

P-Channel 20-V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A) ^d	Q _g (Typ.)		
- 20	0.016 at V_{GS} = - 4.5 V	- 40	13 nC		
- 20	0.025 at V _{GS} = - 2.5 V	- 35	13110		

FEATURES

- Halogen-free According to IEC 61249-2-21
 Definition
- TrenchFET[®] Power MOSFET
- 100 % R_g Tested

APPLICATIONS

- Load Switch
- Battery Switch

FREE

Available

Parameter	Symbol	Limit	Unit		
Drain-Source Voltage	V _{DS}	- 20	V		
Gate-Source Voltage	V _{GS}	± 12	v		
	T _C = 25 °C		- 40		
Continuous Drain Current ($T_J = 150 \ ^{\circ}C$)	T _C = 70 °C		- 35		
Continuous Drain Current (1) = 150 C)	T _A = 25 °C	I _D	- 30.0 ^{a, b}		
	T _A = 70 °C		- 28 ^{a, b}	A	
Pulsed Drain Current	I _{DM}	- 150			
Continuous Course Durin Diado Current	T _C = 25 °C	1	- 3.5		
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	- 2.1 ^{a, b}		
	T _C = 25 °C		40		
Marian Distribution	T _C = 70 °C		27	w	
Maximum Power Dissipation	T _A = 25 °C	P _D	2.5 ^{a, b}		
	T _A = 70 °C	1	1.6 ^{a, b}		
Operating Junction and Storage Temperature Range	T _J , T _{stq}	- 55 to 150	°C		

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Maximum Junction-to-Ambient ^{a, c}	t ≤ 10 s	R _{thJA}	40	50	°C/W	
Maximum Junction-to-Foot	Steady State	R _{thJF}	24	30	0,00	

Notes:

a. Surface mounted on 1" x 1" FR4 board.

b. t = 10 s.

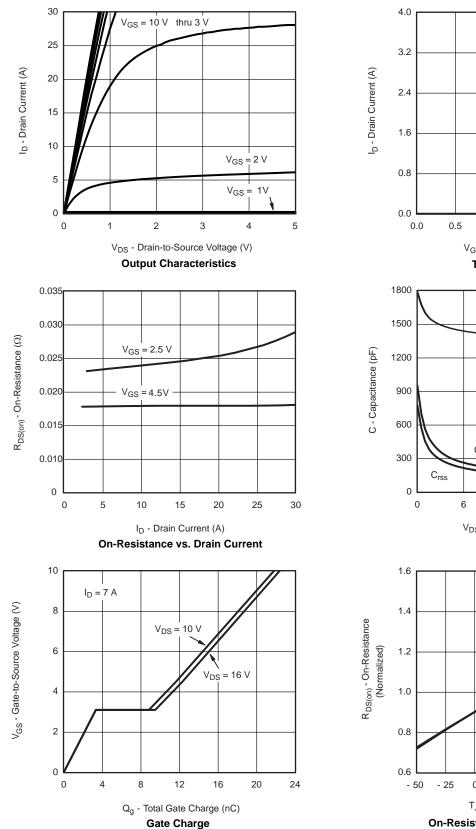
c. Maximum under Steady State conditions is 95 °C/W.

d. Based on $T_C = 25$ °C.

$\begin{array}{ $							
	SPECIFICATIONS $T_J = 25 \circ C$	C, unless oth	erwise noted				
$\begin{array}{ c c c c c c } \hline Drain-Source Breakdown Voltage V_{DS} & $V_{GS} = 0 \ V, \ I_D = \cdot 250 \ \mu A & -20 & V & V \\ \hline V_{DS} temperature Coefficient $AV_{DS}T_J$ & $I_D = -250 \ \mu A & -31 & $mV/^{CC}$ \\ \hline V_{DS}(m) temperature Coefficient $AV_{DS}(m) $V_{DS} = V_{DS}, \ I_D = -250 \ \mu A & -0.5 & -2.0 & V \\ \hline Gate-Source Threshold Voltage $V_{DS}(m)$ & $V_{DS} = V_{CS}, \ I_D = -250 \ \mu A & -0.5 & -2.0 & V \\ \hline Gate-Source Leakage I_{OSS} & $V_{DS} = 0 \ V, \ V_{SS} = 12 \ V & ± 100 & nA \\ \hline V_{DS} = -20 \ V, \ V_{SS} = 0 \ V, \ V_{SS$	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static		•				•
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Breakdown Voltage	V _{DS}	V _{GS} = 0 V, I _D = - 250 μA	- 20			V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	L = 250 UA		- 31		m)//0C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$			4.5		mv/°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage	V _{GS(th)}		-0.5		- 2.0	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Leakage	I _{GSS}				± 100	nA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zara Cata Valtaga Drain Current	1				- 1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zero Gale Voltage Drain Current	DSS	$V_{DS} = -20 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 55 \text{ °C}$			- 5	μΑ
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 V, V_{GS} = -10 V$	- 40			А
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Drain Course On Chata Desistance	Prov	V _{GS} = - 4.5 V _D = - 7.0 A 0.016		0.016		0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source On-State Resistance	NDS(on)			0.025		52
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Forward Transconductance ^a	9 _{fs}	V _{DS} = - 15 V, I _D = - 7.0 A		18		S
$ \begin{array}{ c c c c c c } \hline \text{Output Capacitance} & C_{OBS} & V_{DS} = -10 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ \text{MHz} & 180 \ & pF \\ \hline \text{Reverse Transfer Capacitance} & C_{rss} & 145 \ & 145 $	Dynamic ^b						
$ \begin{array}{ c c c c c c } \hline \text{Output Capacitance} & C_{OBS} & V_{DS} = -10 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ \text{MHz} & 180 \ & pF \\ \hline \text{Reverse Transfer Capacitance} & C_{rss} & 145 \ & 145 $	Input Capacitance	C _{iss}			1455		
$ \begin{array}{ c c c c c c } \hline Total Gate Charge & Q_g \\ \hline Gate Source Charge & Q_{gs} & & & & & & & & & & & & & & & & & & &$	Output Capacitance	C _{oss}	$V_{DS} = -10 V$, $V_{GS} = 0 V$, f = 1 MHz		180		pF
$ \begin{array}{ c c c c c c } \hline loc c c harge & Q_{g} & & & & & & & & & & & & & & & & & & &$	Reverse Transfer Capacitance	C _{rss}			145		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Total Gato Chargo	0	$V_{DS} = -10 \text{ V}, V_{GS} = -10 \text{ V}, I_{D} = -7.0 \text{ A}$		25	38	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Iotal Gate Charge	Ū			13	20	nC
$ \begin{array}{c c c c c c c c c c } \hline Gate Resistance & R_g & f = 1 \ MHz & 0.4 & 2.0 & 4.0 & \Omega \\ \hline Turn-On \ Delay \ Time & t_{d(on)} & V_{DD} = -10 \ V, \ R_L = 2.7 \ \Omega & 13 & 20 \\ \hline Turn-Off \ Delay \ Time & t_f & D_2 = -5.6 \ A, \ V_{GEN} = -10 \ V, \ R_g = 1 \ \Omega & 23 & 35 \\ \hline Fall \ Time & t_f & 0 & 0 & 18 \\ \hline Turn-On \ Delay \ Time & t_{d(on)} & V_{DD} = -10 \ V, \ R_g = 1 \ \Omega & 38 & 57 \\ \hline Rise \ Time & t_f & 0 & 0 & 18 \\ \hline Turn-On \ Delay \ Time & t_{d(on)} & V_{DD} = -10 \ V, \ R_L = 2.7 \ \Omega & 89 & 134 \\ \hline Turn-On \ Delay \ Time & t_d(on) & V_{DD} = -10 \ V, \ R_L = 2.7 \ \Omega & 89 & 134 \\ \hline Turn-Off \ Delay \ Time & t_d(onf) & I_D \cong -5.6 \ A, \ V_{GEN} = -4.5 \ V, \ R_g = 1 \ \Omega & 89 & 134 \\ \hline I_D \cong -5.6 \ A, \ V_{GEN} = -4.5 \ V, \ R_g = 1 \ \Omega & 11 & 17 \\ \hline \ Drain-Source \ Body \ Diode \ Characterister & t & t \\ \hline \ Drain-Source \ Body \ Diode \ Character \ I_S & T_C = 25 \ C & -6.5 \\ \hline Pulse \ Diode \ Forward \ Current & I_S & T_C = 25 \ C & -6.5 \\ \hline Pulse \ Diode \ Forward \ Current & I_S & I_S = -5.6 \ A, \ V_{GS} = 0 \ V & -0.71 & -1.2 & V \\ \hline Body \ Diode \ Reverse \ Recovery \ Time & t_{rr} & I_F = -5.6 \ A, \ dI/dt = 100 \ A/\mu S, \ T_J = 25 \ C & 113 & T_T \\ \hline \ \ 13 & T_T & P_{TC} & $	Gate-Source Charge	Q _{gs}	$V_{DS} = -10$ V, $V_{GS} = -4.5$ V, $I_{D} = -7.0$ A		3.5		
$ \begin{array}{c c c c c c c } \hline Turn-On \ Delay \ Time & t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Gate-Drain Charge	Q _{gd}			5.5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate Resistance	R _g	f = 1 MHz	0.4	2.0	4.0	Ω
$\begin{tabular}{ c c c c c c } \hline Turn-Off DelayTime & t_d(off) \\ \hline Fall Time & t_f & \\ \hline Turn-On Delay Time & t_d(on) \\ \hline Rise Time & t_r & \\ \hline Turn-Off DelayTime & t_d(off) \\ \hline Rise Time & t_r & \\ \hline Turn-Off DelayTime & t_d(off) \\ \hline Fall Time & t_f & \\ \hline D \cong -5.6 \ A, \ V_{GEN} = -10 \ V, \ R_L = 2.7 \ \Omega & \\ I_D \cong -5.6 \ A, \ V_{GEN} = -4.5 \ V, \ R_g = 1 \ \Omega & 22 & 33 \\ \hline I_D \cong -5.6 \ A, \ V_{GEN} = -4.5 \ V, \ R_g = 1 \ \Omega & 22 & 33 \\ \hline I_D \cong -5.6 \ A, \ V_{GEN} = -4.5 \ V, \ R_g = 1 \ \Omega & 22 & 33 \\ \hline I_D \cong -5.6 \ A, \ V_{GEN} = -4.5 \ V, \ R_g = 1 \ \Omega & 22 & 33 \\ \hline I_D \cong -5.6 \ A, \ V_{GEN} = -4.5 \ V, \ R_g = 1 \ \Omega & 22 & 33 \\ \hline I_D \cong -5.6 \ A, \ V_{GEN} = -4.5 \ V, \ R_g = 1 \ \Omega & 22 & 33 \\ \hline I_D \cong -5.6 \ A, \ V_{GEN} = -4.5 \ V, \ R_g = 1 \ \Omega & 22 & 33 \\ \hline I_D \cong -5.6 \ A, \ V_{GEN} = -5.6 \ A, \ V_{GEN} = 0 \ V & -0.71 \ -1.2 \ V \\ \hline I_D \cong -3.0 \ A & -30 \\ \hline I_S = -5.6 \ A, \ V_{GS} = 0 \ V & -0.71 \ -1.2 \ V \\ \hline Body \ Diode \ Reverse \ Recovery \ Time \ t_{rr} & \\ \hline Body \ Diode \ Reverse \ Recovery \ Time \ t_a & \\ \hline I_F = -5.6 \ A, \ M /dt = 100 \ A/\mus, \ T_J = 25 \ C \\ \hline I_T \ I_T$	Turn-On Delay Time	t _{d(on)}			10	20	
$\begin{tabular}{ c c c c c c c c c c c } \hline Fall Time & t_f & f & g & 18 \\ \hline Turn-On Delay Time & t_d(on) & & & & & & & & & & & & & & & & & & &$	Rise Time	t _r	V_{DD} = - 10 V, R_L = 2.7 Ω		13	20	
$\begin{tabular}{ c c c c c c c c c c } \hline Turn-On Delay Time & t_d(on) & t_d(on) & & & & & & & & & & & & & & & & & & &$	Turn-Off DelayTime	t _{d(off)}	$\text{I}_\text{D}\cong$ - 5.6 A, V_GEN = - 10 V, R_g = 1 Ω		23	35	
$\begin{tabular}{ c c c c c c c } \hline Turn-On Delay Time & t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Fall Time	t _f			9	18	nc
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time	t _{d(on)}			38	57	115
Fall Time t_f 1117Drain-Source Body Diode CharacteristicsContinous Source-Drain Diode Current I_S $T_C = 25 \text{ °C}$ -6.5 Pulse Diode Forward Current I_SM -30 ABody Diode Voltage V_{SD} $I_S = -5.6 \text{ A}, V_{GS} = 0 \text{ V}$ -0.71 -1.2 VBody Diode Reverse Recovery Time t_{rr} 222 33 nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = -5.6 \text{ A}, dI/dt = 100 \text{ A/µs}, T_J = 25 \text{ °C}$ 17 26 nCReverse Recovery Fall Time t_a $T_F = -5.6 \text{ A}, dI/dt = 100 \text{ A/µs}, T_J = 25 \text{ °C}$ 13 T_{rr}	Rise Time	t _r	V_{DD} = - 10 V, R_L = 2.7 Ω		89	134	
$\begin{tabular}{ c c c c c c } \hline \hline Drain-Source Body Diode Characteristics \\ \hline \hline Continous Source-Drain Diode Current & I_S & T_C = 25 \ ^{\circ}C & -6.5 \\ \hline Pulse Diode Forward Current & I_{SM} & -30 \\ \hline Body Diode Voltage & V_{SD} & I_S = -5.6 \ A, \ V_{GS} = 0 \ V & -0.71 & -1.2 & V \\ \hline Body Diode Reverse Recovery Time & t_{rr} & 22 & 33 & ns \\ \hline Body Diode Reverse Recovery Charge & Q_{rr} & I_F = -5.6 \ A, \ dI/dt = 100 \ A/\mus, \ T_J = 25 \ ^{\circ}C & 13 & ns \\ \hline \hline \hline \ 13 & ns \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Turn-Off DelayTime	t _{d(off)}	$I_D \cong$ - 5.6 A, V_{GEN} = - 4.5 V, R_g = 1 Ω		22	33	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time	t _f			11	17	
Pulse Diode Forward CurrentIsm- 30ABody Diode Voltage V_{SD} $I_S = -5.6 \text{ A}, V_{GS} = 0 \text{ V}$ - 0.71- 1.2VBody Diode Reverse Recovery Time t_{rr} 2233nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = -5.6 \text{ A}, dl/dt = 100 \text{ A/µs}, T_J = 25 °C$ 1726nCReverse Recovery Fall Time t_a nsnsns	Drain-Source Body Diode Characteris	stics					
Pulse Diode Forward Current I_{SM} - 30Body Diode Voltage V_{SD} $I_S = -5.6 \text{ A}, V_{GS} = 0 \text{ V}$ - 0.71- 1.2VBody Diode Reverse Recovery Time t_{rr} 2233nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = -5.6 \text{ A}, dI/dt = 100 \text{ A/µs}, T_J = 25 ^{\circ}\text{C}$ 1726nCImage: Second Se	Continous Source-Drain Diode Current	۱ _S	T _C = 25 °C			- 6.5	Δ
Body Diode Reverse Recovery Time t_{rr} 2233nsBody Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a	Pulse Diode Forward Current	I _{SM}				- 30	
Body Diode Reverse Recovery Charge Q_{rr} $I_F = -5.6 \text{ A}, dl/dt = 100 \text{ A/}\mu\text{s}, T_J = 25 \text{ °C}$ 1726nCReverse Recovery Fall Time t_a	Body Diode Voltage	V _{SD}	I _S = - 5.6 A, V _{GS} = 0 V		- 0.71	- 1.2	V
Reverse Recovery Fall Time t_a $I_F = -5.6 \text{ A}, dl/dt = 100 \text{ A}/\mu\text{s}, I_J = 25 \text{ °C}$ 13 ns	Body Diode Reverse Recovery Time	t _{rr}			22	33	ns
Reverse Recovery Fall Time t _a ns	Body Diode Reverse Recovery Charge	Q _{rr}	$I_{5} = 5.6 \text{ A } dI/dt = 100 \text{ A/us} T_{25} \circ \text{C}$		17	26	nC
Reverse Recovery Rise Time t _b 9	Reverse Recovery Fall Time	t _a	[1] = -3.0 A, and = 100 A/ µs, 1] = 23 C		13		ne
	Reverse Recovery Rise Time	t _b			9		113

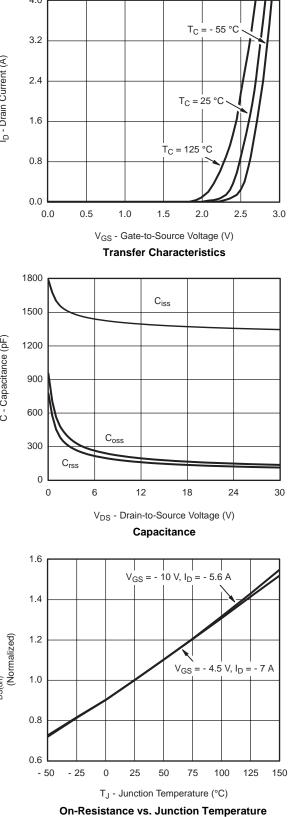
Notes:

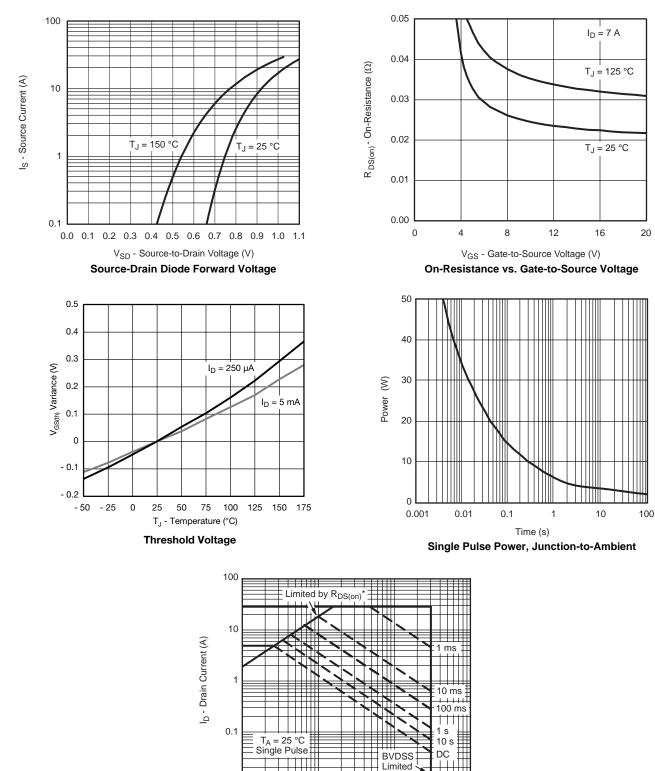
a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.


b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

semi


www.VBsemi.com



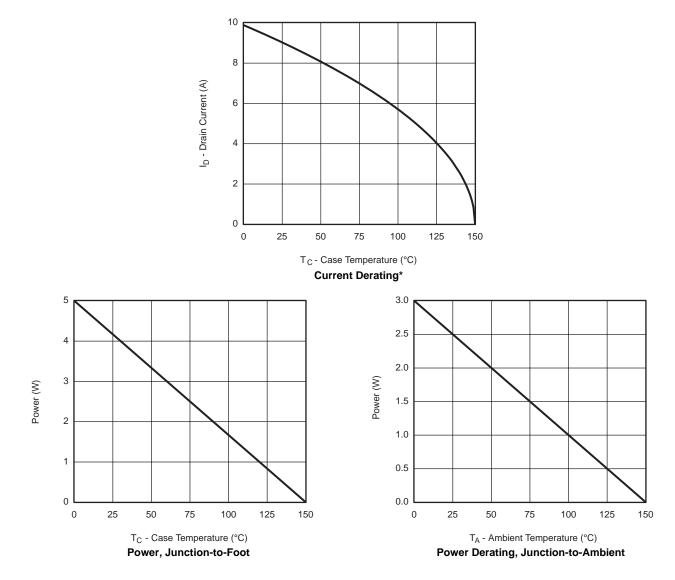
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

服务热线:400-655-8788

10

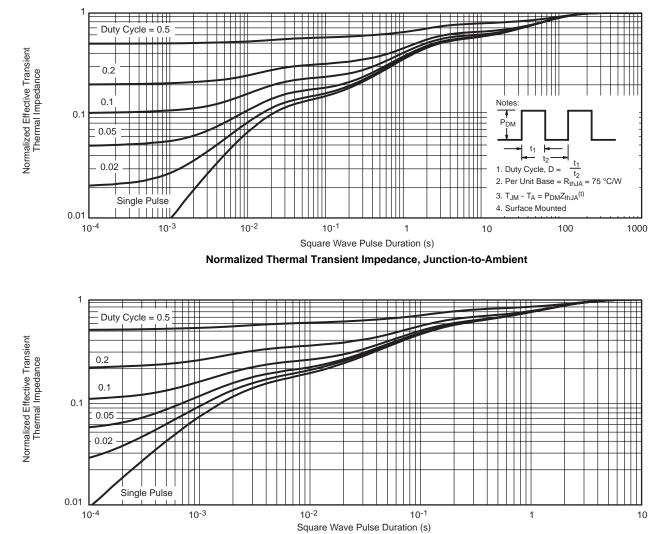
 $\label{eq:VDS} V_{DS} \mbox{ - Drain-to-Source Voltage (V)} $$ V_{GS} \mbox{ > minimum V}_{GS} at which $R_{DS(on)}$ is specified $$ Safe Operating Area $$$

1

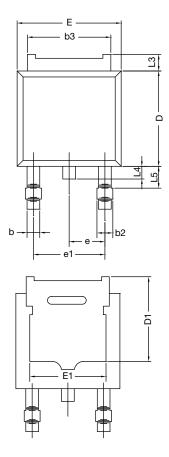

100

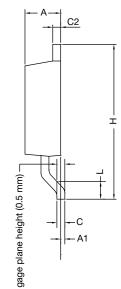
0.01 L

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

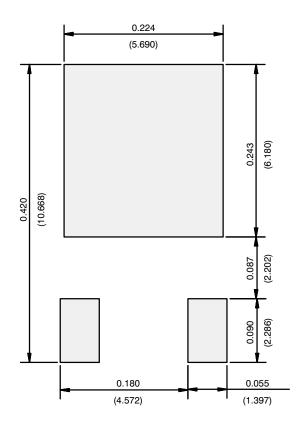
* The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



Normalized Thermal Transient Impedance, Junction-to-Foot

TO-252AA CASE OUTLINE


	MILLIMETERS		INC	HES		
DIM.	MIN.	MAX.	MIN.	MAX.		
А	2.18	2.38	0.086	0.094		
A1	-	0.127	-	0.005		
b	0.64	0.88	0.025	0.035		
b2	0.76	1.14	0.030	0.045		
b3	4.95	5.46	0.195	0.215		
С	0.46	0.61	0.018	0.024		
C2	0.46	0.89	0.018	0.035		
D	5.97	6.22	0.235	0.245		
D1	5.21	-	0.205	-		
E	6.35	6.73	0.250	0.265		
E1	4.32	-	0.170	-		
Н	9.40	10.41	0.370	0.410		
е	2.28 BSC		0.090	0.090 BSC		
e1	4.56 BSC		0.180 BSC			
L	1.40	1.78	0.055	0.070		
L3	0.89	1.27	0.035	0.050		
L4	-	1.02	-	0.040		
L5	1.14	1.52	0.045	0.060		
ECN: X12-0247-Rev. M, 24-Dec-12 DWG: 5347						

Note

• Dimension L3 is for reference only.

RECOMMENDED MINIMUM PADS FOR DPAK (TO-252)

Recommended Minimum Pads Dimensions in Inches/(mm)

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.