

VC670M-TO46GL

- Red VCSEL
- 670 nm, 1 mW
- Multi Mode
- TO-46 Can
- Glass Lens, 2° Viewing Angle

v 1.1 4.12.2014

Description

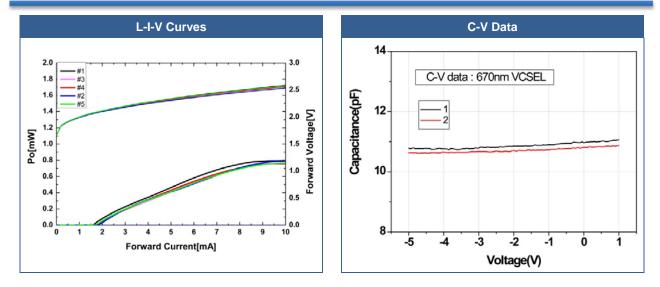
VC670M-TO46GL is a multi mode red VCSEL emitting at typically 670 nm with rated output power of 1.0 mW cw, mounted into a standard TO-46 package and sealed with a flat window cap. The VCSEL works under low forward current and voltage.

Maximum Ratings

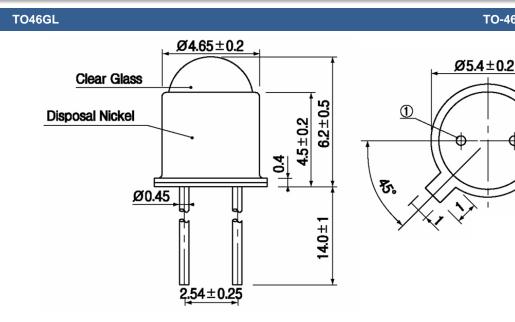
Parameter	Symbol	Va	Unit	
	Symbol	Min.	Max.	Unit
Forward Current	IF		8	mA
Reverse Voltage (@ 10µA)	V _F		5	V
Operating Temperature	T _{CASE}	- 20	+ 50	°C
Storage Temperature	T _{STG}	- 40	+ 85	°C
Lead Solder Temperature *	T _{SLD}		+ 260	°C

* must be completed within 10 seconds

Laser Characteristics (T_{CASE}=25°C)


Parameter	Symbol	BØ :	Values	Max	Unit
		Min.	Тур.	Max.	
Emission Wavelength	λ_{Peak}	660	670	690	nm
Spectral Width	$\Delta \lambda$			0.85	nm
Optical Output Power	Po		1.0		mW
Threshold Current	I _{TH}		2.0	3.5	mA
Operating Current	IF		5		mA
Operating Voltage	V _F		2.1	2.5	V
Beam Divergence (Full Width)	θ		2		deg
Slope Efficiency	η	0.2	0.3		mW/mA
Dynamic Resistance	R_D		60	90	Ω

Thermal Characteristics


Parameter	Symbol	Min.	Values Typ.	Max.	Test Conditions	Unit
Max. Operating Temperature Optical Output Power	P _{T=50°C}		0.5		T _C =50°C, 5mA	mW
ITH Temperature Variation	ΔI_{TH}		1.5		T_C =-20 to 50°C	mA
η Temperature Variation	Δη / ΔΤ		-0.8		T _C =-20 to 50°C,5mA	%/°C
λ Temperature Variation	Δλ / ΔΤ		0.05		T_C =-20 to 50°C,5mA	nm/°C

Typical Performance Curves

Outline Dimensions

All Dimensions in mm

Electrical Connection

Lead	Description
PIN 1	VCSEL Anode
PIN 2	VCSEL Cathode

10-0²

TO-46 with glass lens

2

Precautions

Static Electricity:

VCSELs are **sensitive to electrostatic discharge (ESD)**. Precautions against ESD must be taken when handling or operating these VCSELs. Surge voltage or electrostatic discharge can result in complete failure of the device.

Safety Advice:

This VCSEL emits concentrated red light which can be **hazardous to the human eye and skin**. This diode is classified as CLASS 2 laser product according to **IEC 60825-1** and **21 CFR Part 1040.10** Safety Standards.

Operation:

Do only operate VCSELs with a current source.

Running these LEDs from a voltage source will result in complete failure of the device. Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice