1 = Offset is positive l l |
Pre/Post Indexing
0 = Post: [base],Index Operand Register
1=Pre: [base,index] Shift Amount I Shift Type
Immediate Value Shift amount is a &-bit 00 = Logical Left {LSL)
1= Operand 2is aregister. Shift count, to be applied 01 = Logical Right {LSR)

0 = Operand 21s an

to the Rm ragister.

Immediate value,

10 = Arithmetic Right (ASR)
11 = Rotate Fllght (ROR)

3-25

& VLSI TECHNOLOGY, INC.

Non-Allgned Addrasses - A byte load
(LDRB) expects the data on bits D7 to
DO if the supplied address Is on a word
boundary, on bits D15to D8 if itis a
word address plus one byte, and so on.
The selacted byte is placed in the
bottom sight bits of the destination
register, and the remaining bits of the
register are filled with zeros.

A byte store (STRB) repeats the bottom
oight bits of the sourca register four
times across the data bus. The external
memory system should activate the
appropriate byte subsystem to store the
data.

Non-Allgned Accesses - A word load
(LDR) should generate a word aligned
address. An address offset from a ward
boundary will cause the data to ba
rotated Into the register so that the
addressed byte occupies bits D7 to DO.
See the below example.

External hardware could perform a
double access to memory to allow non-
aligned word loads, but the VL86C110
Memory Cantroller does not support this
function.

Use of R15 - Thess instructions will
never cause the PSR {c ba modified,
even when Rd or Rn is R15.

If R15 is spacified as the base register
(Rn), the PC is usad without the PSR
flags. When using the PC as the base
register one must remember that it

contains an address 8 bytes advanced
from the addrass of the current Instruc-
tion.

f R15 is specified as the register offset
(Rm), the value presented will be the
PC together with the PSR.

When R15 is the source register (Rd) of
a register store (STR) instruction, the
value stored will be the PC together
with the PSR. The stored value of the
PG will be 12 bytes advanced from the
addrass of the Instruction. A load
ragister (LDR) with R15 as Rd will
change only the PC, and the PSR will
be unchanged.

Address Exceptlons - It the address
used for the transfer {i.e, the unmodified
contents of the base register for post-
indexed addressing, or the base
moditied by the offset for pre-indexed
addressing) has a logic one in any of
the bits D31 to D26, the transfer will not
take place and the address exception
frap will be taken.

Note that only the address actually
used for the transfer is checked. A:
base containing an address outside the
legal range may be used In a pre-
indexed transter if the offset brings the
address within the legal range. Like-
wise, a base within the legal range may
be modified by post-indexing to outside
the legal range without causing an
address exception.

Example: Read two 16-bit values from an I/O pott, merging into a 32-bit word.

MASK: DW OxFFFF
0_16 DW 0x3100000
WORD Dw 4]
LDR R3,10_16
LEA R4, BUF
. LDR R0, MASK
tbR Ri,[R3},2
AND Ri,R1, RO
LOR R2,[R3),2
BIC R2, R2, RO
ORR R1,R1,R2
STR R1,[R4], 4

; /O port address
; 32-bit result

; Get word-aligned sourca address.

; Get word-allgned destination address.

; Fetch even half-word from 18-bit port
; Keep lower 16 bits,

; Fetch 'add’ half-word, rotated.

; Keep upper 186 bits,

; Merge even/odd halves.

; Store 32-bit composit.

PRELIMINARY
T=-49-17-3

VL86C020

Data Aborts - A transfer to or from a
legal address may still present spacial
cases for a memory management
system.. For instance, in a system
which uses virtual memory, the required
data may be absent from main memory.
The memory manager can signal a
problem by taking the processor
ABORT pin high, wheraupon the data
transfer instruction will be prevented
from changing the pracessor state and
the data abort trap will be taken, Itis up
to the system software to resolve the
cause of the problem. The instruction
can be restarted and the original
program continued.

Cache Interactlon - When the cache is
turned on, a data load operation (LDR,
LDRB) will read data from the cache if it
is present. {f the cache is turned off, or
doss not contain the required data, the
extarnal memory is accessad.

A data store operation (STR, STRB) will
always cause an immediate extetnal
write to allow the external memory
manager to abort the access if it is
illegal; If the write operation is not
aborted, and the cache contains a copy

- of data from the address being written

to, the cacha will be automatically
updated with the new byte or word of
data. This updating occurs sven when
the cache is turned off (to maintain
cache consistency), but can be disabled
by programming the updateable control
register appropriately. (See Cache
Operation.)

3-26

N VLSI TECHNOLOGY, INC. : .IF’JIE;}ELI]M[I[N] ARY

Assembler Syntax:

LDR/STR{cond}{B}{T} Rd,<Address>

where LDR means Load from memoty Into a register.
STR means store from a register into memory.
cond is a two-character condition mnemonic (see Condition Code section).
B if present implies byte transfer, else a word transfer.
T It present, the W bit Is set in a post-indexed instruction, causing the

~TRANS pin to go low for the transfer cycle. T is not allowed when a pre-
Indexed addressing mode s specified or implied.

Rd is a valid register; R0-R15, SP, LK, or PC.

Address Can be any of the variations in the following table.

Addreas Varlants:
Address expression: An expression evaluating to a relocatable address:
<oxpression> The assembler will attempt to generate an instruction using the PC
as a base, and a corrected offset to the location given by the
expression. This is a PC-relative pra-indexed address. if out of range
(at assambly or link time), an error message.will be given,

Pre-indexed address: Offset Is added to base register before using as effective address, and
offsets are placad within the [] pair. Rn may be viewed as a pointer:

[Rn] No offset is added to base address pointer.
[Rn, <expression>{l}] Signed offset of expression bytes is added to base pointer.
[Rn, Rm[{}} Add Rm to Rn before using Rn as an address pointer.

[Rn, Rm <shift> count |{1} Signed offset of Am (modified by shift) is added to base pointer.

Post-indexed address: Offset is added to base reg, after using base reg for the effective address.
Olfsets are placed after the [] pair:

[Rn],<expression> Expression is added o Rn, after Rn's usage as a pointer.

[Rn], Rm Rm Is added to Rn, after Rn's usage as an address pointer.

[Rn], Rm <shift> count Shift the offset In Rm by count bits, and add to Rn, after
Rn’s usage as an address pointer.

where expression A signed 13-bit expression (Including the sign).
Rm, An Valld reglster names: RO-R15, SP, LK, or PC. If RN = PC, the assembler
will subtract 8 from the expression to allow for processor address read-ahead.
shift Any of: LSL, LSR, ASR, ROR, or RRX.
count Amount to shift Rm by. Itis a 5-bit constant, and may not be
specified as an Rs register (as for soma other instruction classes).
1 If present, the ! sets the W-bit in the instruction, forcing the

effective offset to be added to the Rn register, after completion.

Examples (Pre-Index and Optlonal Increment):

In each of these examples, the effactive offset Is added to the Rn (base pointer) register prior to using the Rn register as the
affective address. Rn is then updated only if the | suffix is supplied.

STR R1, [R2, R1]! ; “(R2+R1) = R1. Then R2 += R1.

STR . R3, [R2] :*(R2) = R3.

LDR Rt, [Ro, 16} ; R1 = *(RO + 16). Don't update RO.

LDR R9, [R5, ROLSL 2] ; RO = *(R5 + (R2<<2)). Don't update RS5.
LDREQB R2, [RS, 5] ; if (Ztlag) R2 = *(RS + 5), a zero-filled byte load,

3-27

v

T fiiff VY VT Y - fom 3 _-_— dod bt ol ed O} WL AU W

@ \>LSI TECHNOLOGY, INC. PRELIMIN A RV

T-y9.17. 32 YLBECO20
Examples (Post-index and Increment):

In each of these examples, the effective offset is added to the Rn (base pointer) register after using the Rn register as the
offactive address. Rn is then updated unconditionally, regardless of any *I* suffix.

STR Rt, {R2}, R1 ;*R2=R1. Then R2 += R1,

STR R3, [R2], R5 ; *(R2) = R3. Then R2 += RS.

LDR A1, [Ro), 16 ; R1 = *RO. Then RO += 16.

LDR R9Y, {R5], RO ASR 3 ;1 R9 = *R5, Then R5 += (RO/8).

LDREQB R2, [R5}, 5 ; if (Zflag) R2 = *RS, a zero-filled byte load, and then RS += 5.
Examples (Expression):

In these examples, the PLACE label is an internal or external PC-relative label, typically created as shown. PC-relative refer-
ances are precompensated for the 8-byte read-ahead done by the processor. PARMX Is a register-relative label, typically created
via a DTYPE directive, and assumed 1o be relative fo the LK (R14) register. DATAx Is similar, but is presumably defined relative
to the SP (R13) register, and GENERAL relatlve to RO. In any case, they may be located up to £4096 bytes from the associated
base register.

LDR RO, DATA1 ; SP-relative, Same as: LDR RO, [SP+DATA1].
STR R2, PLACE ; PC-relative. Same as: STR R2, [PC+16).
LDR R1, PARMO ; LK-relative. Same as: LDR R1, {LK+DATAT1].
STR R1, GENERAL ; RO-relative. Same as: STR R1, [RO+GENERAL).
B Across ; Skip over the data temporarily.

¥

PLACE DW 0 ; Temporary storage area.

Across see ; Resume exscution.

FIGURE 12. LOAD/STORE REGISTER LIST FROM MEMORY (LDM,STM)

31 28 27 25 20 19 16 15) 0
T 11 T .1 T 11 T 11 TTT.T T LT T T 1

I Condx L1 0 0|P|U|S|WL| Rn | I Register List | I

I I l_‘:-_l Base Register

Condition Load/Store: 0 = STM, 1 =LDM

Code Write back bit
0 = No write back
1 = Write address back into base (1).

PSR Or Force-User bit (4 suffix)
0 = Do not load PSR or force user mode registers.
1 = Load PSR or optionally force user mode regsiters(®).

Up/Down Bit
0 = Offset is negative
1 = Offset is positive

Pre/Post Indexing Form
0 = Post: aftor each register
Is transferred.
1 = Pre: before each register
Is transferred.

3-28

NY & =

VLSI TECHNOLOGY, INC.

I b V= 33 W b ™= 7

Multl-Reglster Transfer (LDM, STM)
The instruction Is only executed if the
condition Is true. The various condi-
tions are defined in Control Field
Section.

Multi-register transfer instructions are
used to load (LDM) or store (STM) any
subset of the currently visible registers.
They support all possible stacking
modes (push up/pop down, or push
down/pop up). They are very efficlent
instructions for saving or restoring
context, or for moving large blocks of
data around main memory.

The Register List « The instruction can
cause the transfer of any registers in
the current bank {and non-user mode
programs carn also transter to and from
the user bank). The register list is
contained In a 16-bit field in the
instruction, with each bit corresponding
to aregister. A logic one in bit zero of
the register fisld will cause RO to ba
transferred, a logic zero will cause it not
to be transferred; similarly bit 1 controls
the transfer of R1, and so on.

Addressing Modes - The transfer
addresses are determined by the
contents of the base register (Rn), the
pre/post bit (P) and the up/down bit (U).
The registers are transferred in the
order lowest 1o highest, so R15 (if in the
list) will always be transferred last. The
lowest register also gets transferred to/
from the lowast memory address. This
is illustrated in Figures 13 and 14.

Transfer of R15 - Whenever Ri5 is
slored to memory, the value transferred
is the PC together with the PSR flags.
The stored value of the PC will be 12
bytes advanced from the address of the
STM instruction.

If R15 is in the transfer list of a load
multiple (LDM) instruction the PC is
overwritter, and the effect on the PSR
is controlled by the S.bit, If the S bitis
zoro the PSR is preserved unchanged,
but if the S bit is set the PSR will ba
overwritten by the corresponding bits of
the loaded value. In user mode,
however, the |, F, M1 and MO bits are
protected from change, whatever the
value of the S bit. The mode at the
start of the instruction determines
whaether these bits are protected, and
the supervisor may return to the user

program, re-enabling interrupts and
restoring user mode with one LDM
instruction.

Transfers to User Bank - For STM
Instructions the S bit is redundant as
the PSR is always stored with the PC
whenever R15 is in the transfer list. In
user mode the S bit Is ignored, but In
other modes it has a second inferpreta-
tion, S=1Is used to force transfers to
take values from the user register bank
instead of from the current register
bank. This Is useful for saving the user
state on process switches, Note that
when it is so usaed, write back of the
base will also be to the user bank,
though the base wili be fetched from the
current bank. Therefore, do not use
write back when forcing user bank.

In LDM instructions the S bit is redun-
dant if R15 is not in the transfer list, and
again in user made it is ignored. In
non-user mode where R15 is not in the
transfer list, S=1 Is used to force loaded
values In to the user registers instead of
the current register bank, When used
In this manner, care must be taken not
to read from a banked register during
the following cycls; if in doubt, Insert a
no-0p. Again, do not use write back
when forcing a user bank transfer.

R15 As the Base - When the base is
the PC, the PSR bits will be used to
form the address as wall, so unless all
interrupts are enabled and all flags are
Zoro an address exception will occur,
Also, wrlte back Is never allowed when
the base Is the PC (setting the W bit will
have no effect).

Base within the Reglster List - When
write back is specified, the base is
written back at the end of the second
cycle of the instruction, During a STM,
the first register is written out at the
start of the second cycle. A STM which
includes storing the base, with tha base
as the first register to be stored, will
therefore store the unchanged value,
whereas with the base second or later
in the transter order, will store the
modified value. Arn LDM will always
overwrite the updated base if the base
is in the list,

Address Exceptlons - When the
address of the first transter falls outside
the legal address space {i.e. has a logic
one somewhere in bits 31 to 26), an

PRELIMINARY
T-y9./7.35 _ VL86C020

address exception trap will be taken.
The instruction wil! first complete in the
usual number of cycles, though an STM
will be prevented from writing to
memoty. The processor state will be
the same as if a data abort had
occurred on the first transfer cycle.

Only the address of the first transfer is
checked in this way; if subsequent
addresses over or under-flow into illegal
address space they will be truncated to
26 bits but will not cause an address
exception trap.

Data Aborts - Some legal addresses
may be unacceptable to a memory
management system, and the memory
manager can indicate a problem with an
address by taking the ABORT pin high.
This can happen on any transfer during
a multiple register load or store, and
must be recoverable if VL86C020 is to
be used in a virtual memory system.

Abort during STM - If the abort occurs
during a store multiple instruction,
VL86C020 takes little action until the
instruction completes, whersupon it
enters the data abort trap. The memory
manager is responsible for preventing
errongous writes to the memory. The
only change to the internal state of the
processor will ba the modification of the
base register if write back was speci-
fied, and this must be reversed by
software (and the cause of the abort
rasolved) before the instruction may be
retried,

To illustrate the various load/store
modes, consider the transter of R1, R5
and R7 In the case where Rn = 1600H
and write back of the modified base Is
required (W=1), These figures show
the sequence of register transfers, the
addresses used, and the valus of Rn
after the Instruction has completed.

In all cases, had write back of the
modified base not been required (W=0),
Rn would have retained its initial value
of 1000H unless it was also in the
transfer list of the load multiple register
instruction. Then it would have been
overwritten with the loaded value.

Aborts during LDM - When
VL86C020 detects a data abort during a
load multiple instruction, it modifies the
operation of the instruction to ensure
that recovery is possible.

3-29

= i=mWiNWWVkLVUa

® VLSI TECHNOLOGY, INC,

E) A [=S g S

The following figures illustrate the
impact of various addressing modes.
R1, R5, and R7 are moved toffrom
memory, where Rn=0x1000, and a write
back of the modified base is done
(W=1). The figures show the sequence
of incrementing "pushes”, the ad-
dresses used, and the final valus of Rn.

Without write back, Rn would remain at
0x1000.

Figure 13 illustrates the use of incre-
menting stack "pushes”.

Figure 14 illustrates decrementing
"pushes” to the stack based upon Rn.

= Y384347 000k110 & m

PRELIMINARY
T-49-17-3_

VL86C020

Mods Bits - During LDM and STM
execution, the two LSBs of the instruc-
tion will contain the (noninverted) mode
status bits. These may be used by
external hardware to force memory
accesses from an afternative bank,

FIGURE 13. INCREMENTING INDEX

Post-Iricrement Addrassing

FIGURE 14. DECREMENTING INDEX

0x100C 0x100C
Rn-» 0x1000 R1 0x1000 Rn -»
OxOFF4 OxOFF4

(1) Before STM Instruction

(3) After Second Transfer

Pre-Increment Addressing

(2) After First Transfer

0x100C Rn -» 0x100C
R7
R5 RS
R1i 0x1000 R1 0x1000
R5
R1
OxOFF4 OxOFF4

(4) STM Instruction Complete

0x100C 0x100C
R1
An-» 0x1000 0x1000 R -
OxOFF4 OXOFF4
(1) () (1)
0x100C Rn-»_ R7 0x100C
RS RS
A1 R1
0x1000 0x1000
A5
OXOFF4 OxOFF4 A1
@) (4) (3)

Post-decrement Addressing

0x100C 0x100C

0x1000 0x1000
[atl

0xOFF4 0xOFF4

(1) Before SRM Instruction

(3) After Second Transfer

(2) After First Transfer

{4) After STM Instruction Complete

Pre-decrement Addressing

0x100C 0x100C
0x1000 R7 0x1000
RS
: R1
OxOFF4 Rn-» OxOFF4

0x100C 0x100C
0x1000 0x1000
O0xOFF4 Ri OXOFF4
)]
0x100C 0x100C
0x1000 0x1000
R7
RS
OxOFF4 Rn-»_ Ri 0XOFF4
(4)

3-30

‘V-L. o 4 lkwillsVikeviag

1Y\ e b —-_—

w VLSI TECHNOLOGY, INC.

Ovarwriting of ragisters stops when the
abort happens. The aborting load will
not take place, nor will the preceding
one, but registers two or more positions
ahead of the abort (if any) will be
loaded. (This guarantees that the PG
will be preserved, since it is always the
last register to be overwritten.)

The base register Is restored to its
modified value if write back was
requested. This ensures recoverability

Agsembler Syntax:

in the case where the base register is
also In the transfer list, and may have
baen overwritten befora the abort
occurred,

The data abort trap is taken when the
load multipla has completed, and the
system software must undo any base
modification (and resclve the cause of
the abort) before restarting the instruc-
tion.

LOM|STM{cond}<mode> Rn{l}, <Rllst>{4}

ot ol f ot B R

PRELIMINARY
T-¢9-;7- 32 _VL86C020

ok b bl d A A WS

With the cache turned on, a block load
operation (LDM) will read data from the
cache whera it is present. When the
cache does not contain the required
data, the external memory is ac¢essed.

A block stare aperation (STM) always
generates immediate external writes to
allow the external memory manager fo
abort the accesses if they are illegal.
The cache is automatically updated as
the data is written to memory (provided
the area being written to is updateable,
see Cache Oparation Section).

where cond s an optional 2-letter condition code common to all instructions.
mode s any of: FD, ED, FA, EA, 1A, 1B, DA, or DB.
FAn Is a valid register name: R0-R15, SP, LK, or PC.
Rlist Canbe a single register (as described above for Rn), or may be a list of
reglsters, enclosed in { } (eg {RO,R2,R7-R10,LK}).
! If prasent, requests write back (W=1), Otherwise W=0.
A If prasant, set S bit to load the PSR with the PC, or force transfer of user
bank, when in non-user mode.
Addressing Mode Names
_Function LBt PBR Ubit OQperation
Pre-increment load LOMIB 1 1 1 Pop upwards
Post-increment load LDMIA 1 0 1 Pop upwards
Pre-decrement load LDMDB 1 1 (o] Pop downwards
Post-dacrement load LDMDA 1 0 0 Pop downwards
Pre-increment store STMIB 0 1 1 Push upwards
Post-increment store STMIA 0 0 1 Push upwards
Pre-decrement store STMDB 0 1 0 Push downwards
Post-dacrement store STMDA 0 0 0 Push downwards

1A, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply mean Increment After, Increment Before,

Decrement After, Docrement Bofore.

; unstack 3 registers
; save all registers

These instructioné may be used to save state on subroutine entry, and restore it sfficiently on return to the calling routine;

Examples
LDMFD SPI, {Ro, R1, R2}
STMIA R2, {RO, R15}
STMED SPJ, {R0-R3, LK}
BL Subroutine
LDMED 8P|, {RO-R3, PC}

; Save RO to R3 for workspace, and R14 for returning.

; This call will overwrite R14.

i Restote workspace and return, restoring PSR flags.

3-31

w VLSI TECHNOLOGY, INC. PRELIMINARY

=~ VL86C020
T=449~)7-3, moo0ed
31 28 27 2322212019 16 15

12 11 8 7 43 0
| (l3t‘)|'|ldxI IOIOI0|1IOIBIO|0| {R[n[l IRld[IOIOIOIOI1IOIO|1I Ile[|

I_!_’ I I_I_I I_l__l
Byte/Word Bit

Condition 0 = Swap Word Dastination Source
Code 1 = Swap Byte Ragister Register

FIGURE 15. SINGLE DATA SWAP (SWP)

Base
Register

Single Data Swap (SWP) - The Instruc-
tion is only executed if tha condition is
trua, The various conditions are
defined in Condition Field Section,

The data swap Instruction is used to
swap a byte or word quantity between a
register and external memory. This
instruction is implemented as a memory
read followed by a memory write which
are locked together (the processor
cannot be interrupted until both
opérations have completed, and the
memory manager is warned to treat
them as inseparabla)., This class of
instruction is particularly useful for
Implementing software semaphores,

The swap address is determined by the
contents of the base register (Rn). The
processor first reads the contents of the
swap address (the external memory is
always accessed, even if the cache
contains a copy of the data). The
processor then writas the contents of
the source register (Rm) to the swap
address, and stores the old memory
contents in the destination register (Rd).
The same register may be specitied as
both the source and destination.

The LOCK pin goes high for the
duration of the read and write opera-
tions to signal to the external memory
manager that they are locked together,
and should be allowed to complete
without interruption. This Is important in
multi-processor systems where the
swap instruction is the only indivisible
Instruction which may be used to

implement samaphores; control of the
memory must not be remaved from a
processor while it is parforming a
locked aperation.

Bytes and Words - This instruction
class may be used to swap a byte (B=1)
or a word (B=0) between a VL86C020
register and memory.

A byte swap (SWPB) expects the read
data on bits 0 o 7, if the supplied
address is on a word boundary, on bits
8to 15 if it is a word address plus one
byle, and so on. The selected byte s
placed In the botiom elght bits of the
destination register, and the remaining
bits of the register are filled with zeros.
The byte to be written s repeated four
times across the data bus. The
external memory system should
activate the appropriate byte subsystem
1o store the data (see Memoty Intarface
Section).

A word swap (SWP) should generate a
word aligned address. An address
offset from a word boundary will cause
the data read from memory to be
rotated into the register so that the
addressed byte occuples bits 0to 7.
The data written to memory are always
presented exactly as they appear in the
tegister {i.e, bit 31 of the register
appeatrs on D31),

Uss of R15 - If R15 is selected as the
base, the PC is used together with the
PSR. If any of the flags are set, or

interrupts are disabled, the data swap

will cause an address exception. If all -
flags are clear, and interrupts are
enabled (so the top six bits of the PSR
are claar), the data will be swappad
with an addrass 8 bytes advanced from
the swap instruction, although the
address will not be word aligned unless
the processor Is in user mede. (M1 and
MO bits determine the byte address).

When R15 is the source register (Rm),
the value stored will ba the PC together
with the PSR. The stored value of the
PC will be 12 bytes advanced from the
address of the instruction,

When R15 is the destination register
(Rd), the PSR will be unaffected, and
only the PC will change.

Address Exceptlons - {f the bass
address used for the swap has a logic
one in any of the bits 26 to 31, the
transfer will not take place and the
address exception trap will be taken.

Data Aborts - If the address used for
the swap is unacceptable to a memory
management system, the memory
manager can {lag the problem by
driving ABORT high. This can happen
on either the read or the write cycle {or
both). In either case, the data swap
instruction will be prevented from
changing the processor state, and the
Data Abort trap will be taken. Itis up to
the system software to resolve the
cause of the problem. Then the instruc-
tion ¢an be restarted and the ariginal
program continued.

3-32

w VLSI TECHNOLOGY, INC. PRELIMINARY
7749 -/7. 3, YL86C020

Cache Interaction - The swap Instruc- a semaphore may be out of date (the The write operation of the swap

tion always reads data from external cache is only updated if the host CPU instruction will still update the cache if a
memory, even if a copy is present inthe writes new data to the external mem- copy of the address is present, and
cache. In multi-processor systems, oty). ltis, therefore, important always updating is enabled (see Cache
semaphores may be used to control to read the semaphore from the shared Operation Section).

access to system resources; as the external memory, and not the private

semaphores are accessad by more cache.

than one processor, the cache copy of

Assambler Syntax:
SWP{cond}{B} Rd,Rm,[Rn]
whare cond Two-charactar condition mnemonic, see section Condition Field
B If B is present then byte transfer, otherwise word transfer.
Rd,Rm,An Are expressions evaluating to valid register numbers. Rn is required.
Examples:
SWP RO, R1, {BASE] ; Load RO with the contents of BASE, and stors R1 at BASE,
SwPB R2, R3, [BASE] ; Load R2 with the byte at BASE, and store bits 0 to 7 of R3 at BASE.
SWPEQ RO, RO, [BASE] ; Conditionally swap the contents of BASE with RO.

3-33

Y VLSI TECHNOLOGY, INC. PRELIMINARY

T=%9-/7. 35 VL86C020

FIGURE 16. SOFTWARE INTERRUPT (SWI)

31 28 27 24 23 r l0
L LIRS | P11 T 0 0T T T T 11 1
| ICondx li 11 II | Instruction to Executive (ignored by CPY) I I
Condltion
Fleld

Note; The machine comments fleld In bits 23-0 are Ignored by the hardware. They are made available for free interpretation by
the software executive, and may be found in LSB-first byte order on the stack.

The Software Interrupt (SWI) instruction
is used to entar supervisor mode in a
controlled manner. The instruction
causes the software interrupt trap to be
taken, which effects the mode changs,
with execution resuming at 0x 08, [f

Return from the Supervisor - The PC
and PSR are saved i R14_sve upon
antering the softwara interrupt trap, with
the PC ad]usted to point to the word -
after the SWl instruction. MOVS R15,
R14_sve will return to the user program,

itself it must first save a copy of the
return address.

Machine Commaents Fleld - The
bottom 24 bits of the instruction are
ignored by the procassor, and may be

restore the user PSR and return the
procassor to user mode.

this address is suitably protected (by
external memory management hard-
ware) from modification by the user, a
fully protected operating system may be

constructed, antrant, so if the supervisor code

Note that the link mechanism Is not re-

used to communicate with the
supervisor cade. For instance, the
supervisor may extract this field and
use it to.Index into an array of entry
points for routines which perform

wishas to use software interrupts within - various supervisor functions.

Assembler Syntax:

SWi{cond} <exprassion>
where cond Is the two-character condition code common to all instructions,
expression Is a 24-bit field of any format. The processor itself ignores it, but the
typleal scenario s for the software executive to specily patterns in it,
which will be interpreted in a particular way by the exacutive, as commands.
Examples:
acons Zero=0, ReadC=1, Write1=2 ; Assembler constants.
SwWiI ReadC ; Get next character from read stream
Swi Writel+k"* ; Output a K" to the Write stream
SWINE 0 ; Conditionally call supervisor with 0 in comment field

The above examples assume that suitable supervisor code exists. For instance:
; Assume that the R13_svc (the supervisor’s R13) points to a suitable stack.

acons Zero=0, ReadC=1, Writa1=2 ; Assembler constants.
acons CC_Mask = 0xFC00003 ; Non-address area mask.
08h B Super s SWI entry paint
Super STMFD SPL{r0,r1, r2,r14) ; Save working registers.
8IC 1, ri4, CC_Mask ; Strip condx codes from SWI instruction address.
LDR RO, [R1, -4} ; Get copy of SWI instruction.
BIC RO, RO, 0xFF000000 ; Get lower 24 bits of SWI, only,
MOV . R1, SWi_Table ; Get absolute address of PC-relative table.
LDR PC, [R1, ROLSL 2 ; Jump indirect on the table.
SWI_Table dw Zaro_Action ; Address of service routines,
dw ReadC_Action
dw Write1_Action
Write1_Action ; Typical service routine.
LDM R13,{R0-R2, PC}* ; Restore workspace, and return to inst after SWI.

3-34

N VLSI TECHNOLOGY, INC.

FIGURE 17. COPROCESSOR DATA OPERATIONS (CDO)

31 28 27 2423 20 19

16 15 12 11 8 7

543

PRELIMINARY
T=49-17- 32

VL86C020

0

[Consd [17171'0] CPOw | "chn | 'chd | cpe | A [ol "chm |

|__|__I l

II|JI,II I

T T —1
Condition Coprocessor] ' |
ode Operation Coprocessor ggpir;g?gsor Operand
Code Destination 98 .
Register Coprocesser Auxiliary

Information
Coprocessor Number

The instruction is only executed if the
condition code field is true, The field is
described in the Condition Codes
Section,

This Is actually a class of instructions,
rather than a single instruction, and is
equivalent to the ALU class on the
CPU. Allinstructions in this class are
used to direct the coprocessor to
perform some internal operation. No
result is sent back to the CPU, and the
CPU will not wait for the operation to
complete, The coprocessor could
malntain a queue of such instructions

Assembler Syntax:

CDO{cond} CP#,<expression1>, CRd, CRn, CRm{,<expression2>}
where cond Is the conditional execution code, common to all instructions.
CP# Is the {unique) copracessor number, assigned by hardware,

awaiting execution. Their execution
may then overlap other CPU activity,
allowing the two processors to perform
independent tasks in parallel.

Coprocessor Flalds - Only bit 4 and
bits 31-24 are significant to the CPU;
the remaining bits are used by
coprocessors, The above fleld names
are used by conventlon, and particular
coprocessors may redefine the use of
any or all tields as appropriate except
for the CP#.

For the sake of future family product
Intraductions, it Is encouraged that the
above conventions be followed, unless
absolutely necessary.

CRd, CRn, CRm These are valid coprocessor registers;: CR0-CR15.

expressiont
exprassion2

Examples:

cDO 1,10, CRt, CR7, CR2
CDOEQ 2, 5, CR{1, or2, Cr3, 2

Evaluates to a constant, and is placed in the CP Opcfield.
(Where present) evaluates to a constant, and Is placed in the CP field.

g3
By convention, the coprocessor should .

perform an operation specified in the
CP Opc field {and possibly in the CP
field) on the contents of CRn and CAm,
placing the result into CRd.

VL86C010 CDO Instructlon = The im-
plementation of the CDO instruction on
the VL.86C010 processor causes a
Software Interrupt (SWI) to take the
undefined instruction trap if the SWI
was the next Instruction after the CDO.
This is no longer the case on the
VL86C020, but the sequence

cDo

Swi
should ba aveided for pragram compati-
bility.

; Raquest coproc #1 to do operation 10 on CR? and CR2, putting result into CR1.

: f the Z flag is set, request coproc #2 to do

; operation 5 ({type 2) on CR2 and CR3, placing the result into CR1.

3-36

AW VISI TecrnoLoGY, INC. PRELIMINARY

Tey9.7-3, YLBECO20

FIGURE 18. COPROCESSOR DATA TRANSFERS (LDC, STC)

31 28 27 24 23 20 19 16 15 12 11 . TB, 7r r 0
| LI I [I | U LE
I Condx |1 i O'P[Ul N[WIL[Rn | CRJ I CP# [Offset I
| | | | | | |
| I 8-Bit Positive
Condition ARM Base Coprocessor Immediate
Code Polnter Sre/Dst Offset
ndex Control Reglster Register Coh;}lrjon?g:?or
0 « Post-move
1 = Pra-moves -Load/Store Bit
0 = Store to Memory
Up/Down | Write Back 1 = Load to Coproc Reg
0 = Subtract 0 = No Write Back
1 = Add Cffsst 1 = Write e.a. to Rn.
Transfer Length

The LDC and STC instructions are used
to load or store single bytes or words of
data. They differ from MCR and MRC
instructions in that they move data
hetween coprocessor ragisters and a
specified memory address. In contrast,
the other Instructions move data
between registers, or move a constant
(contained in the instruction) into a
register.

The memory address used in LDC/STC
transfers is calculated by adding an
offset to ar subtracting an offset from a
base pointer register, Rn. Typically, a
load of a labeled memory location
involves the loading via a (signed)
offset from the current PC. Regardless
of the base register used, the result of
the offset calculation may be written
back into the base register if "auto-
indexing" Is required.

Coprocessor Flelds - The CP# fisld
Identifies which coprocessor shall
supply or recelve the data. A coproces-
sor will respond only if its number
matches the contents of this field,

The CRd fiald and the N bit contain
information which may be interpreted in
different ways by different coproces-
sors, By convention, however, CRd Is
the register to be transferred (or the first
register, whare more than one Is to be
transferred). The N bit is used to
choose one of two transfer length
options, For instange, N=0 could select
the transfer of a single register, and

N=1 could select the transfer of all the
registers for context switching.

Offsets and Indexing - The VL86C020
is responsible for providing the address
used by the memory system for the
transfer, and the addressing modes
available are similar to those used for
the VL86C020's LDR/STR instructions.

Only 8-bit offsets are permitted, and the
VL86C020 automatically scales them
by two bits to form a word offset to the
pointer in the Rn register. Of itself, the
offset is an 8-bit unsigned value, but a
9-bit signed negative offset may be
supplied. The assembler will comple-
ment it to an 8-bit (positive) valua and
will clear the instruction's U bit, forcing a
compensating subtract, The resultis a
+256 word (1024 byte) offset from Rn.
Again, the VL86C020 internally shifts
the offset left 2 bits before addition to
the Rn register.

The offset modification may be per-
formed either before (pre-indexed, P=1)
or after (post-indexed, P=0) the base is
used as the transfor address. The
modified base valus may be written
back into the base (W-1), or the old
base value may be kept (W-0). inthe
case of post-Indexed addressing, the
write back bit Is redundant, since the
old bass value can be retained by
setting the offset to zero. Therefore,
post-indexed data transfers always
write back the modified base.

For an offset of +1, the value of the Rn
base pointer register (modified, in the

pre-indexed case) is used for the first
word transferred. Should the instruction
be repeated, the sacond word will go
fromAo an address one word (4 bytes)
higher than pointed to by the original
Rn, and so on.

Use of R15 - If R15 Is specitied as the
base register (Rn), the PC Is used
without the PSR flags. When using the
PG as the base register note that it
contains an address 8 bytes advanced
from the address of the current Instruc-
tion. As with the LDR/STR case, the
assembler performs this compensation
automatically.

Hardware Address Translatlon - The
W bit may be used in non-user mode
programs {when post-indexed address-
Ing Is used) to force the ~TRANS pin
low for the transfer cycle. This allows
the operating system to generate user
addresses when a suitable memory
management system is present.

Address Exceptlons - If the addrass
used for the first transfer is illegal, the
address exception mechanism will be
invoked. Instructions which transfer
mutltiple words will only trap if the first
address Is lllegal; subsequent ad-
dresses will wrap around inside the 26-
bit address space.

Note that only the address actually
used for the transfer is checked. A
base containing an address outside the
legal range may be used in a pre-
indexed transfer if the offset brings the

3-36

w VLSI TECHNOLOGY, INC.

address within the legal range. Like-
wise, a base within the legal range may
be modified by post-indexing to outside
the legal range without causing an
address exception,

Data Aborts - If the address is legal but
the memory manager generates an
abort, the data abort trap will be taken.
The write back of the moadified base will
take placs, but all other processor state

data will be preserved. The copreces-
sor is partly responsible for ensuring
restartability. It must either detect the
abort, or ensurs that any actions
consequent from this Instruction can be
repeated when the instruction is retriad
after the resolution of the abort.

Cache Interaction - When the cache is
on, LDC instructions will attempt to read
data from the cache. STC instructions

PRELIMINARY
T-49-)7- 22 VL86C020

update the cache data if the address
being written to matches a cache entry
(see Cache Operation Section).

When an STC instruction is executed
with the cache turned off, the
VL86C020 will drive data onto D31-D0
(provided DBE is high) in the latent
cycle preceding the first write operation
(latent+active cycle); therefore, no other
device should be driving the bus during
this cycle.

Assembler Syntax:
<LDC/STC>{cond}{L}{T}{N} cp#, CRd, <Address>{l}
where LDC means load from memory into a coprocessor register.

STC means stora a coprocessor registar to memory.

cond is a two-character condition mnemeonic (see Condition Code section).

L If present implies long transfer (N=1), else a short transfer (N=0).

T if presenf, the W bit is set In a post-Indexed Instruction, causing the
~TRANS pin 10 go low for the transfer cycle. T is not allowed when a pre-
indexed addressing mode is specified or implied.

N Sets the value of bit 22 of instruction.

cp# Valid coprocessor number, determined by hardware.

CRd Valid copracessor reglster numbar: CRO-CR1S5,

Address Can be any of the variations in the following table.

3-37

w VLSI TECHNOLOGY, INC. PRELIMINARY
T-49-17-32 VL86C020

Address Varlants:
Address expression: An expresslon evaluating to a relocatable address:

<eoxpression> The assembler will attempt fo generate an instruction using the PC
as abase, and a corrected offset to the location given by the 9-bit
expression. This is a PC-relative pre-indexed address. If out of range
(at assembly or link time), an error message will be given.

Pre-indexed address: Otfset is added to base register before using as effective address, and
offsets are placed within the [] pair. Rn may be viewed as a pointer:

[Rn]{1} No offsat is added to base address pointer,

[Rn, <expressions] Signed offset of expression in bytes is added to base pointer.

[Rn, <expressions]{{} Signed offset of exprassion in bytes is added to base pointer. Then
this effective address Is written back to Rn.

Post-indexed address: Offset Is added to base reg after using base reg for the effective
address, Offsets are placed after the [] pair:

[Rn),<expression> Expresslon Is addad to Rn, after Rn's usage as a pointer.
where expression A signed 9-bit expression (including the sign).
An Valid register names: R0-R15, SP, LK, or PC. If Rn = PC, the

assembler will subtract 8 from the expression to allow for processor
addrass read ahead.

Examplas (Pre-Index):
In each of these examples, the sffective offset s added to the Rn (base pointer) reglster prior to using the Rn register as the
effective address. Rn is then updated only if the | suffix is supplled. Copracessor #1 is used in all cases, for simplicity.

sTC 1,CR3, [R2] :*(R2) = CR3.
LDC 1,CR1, [RO, 16] ; CR1 = *(R0 + 16). Don't update RO.
LDCEQ 1,CR2, [R5, 12]! ; if (Zflag) CR2 = *(RS + 12). Then, R5 += 12.
Examples (Post-Index): .

In each of these examples, the effective offset is added to the Rn (base pointer) register after using the Rn register as the
effective address. Rn ls then updated unconditionally, regardless of any | suffix. Coprocessor #3 Is used in all cases, for simplic-

STC 3, CR1, [R2], 8l $*R2 = CR1. Then R2 4= 8.
Lbc 3, CR1, [R0], 16 ; CR1 = *R0. Then RO 4= 16.
LDCEQL 3, CR2, [Rs], 4 ; if (Zflag) CR2 = *R5, and then (implicitly), RS += 4.

; Use the long option (probably to store multiple words),

Examples (Expression):
In these examples, the PLACE label is an Internal or extetnal PC-relativa labal, typically created as shown. PC-relative refar-

ences are pracompensated for the 8-byte read-ahead done by the processor. It may be located up to +1024 bytes from the
associated base register, and must be a multiple of 4 bytes In offset.

sTC 3, CRs, PLACE ; PC-relative. Same as: STC 3, CR5, [PC+8].
B Across ; Skip over the data temporary.

i’LACE bW 0 ; Temporary storage area.

Across sre - ; Rasume axecution,

3-38

&\EL—SI_T&(;QNOLOGY, INC. PRELIMINARY

FIGURE 19, COPROCESSOR REGISTER TRANSFERS (MRC, MCR)

31 28 27 24 23 21 19

16 15 12 11 8 7

T-49-11-32

5 43

VL86C020

0

|__Gonox |1'1'1'olcr‘»o'ch ' chn_|

| 'cpe | aux|i

' cam |

| | [N I OO

|

l | [|1
Coprocessor —‘

Condition Operaﬂon

I I T

1
ARM

|_Coprocessor Auxiliary

Code F?WPS' Information
agister
Load/Store Bit L g . Coprocessor Number
0 = Store to coproc Coprocessor Operand
1 = Load from coproc Registers
This instruction is executed only if the would be the converse: A FLOAT of a CP Opo and CP fields spacify the

condition code tield Is true. The field is
described in the Condition Codes
Section.

This Is actually a class of Instructions,
rather than a single Instructlon, and is
equivalent to the ALU class on the
VL.86C020 processor. Instructions in
this class are used to direct the
coprocessor to perform some operation
between a VL86C020 register and a
coprocessor register. it differs from the
CPD instrugtion in that the CPD
performs operations on the coproces-
sor's internal registers only.

An example of an MCR usage would be
a FiX of a floating point value held in
the copracessor, where the number is
converted to a 32-bit integer within the
coprocessor, and the result then
transferred back to a VL86C020
register. An example of an MRC usage

Assembler Syntax:

32-bit value in a VL86C020 register into
a floating point value within a coproces-
sor register,

An intended use of this Instruction is to
communicate control information
directly between the coprocessor and
the VL86C020 PSR flags. As an
example, the result of a comparison of
two floating point values within the
coprocessor can be moved to the PSR
to contro! subsequent execution flow.

Coprocessor Flelds - The CP#field is
used, by all copracessor instructions to
specify which coprocessor is belng
invoked.

The CP Ope, CRn, CP and CRm fields
are used only by the coprocessor, and
the interpretation of these fields is set
only by convention; other incompatible
interpretations are.allowed. The
conventional interpretation is that the

MCR/MRC{cond} CP#,<expressioni>, Rd, CRn, CRm{,<expression2>}

oparation for the coprocessor to
perfarm, CHn is the coprocessor
register used as source or destination
of the transferrred information, and
CRm is the second coprocessor
registar which may be involved in some
way dependent upon the operation
code.

Transfers to/from R15 « When a
coprocessor register transfer to
VL86C020 has R15 as the destination,
bits 31-28 of the transferred word are
copied into the N, Z, C and V flags
respectively. The other bits of the
transferred word are Ignored, and the
PC and other PSR flags are unaffected
by the transfer.

A coprocessor register transfer from
VL86C020 with R15 as the sourca
ragister will save the PC together with
the PSR flags.

where cond Is the conditional execution code, common ta all instructions.

CP# Is the (unique) copracessar number, assigned by hardware.

Rd ls the ARM source or destination register.

CRn, CAm These are valid coprocessor registers: CR0-CR15.

expressiont Evaluates to a constant, and is placed in the CP Opo field.

expression2 (Where present) evaluates to a constant, and is placed in the AUX fleld.
Examples:

MCR 1, 6,Rt,CR7,CR2 ; Request coproc #1 to do operation 6 on

MRCEQ 2, 5, Rt, cr2, Cr3, 2

; CR7 and CR2, putting result into VL86C020's R1.

; If the Zflag is set, transfer the VL86C020's R1 reg to the coproc register (definad
; by hardware), and request coproc #2 to do oper 5 (type 2) on CR2 and CR3.

3-39

A S TEEE-Sl HdudoAacd 1 .

® VLSI TECHNOLOGY, INC. * PRELIMINARY

T= ¢7/ 9. /7~ 32

FIGURE 20. UNDEFINED (RESERVED) INSTRUCTION)
31 28 27 24 23 87 43 0
IIIl|lrlIflll[lfllll[ll[[l[llllfl

Condx 10 0 0 1|X X X XIX X X XIX X X XIX X X X|1 XX 1]X XXX
31 28 27 24 23 8 7 543 0

r1.7T T 1 T.T.T T 1.1 T_T.1 T T T 1.7 1 T T
[Congx [o'1 1]xIx"x ' xTx % x T x X 30 x % % XIx % x| 1]x % %]
Note: The abovae instructions will be presented for execution only if the condition field is true,
If the condition is true, the undefined Assembler Syntax - At present the Instruction Set Examples
instruction trap will be taken. assembler has no mnemonics for The following examples show ways in
Note that the undefined Instruction generating these Instructions. 1 they which the basic VL.86C020 instructions
mechanism Involves offering these are adopted In the future for some can combine to give efficlent code.
Instructions to any coprocessors which specified use, suitable mnemonics will None of these methods save a great
may ba present, and all coprocessors be added to the assembler. Until such deal of exscution time {afthough they
must refuss to a'ccept it by taking CPA time, these Instructions should not be may save soma), mostly they just save

high. used. code.

Using Conditlonal Instructlons -
(1) Using conditionals for loglcal OR, this sequence:
CcMP

A1, p ; If Ri=p or R2=q then goto Labs!
BEQ Labesl -
CMP RZ,q
BEQ Label
can be replaced by
CcMP R1,p
CMPNE Rm, q ; f condition not satisfied try other tast
BEQ Label
(2) Absolute value
TEQ Rt,0 ; Test slgn
RSBMI R1,R1,0 ; and 2's complement if necessary
(3) Multiplication by 4, 5 or & (run time)
MoV R2, RO LSL 2 ; Muttiply by 4
CMP R1,5 ; Test value
ADDCS R2, R2, Ro ; Complete multiply by 5
ADDHI R2, R2, Ro ; Complete muitiply by 6
(4) Combining discrete and range tests
TEQ R2, 127 ; F (R2<>127)
CMPNE R2, " ; Range test and if (R2<'")
MOVLS R2, " ; Then, R2=""

3-40

&VLSI THCHNOLOGY, ING. PRELIMINARY

VL 2
T— qq - '7 - 3 2_ M
Divislon and Remainder
: Enter with numbers In R0 and R1
MOV R4, 1 ; Bit to control the division
Divi CMP R1, 0x80000000 s Move R1 until greater than RO
CMPCC R1, RO
MOVCC Ri1, R1LSLA1
BCC Div1
MOV R2,0
Div2 CMP RO, R1 ; Test for possible subtraction
SUBCS Ro,RO,A1 ; Subtract if ok
ADDCS R2, R2, R4 ; Put relavant bit into resuit
MOvVS R2, R4 LSR 1 ; Shift control bit
MOVNE R{, R1LSR 1 ; Halve unless finished
BNE Div2
; Division result is in R2,
:+ RemainderIs in RO.
FIGURE 21. INSTRUCTION SET SUMMARY
31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0
L LU [IIIII[IIIIIIIIII .
Condx [0 0!] Opcode |S Rn Rd Operand 2 Data Processing
) | I I b1 L LI IR L |
ICondlx 000 0‘0 0]A|S Rd ~_Bn Rs 1001 BRm Multiply
DL UL ryr 1T 1. rer oy I
Condx [0 0 0 1 0|Bi0 O Rn Rd 000O0}fO0O0 1 Rm Single Data Swap
I | LR | L IR (L L)
IClondx 0 1}l |P|U[B|WIL Rn Rd Offsat (variaiﬂs Load, Store
| o1 1 I T T 1T T 1.1 I T 1
Toanax 1001 1 bx)x % x'x/x %' x xIx'x % %% X X X' X X x[1]% X X x| Undefined
1 UL

ol LA L) LN 3

Condx {1 0 O P|U SWL Rn |R154———Register List ————» R0 | Multi-Register Transfer
1 1) I 1 B LN AL LR L

Condx |1 0 1L Word address offset l Branch, Call

DRI LI i [N LN L

Condx {1 1 O|PJUIN|WIL Rn CRd CP# Offset Coproc Data Transfer
LD IR P i 0 T 1T [N R DL
Condx {1 1 1 0] CPOpc CRn CRd CP# CP |0] CRm Coproc Data Opr
| PRI IR 11 I 11 [N il [N
Condx [1 1 1 0|CPOpclL] CRn Rd CP# CP (1] CRm Coproc Register Transfer

| L R LN Ilf.llrlllll | BRI
Condx {1 1 1 1 Bit space ignored by processor Software Interrupt

3-41

w VLSI TECHNOLOGY, INC, P

Pseudo Random Binary Sequence like a cyclic redundancy check genera-

Generator - it Is often necessary to tor. Unfortunately the sequence of a
generate (pseudo-) random numbsrs 32-bit generator needs more than one
and the most efficient algorithms are feedback tap to be maximal length (i.e.
bassd on shift tegister-based genera- 2432-1 cycles befors repstition). The
tors with exclusive or feedback rather basic algorithim Is Newbit = bit_33 xor

; Enter with seed in RO (32 bits), R1 (1 bit in R1 Isb)

s Uses R2
TST Ri,RILSR1 ; Top bit into carry
MOVS R2, RoRRX ; 33 bit rotate right
ADG R1,Rt, Rl ; Carry into Isb of R1
EOR R2,R2,ROLSL12 ; {Involvedl)
EOR RO0,R2,R2 LSR 20 ; (Whewl)

1 New sead in RO, R1 as before

Mulitiplication by Constant:
(1) Multiplication by 24n (1,2,4,8,16,32..)
MOV RO,ROLSLn

(2) Multiplication by 2*n+1 (3,5,9,17..)
ADD RO,RO,ROLSLn

(3) Multiplication by 2¢n-1 (3,7,15..)
RSB RO, RO, ROLSLn

(4) Multiptication by 6
ADD Ro,Ro, ROLSLA1 3 Muitiply by 3
ADD RoO,RoOLSLA1 ; and then by 2
(5) Multioly by 10 and add in exira number
ADD Ro, RO, ROLSL2 ; Multiply by §
MOV Ro,R2, RoLsL1 ; Multiply by 2 and add in next digit

(6) General recursive method for R1 =R0*C,C a constant:
(a) If C even, say C = 24n*D, D add:

D=1: MOV Rf,ROLSLn
D1 (R1=R0°D)
MOV R1, R1 LSL n

(b) f CMOD 4 = 1, say C = 2*n*D+1, D odd, N>1:
D=1: ADD Ri,Ro,ROLSLn

Dol: (R1 =R0'D)
ADD Ri,RO,R1LSLn

(c) tf C MOD 4 = 3, say G = 2*n*D-1, D odd, n>1:

D=t RSB Ri,RO0,ROLSLn
Do1: (R1 =R0'D)
RSB Ri1,R0,R1LSLn

RELIMINARY

T-49-17-32 _VL86C020

bit_20, shift left the 33-bit number and
putin Newbit at the bottom. Then do
this for all the Newbits needed, i.e. 32
of them. Luckily, this can be done in 58
cycles:

This Is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB R1,R0,ROLSL2 ; Muttiply by 3

RSB Ri,Ro,R1LSL2 ; Multiply by 4*3-1 = 11

ADD R1,R0,R1LSL2 ; Muttiply by 4*11+1 = 45
rather than by:

ADD R1,R0,ROLSL3 ; Multiply by 9

ADD R{,R1,RTLSL2 ; Multiply by 5*9 = 45

3-42

® VLSI TECHNOLOGY, INC.

Loading a Word with Unknown Alignment:
:+ Enter with address in RO (32 bits)

1 Uses R1, R2; result in R2.

; Note R2 must bo less than R3, 8.9. 2,3

BIC R1, RO, 3

LDMIA R1, {R2,R3}

AND R1, RO, 3

MOVS R1, R1LSL3
MOVNE R2, R2, LSR R1
RSBNE R1, R1,32
ORRNE R2, R2, R3 LSL R1

Slgn Extenslon of Partlal Word
MoV RO, ROLSL 16
MoV Ro, RO, LSR 16

Return, Setting Condition Codes
BICS PC, R14,CFLAG
ORRCCS PC, R14, CFLAG

T-49-17-3%

; Get word aligned address,

; Get 64 bits containing answer.

; Correction factor in bytes, not in bits,

; Test if aligned.

; Product bottom of result word (i not aligned).
; Get other shiff amount.

; Combine two halves to get result.

Move to top
.. and back to bottom
H (Use ASR to get sign extended versnon)

; Returns, clearing C flag ROM link register.
; Conditionally returns, setting C flag.

; Above code should not be used excspt in user mode, since it will reset the interrupt enable flags to
; their value when R14 was set up. This gensrally applies to non-user mode programmlng

; g, MOVSPC,R14 MOV PC,R14

Is saferl

PRELIMINARY

VL86C020

3-43

w VLSI TECHNOLOGY, INC.

CACHE OPERATION

The VL86C020 contains a 4 Kbyte
mixed instruction and data cache; the
cache has 256 lines of 16 bytes (4
words), organized as four blocks of 64
lines (making it 64-way set associative),
and uses the virtual addresses gener-
ated by the CPU core.

Read Operations - When the CPU
performs a read operation (Instruction
fetch or data read), the cache is
searched for the relevant data,; if found
In the cache, the data is fed to the CPU
using a fast clock cycle (from FCLK), If
the data Is not found in the cache, the
CPU rasynchronizes to the external
memory clock, MCLK, reads the
appropriate line of data (4 words) from
external memory and storesitina
pseudo-randomly chosen entry in the
cache (a line fetch operation),

Write Operatlons - The cache uses a
write-through strategy, l.e, all CPU write
operations cause an immediate external
memory write. This ensures that when
the GPU attampts to write to a protected
memory location, the memory manager
can abort the operation,

lf the cache holds a copy of the data
from the address being written to, the
cache data Is normally automatically
updated, In certain cases, automatic
updating is not required; for instance,
when using the MEMC memory
manager, a read operation in the
address space betwesn 3400000H-
3FFFFFFH accessas the ROMs, but a
write operation in the same address
space wlill change a MEMC register,
and should not affect the data stored in
the cache.

Control Register 4 must be programmed
with the addresses of all updateable
areas of the processor's memory map
(see section Register 4: Updateabla
Areas Ragister - Read/Write).

Cache Valldity - The cache works with
virtual addresses, and is unaware of the
mapping of virtual addresses to
physical addresses performed by the
extarnal memory manager. [f the virtual
to physical mapping in the memory
manager is altered, the cache stili
malintains the data from the old map-
plng which is now invalid. The cache
must, thersfore, be flushed of its old
data whenever the memory manager
mapping Is changed,

Note that just removing or intreducing a
new virtual to physical mapping (e.g.
page swapping) doses not invalidate the
cache, but that a total re-ordering of the
mapping (e.g. process swap) does.

Two methods of cache flushing are
supportad:

1. Automatic cache flushing. Control
Register 5 may be programmed to
recognize write aperations to
certain areas ot memory as re-
programming the memory manager
address mapping. - (e.g. write
operations to addresses betwesn
3800000H-3FFFFFFH re-program
the page mapping in MEMC).
When the CPU sess a write opera-
tion to one of these disruptive
memory locations, the cache s
automatically flushed.

2. Software cache flushing. Writing to
Control Register 1 will flush the
cache immediately.

Automatic cache flushing invalidates
the cache unnecessarlly on page
swaps, but allows all existing ARM
programs to be run without moditica-
tion,

PRELIMINARY
T-49-17-32_VL86C020

Non-cacheable Ateas of Memory
Certain areas of the processor's
memory map may be uncacheabls. For
instance, when using MEMC, the area
between 3000000H-3400000H corre-
sponds to VO space, and musthe
marked as uncacheable to stop the
data being stored in the cache. When
the pracessor is polling a hardware flag
in VO space, it is important that the
processor is forced to read data from
the external peripheral, and not a copy
of some data held in the cache.

Control Register 3 must be pro-
grammed with the addresses of ali
cacheable areas of the pracessor's
memory map (see section Register 3:
Cacheable Area Register - Read/Write).

Doubly Mapped Space - Since the
cache works with virtual addressas, it
assumes every virtual address maps to
a different physical address. if the
same physical location is accessed by
more than one virtual address, the
cache cannot maintain consistency, as
each virtual address will have a
separate entry in the cache, and only
one antry will be updated on a proces-
sor write operation. To avoid any cache
inconsistencies, both doubly-mapped
virtual addresses should be marked as
uncacheable.

If, when using MEMG, the Physically
Mapped RAM between 2000000H-
2FFFFFFH is used to alter the contents
of a cacheable virtual address, the
cache must be flushed immediately
afterwards. This may be performed
automatically by marking the Physically
Mapped RAM area as disruptive (see
Register 5: Disruptive Areas Register).

3-44

w VLSI TECHNOLOGY, INC.

FIGURE 22. VL86C020 CONTROL REGISTERS

Disruptive

2 1

PRELIMINARY
T-¥9-/7 3, VL86C020

Updateable

Cacheable

Flush (write only; data ignored)

6}
5
4
3
2}

S

—

o

Designer I Manufacturer Iﬁzmb or

n Revision
Number

The VL86C020 contains six control
registers as shown in Figure 22. These
ragisters are implemented as coprocas-
sor 15, and are accessed using
coprocessor register transfer opera-
tions, where MRC is a control register
read, and MCR is a control register
write:

<MCR/MRC>{cond} 15,0,Rd,A3Cn,0

cond two character condition mnemonic, see section Condition Field.
Rd Is an expression evaluating to a valid ARM register number.
A3Cn Is an expression evaluating to one of the control register numbers,

These registers can only be accessed
while the pracessor is in a non-user
modae, and only by using coprocassor
register transfer operations. The
VL86C020 will take the undefined in-
struction trap if an illegal access is

made to coprocessor 15 (illegal
accesses include coprocessor data
operations, data transfers and user
mode register transfers).

Register 0: Identity Reglster - Read
Only - This Is a read-only register that

returns a 32-bit VLS|-specified number
which decodes to give the chip's
designer, manufacturer, part type and
revision number:

3-45

w VLSI TECHNOLOGY, INC.

PRELIMINARY
T=¢9~/7.35. YL8ECO20

ID Example: (VL8BC020 rev. 0)
Bit 31-Bit 24 Designer code (=41H - Acotn Computer Ltd.)
Blt 23-Bit 16 Manufacturer code (=56H - VLS| Technology Inc.)
Bit 15-Bit 8 Parttype (=03H - VL86C020)
Bit 7-Bit 0 Revision number (=00H - Revision 0)

Reglster 1: Cache Flush (Write Only)
Wiriting any value to this register
Immediately flushes the cache.

Raglster 2: Cache Control (Read/
Write) - This is a threa-bit register that
controls some special features of the
VL86C020:

1. Register Bit(0) - Cache On/Off -
If Bit(0) {s low, the cache is turned
off and all processor read opera-
tions will go directly to the external
memory. The automatlc cache
flush and cache update mecha-
nisms operate sven when the
cache Is turned off. This allows the
cache to be tumad off for a time
and then turned on again with no
loss of cache consistency.

it Bit(0) is high, the cache [s turned
on. Care must be taken that the
cacheable, updateable and
disruptive registers are correctly
programmed before turning the
cache on,

2. Register Bit(1) - Separate/Shared
User-Supervisor Address Space -
the CPU can work with two
different memory-mapping
schemes:

a. Shared SupervisorUser
Address Space - The memory
manager uses the same

Cacheable Areas Register:

translation tables for User and
Supervisor modes, so the
same physlcal memory
location is accessed regard-
less of processor mode
(aithough the user may only
have restricted access). If the
memory manager uses this
translation system (as MEMC
does), Bit(1) must be set high.

b. Separate Supervisor/User
Address Space - The memory
manager uses differant
translation tables for user and
supervisor modes, and the
pracessor will access com-
pletely different physical
locations depending on its
mode. if the memory manager
uses this translation system,
Bit(1) must be set low.

Register Bit(2) - Monitor Mode -

In normal operation, when the CPU
is executing from cache, the
external address lines are held
static to conserve power, and anly
coprocessor Instructions and data
are broadcast on the coprocessor
data bus.

In the software selectable monitor
mode, the internal addresses are
always driven onto the extarnal

address bus, and all CPU instruc-
tion and data fetches (whether from
cache or external memory) are ’
broadcast on the coprocassor data
bus; this allows full program tracing
with a logic analyzer. To conserve
power, monitor mode forces the
VL86C020 to synchronize perma-
nently to MCLK (evan for cache ac-
cesses),

Monitor mode is selected by setting
Bit(2) high. Normal operation is
achieved by setting Bit(2) low (the
default on reset).

4. Register Bits 31-3 - Reserved -
These bits are reserved for future
expansion. When writing to
register 2, bit 31-bit 3 should be set
low to guarantee code compatibility
with future versions of VL86C020,
Reading from register 2 always
returns zeros in bits 31.3,

When the VL88C020 is resat, all three
control bits are set low {cache off,
separate user/supervisor space,
monitor mode off).

Reglster 3: Cacheable Area (Read/
Write) - This is a 32-bit register that
allows any of the 32, 2 Mbyte areas of
the 64 Mbyte processor virtual address
space to be marked as cacheable:

Bit 31=t1 Data from addresses 3E000Q0H - 3FFFFFFH Is cacheable

Bit 31=0 Data from addresses 3E00000H - 3FFFFFFH is NOT cacheable
Bit O=1 Data from addresses 0000000H - 01FFFFFH is cacheable

Bit 0«0’ Data from addresses 0000000H - 01FFFFFFH is NOT cacheable

3-48

w VLSI TECHNOLOGY, INC.

On a cache-miss, if the address Is
marked as cacheahls, a line ot data will
be fetched from external memory and
stored in the cache {(when the cache is
turned on). If the area is marked as
non-cacheable, or the cache is turned

Updateable Areas Register:
Bit 31=1
Bit 31=0

Bit O=1
Bit 0=0

Data stored In the cache from areas
marked as updateable will be updated
when the processor writes new data to
that address. This register Is undefined
at power-up, and must be correctly
programmed before the cache Is turned
on,

Distuptive Areas Register:
Bit 81=1
Bit 31=1

Bit 0=1
Bit 0«0

off, only the requested byte/word of
data will be read from external memory,
and it will not be stored in the cache.
This register is undefined at powsr-up,
and must be correctly programmed
before the cache is turned on.

Data from addresses 3E00000H - 8FFFFFFH Is updateable
Data from addresses 3EQ0000H - SFFFFFFH is NOT updateable

Data from addresses 0000000H - 01FFFFFH is updateable
Data from addresses 0000000H - 01FFFFFH is NOT updateable

Reglster 5: Disruptive Areas (Read/
Wrlte) - This is a 32-bit register that
allows any of the thirty-two, 2 Mbyte
areas of the 64 Mbyte processor virtual
address space to be marked as
disruptive:

Data from addresses 3E00000H - 3FFFFFFH is disruptive
Data from addresses 3EQ0000H - 3FFFFFFH is NOT disruptive

Data from addresses 0000000H - 01FFFFFH is disruptive
Data from addressas 0000000H - 01FFFFFH is NOT distuptive

PRELIMINARY
T-49-17-32

VL86C020

Reglster 4; Updateable Areas (Read/
Write) - This is a 32-bit register that
allows any of the 32, 2 Mbyte areas of
the 64 Mbyte processor virtual address
space to be marked as updateable:

lf the processor performs a write
oparation to an area marked as
disruptive, the cache will automatically
be flushed. This register is undefined at
power-up, and must be correctly
pragrammed before the cache is turned
on.

FIGURE 23. VL86C020 MEMORY TIMING
L-CYCLE

A-CYCLE A-CYCLE

MCLK | |

L-CYCLE

-MREQ

SEQ

-RAS

L
S
L

-CAS

ADDRESS

X X

CONTROL

DATA (READ)

DATA (WRITE)

'ABORT

® VLSI TECHNOLOGY, INC.

MEMORY INTERFACE

The VL86C020 reads instructions and
data from, and writes data to, its main
memory via a 32-bit data bus, A
separale 26-blt address bus specifies
the memotry location to be used for the
transfer, and a 7-bit control bus gives
information about the type of transfer
{including direction, byte or word
quantity and processor mode).

CYCLE TYPES

The memory interface timing is con-
trolled by the mamory clock input,
MCLK, Each memory cycle (defined as
the period betwesn consecutive falling
edges of MCLK) may be either active or
latent.

— Actlve cycles (A-cycles) involve the
transfer of data batween CPU and
memory. The addrass, control and
(for writa operations) data buses
are valid, and the CPU monitors
the ABORT Input to ¢heck that the
current operation is valid.

Where more than one word of data
is to be transferred, consecutive
active cycles are used; in this case,
each successive transfer will be to/
from an address one word after the
previous one. Atthe endof a
multiple transfer, when the CPU
wishes to access an address which
is unrelated to the one used in the
preceding cycle, it will request a
latent cycle. :

-~ Latent cycles (L-cycles) are flagged
when the CPU does not have to
fransfer any data to/from memory.
Typically, this will be because the
CPU is fetching data from the
internal cache; the CPU must still
be clocked with MCLK during latent
cycles, since MCLK is used in the
resynchronization process.

The address, control and (for write
operations) data buses are all valid
during the latent cycle preceding
an active cycle; this allows the
memory system to start the data
transfer during the latent cycle as
soon as the following active cycle
is flagged (by -MREQ going low).

Active and latent cycles are flagged to
the memory system using the -MREQ
output. The SEQ output is the inverse
of -MREQ, and is provided to allow the

VL86C020 to work with the current
versions of MEMC. The states en-
codad by -MREQ and SEQ correspond
{o the internal and sequential cycles
used by the VL86G010 processor, and
are shown In the following table.

-MREQ| SEQ | Cycle Type
0 0 (Unused)
0 1 Active
1 0 Latent
1 1 (Unusad)

The memory interface has been
designed to facilitate the use of DRAM
page-mode to allow rapid access fo
sequential data. Figure 23 shows how
the DRAM timing might be arranged to
allow the CPU to accass two consecu-
tive words of memory.

The address and control signals ¢hange
when MCLK is high, and apply to the
following cycle. Both the address and
control buses are valid duting the L-
cycle preceding the tirst A-cycle, so the
memory system can start the DRAM
acdcess by driving —-RAS low once the A-
cycle has been flagged (by -MREQ
being low on the rising edge of MCLK).
Since ~MREQ remains low during the
first A-cycle, the memory system knows
that the next cycle will be an access to
the consecutive word of memory, and
so may leave —RAS low and fetch the
next word from the same page of
DRAM. Note that the memary system
must check that the consecutive access
will be in the same page of DRAM
before commiting to a page-mode
access; if it is not, the memory system
must stop the CPU while the new row
address is strobad inta the DRAM.

The end of the consecutive accesses is
denoted when an L-cycle is flagged (by
-MREQ being high on the rising edge
of MCLK).

When interfacing the VL86C020 to
static RAM, L-cycles may be ignored,
and RAM accessed only when A-cycles
are flagged. The address bus timing
may have to be moditied (ses section
on Address timing).

DATA TRANSFER
The directlon of data transfer is
determined by the state of —~R/W,

PRELIMINARY
- 44-/7-32. VL8EC020

When -R/W is low, the CPU is reading
data from memory, and the appropriate
data must be setup on the data bus
before the talling edge of MCLK in the
active cycle. -

When ~RMW is high, the CPU Is writing
data to memory. The data bus be-
comes valid during the first half of the L~
cycle preceding the A-cycle, and
remains valid until the A-cycle has
completed. In consecutive write
oparations, the data bus changes
during the first half of each A-cycle,

In systems where the VL88C020 is not
the only davice using tha data bus, DBE
must be driven low when the CPU is not
the bus master. This will prevent the
CPU from driving data onto the bus un-
expectedly during L-cycles.

BYTE ADDRESSING

The processor address bus provides
byte addresses, but instructions are
always words (where a word is four
bytes) and data quantities are usually
words. Single data transfers
(LDR,STR,SWP) can, however, specifly
that a byte quantity is required. The
~B/W control line is used to request a
byte from the memory system; normally
it Is high, signifying a request for a word
quantity, but it goes low when the
addresses change to request a byte
transfer.

When a byte is requested in a read
transfer, the memory system can safely
ignore the fact that the request is for a
byte quantity and present the whole
word. The CPU will perform the byte
extraction internally. Alternatively, the
memory system may activate only the
addressed byte of the memory. (This
may be desirable in order to save
power, or to enable the use ot a
common deceding system for both read
and write cycles.)

If a byte write is requested, the CPU will
broadcast the byte value across the
data bus, presenting it at each byte
location within the word. The memory
system must decode address bits A1-
A0 to detarmine which byte is to be
written.

QOne way of implamenting the byte
decoda in a DRAM system is to
separate the 32-bit wide block of DRAM
into four byte wide banks, and generate

3-48

w VLSI TECHNOLOGY, INC.

FIGURE 24. BYTE ADDRESSING

A0 A1 -BW

MCLK

CAS

L

—CAS0

v

—-CASt

v

~CAS2

v

-CAS3

iy

v

PRELIMINARY
T8 - 7-3.5, YLBEC020

the column address strobes independ-
ently. (See Figure 24.)

~CAS0 drives the DRAM bank which is
connected to D7-DO, ~-CAS1 drives the
bank connected to D15-D8, and so on,
This has the added advantage of
reducing the load on each column
strabe driver, which improves the
precision of this time critical signal.

LOCKED OPERATIONS

The VL86C020 includes a data swap
(SWP) instruction that allows the
contents of a memory location to be
swapped with the contents of a proces-
sor register. This instruction is imple-
mented as an uninterruptable pair of
accesses as shown in Figure 25; the
first access reads the contents of the
memory, and the second writes the
register data to the memory, These
accessas must be treated as a contigu-
ous operation by the memory manager
to prevent another device from chang-
ing the atfected memory location before
the swap is completed. The CPU
drives the LOCK signal high for the
duration of the swap operation to warn
the memory manager not to give the
memory to ancther device.

FIGURE 25. DATA SWAP OPERATION

READ MEMORY DATA
L-CYCLE

A-CYCLE

L-CYCLE

WRITE REGISTER DATA
A-CYCLE

MCLK | |

-MREQ
SEQ

ADDRESS

-BwW

-RW

X
X
1
Lock |
DATA (READ)

DATA (WRITE)

ABORT

3-49 .

w VLSI TECHNOLOGY, INC.

FIGURE 26. LINE FETCH OPERATION

PRELIMINARY
T-49-17-3%

VL86C020

L-CYCLE A-CYCLE A-CYCLE ACYCLE , A-CYCLE
MCLK] [[[[[_
-MREQ — T
SEQ | I -
ADDRESS Dl XX.X0H X waxdi X waxeH X waxcH X |
W T L1
— -
LINE I LI
DATA (READ) oA SHORDD———WORDD———FORTS

DATA (WRITE)

LINE FETCH OPERATIONS

A line fetch operation involves reading
exactly four words of data from the
memotry system Into the on-chip cachs.
The access always starts on a quad-
word aligned address (i.e. xx..x0H,
xx..x4H or xx..xCH), and consists of
one L-cycle followed by four consacu-
tive A-cycles as shown in Figure 26.
Line fetch operations may only be
aborted during the first access (to
address xx,.x0H); it Is assumed that if
the first word of a line is readabls, the
whole line is readable. The VL86C020
signals a line fatch by driving LINE high
for the duration of the five cycle
operation,

ADDRESS TIMING

Normally the processor address
changes when MCLK is high to the
value which the memory system should
use during the following cycle. This
gives maximum time for driving the
address to large memory arrays, and
for address translation where required.
Dynamic memories usually latch the
address on chip, and if the latch is
timed corractly, they will work even
though the address changes before the
accass has completed, Static RAMs
and ROMs will not work under such
circumstances, as they require the
address transition must be delayed until

MCLK goes low. An on chip address
latch, controlled by ALE, allows the
address timing to be madified in this
way.

In a system with a mixture of dynamic
and static memories (which for these
purposes means a mixture of devices
with and without address latches), the
use of ALE may change dynamically
from one cycle to the next, at the
discretion of the memory system.

VIRTUAL MEMORY SYSTEMS

The CPU Is capable of running a virtual
memory system, and the address bus
may be processed by an address
translation unit before being presented
to the memory. The ABORT input to
the processor is used by the memory
manager to inform the processor of ad-
dressing faults.

The minimum page size allowed by the
VL86C020 is four words (the length of a
cache line). Varlous page protection
lavels can be suported using the
VL86C020 control signals:

= ~RM can be used by the memory
manager to protect pages from
being written to.

- -TRANS Indicates whether the
processot is in & user or pon-user
modse, and may be used to protact

system pages from the user, or to
support completely separate
mappings for the system and the
user; Inthe latter case, the T bit in
LDR and STR instructions can be
uséd to offer the supervisor the
usar's view of the memory.

— =M1-Mo can present the memory
manager with full information on
the processor mode.

The cache control register must be
programmed to implement the apprapri-
ate cache consistency mechanism
depending on whether the memory
manager uses a shared or separate
user/non-user franslation system (see
Gache Operation Section).

STRETCHING ACCESS TIMES

All memory timing is defined by MCLK,
and long access times can be accom-
modated by stretching this clock, Itis
usual to stretch the low period of MCLK,
as this allows the memory managar to
abort the operation if the access is
eventually unsuccessful (ABORT must
be setup to the rising edge of MCLK in
A-cycles).

Either MCLK can be stretched before it
is applied to the CPU, or the -WAIT

input can be used together with a free-
running MCLK, Taking ~WAIT low has

3-50

w VLSI TECHNOLOGY, INC.

the same effect as stretching the low
period of MCLK, and ~WAIT must only
change when MCLK is low.

The VL86C020 contains dynamic logle,
and relies upon regular clocking to
maintain its internal state. For this
reason, a limit is set upon the maximum
period for which MCLK may be
stretchad, or ~WAIT held low (see AC
parameters).

COPROCESSOR INTERFACE

The functionality of the CPU Instruction
set may be extended by the addition of
up to 15 external coprocessors, When
a particular coprocessor is not present,
instructions intended for it will trap, and
suitable software may be installed to
emulate its functions. Adding the
relevant coprocessor hardware will then
Increass the system performance in a
software compatible way.

Intetface Signals - The coprocessor
Interface timing is specified by CPCLK,
a clock generated by the VL86C020,
CPCLK is derived from either MCLK or
FCLK depanding on whether the CPU
is accessing external memoty or the
cache; the coprocessors must, there-
fore, bo able to operate at FCLK
speeds. A coprocessor cycle is defined
to be the period between consecutive
falling edges of CPCLK, Three

dedicated signals control the coproces-
sor Interface, copracessor instruction
{(~CPl), coprocessor absent (CPA) and
copracessar busy (CPB).

Coprocessor Present/Absent - The
GPU takes —~CPI low whenever it starts
to exacute a coprocassor {or undefined)
instruction (this will not happen if the
instruction fails to be executed because
of the condition codes). Each
coprocessor will have a copy of the
instruction, and can inspect the CP#
field to see which copracessor it is for.
Every coprocessor in a system must
have a unique number, and if that
number matches the contents of the
CP# tield, the copracessor should pull
the CPA (copracassor absent) line low,
If no coprocessor has a number which
matches the CP# field, CPA will float
high, and the CPU will take the unde-
fined instruction trap, Otherwise, the
VL86C020 observes the GPA line going
low, and waits until the coprocessor
flags that it is not busy (using CPB).

Busy-Walting - If CPA goes low, the
CPU will watch the CPB (coprocessor
busy) line, Only the coprocessor which
is pulling CPA low is allowad to drive
CPB low, and it should do so when it Is
ready to complete the instruction. The
VL86C020 will busy-wait while CPB is
high, unless an enabled interrupt

PRELIMINARY
T-49-7-32 VL86C020

occurs, in which case #t will break off
from the coprocessor handshake to
process the interrupt. Normally the
CPU will return from processing the
interrupt to retry the coprocessor
instruction.

When CPB goes low, the instruction
continues to completion; in the case of
register transfer or data transfer instruc-
tions, this will involve data transfers
taking place along the coprocessor data
bus (CPD31-CPDO0) between the
copracessor and CPU. Data operations
do not transfer any data, and complete
as soon as the coprocessor ceases to
be busy. -

All threo interface signals are sampled
by both CPU and the coprocessor(s) on
the rising edge of CPCLK. If all three
are low, the instruction is committed to
execution, and where transfers are
involved thay will start in the next
CPCLK cycle. If ~CPI has gone high
after being low, and before the instruc-
tion Is committed, the VL86C020 has
broken off from the busy-wait state to
service an interrupt. The instruction
may be restarted later, but other
copracessof instructions may come
soonar, and the instruction should be
discarded, An external pull-up resistor
is normally required on both CPA and
CPB.

FIGURE 27. COPROCESSOR DATA OPERATION

cDP
BROADCAST

CDP cop
DECODED EXEGUTED

COPROCESSOR COPROCESSOR
BUSY READY

CPCLK _| [I | | [! |
-opc T l L T
CPoo Pewap——<Feish <ETTE-
CPSPV X X N Na
-CPI] [Iﬁ___
CPA | | '
CPB L I T

3-61

w VLSI TECHNOLOGY, INC.

Plpealine Following - In order to
raspond correctly when a coprocessor
instruction arises, each coprocessor
must have a copy of the instruction.
This is achieved by having each
coprocessor maintain a copy of the
processor's instruction pipeline. If
-0OPC is low when CPCLK is low, then
the CPU wlil broadcast a processor in-
struction that cycle. The coprocessors
should latch the instruction off CPD31-
CPDO at the end of the cycle (as
CPCLK falls) and clock it into their
instruction pipelines.

To reduce the number of transitions on
CPD31-CPDO, the VL86C020 inspects
the instruction stream and replaces all
non copracessor instructions with
&FFFFFFFF (which stlll decodes as a
non coprocessor instruction); all
copracessor instructions are broadcast
unattered.

This scheme is disabled when monitor
mods is selected, and all CPU instruc-
tions and data fetches are broadcast
unaltered (see Cache OperationSac-
tion).

PRELIMINARY
T-449-/7~32 VL86C020

DATA TRANSFER CYCLES - Once
the coprocessor has gone no-busy in a
data transfer instruction, it must supply
or accept data at the VL86CO020 bus
rate (defined by CPCLK). The direction
of transfer is defined by the L bit in the
instruction baing executed. The
coprocessor is rasponsible for deter-
mining the number of words to be
transferred; VL86C020 will continue to
increment the address by one word per
transfer until the coprocessor tells it to
stop. The termination condition is

FIGURE 28. COPROCESSOR DATA TRANSFER (FROM MEMORY TO COPROCESSOR)

FIRST PENULTIMATE FINAL EXTRA
COPROGESSOR DATA DATA DATA DATA
READY TRANSFER , TRANSFER, TRANSFER ({IGNORED)
cPolK _ | | 1 7/(4__1]] | | R | |
-opc —___]] T~
CPD31-] DATA(1 DATA{M-1) DATA(M) DATAM+1)
CPDO OUT D P G
CPD31-
CPDO IN
-CPI 1 1] | N
CPA —] [|
¢PB T | [

FIGURE 29. COPROCESSOR DATA TRANSFER (FROM COPROCESSOR TO MEMORY)

FIRST PENULTIMATE FINAL
COPROCESSOR DATA DATA DATA
READY TRANSFER TRANSFER TRANSFER
CPCLK _| I i 2z | |
-OPC l |
CPD31- ,
CPDO OUT PC+B -
CPD31- DATA(1 !3ATA(M-1) BATA(N) 7
CPDOIN N——7 N ¥V Nt
-CP1] [|
cPA T : T T
cPB T | T

3-52

w VLSI TECHNOLOGY, INC.

Indicated by the coprocessor releasing
CPA and CPB to float high.

The data being transferred to/from
memory [s pipslined by one cycle within
the CPU. In the case of a copracessor
load from memoty, this means that the
CPU is one word ahead of the
coprocessor, and always fetches one
axtra word of data. This extra fetch will
not adversely affect the CPU or the
coprocessor, but may cause unex-
pected faults in the memory system
(e.g. If the extra fetch accesses a read-
sensitive peripheral).

There Is no limit In principle to the
number of words which one coproces-
sor data transter can movs, but by
convention no coprocessor should allow
more than 16 words in one instruction,
More than this would worsen the worst
case CPU interrupt latency, since the
instruction is not interruptable once the
transfers have commanced. At 16
words, this Instruction Is comparable
with a block transfer of 16 registers, and
therefore does not affect the worst case
latency.

PRELIMINARY

7= 49-/7.-3, VL86CO20

REGISTER TRANSFER CYCLE
Register transfer operations involve the
transfer of a single word between the
CPU and the appropriate coprocessor
along CPD31-CPDO. The transfer
takes place in the cycle after the one In
which the CPU and the copracessor
committed to the instruction.

PRIVILEGED INSTRUCTIONS

The coprocessor may restrict certain
instructions for use in a privileged (non-
user) mode only. To do this, the
coprocessor may use the CPSPV

FIGURE 30. COPROCESSOR REGISTER TRANSFER (LOAD FROM COPROCESSOR)

TRANSFER
COPROCESSOR COPROCESSOR
READY DATA
cPCLlK _| | | |
-OPC I [
CPD31-
CPDO OUT
CPD31- CDATAD
CPDO IN ﬂ/
-CP| | |
cPA T | n
cPB | I r
FIGURE 31. COPROCESSOR REGISTER THANSFER (STORE TO COPROCESSOR)
TRANSFER
COPROCESSOR REGISTER
READY DATA
CPOLK _ | ‘ [[[-
-0PC ———l_ l]] 1
CPSS 8?}{ {pG+8 [p————<DATA)> Feridp—
CPD31-
CPDO IN
~CPI [. I
CPA —] | |
cPB T | |

3-53

N VLSI TECHNOLOGY, INC.

output of the VL86C020; this signal Is
valld while CPCLK is low, and applies
to the Instruction being broadcast
during that cycle. When CPSPV is
high, the broadcast instruction is
privileged.

As an example of the use of this facility,
consider the case of a floating point
coprocessor (FPU) in a multi-tasking
systom. The operating system could
save all the floating point registers on
every task switch, but this Is Inefficlent
in a typical system where only one or
two tasks will use floating point opera-
tions. Instead, there could be a

privileged instruction which turns the
FPU on or off. When a task switch
happens, the operating system can turn
the FPU off without saving its registers.
If the new task attempts an FPU
opoeration, the FPU will appear to be
absent, causing an undefined instruc-
tlon trap. The operating system will
then realize that the new task raquires
the FPU, so it will re-enable it and save
FPU registers, The task can then use
the FPU as normal. If, however, the
new task never attempts an FPU
oparation (as will be the case for most
tasks), the state saving overhead will
have been avoided,

REPEATABILITY

A consequence of the implementation
of the coprocessor interface, with the
interruptable busy-walt state, Is that all
Instructions may be interrupted at any
point up to the time whan the coproces-
sor goes not-busy. If so interrupted, the
Instruction will normally be restarted
from the beginning after the interrupt
has been processad. |t is, therefore,
essential that any action taken by the
coprocessor bafore it goes not-busy
must be repeatable, i.e. must be repeat-
able with identical results.

For example, consider a FIX operation
in afloating point coprocessor which
returns the integer result to a CPU
register. The coprocessor must stay
busy while it performs the floating point
to fixed point conversion, as the CPU
will expect to recsive the integer value
on the cycle Immediately following that
where it goes not-busy. The coproces-
sor must, therefore, preserve the
original floating point value and not
corrupt it during the conversion be-
cause it will be required again if an
interrupt occurred during the busy
pericd.

EXPLANATION OF INSTRUCTION TABLES

Example:
Cycls OPRTN Type
1 Read
2 Intni -
3 intnl -
4 Write N
Read N

Each row In the table represents a
single CPU or coprocessor cycle. The
cycles which constitute the instruction
are numbered from 1 to n.

The OPRTN column shows the CPU
operatlon belng performed in each
cycle. There are four types of CPU
operation as follows:

1. Read: A CPU read operation; the
data will be read from the cache if it
is present, otherwise an external
read or line fetch operation will be
necessary.

PRELIMINARY
T-¢9-/9-35 _VL86C020

The copracessor data operation class
of instruction is not generally subject to
repeatablity considerations, as the proc-
essing activity can take place after the
coprocessor goes not-busy. There is
no need for the CPU to be held up until
the result is generated, because the
result is confined to stay within the
coprocessofr,

UNDEFINED INSTRUCTION

The undefined instruction is treated by
the CPU as a coprocassor instruction,
All copracessors must be absent (i.e. let
CPA float high) when the undefined
instruction is presented. The CPU will

. then take the undstined instruction trap.

Note that the coprocessor need only
look at bit 27 of the instruction to
differentiate the undefined instruction
(which has 0 in bit 27) from coprocessor
Instructions {which all have 1 in bit 27),

VL86C020 INSTRUCTION CYCLES
This section shows the cycles per-
formed by the VL.86C020's CPU and
coprocessor for all possible instructions.
Each class of instruction is taken in
turn, and its operation is broken down
into constituant cycles.

Address Data -OPC CPD31-CPDO -CPlI CPA CPB
PC+8 (PC+8) 1 X X
PC+8 = - 0 {PC+8) 0 0 0
<= notclocked => 1 DI (1) 1 1 1
ALU DI(1) <= not clocked =>

PC+12 i - 1y

2. Write: A CPU write operation;
VL88C020 always writes data im-
mediately to the main memory.

3. Intnl: ‘An internal operation where
the CPU is not transfarring data.

4. Tmsl: A coprocessot register
transfer where data passes
between the CPU and a coproces-
sor.

The type column gives extra information

about the type of operation being
performed:

1. Read and write operations may be
one of two types, Sequential (*S7)
or Non-sequential ("N"). A
sequential access involves the
CPU transferring data with an
address that is one word after the
preceding access. A non-
sequential access is flagged when
the current CPU address is
unrelated to the one used in the
preceding access.

2. Read and write operations
normally work on word quantities,
but the single data load, store and

3.54

® VLSI TECHNOLOGY, INC. PRELIMINARY

T-Q/Q-n -32 VL86C020

swap instructions allow byte
quantitios to be specifiad; this is
indicated by the symbof *(B/W)” in
the type column.

3. The coprocessor ragister transfer
instruction may sither transfer data
into ("I} or out from ("O™) the CPU,

The address and data columns show
the contents of VL86C020's internal
address and data busses, Note that in
normal mode, the internal data bus
cannot be abserved directly, and the
address bus is only observable when
the CPU Is synchronized to MCLK.

The -OPC, CPD31-CPD0, -CPI, CPA
and CPB columns (where shown)
Indicata the state of the external
coprocessor Interface. Note that In
normal mode CPD31-CPDO only

Cycle
1 Read
2 Read
3 Read S

Read]

OPRTN Type Address Data

broadcasts coprocessor instructions
and data (see section Pipeline Follow-
ing). By selecting monitor mode, the
internal address bus can be viewed on
A25-A0, and all data will be broadcast
on CPD31-CPDoO.

The final, un-numbered operation in an
instruction shows what will happen in

" the first cycle of the next instruction.

Note that the first cycle of an instruction
Is always an instruction fetch (word
read operation), but may be either an
N-type or S-lype read depending on the
previous instruction.

INSTRUCTION TABLES

Branch and Branch with Link - A branch
instruction calculates the branch
destination in the first cycle, while
performing a prefetch from the current
PC. This prefetch is done in all cases,

PC+8 (PC+8)

ALU (ALY) 0 . (PC48)
ALUsd (ALUs4) 0 (ALY
ALU+8 0 (ALUs4)

since by the time the decision to take
the branch has been reached it is
already too late to prevent the prefetch,

During the second cycle afetch Is
performed from the branch destination,
and the return address is stored in
register 14 if the link bit is set. The first
cycle'’s prefetch data is broadcast on
the external copracessor data bus
(there is a ane cycle delay between the
coprocessor and CPU),

The third cycle periorms a fetch from

_the destination +4, refilling the instruc-

tion pipeline, and if the branch is with
link, R14 is madified (4 is subtracted

from it) to simplify return from SUB

PC<R14,#4 to MOV PC,R14. This
makes the STM ..{R14} LDM ..{PC}
type of subroutine work corractly.

-OPC CPD31-CPDO

(PC s the address of the branch instruction, ALU s an address calculated by the CPU, (ALU) is the contents of the addrass,

etc).

Data Operatlons - A data operation
executes in a single datapath cycle
except where the shift is determined by
the contents of a reglster. A registeris
read onto the A bus, and a second
ragister or the immedlate field onto the
B bus. The ALU combines the A bus
source and the shifted B bus source
according to the operation specified in
the instruction, and the result (when
required) Is written to the destination
register, (Compares and tests do not
produce results, only the ALU status
flags are affected.)

An Instruction prefetch occurs at the
same time as the above operation, and
the program counter is incremented.

When the shift length is specified by a
register, an additional datapath cycle
acours before the above operation to
copy the bottom 8 bits of that register
into a holding latch in the barrel shiftar.
The Instruction prefetch will occur
during this first cycle, and the operation
cycle will be Internal (i.e. wili not
perform a data transfer).

The PC may be any (or alll) of the
register operands. When read onto the
Abus it appears without the PSR bits,
on the B bus it appears with them.
Neither will affect external bus activitly.
When it is the destination, however, the
contents of the instruction pipeline are
Invalidated, and the address for the
next instruction prefetch is taken from
the ALU rather than the address
incrementer. The instruetion pipsline is
tefillad before any further execution
takes place, and during this time
exceptions are locked out.

3-58

N VLSI TECHNOLOGY, INC.

Cycle
Normal 1 Read
Read S
DEST=PC Read
Read
Read
Read

@ =
nnzz

Shift (RS) Read
Intnt -

Read

N -
=

Read
Intnl

Read
Read
Read

Shift (RS),
DEST=PC

DON -
wnzZl

OPRTN Type

Address Data

PC+8 (PC+8)
PC+12

PG+8 {(PC+8)

ALU (ALU) 0
ALU+4 (ALU+4) O
ALU+8 0
PC+8 (PC+8)
PC+12 - 0
PC+i12 1
PC+8 (PC+8)

- - 0
ALV (ALU) i
ALU+4 (ALU+4) o]
ALU+8 0

PRELIMINARY

T=49-/7 -3 , VLBECO20

-OPC CPD31-CPDO

(PC+8)

(PC+8)
(ALU+4)
(ALU+4)

(PC+8)
(PC+8)

(ALU)
(ALU+4)

Multiply and Muitiply Accurnulate -
The multiply instructions make use of
special hardware which implements a
2-bit Booth's algorithm with early termi-
nation. During the first cycle the accu-
mulate register is brought to the ALU,
which elther fransmits it or produces
zero {according to whether the instruc-
tion is MLA or MUL) to initialize the
destination register. During the same

Cycle OPRTN Type
(RS)=0,1 i Read
2 Intn! -
Read N
(RS) >1 1 Read
2 Intnl -
. Intni -
m+1 Intnl -
Read N

(m is the number of cycles required by
the Booth's algorithm, which is deter-
mined by the contents of Rs, Multiplica-
tion by and number between 24(2m-3)
and 27{2m-1)-1 Inclusive takes m cycles
for m>1. Multiplication by zero or one
takes one cycle. The maximum value
m can take is 16.)

Load Register - The first cycle of a
load register instruction performs the

cycl, one of the operands is loaded into
the Booth’s shifter via the A bus.

The datapath then cycles, adding the
second operand to, subtracting it from,
or just transmitting, the result register.
The second operand Is shifted in the
Nth cycle by 2n or 2n+1 bits, under
control of the Booth's algorithm logic.
The first operand is shifted right 2 bits
per cycle, and when it is zero the

Address Data
PC+8

PC+12
PC+12 -

(PC+8)

PC+8
PC+12
PC+12 -
PC+12 -
PC+12

(PC+8)

- O

address calculation. The datais
fetched during the second cycle, and
the base register modification is
parformed during this cycle if required).
During the third cycle the data is
transterred to the destination register,
and the CPU performs an internal cycle.

The data read may be a byte or word
quantity (B/W), and the pracessor mode
may be forced into user mode while the

instruction terminates (possibly after an
additional cycle to clear a pending
borrow).

All eycles except the first are internal.

if the destination is the PC, all writing to
it is prevented. The instruction will
proceed as normal except that the PC
will be unaffected. (If the S bit is set
PSR flags will be meaningless.)

~-OPC CPD31-CPDO

0 (PC+8)
1 -

(PC+8)

read takes place (depending on the
state of the T bit in the instruction).

Either the base or the destination (or
both) may be the PC, and the prefetch
sequence will ba changed if the PC is
affected by the instruction,

The data fetch may abont, and in this
case the base and destination modifica-
tions are prevented.

3-56

W VLSI TecHNoLoGY, INC. PRELIMINARY
T-49- 11 -32-_VL86C020

Cycle OPRTN Type Mode Address Data -OPC CPD31-CPDO

Normal 1 Read PC+8 (PC+8)
2 Read NBW) T ALU (ALV) 0 (PC+8)
3 Intnl - PCe12 - 1 (ALV)
Read N PC+12 1 -
DEST=PC 1 Read PC+8 (PC+8)
2 Read NBW) T ALU (ALU) 0 (PC+8)
3 Intni - PC+12 - 1 (ALU)
4 Read N (ALU) {(ALU)) 1 -
5 Read S (ALU)+4 ((ALU)+-4) 0 ((ALLY)
Read s (ALU)+8 0 ((ALU)+4)
BASE=PC 1 Read PC+8 (PC4+8)
Write Back 2 Read NBW) T ALU (ALU) 0 (PC+8)
DEST=PC 3 Intal - PC' - 1 (ALU)
4 Read N PC (PC) 1 -
5 Read S PC44 (PC'+4) 0 (PCY
Read S PC48 0 (PC'+4)
BASE=PC 1 Read PC+8 (PC+8)
Writ -Back 2 Read N(BW) T ALU (ALU) 0 (PC+8)
DEST=PC 3 Intni - PC' - 1 (ALU)
4 Read N (ALU) ((ALUY) 1 -
5 Read S (ALUM+4 ((ALU)+-4) 0 ((ALU))
Read S (ALU)+8 0 ((ALU)+4)

(PC’Is the PC value modifiad by write back; T shows the cycle where the force transtation option in the Instruction may be used.)

Store Reglster - The first oycle of a The data written may be a byte or word The PC will only be modified if it is the
store register is similar to the first cycle quantity (B/W), and the processor mode base and write back occurs.

of load register, During the second may be forced into user mode while the d .
cycle tha base modification is per- write takes place (depending on the .:ac:t.a-abon prevents the base write

formed, and at the same time the data state of the T bit in the instruction).
is written to external memory. Thers is
no third cycle.

Cycle OPRTN Type Mode Address Data -OPC CPD31-CPDO

Normal 1 Read PC+8 (PC+8)
2 Write NBW) T ALU RD 0 (PC+8)
Read N PC+12 : 1 RD
BASE=PC 1 Read PCs8 (PC+8) -
Write Back 2 Write NBW) T ALU RD 0 (PC+8)
3 Read N pPC' (PC) 1 RD
4 Read S PC'+4 (PC44) 0 (PC)
Read S PC+8 0 (PC'+4)

3-57

TR W . W -

-

0 -

® VLSI TECHNOLOGY, INC.

- f = & e

Store Multipte Reglsters - Store
muttiple proceeds very much as load
multiple (see next section), without the

final cycle. The restart problem is much
more straightforward hers, as thers is

Cyclo OPRTN Type Address Data -OPC

1 Ragister 1 Read PC+8 (PC+8)
Write N ALU R(A) 0
Read N PC+12 1

n Registers 1 Read PC+8 (PC+8)
(n>1) 2 Write N ALU R(A) 0
3 Write S ALU+4 R(A+1) 1
n+f Write S ALU+, R{A+n) 1
Read N PC+12 1

e

Sy Nt Tl Bl A8 el

PRELIMINARY
T-49-17-32. VL86C020

no wholesale overwriting of registers to
contend with,

CPD31-CPDO

(PC+8)
R(A)

(PC+8)
R(A)

R(A+n-1)
R(A+n)

Load Multiple Reglstars - The first
cycle of LDM is used to calculate the
address of the first word to be trans-
terred, while performing a prefetch.
The second cycle fetches the first word,
and performs the base modifications.
During the third ¢ycle, the first word is
moved 1o the appropriate destination
ragister while the second word is
{atched, and the modification base is
moved to the ALU A bus input latch for
holding in case it is nesded to patch up

after abort. The third cycle is repeated
for subsequent fetches until the last
data word has been accessed, then the
final (Internal) cycle moves the last
word to its destinatlon register.

if an abort oceurs, the instruction
continues to completion, but all register
writing after the abort is prevented. The
final cycle is altered to restore the
modified base register (which may have
been averwritten by the load activity

i the PC is the base, write back is
prevented.

When the PC is in the list of registers to
be loaded, and assuming that no abort
takes place, the current instruction
pipeline must be invalidated.

Note that the PC is always the last
ragister to be loaded, so an abort at any
point will prevent the PC from being
overwritten.

before the abort occurred).
Cycle OPRTN Type Address Data ~-OPC CPD31-CPDO
1 Register 1 Read PC+8 (PC+8)
2 Read N ALU (ALU) 0 (PC+8)
3 Intnl - PC+12 - 1 (ALU)
Read N PC+12 1 -
1 Reglster 1 Read N PC+8 (PC+8)
DEST=PG 2 Read N ALU PC’ 0 (PC+8)
3 Intnt - PC+12 - 1 PC'
4 Read N PC' (PCY) 1 -
5 Read s PC'+4 (PC'+4) 0 (PC)
Read s PC+8 (PC+8) 0 (PC'+8)
n Registers 1 Read PC+8 (PC+8)
(n>1) 2 Read N ALU (ALU) 0 (PC+8)
. Read S ALU+, (ALU+.) 1 (ALU)
n+i Read S ALU+, (ALU+.) 1 (ALU+.)
ne2 Intnl - PC+12 - 1 (ALU+.)
: Read N PC+12 1 -
n Registers 1 Read PC+8 (PC+8)
(n>1) 2 Read N ALU (ALU) 0 (PC+8) .
incl. PC . Read] ALU+., (ALU+.) 1 (ALY)
n+ Read] AlU+. PC 1 (ALU+.)
n+2 Intnl - PC+12 - 1 PC!
n+3 Read N pC! (PC) 1 -
n+4 Read s PC'+4 {PC+4) 0 (PC)
Read s PC+8 {PC'+8) 0 (PC*+8)

3-58

w VLSI TECHNOLOGY, INC.

Data Swap - This is similar to the load
and store register instructions, but the
actual swap takes place in cycles two
and three. In the second cycle, the
data is fetched from external memory (it
Is always read from the ¢xternal
memory, even if the data is available in
the cache). In the third cycle, the
contents of the source register are
written out to the external memory. The
data read in cycle two is written into the
destination register during the fourth
cycle,

The LOCK output of the VL86C020 is
driven high for the duration of the swap

operation (cycles two and three) to
indicate that both cycles should be
allowed to complete without interrup-
tion.

The data swapped may be a byte or
word quantity (B/W).

The prefetch sequence will be changed
if the PG Is specified as the destination
register.

When R15 is selected as the base, the
PC is used together with the PSR. If
any of the flags are set, or interrupts are
disabled, the data swap will cause an

Cycle OPRTN Type Lock Address Data

Normal 1 Read 0 PC:8 (PC+8)
2 Read N@EBwW) 1 BN (RN) 0
3 Write N({BW) 1 RN RM 1
4 Intni - 0 PC+12 - 1
Read N 0 PC+12 1

DEST=PC 1 Read 0 PC+8 (PC+8)
2 Read N@BW) 1 RN PC s}
3 Write N(@BW) 1 AN RM i
4 Intni - 0 PC+12 - 1
5 Read N 0 PC’ (FC) 1
6 Read S 0 PC'+4 (PC'+4) 0
Read S 0 PC'+8 0

PRELIMINARY
7=¢9-,9. 35 VL86C020

address exception. If all flags are clear,
and interrupts are enabled (so the top
six bits of the PSR are clear), the data
willbe swapped with an address eight
bytes advanced from the swap instruc-
tion (PC+8), although the address will
not be word aligned unless the proces-
sor is in user mode {as the M1 and MO
bits determine the byte address).

The swap operation may be aborted in
eithar the read or write cycle, and in
both cases the destination register will
not be affected.

-OPC CPD31-CPDO

(PC+8)
(BN)
RM

(PC+8)
PC'
RM

(PCY)
(PC'+4)

Software Interrupt and Exceptlon
Entry - Exceptions (and software
interrupts) force the PC to a particular
value and refill the instruction plpeline
from there. During thae first cycle the
forced address is constructad, and the

Cycle OPRTN

1 Read

2 Read N

3 Read S
Read S

(For software interrupt PC is the
address of the SWl instruction, for
interrupts and reset PC Is the address
of the instruction following the last one
to be executed before entering the

Type

procassor enters supervisor mode. The
return address is moved to register 14,

During the second cycle the return
address Is modified to fagilitate return,
though this modification is less useful

Mode 'Address Data

PC+8 (PC+8)
SPV XN (XN) 0
SPV XN+4 (XN+4) o©
SPV XNi8 0

exception, for prefetch abort PC is the
addrass of the aborting instruction, for
data abort PG is the address of the
instruction following the one which

-OPC

than in the case of branch with link.

The third cycle is required only to
complete the refilling of the instruction
pipsline.

CPD31-CPDO

(PC+8)
(XN)
(XN+4)

attempted the aborted data transfer. Xn
Is the appropriate trap address.)

3-59

& VLSI TECHNOLOGY, INC.

Coprocessor Data Operation - A
coprocessor data operation is a request
from the CPU for the coprocessor to
initiate some action. The action need
not be completed for some time, but the
coprocessor must commit to doing it
before pulling CPB low.

Cycle OPRTN Type
Ready 1 Read
2 Intnl -
Read N
Not Ready 1 Read
2 Intni -
. Intnl -
n Intnt -
Read N

If the copracsssor can never da the
raquest task, it should leave CPA and
CPB-to float high. If it can do the task,
but can't commit right now, it should pull
CPA low but leave CPB high until it can
commit. The CPU will busy-wait unti!
CPB goes low.

PRELIMINARY
72/9-)7. 3, -YLBEC020

The coprocessor interface normally
operates one cycle bahind the CPU to
allow time for the instructions to be
broadcast. When the CPU starts
executing a coprocessor instruction, it
busy-waits for one cycle (Cycle 2) while
the coprocessor catches up.

Address Data -OPC CPD31-CPDO0 -CPl CPA CPB
PC+8 (PC+8) 1 X X
PC+8 - 0 (PC+8) 0 0 0
PC+12 1 - 1
PC+8 (PC+8) 1 X x
PC+8 - 0 (PC+8) 0 0 1
PC+8 - 1 - 0 0 1
PC+8 - 1 - 0 0 0
PC+12 1 - 1

Coprocessor Data Transfer - Hers,
the coprocessor should commit to the
transfer only when it is ready to accept
the data. When CPB goes low, the
CPU will read the appropriate data and
broadcast It to the coprocessor (if the
data is read from the cache, it will be
broadcast at FCLK rates). Note that the
coprocessor is not clocked while the

Cycle OPRTN
Read

Intnl -
Read N
Read N

1 Register
Ready

WN =

Read
Intnl -
Intnl -
Intnl
+1 Read

1 Reglster
Not Ready

=T\

=
b |

Read
Intni

Read
Read
Read
Read

m Registers
(m>1)
Ready

* AN~

m+3

ZWT 0zl

Type

CPU fefches the first word of data; the
data Is broadcast to the coprocessor in
the next cycle.

During the data transfer, the VL86C020
operates one cycle ahead of the
coprocessor, and so always fetches
one word more than the caprocessor
wants. This extra data is simply
discarded.

The coprocessor is responsible for
determining the number of words to be
transferred, and indicates the last
transfer cycle by allowing CPA and
CPB to float high.

The CPU spends the first cycle (and
any busy-wait cycles) generating the
transfer address, and performs the write
back of the address basa during the
transfer cycles.

Address Data -OPC CPD31-CPD0 -CPI CPA CPB
PC+8 (PC+8) 1 X X
PCs8 - 0 (PC+8) 0 0 o
ALU DO(1) <= not clocked => 1 1
PC+12 1 DO(1) 1

PC+8 (PC4+8) 1 X X
PC+8 - 0 (PC+8) 0 0 1
PC+8 - 1 - 0 0 1
PC+8 - 1 - 0 0]
ALU DO(1) <= not clocked => 1 1
PC+8 (PC48) 1 X X
PC+8 - 0 (PC+8) 0 0 0
ALU DO(1) <= not colcked = > : 0 0
ALU+4 DO(2) 1 DO(1) 1 0 0
ALU+. DO(m+!) 1 DO(m) 1 1 1
PG+12 1 DO(m+1) 1

3-60

®. VLSI TECHNOLOGY, INC.

m Reglsters 1 Read
(m>1) 2 Intnl
Not Ready . Intnl

n Intnl
n+1 Read
n+2 Read

n+m+2 Read
Read

Z0*uno21 11

PC+8 (PC+8)

PCi8 - 0 (PC+8)
PC+8 - 1 - -
PC+8 - 1 -
ALU "Di(1) <= not clocked = >
ALU+4 DI(2) 1 DI(1)
ALU+. Di{m+1) 1 Di{m)
PC+12 1 Di{m+1)

OO0 O~

PGP Y

PRELIMINARY
T-49-/7-32

VL86C020

-t 0000O0OX
- * 000 ~0X

Coprocessor Data Transfer (from
Coprocessor to Memory) - This in-
struction is similar to the memoty to
coprocessor data transfer. In this case,
however, the VL86C020 operates one

Cycla OPRTN Type

1 Ragister 1 Read
Ready 2 Intnl -
3 Intnl -
4 Write N
Read N

1 Register 1 Read
Not Ready 2 Intni -
. Intnl -
n Intal -
n+i {ntnl -
n+2 Write N
Read N

m Registers 1 Read
{m>1) 2 Intnl -
Ready 3 Intnl -
4 Write N
m+2 Wiite S
m+3 Write S
Read N

m Registers 1 Read
(m>1) 2 Intni -
Not Ready . Intni -
n Intnl -
n+1 intnl -
n+2 Write N
‘m+n Write S
m+n+1 Write S
Read N

cycle behind the coprocessor during the the transfer while the coprocessor

data transfer to give time for data to get outputs thae first word of data, and atthe

through the coprocessor interface, The ond of the transfer, the coprocessor is

CPU is halted for a cycle at the start of halted for one cycle while tha CPU
writes the last word of data to memory.

Address Data -OPC CPD 31-CPDO

PC+8 (PC+8)

PC+8 - 0 (PC+8)
<= notclocked => 1 Di(1)
ALU Di(1) <= not clocked =>
PC+12 1 -
PC+8 (PC+8)

PC+8 - 0 (PC+8)
PC+8 - 1 -
PC+8 - 1 -

<= notclocked => 1 Di{1)
ALU DI1) <= not clocked =>
PC+12 1 -
PC+8 (PC+8)

PC+8 - 0 (PC+8)
<= notclacked => 1 Di(1)
ALU DI() 1 DI(2)
AlLU+. Dl(m-1) 1 Di(m)
ALU+. Di(m) <= notclocked =>
PC+12 1 -
PC+8 (PC+8)

PC+8 - 0 (PC+8)
PC+8 - 1 -
PC+8 - 1 -

<= notclocked =>. 1 DI(1)
ALU DI(1) 1 Di(2)
AlU+. Dim-i) 1 Dl(m)
ALU+. DI(m) <= notclocked =>
PC+12 1 -

-CPI

1
0
1

- P e e T - Y- -

-t ke DO D -

—_

CPA CPB

-t OO0 O X - O X
a0 x

- O b -, K

- -t OO0 OX
-t OO0 0OX

- -t 0000 OX
L ~ I = I - B 4

3-61

) VLSI TecHnoLooy, INC. PRELIMINARY
T-49-/7-35 YL86C020

Coprocessor Register Transfer (Load {ransfer cycle, but the transfer is limited

from Coprocassor) - Here the busy- to one data word, and VL86C020 puts
watt cycles are similar to the previous the word into the destination register in
the third cycle.

Cycls OPRTN Type Address Data -OPC CPD31-CPDO -CPI CPA CPB

Ready 1 Read PC+8 (PC+8) 1 X X
2 Intnl - PC+8 - 0 (PC+8) 0 0 0
3 Intnl - <= notclocked => 1 D1 1 1 1
4 Tmst | PC+12 DI <= notclocked => 1 1
5 Intnl - PC+i2 - 1 - 1 1 1
Read N PC+12 1 - 1 .
Not Ready 1 Read PC+8 (PC+8) 1 X X
2 Intnl - PC+8 - 0 (PC+8) 0 0 1
. Intnl - PC+8 - 1 - 0 0 1
n Intnl - PC+8 - 1 - 0 0 0
n+t Intnl - <= notclocked => 1 Dt 1 1 1
n+2 Trnst | PC+12 DI <= notclocked => 1 1
n+3 Intnl - PC+12 - 1 - 1 1 1
Read N PC+12 1 - 1

Coprocessor Register Transfer
(Store to Coprocessor) - This instruc-
tion is similar to a single word coproces-
sor data transfer.

Cycls OPRTN Type Address Data -OPC CPD31-CPDO -CP1 CPA CPB

Ready 1 Read PC+8 . (PC+8) 1 X X
2 Intn! - PC+8 - 0 (PC+8) 0 0 0
3 Trnst o PC+12 DO <= notclocked => 1 1
Read N PC+12 1 DO 1
Not Ready 1 Read PC+8 (PC+8) 1 X X
2 Intnl - PC+8 - 0 (PC+8)) 0 1
. Intnl - PC+8 - 1 - 0 0 1
n Intnl - PC+8 - 1 - 0 0 0
n+i Trnsf (¢} PC+12 DO <= notclocked => 1 1
Read N PC+12 1 DO 1

Undefined Instruction and Coproces- it cannot perform, and this must include high, causing the undefined instruction
sor Absont - When a coprocessor all undefined instructions, it must not trap to be taken.
detects & coprocessor instruction which drive CPA or CPB. These will float

Cycle OPRTN Type Mode Address Data -OPC CPD31-CPDO ~-CP! CPA CPB

Ready 1 Read PC+8 (PC+8) 1 X X
2 Intnl - PC+8 - 0 (PC+8) 0 i 1
3 Read N SPV Xn (Xn) 0 (PC+8) 1 1 1
4 Read S SPV Xn+4 Xn+d) 0 (Xn) 1 1 1
Read s SPV Xn+8 0 (Xn+4)

3-62

AW VLSI TecHNoLoGY, ING

Unexecutad Instructions « Any in-
struction whose condition coda is not
met will fail to execute. t will add one

Cycle OPRTN Type
1 Read
Read S

cycle to the execution time of the code
segmant in which it is smbedded.

At Sl od ot T §

HSUWUWa a7

 PRELIMINARY
T49-/7.3; _VL86C020

Address Data -0OPC CPD31-CPDO
PC+8 (PC+8)
PC+i2 - 0 (PC+8)

Instructlon Speeds - In order to deter-
mine the time taken to execute any
given Instruction, it s necessary to
relate the CPU read, write, internal and
transfer operations to F-cycles (FCLK
cycles), L-cycles (Latent MCLK cycles)
and A-cycles (Active MCLK cycles).

The relationship between the CPU
oparations and external clock cycles
depends primarily upon whether the
cache is turned off or on,

Cache Off - When the cacha is turned
off, CPU read and write cycles always
access external memory. To avoid
unnecessary synchiaonization delay
VL86C020 remains synchronized to the
external memory when the cache is
turned off, so all operations are timed

by MCLK. The time taken for each type
of CPU operation is as follows:

Operatlon Time

N-type Read L+A
S-type Read A

N-type Write L
S-type Write

A

Transfer In
Transfer Out

r rc >+

Internal

Key:
L - Latent memory cycle period
A - Active memory cycle period

B.BL 1L+3A

Data Processing iA +2L for SHIFT(Rs)
+1L+2A if R15 written

MUL,MLA (m+1)L+1A

LDR 3L+2A +2A if R15 loaded/written back

STR 2L+2A +2A it R15 written-back

LDM AL+ (ne1)A +2A if R15 loaded

ST™ 2L+ (n+1)A

swp 4L+3A +2A it R15 loaded

SWI, trap 1L+3A

cbo b+2)L+1A

LDC O+3)L+ (n+NA +1A it (n>1)

sTC (o+4) L + (n+1)A

MRC b+4)L+1A

MCR +3)L+ 1A

n is the number of words transferred.

m Is the number of cycles required by
the multiply algorithm, which is deter-

minad by the contents of Rs. Multiplica-
tion by any number between 24(2m-3)
and 2A(2m-1)-1 inclusive takes m cycles
for m>1. Multiplication by zero or one

takes one cycle. The maximum value
m can take Is 16,

b is the number of cycles spent in the
coprocessor busy-wait loop. -

If the candition is not met all instructions
take one A-cycle.

Due to the pipelined architecture of the
CPU, instructions overlap considerably,
In a typical cycle one instruction may be
using the datapath while the next s
being decoded and the one after that is
being fetched. For this reason the
{ollowing table presents the Incremental
number of cycles required by an
Instruction, rather than the total number
of cycles for which the instruction uses
par of the processor. Elapsed time (in
cycles) for a routine may be calculated
from these figures.

Nota: This table only applies when the
cache Is turned off.

It the condition is met the instructions-
take:

® VLSI TECHNOLOGY, INC,

PRELIMINARY
7-49-17-32. _VL86C020

Cache On - When the cache is turned
on, the CPU will synchronize to FCLK,
and attempt to fetch Instructions and
data from the cache (using FCLK F-
cyclas), When the read data s not
available, or the CPU performs a write
operation, the VL86C020 resynchran-
izes to MCLK and accesses the
external memory {using L & A-cycles).
The CPU operations are dealt with as
follows:

1.

4,

Read operations. The CPU will
normally be able to read the
relevant data from the cache, in
which case the read will complete
in a single F-cycle.

If the data Is not present in the
cache, but is cacheabls, the CPU
wilt synchronize to MCLK and
petform a line fetch to read the
appropriate line (four words) of
data into the cache. The CPU will
be clocked when the appropriate
word [s fetched, and subsequently
during the line fetch if it Is request-
ing S-type reads or internal
operations.

If the data is not cacheable, the
CPU will synchronize to MCLK and
perform an external read, If the
CPU raquests S-type reads, the
CPU will remain synchronized to
MCLK and usa A-cycles to read the
appropriate data. The CPU only
resynchronizes back to FCLK when
the CPU stops requesting S-ype
reads.

Note that the swap instruction
bypasses the cache, and always
parforms an external read to fetch
the data from external memary.

Write operations, The VL86C020
synchronizes to MCLK and
performs external writes. When
the CPU stops requesting S-type
writes, VL86C020 resynchronizes
to FCLK.

Internal oparatlon. These complete
In a single F-cycle (afthough some
are absorbed during line fetches).

Transfer operation. These
complete in a single F-cycle,

It is not possible to give a table of
instruction speeds, as the time taken to
execute a program depends on its

FIGURE 33. WORST-CASE VL86C020 TIMING FLOWCHART

N-TYPE QR S-TYPE
READ DATA NOT IN

SYNCHRONIZ LINE FETCH LINE FETCH LINE FETCH LINE FETCH
TO MGLK WORDO [—] WORD1 [~ WORD2 [— WORD3
(F+2L) (L+A) (A (A G

NOTE: This path can only ba taken if the CPU was
not clocked during Line tetch Word 3

(LeN-1)4)

N-TYPE OR S-TYPE READ
OF UNCACHEABLE DATA
OR

N-TYPE WRITE
PLUS (N) §-TYPE WRITES

INTERNAL CYCLE
SYNCHRONIZE] TRANSFER CYCLE
TOMCLK CACHE READ
{F+2L) (F)

CACHE READ, ™\
INTERNAL OPERATION
OR TRANSFER

OPERATION

Line Fetch Operation

The CPU is clocked as soon as the requested word of data is available.
The CPU will also be clocked if it subsequently requests S-type Read or
Internal operations during the remainder of the line fetch.

interaction with the cache (which

includes factors such as code position,
previous cache state, etc.), In general, .
programs will execute much faster with 1. No Instructions or data are presernt

the cache turned on than with it turned In the cache ?Vhe" VL8&Co20
off. starts executing the code.

When using this technique, the follow-
ing conditions must be assumed:

2. Aline fetch operation will overwrite
any data already present in the
cache (i.e,, the cache only has one
line).

All synchronization cycles take the
maximum time.

To calculate the worst-case delay for a
particular pisce of code, the routine
should be written out in terms of CPU
cycles. Flgure 33 can then be usedto
calculate the worst-case VL.86C020 op- 3.
eration for each CPU cycle.

3-64

w VLSI TECHNOLOGY, INC.

EXAMPLE:
Consider the following pisce of code:

bode

MOV RO,Areai

MoV R1i,Area2

LDR R7, Ro,4

LDMIA R1, {R8-R9}
End

Converting the code into CPU cycles gives:

Asssume code runs in a cacheable area of memory, and that
Code, Areat and Area?2 are all quad-word aligned addresses.

PRELIMINARY

T24q-17 -32. —VLB6CO20

RO points to data In a cacheabls area of memory

R1 points to data in an uncacheable area of memory
Read data from cacheable area into R7

Read data from uncacheable area Into R8 and R9

Cycle OPRTN Type Address
1.0 Read PC+8
Branch to Code 14 Read N Code
1.2 Read S Code +4
MOV RO,Areal 2.1 Read S Code+8
MOV R1,Area2 3.1 Read S Code+12
LDR R7.[R0,4] 4.1 Read S Code+16
4.2 Read N Areai+d
4.3 Intnl - Code+20
LDMIA R, {R8-Rg} 5.1 Read N Code+20
6.2 Read N Area2
5.3 Read S Area2:+4
5.4 Intnf - Code+24

Data

(PC+8) (ses Note)
{Code)
(Code+4)

(Code+8)
(Code+12)

(Cade+16)
(Areati+d)

(Code+20)
(Area2)
(Area2+4)

Note: Cycle 1.0 is the last cycle before the routine is entered, and is not counted as part of the code.

Using the worst-case VL86C020 timing flowchart, the required CPU operations can be converted into CPU operations, and as-

signed an exscution time.

CPU Operation
<wait>
1.4 Read N (Cade)
1.2 Road S (Code+4)
2.1: Read S (Code+8)
3.1: Read S (Code+12)
<wait>
4.1: Read S (Code+16)
<wait>
 <wait>
<wait>

VL86C020 Operation

Synchronize to MCLK

Line Fetch: (Code)
(Code+4)
(Code+8)
(Code+12)

Synchronize to MCLK

Line Fetch: (Code+16)
(Code+20)
{Code+24)
(Code+28)

Time

(F+2L)
(L+A)
w
(A)

@)

(F+2L)
(L+A)
(A)

(A)

(A)

3-65

=R e e ¥ = - T

w VLSI TECHNOLOGY INC.

<wait>
4,2: Read N (Areat+4)
4.3: Intnl

<walt>

<wait>

5.1: Read N (Code+20)
<wait>
<wait>

5.2 Road N (Area2)
5.3: Read N (Area2+4)

<wait>
5.4 Intnl

Line Fetch: (Areat)
(Areai+d)
(Areal+8)

(Areal+12)

(Code+16)
Line Fetch: (Cade+20)
(Code+24)
(Code+28)

Extnl Aces
Extni Accs

(Area2)
(Area2+4)

Synchronize to FCLK
Internal Operation

il el - .

ad e

PREL[]IM]H[N]AFW
7=49-7-35, VL86C020

(L+A)
(A)
(A)
A)

Adding together the execution times taken for each of the VL.86C020 operations gives a worst-case elapsed time for the code;
Maximum execution time = 4 F-cycles + 9 L-cycles + 18 Acycles

Assuming that MCLK and FCLK both run at 8 MHz:
Maximum execution time = 31*125 ns = 3.875 ps.

COMPATIBILITY WITH EXISTING
ARM SYSTEMS

Compatlbllity with VL86C010 -

The VL86C020 has baen deslgned to
be cade compatible with the VL86C010
processor. The external memory and
coprocessor interfaces are also
designed to be usable with existing
memory systems and coprocessors.
The detailed changes are:

Software changes

1, VL86C020 now contalns a single
-data swap (SWP) instruction. This
takes the place of one of the
undefined Instructions in
vL8eCoto.

2. VL86C020 has a 4 Kbyte mixed in-
struction and data cache on-chip.
This cache should be transparent
to most existing programs, al-
though some system software
(particularly that dealing with
memory management) could be
modified slightly to make more
efficient use of the cache (see
Cache Operation Ssction).

3. VL86C020 contains a set of control
reqisters that govern operation of
the on-chip cache (ses Cache
Operation Section). These
registers must be programmed
after VL86C020 is reset in order to
anable the cache.

4. The internal timing associatad with
mode changes has been improved
on VL86C020, and a banked
register may now be accessed
immediately after a mode change
(see Data Processing/Writing to
R15). However, for compatibility
with VL86C010, it is recommended
that the earlier restrictions are ob-
served.,

5. The implementation of the CDO
Instruction on VL86C010 causes a
software interrupt (SWI) to take the
undefined instruction trap if the
SWI was the next instruction after
the CDO. This is no longer the
case on VL8GC020 but the se-
quence

CDhO
SWi

should be avoided for program
compatibility,

Hardware changes

1. VL86C020 is packaged in a 160-
pin quad flatpack; VL86C010 uses
an 84-pin plastic leaded chip
carrier (PLCC) package.

2, VL86C020 doss not require-non-
overlapping clocks far timing
memory accesses. When using
VL86C020 with MEMC, the PH2

clock output of MEMC should be
connected to the MCLK input of
VL86C020; the PH1 clock output of
MEMG is nof used.

3. VL86C020 requires a free-running
CMOS-level clock input (FCLK) to
time cache accesses and internal
operations. FCLK Is entirely
independent of MCLK,

4, VL86C020 includes two new
control signals, LINE and LOCK.
These wamn of cache line fetch
operations and locked swap (SWP)
operations respectively.-

5. The-TRANS and -M1, -Mo
outputs on VL.86C010 could
changa in either (PH2) clock
phase. In VL86C020, these
outputs only ever change when
MCLK is high.

6. The coprocessor Interface remains
the same, but now operates
Independently of the external
memory using a dedicated bus
(CPD31-CPDO0). Coprocessars
must be able to operate at cache
speeds’ (determined by FCLK).

7. The —OPC output of VL86C020
now applies exclusively to the
coprocessor interface, and should
not be used In the memory
interface.

3-66

PRELIMINARY
7-49-77-32. _VL86C020

8. VL86C020 includes pull-up 9. To facllitate board level testing, all Compatibliity with MEMC (VL86C110)
raslstors on various control inputs outputs on VL86CO20 can be put The memory interface on VL86C020 is
(sea Coprocessor Interface into a high impadance state by compatible with that used for VL86C010
Section). using the appropriate enable and the existing MEMC memory

controls (see Coprocessor Inter- controlier is suitable. Figure 33 shows
face Section). how VL86C020 may be connected to
MEMGC.

FIGURE 33. CONNECTING VL86C020 TO VL.86C110 (MEMC)

OSCILLATOR ‘ ¢ S SYSTEM ADDRESS BUSS
{
FCLK -IRQ -FIQ -RESET A25-A0
-wAT [no ne] P A2s-A0
MCLK | PH2
-RW » AW
-BW »| -BW
NC ALE LOCK fNG
:z QZE VL86C020 LINE [-NC VL86C110
-TRANS |———=] spvmD
NG MSE M1, -Mo |-Ne
Nc cPE -MREQ »| -MREQ
SEQ |- SEQ
ABORT | ABORT
Nc] -TesT oee < DBE
D31-D0
CPCLK CPSPV -OPG -CPI CPA CPB GPD31-CPDO

A

 SYSTEM ADDRESS BUS §

y i]
COPROCESSOR

3-67

- F IRV == S

W \“/L*SI' TECHNOLOG—\'(,- ch. ” PRELIMINARY
T49./7- 35 — YL86C020

TEST CONDITIONS Table 4; these loads have been chosen the increase in load capacitance. An
The AC timing diagrams prasentad as typical of the system In which the "output derating” figurs is given for each
in this section assume that the CPU might be employed. - putput pa.d, showing th.e approximate
oadod with ths capaciive loads Theouputpadsofthe VLEGCO20are e e b on
shown in the "Test Load" column of tion delay that increases linearly with nanosecond.

TABLE 4: AC TEST LOADS

Output Derating

Output Signal Test Load (pF) (pF/ns)

-MREQ 50 8

SEQ 50 8

-BW 50 8

LINE 50 8

LOCK 50 8

~MO, -M1 50 8

~-RW 50 8

-TRANS 50 8

“A0-A25 50 8
D0-D31 100 8

CPCLK 30 8

CPSPV 30 8

-CPI 30 8

~OPGC 30 8

CPDO0-CPD31 30 8

General note o AC parameters:

= Oulput times are to CMOS levels
except for the memory and coproces-
sor data buses (D31-DO and CPD31-
GPD-0), which are to TTL levels.

3-68

L P oIV VW - kW .. D

VLSI TECHNOLOGY, INC. _IF) IF’:}_E—\L.UM[I[@AE%Y—
T-49-)7-3> VL86C020

AC CHARACTERISTICS: TA = 0°C to +70°C, VDD =5 V 5%

Symbol Parameter Min Max Unlt Conditions
tWS —WAIT Setup to MCLK High 15 ns

tWH ~WAIT Hold from MCLK High 5 ns

TWAIT1 —WAIT Low Time 10000 ns

tABE Address Bus Enable . 30 ns

1ABZ Address Bus Disable 25 ns

tALE Address Latch Open) 12 ns

tALEL ALE Low Time _ 10000 _ns Note]
tADDR MCLK High to Address Valid i 55 ns .
tAH Address Hold Time 5 _ns) B :
tDBE Data Bus Enable 35 ns (TTL Level)
tDBZ Data Bus Disable 25 _ns

1DOUT Data Out Delay 30 ns (TTL Level)
{DOH Data Qut Hold _ 5 ns]
{DE MCLK Low to Data Enable 45 ns (TTL Levei)
tDZ MCLK Low to Data Disable 40 ns

tDIS Data In Setup 8 ns

DH Data in Hold 8 ns

tABTS ABORT Setup Time 40 ns

tABTH ABORT Hold Time 5 ns

tMSE -MREQ and SEQ Enable 20 ns

IMSZ -MREQ and SEQ Disable 15 ns

tMSD MCLK Low to -MREQ and SEQ 55 ns

tMSH ~MREQ and SEQ Hold Time 5 ns_-

{CBE Control Bus Enable 20 ns

{CBZ Control Bus Disable 15 ns

tAWD MCLK High 1o -R/W Valid] 30 ns

1RWH =R/W Hold Time 5 ns

{BLD MCLK High to -B/W and LOCK 30 ns

tBLH -B/W and LOCK Hold 5) ns

ILND MCLK High to LINE Valid 50 ns

{LNH LINE Hald Time 5 ns

tMDD MCLK High to ~-TRANS/-M1, -M0 30 ns

tMDH -TRANS/-M1, -M0 Hold 5 ns

Note: To avoid A25-A0 changing when MCLK [s high, ALE must be driven low within 5 ns of the rising edge of MCLK.

3-69

v e =N - e A = Vod bl oF b 1§ af d ot L L)

w VLSI TECHNOLOGY INC. PRELIMIN AF’&Y
T-49-17-32. _ VL86C020

AC CHARACTERISTICS FOR COPROCESSOR INTERFACE:

Symbol Parameter Min Max Unit Conditions
1CPCKL Clock Low Time) 10000 ns Nots 1
tCPCKH Clock High Time 10000 ns

tOPCD CPCLK High to ~OPC Valid 15 - ns

tOPCH —OPC Hold Time 5 ns

1SPD CPCLK High to CPSPV Valid 15 ns

tSPH CPSPV Hold Time __ 5 ns

iCPI CPCLK High to —CPI Valid 15 ns

{CPIH ~CPI Hold Time 5 ns

{CPS CPA/CPB Setup) 45 ns

tCPH CPA/CPB Hold 5) ns

{CPDE Data Out Enable 10 ns Note 2, 3
{CPDOH_| _ Data Out Hold 10 ' ns

tCPDBZ Data Out Disable 5 ns

{CPDS Data In Setup 10 ns

{CPDH Data In Hold 5 ns

{CPE Coprocessor Bug Enable 30 ns

tCPZ Coprocessor Bus Disable 30 ns

Notes: 1. CPCLK timings measured between clock edges at 50% of VDD,
CPD31-CPDO outputs are specified to TTL levels.
The data from VL86C020 is always valid when enabled onta CPD31-CPDO.

These timings allow for a skew of 30 pF betwsen capacitive loadings on the coprocessor bus outputs (CPCLK,
-OPC, CPSPV, -CPI, CPD31-CPDO).

Fal o

AC CHARACTERISTICS FOR CLOCKS:

Symbol Parametor Min Max Unlt Conditions
tMCLK Memoty Clock Period 80 ns Note
tMCLKL Memoty Clock Low Time] 25 ns

{MCLKH Msmory Clock High Time 25 ns

{FCLK Processor Clock Period 50 . . ns

{FCLKL Processor Clock Low Time 23 ns

tFCLKH ‘Processor Clock High Time 23 ns

Note: MCLK timing measured between clock edges at 50% of VDD,

3-70

w VLSI TECHNOLOGY, INC. PRELIMINARY

VL86C020
T-49-17-32-
FIGURE 34. MEMORY INTERFACE TIMING
tMCLK
e IMCLKL ——])
MCLK "_51 7 7L MOLKH)<

-WAIT
tWAIT{ WS — tWH
_3[:— tALEL—>
ALE Y
T

ABE

L tALE 1AH —:1
A25-A0 |

DBE _74- —
' tDBE | tbBZ

[-{DE—"] 1DOH —=]
DATA —
ouT
o — tDouT ——— <—IDZ'>
DATA
IN tABTS e p] ABTH 1DIS [armrlatie] 1DIH
ABORT , 7
MSE N 7|£——
_MREQ, <] tMSH et sz MsEL
SEQ , 4
tMSD
CBE N
——Jﬁ, {CBE 108Z [
-AwW | C
tRWH —
. tAWD —
2% — 03K
c
tBLH —»
e {BLD —
LINE | (
tLNH —>
. {LND —em]
~TRANS, | y
—M1, -MO <
tMDH —>]
jt———— tMDD ———>}

3-71

Q) VLSI Tecanoroay v PRELIMINARY

VL86C020
T-49-17-32-
FIGURE 35. COPROCESSOR INTERFACE TIMING
{CPCKL——]
CROLK K e fCPcKH_-:___._
-OPC ‘

«t-»| tOPCH

lw— tOPCD____l

<> tSPH

«—{SPD——— il

o 00000 XXX

{CPIH
la— tCPI_____ 5]

oen XOXK FXOOOOOMAXHXK
CPB -
T tCPS) tCPH tCPDZJ
CPD31- 1\) —
CPDO OUT / |
iCPDE [tCPDOH
CPD31- \
CPDO IN
tCPDS i= ,_/
- [« {CPDH
CPE o A
CPCLK, CPSPV,
OPC, CPI I ' {
CPD31-CPDO <> cpz g {\CPE

FIGURE 36. FCLKINTERFACE TIMING

- - tFCLK
tFCLKL

FCLK —\{: - Y
N~ 7| tFOLKH e

3-72

in

o TR e = = -

® VLSI TECHNOLOGY, INC.

ABSOLUTE MAXIMUM RATINGS

ok d N ek ¥V

HWWa ldd S

PRELIMINARY
T:¥9-/7-3>. _VL86C020

Amblent Opsrating Strasses above those listed may cause indicated in this data shest is not
Temperature -10°Cto +80°C parmanent damage 1o the device. implied. Exposure to absolute maxi-

o o Thess are stress ratings only. Func- mum rating conditions for extended
Storage Temperature —65°Gto +150°C tional operation of this device at these periods may affect device reliability.
Supply Voitage to or any other conditions above those

Ground Potential —0.5 Vto VDD +0.3 V
Applied Output

Voltage -05VtoVDD 403V
Applied Input

Voltage -05Vto+7.0V
Power Disslpation 20W

DC CHARACTERISTICS: TA=0°Cto+70°C, VDD =5 V5%

Symbol Parameter Min Typ Max Units Condltlons
VDD Supply Voltage 4.75 5.0 5.25 \i
VIHC 1C Input High Voltage 35 VDD Notes 1,2
ViLC IC Input Low Voltage 0.0 1.6 v Notes 1, 2
VIHT IT/ITP Input High Voltage 2.4 VDD \ Notes 1, 3, 4
VILT IT/IPT Input Low Voltage 0.0 0.8 A Notes 1,3, 4
IDD Supply Current 200 mA
ISC Output Short Circuit Current 160 mA Note 5
ILU D.C. Latch-up Current >200 mA Note 6
1IN IT Input Leakage Current 10 A Notes 7, 11
lINP ITP Input Leakage Current -500 uA Notes 8, 12
IOH Qutput High Cutrent (VOUT=VDD -0.4 V) 7 mA Note 9)
0L Output Low Current (VOUT=GND +0.4 V) -11 mA Note 9
VIHTK IC Input High Voltage Threshold 28 \ Note 10
VILTT IC Input Low Voltage Threshold 1.9 \ Note 10
VIHTT ITATP Input High Voltage Threshold 21 Vv Notes 11, 12
VILTT IT/ITP Input Low Voltage Thrashold 1.4 Vv Notes 11, 12
CIN Input Capacitance 5 pF '
Notes: 1. Voltages measured with respect to GND.

2. |C- CMOS-level inputs.

8. [T - TTL-level inputs (includes IT and [TOTZ pin types).

4. TP : TTlL-level inputs with pull-ups.

5. Not more than one output should be sharted to either rail at any time, and for as short atime as possible.

6. This value represents the DG current that the Input/output pins can foletate before the chip latches up.

7. Inputleakage current for the IT, and ITOTZ pins.

8. Input leakage current for an ITP pin connected to GND. These pins incorporate a pull-up resistor in the range of

10 k2 - 100 kQ2.) -

9. Output current characteristics apply to all output pads (OCZ and ITOTZ).

10. ICk - CMOS-level inputs.

11, IT - TTL-level inputs (includes IT and ITOTZ pin types).

12. TIP - TTL-level inputs with pull-ups.

3-73

® VLSI TECHNOLOGY, INC. TR0 0
PACKAGING

PACKAGE OUTLINES
66-PIN PLASTIC LEADED CHIP CARRIER (PLCC)

| 965 (24.511)) , 083 (2.108)
1340 (22.876) 069 (1.753)

800 (20.220 | 072(1.629)

i 4PLS : [058(1.473)

«+— SEATING PLANE

5085 (15.113) .965 (24.511)
585 (14.859) .940 (23.876)
sa

—

LT T PO L

-~ ELECTRICALLY
ACTIVE PLANE
ON THIS SIDE

1050 (1.270) TYP ——l lq—-—- l

060 (1.270) TYP 3 PLS

095 {2.413)
, | « __.l l._ . ~— (ot LEAD1ONLY
050(1.270) TYP 1035 (,689) VP

. 3PLS —| |~

1040 (1.018) x 48°
CHAMFER INDEX CORNER

83

O vist

haad

R

D di S -

TECHNOLOGY, INC.

PACKAGING

PACKAGE OUTLINES (Cont,)
84-PIN PLASTIC LEADED CHIP CARRIER (PLCC)

1.000 (28.40) REF

_'+

N Y e e N e N B R N A B A R B R U R N W W |

048 {(1.219)
042 (1.067)

1]
1
1)
1
1]
PIN 1 INDEX ;
MAY VARY IN
SIZE AND !
LOCATION
1.158 (20.41)
Ol0F Tm@zn
1]
1]
4
1]
[1
uuul—ll—ll—l“uuul—'l—luuul—luuul—ll—(
1.185 (30,
1165 (30,10)
4°ALL SIDES 032(0813)
| [026 (0.660)
] 049 (1.244)
_J__J /mT’_
| 032(0.812) —>
1003 |7 " 200 (5.08)
090 (2.29) 050 (127) 021 (0.533) 165 @.19)
TP I (0.50)
1.130 (28.70) SEE DETAIL A
1,080 (27.89)

NOTES: UNLESS OTHERWISE SPECIFIED.
1, TGLERANCE TO BE +/- 005 (0.127).
2,LEADFRAME MATERIAL: COPPER.

3. LEAD FINISH: MATTE TIN PLATE OR SOLDER DiP.
4. SPACING TO BE MAINTAINED BETWEEN FORMED LEAD AND MOLDED PLASTIC ALONG FULL LENGTH OF LEAD,

6. MOLDED PLASTIC DIMENSION DOES NOT INCLUDE SIDE FLASH BURR, WHICH IS 010 (0.254) MAX ON FOUR SIDES.
6. CONTROLLING DIMENSIONS ARE METRIC, ALL METRIC DIMENSIONS ARE IN PARENTHESES,

010 (0.254)
DETAILA 00810.209)
—_—| |——
l /.wa (0.203) RAD
075 (1.905) MAX 008 (0421
. AFTER
By Ve \ LEAD FINISH
020 (0.508) MIN
\ 035 (0.889) RAD
Q41117

25-80004 488

84

w VLSI TecHNOLOGY, INC | T=90-20

PACKAGING
PACKAGE OUTLINES (Cont)
144-PIN CERAMIC PIN GRID ARRAY
@@@@@@@@@@@@@
O
©) ©
©@ ©)
© ©
O O]
© ©
&) = £
© @
® ®
OR ®
© ®
© ®
@ ©
(efoJoJoJololelnlolololoolole) 1

|

i Tﬂﬂﬂﬂj mml T s

Q

]

n.';o%ATDvlgs .100 (2.540) TYP .018 (0.457)
A D D1 (E1 Q L
Pin Cavity ® (.)

Count Matrix Pasition Min Max Min Max Min Max Ret Ref

0780 | 1020 | 1.559 | 1.501 | 1.388 | 1.412 | 0.050 | 0.130
(1.981) | (2.591) | (30.60) | (40.41) | (35.26) | (35.86) | (1.270) | (3.302)

144 15% 15 Up

Notes: 1. Alldimensions are in inches (mm).

Material; Al203

Lead Material: Kovar

Lead Finish: Gold plating 60 micro-inches min. thickness over 100 micra-inches nominal thickness of nickel

EYJS

8-5

T T Il e W emf Tl =S = .« -t el bt d b § S A

® VLSI TECHNOLOGY, INC. T=90-20
‘ PACKAGING

PACKAGE OUTLINES (cont)
160-PIN CERAMIC PIN GRID ARRAY

1.266 (32.15)
1.213 (30.80)

1.106 (28.10)
1.098 (27.90)

|inARARARARNI0ARARAAANRATAORAN ARG

C)\ INDEX

-

PIN 160

PIN 1

1.106 (28.10)
1.098 (27.90)
1.266 (32.15)
1.213 (30.80)

LA

LNA0R0ARINENENNRARARCNRTARADMARADARRADAL

l._

R
Nl

.152 (3.85)
-’I“.we 3.45)

[=].004 (102)]

.084 (2.125)__|
.053 (1.35)

141 (3. 573 ; .008 f .203)

125 (347 I -004 (.10)
NOTES: 4 i< =0
1. CONTROLLING DIMENSION IS MM. i T7
.014 (.36) 010
002 (.05)| | ,037 (,95)
,026 (.65) 018 (40)
TYP .016 (.40)
"T.008 (.20)
[soos (.15) TYP®]
DETAIL —A-—

8-6

