

MOS Integrated Circuit V850ES/FG2

32-bit single-chip micro controller

INTRODUCTION

The V850ES/FG2 are 32-bit single-chip microcontrollers that include the V850ES CPU core and integrate peripheral functions such as timers/counters, serial interfaces, and an A/D converter. These microcontrollers also incorporate a CAN (Controller Area Network) as an automotive LAN.

In addition to highly real-time responsive, 1-clock-pitch basic instructions, these microcontrollers have instructions ideal for digital servo applications, such as multiplication instructions using a hardware multiplier, sum-of-products operation instructions, and bit manipulation instructions. These microcontrollers can also realize a real-time control system that is highly cost effective and can be used in automotive instrumentation fields.

FEATURES

- Number of instructions: 83
- Minimum instruction execution time: 50 ns (main clock (fxx) = 20 MHz)
- General-purpose registers: 32 bits \times 32
- Power-on clear function
- Low-voltage detection function
- Ring-OSC: 200 kHz (TYP.)
- Internal memory:
 - RAM: 6/12/16 KB
 - Flash memory: 256/384KB
 - Mask ROM: 128/256KB
- Interrupts/exceptions :
 - Non-maskable interrupts : 1 source
 - Maskable interrupts : 61 sources
 - Software exceptions: 2 sources
 - Exception trap: 1 source
- I/O lines I/O ports: 84
- Timer/counters:
 - 16-bit interval timer M (TMM): 1 ch
 - 16-bit timer/event counter P (TMP): 4 ch
 - 16-bit timer/event counter Q (TMQ): 2 ch
- Watch timer: 1 ch
- Watchdog timer 2: 1 ch
- Serial interface (SIO):
 - Asynchronous serial interface A (UART): 3 ch
 - 3-wire variable-length serial interface B (CSIB): 2 ch
- CAN controller: 2 ch
- A/D converter 10-bit resolution: 16 ch
- Clock generator Main clock/subclock operation:
 - CPU clock in seven steps (fxx, fxx/2, fxx/4, fxx/8, fxx/16, fxx/32, fxt)
 - Clock-through mode/PLL mode selectable
 - Internal oscillator: 200 kHz (TYP.)
- Power save function: HALT/IDLE1/IDLE2/software STOP/subclock/sub-IDLE modes
- Package: 100-pin plastic LQFP (fine pitch) (14×14)

Part Number	Internal ROM	Internal RAM	CAN I/F
uPD703234	128KB (Mask ROM)	6KB	2 channel
uPD703235	256KB (Mask ROM)	12KB	2 channel
UPD70F3234	128KB (Flash)	6KB	2 channel
uPD70F3235	256KB (Flash)	12KB	2 channel
uPD70F3236	384KB (Flash)	16KB	2 channel

NEC

Table of Contents

1. Electrical Specifications	4
1.1 Electrical Specifications of (A)-Grade	4
1.1.1 Absolute maximum ratings	4
1.1.2 Capacitance	8
1.1.3 Operating conditions	8
1.1.4 Oscillator Characteristics	9
1.1.5 PLL Characteristics	11
1.1.6 Ring-OSC Characteristics	11
1.1.7 Voltage Regulator Characteristics	11
1.1.8 DC Characteristics	12
1.1.9 Data Retention Characteristics	16
1.1.10 AC Characteristics	17
1.2 Electrical Specifications of (A1)-Grade	28
1.2.1 Absolute maximum ratings	28
1.2.2 Capacitance	32
1.2.3 Operating conditions	32
1.2.4 Oscillator Characteristics	33
1.2.5 PLL Characteristics	35
1.2.6 Ring-OSC Characteristics	35
1.2.7 Voltage Regulator Characteristics	35
1.2.8 DC Characteristics	36
1.2.9 Data Retention Characteristics	40
1.2.10 AC Characteristics	41
1.3 Electrical Specifications of (A2)-Grade	52
1.3.1 Absolute maximum ratings	52
1.3.2 Capacitance	56
1.3.3 Operating conditions	56
1.3.4 Oscillator Characteristics	57
1.3.5 PLL Characteristics	59
1.3.6 Ring-OSC Characteristics	59
1.3.7 Voltage Regulator Characteristics	59
1.3.8 DC Characteristics	60
1.3.9 Data Retention Characteristics	64
1.3.10 AC Characteristics	65
2. Injected Current Specification	76
2.1 Injected Current Specification of (A)-Grade	76
2.1.1 Absolute Maximum Ratings	76
2.1.2 DC Characteristics for overload current	76
2.1.3 DC Characteristics for pins influenced by injected current on an adjacent pin	77
2.1.4 A/D converter influenced by injected current on an adjacent pin	78
2.2 Injected Current Specification of (A1)-Grade	79
2.2.1 Absolute Maximum Ratings	79
2.2.2 DC Characteristics for overload current	79
2.2.3 DC Characteristics for pins influenced by injected current on an adjacent pin	80
2.2.4 A/D converter influenced by injected current on an adjacent pin	81
2.3 Injected Current Specification of (A2)-Grade	82

2.3.1 Absolute Maximum Ratings	82
2.3.2 DC Characteristics for overload current	82
2.3.3 DC Characteristics for pins influenced by injected current on an adjacent pin	83
2.3.4 A/D converter influenced by injected current on an adjacent pin	84
3. Package Drawings	85
Figure 3-1: Package Drawing	
4. Recommended Soldering Conditions	
Table 4-1: Soldering Conditions	86

1. Electrical Specifications

1.1 Electrical Specifications of (A)-Grade

1.1.1 Absolute maximum ratings

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD	$V_{DD} = EV_{DD} = BV_{DD}$	–0.5 to +6.5	V
	BVDD	$V_{DD} = EV_{DD} = BV_{DD}$	–0.5 to +6.5	V
	EVDD	$V_{DD} = EV_{DD} = BV_{DD}$	–0.5 to +6.5	V
	AV _{REF0}		–0.5 to +6.5	V
	Vss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
	AVss	–0.5 to +0.5	V	
	BVss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
	EVss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
Input voltage	VI1	P00 to P06, P10, P11, P30 to P39, P40 to P42, P50 to P55, P90 to P915, RESET, FLMD0	-0.5 to EV _{DD} + 0.5 ^{Note}	V
	Vı2	PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	-0.5 to BV _{DD} + 0.5 ^{Note}	V
	Vıз	X1, X2, XT1, XT2	–0.5 to V _{RO} + 0.5 ^{Note}	V
Analog input voltage	VIAN	P70 to P715	-0.5 to AV _{REF0} + 0.5 Note	V

Absolute maximum ratings (T_A = 25°C): Flash memory products (1/2)

Note Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.

- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Paramotor	Symbol	Conditions		Patings	Llpit
Falameter	Symbol	Conditions		nalings	Unit
Output current, low	Iol	P00 to P06, P10, P11, P30 to P39,	Per pin	4	mA
		P40 to P42, P50 to P55, P90 to P915	Total of all pins	50	mA
		P70 to P715	Per pin	4	mA
			Total of all pins	20	mA
		PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	Per pin	4	mA
			Total of all pins	50	mA
Output current, high	Іон	P00 to P06, P10, P11, P30 to P39, P40 to P42, P50 to P55, P90 to P915	Per pin	-4	mA
			Total of all pins	-50	mA
		P70 to P715	Per pin	-4	mA
			Total of all pins	-20	mA
		PCM0 to PCM3, PCS0, PCS1, PCT0,	Per pin	-4	mA
		PCT1, PCT4, PCT6, PDL0 to PDL13	Total of all pins	-50	mA
Operating ambient temperature	TA	Normal operating mode		-40 to +85	°C
		Flash programming mode		-40 to +85	°C
Storage temperature	Tstg			-40 to +125	°C

Absolute maximum ratings (T_A = 25°C): Flash memory products (2/2)

- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or Vcc and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD	$V_{DD} = EV_{DD} = BV_{DD}$	–0.5 to +6.5	V
	BVDD	$V_{DD} = EV_{DD} = BV_{DD}$	–0.5 to +6.5	V
	EVDD	$V_{DD} = EV_{DD} = BV_{DD}$	–0.5 to +6.5	V
	AV _{REF0}		–0.5 to +6.5	V
	Vss Vss = EVss = BVss = AVss			
	AVss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
	BVss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
	EVss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
Input voltage	VI1	P00 to P06, P10, P11, P30 to P39, P40 to P42, P50 to P55, P90 to P915, RESET, IC	-0.5 to EV _{DD} + 0.5 ^{Note}	V
	Vı2	PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	-0.5 to BV _{DD} + 0.5 ^{Note}	V
	Vıз	X1, X2, XT1, XT2	–0.5 to V _{RO} + 0.5 ^{Note}	V
Analog input voltage	VIAN	P70 to P715	-0.5 to AV _{REF0} + 0.5 Note	V

Absolute maximum ratings (T_A = 25°C): Mask ROM products (1/2)

Note Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.

- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or Vcc and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Conditions		Ratings	Unit
Output current, low	lol	P00 to P06, P10, P11, P30 to P39,	Per pin	4	mA
		P40 to P42, P50 to P55, P90 to P915	Total of all pins	50	mA
		P70 to P715	Per pin	4	mA
			Total of all pins	20	mA
		PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	Per pin	4	mA
			Total of all pins	50	mA
Output current, high	Іон	P00 to P06, P10, P11, P30 to P39,	Per pin -4		mA
		P40 to P42, P50 to P55, P90 to P915	Total of all pins	-50	mA
		P70 to P715	Per pin	-4	mA
			Total of all pins	-20	mA
		PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	Per pin	-4	mA
			Total of all pins	-50	mA
Operating ambient temperature	TA	Normal operating mode		-40 to +85	°C
Storage temperature	Tstg			–65 to +150	°C

Absolute maximum ratings (T_A = 25°C): Mask ROM products (2/2)

- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

1.1.2 Capacitance

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
I/O capacitance	Сю	fx = 1 MHz,			10	pF
		Unmeasured pins returned to 0 V.				

(TA = 25°C, VDD = EVDD = AVREF0 = BVDD = AVREF1 = VSS = EVSS = BVSS = AVSS = 0 V)

1.1.3 Operating conditions

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Internal system clock frequency	fсıк	REGC Capacity = 4.7 μ F, at operation with main clock	4		20	MHz
		REGC Capacity = 4.7 μ F, at operation with subclock (crystal resonator)	32		35	kHz
		REGC Capacity = 4.7 μ F, at operation with subclock (RC resonator)	12.5 Note		27.5 Note	kHz

Note The internal system clock frequency is half the oscillation frequency.

1.1.4 Oscillator Characteristics

Main clock oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillation frequency (fx)		4		5	MHz
		Oscillation	After reset release		2 ¹⁶ /fx		s
		stabilization time Note 2	After STOP mode release	0.5 ^{Note 3}	Note 4		ms
			After IDLE2 mode release	0.35	Note 4		ms
Crystal resonator	111	Oscillation frequency (fx) ^{Note 1}		4		5	MHz
		Oscillation	After reset release		2 ¹⁶ /fx		s
		stabilization time Note 2	After STOP mode release	0.5 ^{Note 3}	Note 4		ms
			After IDLE2 mode release	350	Note 4		μs

Notes 1. Indicates only oscillator characteristics.

- 2. Time required to stabilize the crystal resonator after reset or STOP mode is released.
- 3. Time required to stabilize access to the internal flash memory.
- 4. The value differs depending on the OSTS register settings.
- Cautions 1. When using the main clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. When the main clock is stopped and the device is operating on the subclock, wait until the oscillation stabilization time has been secured by the program before switching back to the main clock.

Subclock oscillator characteristics

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT1 XT2	Oscillation frequency (fxT) ^{Note 1}		32	32.768	35	kHz
Note 5		Oscillation stabilization time ^{Note 2}				10	S
RC resonator	XT1 XT2	Oscillation frequency (fxr) ^{Notes1, 4}	$R = 390 \text{ k}\Omega \pm 5\%^{\text{Note 3}}$ $C = 47 \text{ pF} \pm 10\%^{\text{Note 3}}$	25	40	55	kHz
		Oscillation stabilization time ^{Note 2}				100	μs

Notes 1. Indicates only oscillator characteristics. Refer to 27. 1. 10 AC Characteristics for CPU operating clock.

- 2. Time required from when VDD reaches oscillation voltage range (MIN.: 3.5 V) to when the crystal resonator stabilizes.
- 3. In order to avoid the influence of wiring capacity, shorten wiring as much as possible.
- **4.** RC oscillation frequency is 40 kHz (Typ.). This clock is divided (1/2) internally. In case of RC oscillator, internal system clock frequency (fxT) is 12.5 kHz (Min.), 20 kHz (Typ.), and 27.5 kHz (Max.).
- 5. The values of capacitors C1', C2' and resistors R'1 depend on the resonator used and must be specified in cooperation with the manufacturer.

Cautions 1. When using the subclock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. The subclock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main clock oscillator. Particular care is therefore required with the wiring method when the subclock is used.

1.1.5 PLL Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit			
Input frequency	fx		4		5	MHz			
Output frequency	f _{xx}		16		20	MHz			
Clock time	t PLL	After VDD reaches MIN.: 3.5 V			800	μs			

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

1.1.6 Ring-OSC Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD}, V_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output frequency	fr		100	200	400	kHz

1.1.7 Voltage Regulator Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage	VDD		3.5		5.5	V
Output voltage	VRO			2.5		V
Lock time	treg	After VDD reaches MIN.: 3.5 V			1	ms
		Connect C = 4.7 μ F \pm 20% to REGC pin				

Note 1. The lock time does not have to be considered for devices that have POC.

1.1.8 DC Characteristics

(1) Input/Output level

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P30, P34, P38, P41, P98, P91	1	0.7EVDD		EVDD	V
	VIH2	P00 to P06, P10, P11, P31 to P40, P42, P50 to P55, P90 to P912 to P915	P00 to P06, P10, P11, P31 to P33, P35, P39, P40, P42, P50 to P55, P90 to P97, P99, P910, P912 to P915 PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13			EVDD	V
	Vінз	PCM0 to PCM3, PCS0, PCS1, PCT4, PCT6, PDL0 to PDL13				BVDD	V
	VIH4	P70 to P715	P70 to P715			AV _{REF0}	V
	VIH5	RESET, FLMD0		0.8EVDD		EVDD	V
Input voltage, low	VIL1	P30, P34, P38, P41, P98, P911		EVss		0.3EVDD	V
	VIL2	P00 to P06, P10, P11, P31 to P40, P42, P50 to P55, P90 to P912 to P915	EVss		0.2EV _{DD}	V	
	VIL3	PCM0 to PCM3, PCS0, PCS1, PCT4, PCT6, PDL0 to PDL13	, PCT0, PCT1,	BVss		0.3BVdd	V
	VIL4	P70 to P715	AVss		0.3AVREFO	V	
	VIL5	RESET, FLMD0	EVss		0.2EVDD	V	
Output voltage,	Vон1	P00 to P06, P10, P11,	Іон = -1.0 mA	EV _{DD} - 1.0		EVDD	V
high		P30 to P39, P40 to P42, P50 to P55, P90 to P915	Iон = -0.1 mA	$EV_{\text{DD}}-0.5$		EVDD	V
	Vон2	PCM0 to PCM3, PCS0,	Iон = -1.0 mA	BV _{DD} - 1.0		BVDD	V
		PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	Iон = -0.1 mA	$BV_{\text{DD}}-0.5$		BVDD	V
	Vонз	P70 to P715	Iон = -1.0 mA	AVREF0 - 1.0		AV REF0	V
			Iон = -0.1 mA	AVREF0 - 0.5		AV _{REF0}	V
Output voltage, Note 1 Iow	Vol1	P00 to P06, P10, P11, P30 to P39, P40 to P42, P50 to P55, P90 to P915	lo∟ = 1.0 mA	0		0.4	V
	Vol2	PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	IoL = 1.0 mA	0		0.4	V
	Vol3	P70 to P715	lo∟ = 1.0 mA	0		0.4	V
Pull-up resistor	R1	$V_{I} = 0 V$		10	30	100	kΩ
Pull-down resistor	R2	Vi = Vdd		10	30	100	kΩ

Notes 1. Total IOH/IOL (Max.) is 20 mA/-20 mA each power supply terminal (EVDD, BVDD and AVREF0).

- **2.** DRST pin only (OCDM0 is the control register).
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

(2) Pin leakage current

1	T _A = _40 to ±85°C	-35V to $55V$ $40V$	/ < AVREEN < 5 5 V	Vee - EVee - BVee	$-\Delta V_{ee} - \Omega V_{A}$
۰.	IA = -70 10 T03 0			, voo - Lvoo - Dvoo	$- A v_{33} - V v_{1}$

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	$V_{\text{IN}} = V_{\text{DD}}$	Analog pins			+0.2	μA
			Other pins			+0.5	
Input leakage current, low		$V_{IN} = 0 V$	Analog pins			-0.2	μA
			Other pins			-0.5	
Output leakage current, high	ILOH1	Vo = Vdd	Analog pins			+0.2	μA
			Other pins			+0.5	
Output leakage current, low	ILOL1	Vo = 0 V	Analog pins			-0.2	μA
			Other pins			-0.5	

Note 1. For flash memory product, specification of FLMD0 is as follows:

Input leakage current, high: $2 \mu A$

Input leakage current, low: $-2 \mu A$

(3) Supply current

Supply current (V850ES/FG2: *µ* PD70F3236, *µ* PD70F3235, *µ* PD70F3234)

Parameter	Symbol	Cor	ditions	MIN.	TYP.	MAX.	Unit
Flash memory products supply current	Idd1	Normal operation	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		30	45	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		22		mA
	Idd2	HALT mode	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		18	28	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		11		mA
	Idd3	IDLE1 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.6	0.9	mA
	Idd4	IDLE2 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.25	0.7	mA
	Idd5	Subclock operation Notes 2, 3 mode	Crystal resonator fx⊤ = 32.768 kHz		200	400	μA
	Subclock operation mode ^{Notes 2, 3}	Subclock operation mode ^{Notes 2, 3}	RC resonator fxT = 40 kHz ^{Note 4}		200	400	μA
	Idd6	Sub-IDLE mode ^{Notes} 2, 3	Crystal resonator fxt = 32.768 kHz		20	120	μA
		Sub-IDLE Notes 2, 3 mode	RC resonator fxT = 40 kHz ^{Note 4}		35	140	μA
	Idd7	Stop mode ^{Notes 2, 5}	POC stopped, Ring-OSC stopped		7	50	μA
			POC operating, Ring-OSC stopped		10	55	μA
			POC stopped, Ring-OSC operating		15	65	μA
			POC operating, Ring-OSC operating		18	70	μA

Notes 1. Total current of VDD, EVDD, and BVDD (all ports stopped).

The current of AV_{REF0} and the port buffer current including the current flowing through the on-chip pull-up/pull-down resistors are not included.

- 2. When the main OSC is stopped.
- 3. POC operating, Ring-OSC operating.
- 4. The RC oscillation frequency is 40 kHz(TYP.). This clock is internally divided by 2.
- **5.** When the sub-OSC is not used.

Supply current (V850ES/FG2: μ PD703235, μ PD703234)

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
Mask ROM products supply current	Idd1	Normal operation	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		25	40	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		20		mA
	Idd2	HALT mode	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		14	24	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		9		mA
	Idd3	IDLE1 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.25	0.7	mA
	Idd4	IDLE2 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.2	0.7	mA
	Idd5	Subclock operation mode ^{Notes 2, 3}	Crystal resonator fxt = 32.768 kHz		50	350	μA
	IDD6	Sub-IDLE mode ^{Notes} 2, 3	Crystal resonator fxt = 32.768 kHz		20	120	μA
		Sub-IDLE Notes 2, 3 mode	RC resonator f _{XT} = 40 kHz ^{Note 4}		35	140	μA
	Idd7	Stop mode ^{Notes 2, 5}	POC stopped, Ring-OSC stopped		7	50	μA
			POC operating, Ring-OSC stopped		10	55	μA
			POC stopped, Ring-OSC operating		15	65	μA
			POC operating, Ring-OSC operating		18	70	μA

Notes 1. Total current of VDD, EVDD, and BVDD (all ports stopped).

The current of AVREFO and the port buffer current including the current flowing through the on-chip pull-up/pull-down resistors are not included.

- 2. When the main OSC is stopped.
- **3.** POC operating, Ring-OSC operating.
- 4. The RC oscillation frequency is 40 kHz(TYP.). This clock is internally divided by 2.
- 5. When the sub-OSC is not used.

1.1.9 Data Retention Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	VDDDR	In STOP mode	1.9		5.5	V
Data retention current	IDDDR	VDDDR = 2.0 V		6	450	μA
Supply voltage rise time	t RVD		1			μs
Supply voltage fall time	tevd		1			μs
Supply voltage retention time	t HVD	After STOP mode release	0			ms
STOP release signal input time	t DREL	After VDD reaches MIN.: 3.5 V	0			μs
Data retention input voltage, high	VIHDR	All input ports	0.9VDDDR		VDDDR	V
Data retention input voltage, low	VILDR	All input ports	0		0.1VDDDR	V

STOP Mode ($T_A = -40$ to +85°C.	$V_{DD} = EV_{DD} = BV_{DD} =$	1.9 V to 5.5 V. Vss =	EVss = BVss = AVss = 0 V	n
				1

Caution Shifting to STOP mode and restoring from STOP mode must be performed within the rated operating range.

NEC

1.1.10 AC Characteristics

AC Test Input Measurement Points (VDD, AVDD, EVDD, BVDD)

AC Test Output Measurement Points

Load Conditions

(1) CLKOUT output timing

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Output cycle	tсүк		50 ns	80 <i>µ</i> s	
High-level width	twкн		tсүк/2 – 15		ns
Low-level width	twĸ∟		tсүк/2 – 15		ns
Rise time	tкв			15	ns
Fall time	t KF			15	ns

Clock Timing

NEC

(2) Basic Operation

(a) Reset, Interrupt timing

 $(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = EV_{DD} = BV_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le AV_{REF0} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
RESET low-level width	twrsl		500		ns
NMI high-level width	twnih	Analog noise elimination	500		ns
NMI low-level width	twnil	Analog noise elimination	500		ns
INTPn ^{Note 1} high-level	twiтн	Analog noise elimination $(n = 0 \text{ to } 7)$	500		ns
width		Digital noise elimination $(n = 3)$	Note 2		ns
INTPn ^{Note 1} low-level	twi⊤∟	Analog noise elimination $(n = 0 \text{ to } 7)$	500		ns
width		Digital noise elimination (n = 3)	Note 2		ns

Notes 1. ADTRG is same spec (P03/INTP0/ADTRG). DRST is same spec (P05/INTP2/DRST).

2Tsamp + 20 or 3Tsamp + 20Tsamp: Sampling clock for noise elimination

Reset/Interrupt

(b) Key return timing

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
KRn input high-level width	twĸĸн	Analog noise elimination $(n = 0 \text{ to } 7)$	500		ns
KRn input low-level width	t wkrl		500		ns

(c) Timer input timing

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
TIn high-level width	tтıн	TIP00, TIP01, TIP10, TIP11, TIP20,	Note		ns
TIn low-level width	t⊤ı∟	TIQ00 to TIQ03, TIQ10 to TIQ13	Note		ns

Note 2Tsamp + 20 or 3Tsamp + 20

Tsamp: Sampling clock for noise elimination

NEC

(d) CSIB timing

(i) Master mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCKBn cycle time	t KCYn		125		ns
SCKBn high-level width	t KHn		tксүл/2 – 15		ns
SCKBn low-level width	t KLn		tксүл/2 – 15		ns
SIBn setup time (to SCKBn↑)	t sıĸn		30		ns
SIBn hold time (from SCKBn↑)	t KSIn		25		ns
Output delay time from $\overline{\text{SCKBn}}\downarrow$ to SOBn	t KSOn			25	ns

Remark n = 0, 1

(ii) Slave mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCKBn cycle time	t ксүл		200		ns
SCKBn high-level width	tкнn		90		ns
SCKBn low-level width	t KLn		90		ns
SIBn setup time (to SCKBn↑)	t siKn		50		ns
SIBn hold time (from SCKBn↑)	t KSIn		50		ns
Output delay time from $\overline{SCKBn}\downarrow$ to SOBn	t KSOn			50	ns

Remark n = 0, 1

(e) UART timing

 $(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = EV_{DD} = BV_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le AV_{REF0} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Communication rate				312.5	kbps
ASCK0 cycle time				10	MHz

NEC

(f) CAN timing

 $(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = EV_{DD} = BV_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le AV_{REF0} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate				1	Mbps
Internal delay time				100	ns

Note Internal delay time (tNODE) = Internal transfer delay time (tOUTPUT) + Internal receive delay time (tINPUT)

(g) A/D converter

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{C}_{L} = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution					10	bit
Overall error Note		$4.0 \leq AV_{\text{REF0}} \leq 5.5 \text{ V}$		±0.15	±0.3	%FSR
Conversion time	t CONV		3.1		16	μs
Analog input voltage	VIAN		AVss		AV _{REF0}	V
AVREF0 current	IAREF0	When using A/D converter		5	10	mA
		When not using A/D converter		1	10	μA

Note Excluding quantization error (±0.05%FSR). Indicates the ratio to the full-scale value (%FSR).

Remark FSR: Full Scale Range

(h) POC circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC0		3.5	3.7	3.9	V
Power supply startup time	tртн	$V_{\text{DD}} = 0 \; V \rightarrow 3.5 \; V$	0.002			ms
Response delay time 1 Note 1	t PTHD	In case of power on.			3.0	ms
		After VDD reaches 3.9 V.				
Response delay time 2 Note	t PD	In case of power off.			1	ms
2		After VDD drops 3.5 V.				
Minimum VDD width	tPW		0.2			ms

Notes 1. From detect voltage to release reset signal.

2. From detect voltage to output reset signal.

(i) LVI circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VLVIO		4.2	4.4	4.6	V
	VLVI1		4.0	4.2	4.4	V
Response time ^{Note 1}	tld	After VDD reaches VLVI0/VLVI1 (Max.). After VDD drops VLVI0/VLVI1 (Min.).		0.2	2.0	ms
Minimum Vod width	t∟w		0.2			ms
Reference voltage stabilization wait time ^{Note 2}	L IWAIT	After V _{DD} reaches 3.5 V. After LVION bit (LVIM.bit7) = $0 \rightarrow 1$		0.1	0.2	ms

Notes 1. The time required to output an interrupt/reset after the detection voltage is detected.

2. Unnecessary when the POC function is used.

(j) RAM retention flag characteristics

 $(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = EV_{DD} = BV_{DD} = 1.9 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le AV_{REF0} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VRAMH		1.9	2.0	2.1	V
Supply voltage rise time	tramhth	$V_{\text{DD}} = 0 \ \text{V} \rightarrow 3.5 \ \text{V}$	0.002		1,800	ms
Response time ^{Note}	t RAMHD	After the supply voltage reaches the detection voltage (MAX.)		0.2	2.0	ms
Minimum VDD width	tramhw		0.2			ms

Note Time required to set the RAMF bit after the detection voltage is detected.

(k) Flash memory programming characteristics

(i) Basic characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fcpu		4		20	MHz
Supply voltage	VDD		3.5		5.5	V
Number of writes	Cwrt Note				100	Times
Input voltage, high	VIH	FLMD0	0.8EVDD		EVDD	V
Input voltage, low	VIL	FLMD0	EVss		0.2EVDD	V
Write time + erase time	t IWRT	Flash: 256 KB (µPD70F3235)			T.B.D	S
	+ terase	384 KB (µPD70F3236)				
Programming temperature	t PRG		-40		+85	°C

Note The initial write when the product is shipped, any erase \rightarrow write set of operations, or any programming operation is counted as one rewrite.

(ii) Serial Write Operation Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
FLMD0 setup time from RESET↑	t RFCF		5000/fx+α			s
Count execution time	tcount				3	ms
FLMD0 high-level width	tсн		10		100	μs
FLMD0 low-level width	tc∟		10		100	μs
FLMD rise time	tR				50	ns
FLMD fall time	t⊧				50	ns

Note " " represents the oscillation stabilization time.

1.2 Electrical Specifications of (A1)-Grade

1.2.1 Absolute maximum ratings

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD	$V_{DD} = EV_{DD} = BV_{DD}$	–0.5 to +6.5	V
	BVDD	$V_{DD} = EV_{DD} = BV_{DD}$	–0.5 to +6.5	V
	EVDD	$V_{DD} = EV_{DD} = BV_{DD}$	–0.5 to +6.5	V
	AV _{REF0}		–0.5 to +6.5	V
	Vss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
	AVss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
	BVss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
	EVss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
Input voltage	VII	P00 to P06, P10, P11, P30 to P39, P40 to P42, P50 to P55, P90 to P915, RESET, FLMD0	-0.5 to EV _{DD} + 0.5 ^{Note}	V
	Vı2	PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	-0.5 to BV _{DD} + 0.5 ^{Note}	V
	Vı3	X1, X2, XT1, XT2	–0.5 to V _{RO} + 0.5 ^{Note}	V
Analog input voltage	VIAN	P70 to P715	-0.5 to AV _{REF0} + 0.5 Note	V

Absolute Maximum Ratings (T_A = 25°C): Flash memory products (1/2)

Note Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.

- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Conditions		Ratings	Unit
Output current, low	lo∟	P00 to P06, P10, P11, P30 to P39,	Per pin	4	mA
		P40 to P42, P50 to P55, P90 to P915	Total of all pins	50 ^{Note1}	mA
		P70 to P715	Per pin	4	mA
			Total of all pins	20 ^{Note2}	mA
		PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	Per pin	4	mA
			Total of all pins	50 ^{Note1}	mA
Output current, high	Іон	P00 to P06, P10, P11, P30 to P39,	Per pin	-4	mA
		P40 to P42, P50 to P55, P90 to P915	Total of all pins	-50 ^{Note1}	mA
		P70 to P715	Per pin	-4	mA
			Total of all pins	-20 ^{Note2}	mA
		PCM0 to PCM3, PCS0, PCS1, PCT0,	Per pin	-4	mA
		PCT1, PCT4, PCT6, PDL0 to PDL13	Total of all pins	-50 ^{Note1}	mA
Operating ambient temperature	TA	Normal operating mode	mal operating mode		°C
		Flash programming mode		-40 to +85	°C
Storage temperature	Tstg			-40 to +125	°C

Absolute maximum ratings (T_A = 25°C): Flash memory products (2/2)

- Notes 1. This value is a value at the time of $T_A = 25$ °C. At the time of $T_A = 110$ °C, This value is 20 mA/-20 mA.
 - 2. This value is a value at the time of $T_A = 25$ °C. At the time of $T_A = 110$ °C, This value is 10 mA/-10 mA.
- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or Vcc and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Conditions	Ratings	Unit	
Supply voltage	ply voltage VDD VDD = EVDD = BVDD			V	
	BVDD	$V_{DD} = EV_{DD} = BV_{DD}$	–0.5 to +6.5	V	
	EVDD	VDD = EVDD = BVDD	-0.5 to +6.5	V	
	AVREFO				
	Vss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V	
	AVss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V	
	BVss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V	
	EVss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V	
Input voltage	VI1	P00 to P06, P10, P11, P30 to P39, P40 to P42, P50 to P55, P90 to P915, RESET, IC	-0.5 to EV _{DD} + 0.5 ^{Note}	V	
	Vı2	PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	-0.5 to BV _{DD} + 0.5 ^{Note}	V	
	Vı3	X1, X2, XT1, XT2	-0.5 to V _{RO} + 0.5 ^{Note}	V	
Analog input voltage	VIAN	P70 to P715	-0.5 to AV _{REF0} + 0.5 Note	V	

Absolute Maximum Ratings (T_A = 25°C): Mask ROM products (1/2)

Note Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.

- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or Vcc and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

	1		-		
Parameter	Symbol	Conditions		Ratings	Unit
Output current, low	lo∟	P00 to P06, P10, P11, P30 to P39,	Per pin	4	mA
		P40 to P42, P50 to P55, P90 to P915	Total of all pins	50 ^{Note1}	mA
		P70 to P715	Per pin	4	mA
			Total of all pins	20 ^{Note2}	mA
		PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	Per pin	4	mA
			Total of all pins	50 ^{Note1}	mA
Output current, high	Іон	P00 to P06, P10, P11, P30 to P39, P40 to P42, P50 to P55, P90 to P915 P70 to P715	Per pin	-4	mA
			Total of all pins	-50 ^{Note1}	mA
			Per pin	-4	mA
			Total of all pins	-20 ^{Note2}	mA
		PCM0 to PCM3, PCS0, PCS1, PCT0,	Per pin	-4	mA
		PCT1, PCT4, PCT6, PDL0 to PDL13	Total of all pins	-50 ^{Note1}	mA
Operating ambient temperature	TA			-40 to +110	°C
Storage temperature	Tstg			-65 to +110	°C

Absolute maximum ratings (T_A = 25°C): Mask ROM products (2/2)

- Notes 1. This value is a value at the time of $T_A = 25$ °C. At the time of $T_A = 110$ °C, This value is 20 mA/-20 mA.
 - 2. This value is a value at the time of $T_A = 25$ °C. At the time of $T_A = 110$ °C, This value is 10 mA/-10 mA.
- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

1.2.2 Capacitance

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
I/O capacitance	Сю	fx = 1 MHz,			10	pF
		Unmeasured pins returned to 0 V.				

(TA = 25°C, VDD = EVDD = AVREF0 = BVDD = AVREF1 = VSS = EVSS = BVSS = AVSS = 0 V)

1.2.3 Operating conditions

$(T_{\text{A}} = -40 \text{ to } +110^{\circ}\text{C}, \text{V}_{\text{DD}} = \text{EV}_{\text{DD}} = \text{BV}_{\text{DD}} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Internal system clock frequency	fсlк	REGC Capacity = 4.7 μ F at operation with main clock			20	MHz
		REGC Capacity = 4.7 μ F at operation with subclock (RC resonator)	12.5 Note		27.5 Note	kHz

Note The internal system clock frequency is half the oscillation frequency.

1.2.4 Oscillator Characteristics

Main clock oscillator characteristics

$(T_A = -40 \text{ to } +110^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	nic ator	Oscillation frequency (fx)		4		5	MHz
		Oscillation	After reset release		2 ¹⁶ /fx		s
	tal hator	stabilization time ^{Note 2}	After STOP mode release	0.5 ^{Note 3}	Note 4		ms
		A re	After IDLE2 mode release	0.35	Note 4		ms
Crystal resonator		Oscillation frequency (fx) ^{Note 1}		4		5	MHz
		Oscillation	After reset release		2 ¹⁶ /fx		s
		stabilization time Note 2	After STOP mode release	0.5 ^{Note 3}	Note 4		ms
			After IDLE2 mode release	350	Note 4		μS

Notes 1. Indicates only oscillator characteristics.

- 2. Time required to stabilize the crystal resonator after reset or STOP mode is released.
- 3. Time required to stabilize access to the internal flash memory.
- 4. The value differs depending on the OSTS register settings.
- Cautions 1. When using the main clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. When the main clock is stopped and the device is operating on the subclock, wait until the oscillation stabilization time has been secured by the program before switching back to the main clock.

Subclock Oscillator Characteristics

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
RC resonator	XT1 XT2	Oscillation frequency (fxr) ^{Notes1, 4}	R = 390 kΩ \pm 5% ^{Note 3} C = 47 pF \pm 10% ^{Note 3}	25	40	55	kHz
		Oscillation stabilization time ^{Note 2}				100	μs

- Notes 1. Indicates only oscillator characteristics. Refer to 27. 2. 10 AC Characteristics for CPU operating clock.
 - 2. Time required from when VDD reaches oscillation voltage range (MIN.: 3.5 V) to when the crystal resonator stabilizes.
 - 3. In order to avoid the influence of wiring capacity, shorten wiring as much as possible.
 - **4.** RC oscillation frequency is 40 kHz (Typ.). This clock is divided (1/2) internally. In case of RC oscillator, internal system clock frequency (fxT) is 12.5 kHz (Min.), 20 kHz (Typ.), and 27.5 kHz (Max.).

Cautions 1. When using the subclock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. The subclock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main clock oscillator. Particular care is therefore required with the wiring method when the subclock is used.

1.2.5 PLL Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit			
Input frequency	fx		4		5	MHz			
Output frequency	f _{xx}		16		20	MHz			
Clock time	t PLL	After VDD reaches MIN.: 3.5 V			800	μs			

$(T_{A} = -40 \text{ to } +110^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

1.2.6 Ring-OSC Characteristics

$(T_A = -40 \text{ to } +110^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output frequency	fr		100	200	400	kHz

1.2.7 Voltage Regulator Characteristics

$(T_A = -40 \text{ to } +110^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage	VDD		3.5		5.5	V
Output voltage	VRO			2.5		V
Lock time	treg	After VDD reaches MIN.: 3.5 V			1	ms
		Connect C = 4.7 μ F \pm 20% to REGC pin				

Note 1. The lock time does not have to be considered for devices that have POC.

1.2.8 DC Characteristics

(1) Input/Output level

$(T_A = -40 \text{ to } +110^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Input voltage, high	VIH1	P30, P34, P38, P41, P98, P91	0.7EVDD		EVDD	V	
	VIH2	P00 to P06, P10, P11, P31 to I P40, P42, P50 to P55, P90 to I P912 to P915	0.8EVdd		EVDD	V	
	Vінз	PCM0 to PCM3, PCS0, PCS1, PCT4, PCT6, PDL0 to PDL13	0.7BVdd		BVDD	V	
	VIH4	P70 to P715	0.7AVREF0		AV _{REF0}	V	
	VIH5	RESET, FLMD0	0.8EVDD		EVDD	V	
Input voltage, low	VIL1	P30, P34, P38, P41, P98, P91	EVss		0.3EVDD	V	
	VIL2	P00 to P06, P10, P11, P31 to I P40, P42, P50 to P55, P90 to I P912 to P915	EVss		0.2EV _{DD}	V	
	VIL3	PCM0 to PCM3, PCS0, PCS1, PCT4, PCT6, PDL0 to PDL13	BVss		0.3BVDD	V	
	VIL4	P70 to P715	AVss		0.3AVREFO	V	
	VIL5	RESET, FLMD0	EVss		0.2EVDD	V	
Output voltage, high ^{Note 1}	Vон1	P00 to P06, P10, P11, P30 to P39, P40 to P42, P50 to P55, P90 to P915	Іон = -1.0 mA	EV _{DD} - 1.0		EVDD	V
			Iон = -0.1 mA	$EV_{\text{DD}} - 0.5$		EVDD	V
	Vон2	PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	Іон = -1.0 mA	BV _{DD} - 1.0		BVDD	V
			Iон = -0.1 mA	$BV_{\text{DD}}-0.5$		BVDD	V
	Vонз	P70 to P715	Іон = -1.0 mA	AVREF0 - 1.0		AV _{REF0}	V
			Іон = -0.1 mA	AVREF0 - 0.5		AV REF0	V
Output voltage, Note 1 Iow	Vol1	P00 to P06, P10, P11, P30 to P39, P40 to P42, P50 to P55, P90 to P915	lo∟ = 1.0 mA	0		0.4	V
	Vol2	PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	IoL = 1.0 mA	0		0.4	V
	Vol3	P70 to P715	lo∟ = 1.0 mA	0		0.4	V
Pull-up resistor	R1	V1 = 0 V		10	30	100	kΩ
Pull-down resistor	R2	VI = VDD		10	30	100	kΩ

Notes 1. Total IOH/IOL (Max.) is 20 mA/-20 mA each power supply terminal (EVDD, BVDD and AVREF0).

- 2. DRST pin only (OCDM0 is the control register).
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.
(2) Pin leakage current

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	$V_{\text{IN}} = V_{\text{DD}}$	Analog pins			+0.3	μA
			Other pins			+2.0	
Input leakage current, low	ILILI	V _{IN} = 0 V	Analog pins			-0.3	μA
			Other pins			-2.0	
Output leakage current, high	ILOH1	Vo = Vdd	Analog pins			+0.3	μA
			Other pins			+2.0	
Output leakage current, low	ILOL1	Vo = 0 V	Analog pins			-0.2	μA
			Other pins			-2.0	

Note 1. For flash memory product, specification of FLMD0 is as follows:

Input leakage current, high: $4 \mu A$

Input leakage current, low: $-4 \ \mu A$

(3) Supply current

Supply current (V850ES/FG2: *µ* PD70F3236, *µ* PD70F3235, *µ* PD70F3234)

Parameter	Symbol	Conc	ditions	MIN.	TYP.	MAX.	Unit
Flash memory products supply current ^{Note 1}	IDD1	Normal operation	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		30	45	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		22		mA
	IDD2	HALT mode	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		18	30	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		11		mA
	Idd3	IDLE1 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.6	1.2	mA
	Idd4	IDLE2 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.25	0.9	mA
	Idd5	Subclock operation Notes 2, 3 mode	RC resonator f _{XT} = 40 kHz ^{Note 4}		200	600	μA
	Idd6	Sub-IDLE mode ^{Notes 2, 3}	RC resonator f _{XT} = 40 kHz ^{Note} ⁴		35	340	μA
	Idd7	Stop mode ^{Notes 2, 5}	POC stopped, Ring-OSC stopped		7	250	μA
			POC operating, Ring-OSC stopped		10	255	μA
			POC stopped, Ring-OSC operating		15	265	μA
			POC operating, Ring-OSC operating		18	270	μA

Notes 1. Total current of VDD, EVDD, and BVDD (all ports stopped).

The current of AV_{REF0} and the port buffer current including the current flowing through the on-chip pull-up/pull-down resistors are not included.

- **2.** When the main OSC is stopped.
- 3. POC operating, Ring-OSC operating.
- 4. The RC oscillation frequency is 40 kHz (TYP.). This clock is internally divided by 2.
- 5. When the sub-OSC is not used.

Supply current (V850ES/FG2: *µ* PD703235, *µ* PD703234)

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
Mask ROM products supply current ^{Note} 1	Idd1	Normal operation	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		25	40	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		20		mA
	Idd2	HALT mode	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		14	26	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		9		mA
	Idd3	IDLE1 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.25	0.9	mA
	Idd4	IDLE2 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.2	0.9	mA
	Idds	Subclock operation mode Notes 2, 3	RC resonator f _{XT} = 40 kHz Note 4		50	550	μA
	Idd6	Sub-IDLE Notes 2, 3 mode	RC resonator f _{XT} = 40 kHz ^{Note 4}		35	340	μA
	Idd7	Stop mode ^{Notes 2, 5}	POC stopped, Ring-OSC stopped		7	250	μA
			POC operating, Ring-OSC stopped		10	255	μA
			POC stopped, Ring-OSC operating		15	265	μA
			POC operating, Ring-OSC operating		18	270	μA

Notes 1. Total current of VDD, EVDD, and BVDD (all ports stopped).

The current of AVREFO and the port buffer current including the current flowing through the on-chip pull-up/pull-down resistors are not included.

- 2. When the main OSC is stopped.
- **3.** POC operating, Ring-OSC operating.
- 4. The RC oscillation frequency is 40 kHz(TYP.). This clock is internally divided by 2.
- 5. When the sub-OSC is not used.

1.2.9 Data Retention Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	VDDDR	In STOP mode	1.9		5.5	V
Data retention current	Idddr	VDDDR = 2.0 V		10	230	μA
Supply voltage rise time	trvd		1			μs
Supply voltage fall time	tevd		1			μs
Supply voltage retention time	t hvd	After STOP mode release	0			ms
STOP release signal input time	t DREL	After VDD reaches MIN.: 3.5 V	0			μs
Data retention input voltage, high	VIHDR	All input ports	0.9VDDDR		VDDDR	V
Data retention input voltage, low	VILDR	All input ports	0		0.1VDDDR	V

STOP Mode (TA = -40 to +110°C, VDD = EVDD = BVDD = 1.9 V to 5.5 V, Vss = EVss = BVss = AVss = 0 V)

Caution Shifting to STOP mode and restoring from STOP mode must be performed within the rated operating range.

1.2.10 AC Characteristics

AC Test Input Measurement Points (VDD, AVDD, EVDD, BVDD)

AC Test Output Measurement Points

Load Conditions

(1) CLKOUT output timing

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EVss} = \text{BVss} = \text{AVss} = 0 \text{ V}, \text{CL} = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Output cycle	tсүк		50 ns	80 <i>µ</i> s	
High-level width	twкн		tсүк/2 – 15		ns
Low-level width	twĸ∟		tсүк/2 – 15		ns
Rise time	tкв			15	ns
Fall time	tкғ			15	ns

Clock Timing

(2) Basic Operation

(a) Reset, Interrupt timing

$(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
RESET low-level width	twrsl		500		ns
NMI high-level width	twniн	Analog noise elimination	500		ns
NMI low-level width	twnil	Analog noise elimination	500		ns
INTPn ^{Note 1} high-level	twitн	Analog noise elimination $(n = 0 \text{ to } 7)$	500		ns
width		Digital noise elimination (n = 3)	Note 2		ns
INTPn ^{Note 1} low-level	twi⊤∟	Analog noise elimination ($n = 0$ to 7)	1		ns
width		Digital noise elimination (n = 3)	Note 2		ns

Notes 1. ADTRG is same spec (P03/INTP0/ADTRG). DRST is same spec (P05/INTP2/DRST).

2Tsamp + 20 or 3Tsamp + 20Tsamp: Sampling clock for noise elimination

Reset/Interrupt

(b) Key return timing

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
KRn input high-level width	twĸĸн	Analog noise elimination $(n = 0 \text{ to } 7)$	500		ns
KRn input low-level width	t wkrl		500		ns

(c) Timer input timing

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
TIn high-level width	tтıн	TIP00, TIP01, TIP10, TIP11, TIP20, TIP21, TIP30, TIP31,	Note		ns
TIn low-level width	t⊤ı∟	TIQ00 to TIQ03, TIQ10 to TIQ13	Note		ns

Note 2Tsamp + 20 or 3Tsamp + 20

Tsamp: Sampling clock for noise elimination

(d) CSIB timing

(i) Master mode

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCKBn cycle time	t KCYn		125		ns
SCKBn high-level width	t KHn		tксүл/2 – 15		ns
SCKBn low-level width	t KLn		tксүл/2 – 15		ns
SIBn setup time (to SCKBn↑)	t sıĸn		30		ns
SIBn hold time (from SCKBn↑)	t KSIn		25		ns
Output delay time from $\overline{\text{SCKBn}}\downarrow$ to SOBn	t KSOn			25	ns

Remark n = 0, 1

(ii) Slave mode

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V} \text{ to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V}, C_L = 50 \text{ pF}$

		0			
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCKBn cycle time	t KCYn		200		ns
SCKBn high-level width	t KHn		90		ns
SCKBn low-level width	t KLn		90		ns
SIBn setup time (to SCKBn↑)	t SIKn		50		ns
SIBn hold time (from SCKBn↑)	t KSIn		50		ns
Output delay time from $\overline{SCKBn}\downarrow$ to SOBn	t KSOn			50	ns

Remark n = 0, 1

(e) UART timing

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Communication rate				312.5	kbps
ASCK0 cycle time				10	MHz

(f) CAN timing

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate				1	Mbps
Internal delay time				100	ns

Note Internal delay time (tNODE) = Internal transfer delay time (tOUTPUT) + Internal receive delay time (tINPUT)

(g) A/D converter

(TA = −40 to +110°C, VDD = EVDD = BVDD = 3.5 V to 5.5 V, 4.0 V ≤ AVREF0 ≤ 5.5 V, VSS = EVSS = BVSS = AVSS = 0.05 N SS = 0.05) V,
C∟ = 50 pF)	

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution					10	bit
Overall error Note		$4.0 \leq AV_{\text{REF0}} \leq 5.5 \text{ V}$		±0.15	±0.3	%FSR
Conversion time	t CONV		3.1		16	μs
Analog input voltage	VIAN		AVss		AV _{REF0}	V
AVREFO current	IAREF0	When using A/D converter		5	10	mA
		When not using A/D converter		1	10	μA

Note Excluding quantization error (±0.05%FSR). Indicates the ratio to the full-scale value (%FSR).

Remark FSR: Full Scale Range

(h) POC circuit characteristics

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V} \text{ to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{Vss} = \text{EVss} = \text{BVss} = \text{AVss} = 0 \text{ V}, \text{CL} = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC0		3.5	3.7	3.9	V
Power supply startup time	tртн	$V_{\text{DD}} = 0 \; V \rightarrow 3.5 \; V$	0.002			ms
Response delay time 1 Note 1	t PTHD	In case of power on.			3.0	ms
		After VDD reaches 3.9 V.				
Response delay time 2 Note 2	t PD	In case of power off.			1	ms
		After VDD drops 3.5 V.				
Minimum VDD width	tew		0.2			ms

Notes 1. From detect voltage to release reset signal.

2. From detect voltage to output reset signal.

(i) LVI circuit characteristics

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V} \text{ to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VLVIO		4.2	4.4	4.6	V
	VLVI1		4.0	4.2	4.4	V
Response time ^{Note 1}	t∟d	After V _{DD} reaches V _{LVI0} /V _{LVI1} (Max.). After V _{DD} drops V _{LVI0} /V _{LVI1} (Min.).		0.2	2.0	ms
Minimum Voo width	t∟w		0.2			ms
Reference voltage stabilization wait time ^{Note 2}	L WAIT	After V _{DD} reaches 3.5 V. After LVION bit (LVIM.bit7) = $0 \rightarrow 1$		0.1	0.2	ms

Notes 1. The time required to output an interrupt/reset after the detection voltage is detected.

2. Unnecessary when the POC function is used.

(j) RAM retention flag characteristics

 $(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 1.9 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VRAMH		1.9	2.0	2.1	V
Supply voltage rise time	t RAMHTH	$V_{\text{DD}} = 0 \ \text{V} \rightarrow 3.5 \ \text{V}$	0.002		1,800	ms
Response time ^{Note}	t RAMHD	After the supply voltage reaches the detection voltage (MAX.)		0.2	2.0	ms
Minimum Voo width	t RAMHW		0.2			ms

Note Time required to set the RAMF bit after the detection voltage is detected.

(k) Flash memory programming characteristics

(i) Basic characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fcpu		4		20	MHz
Supply voltage	VDD		3.5		5.5	V
Number of writes	Cwrt Note				100	Times
Input voltage, high	VIH	FLMD0	0.8EVDD		EVDD	V
Input voltage, low	VIL	FLMD0	EVss		0.2EVDD	V
Write time + erase time	t IWRT	Flash: 256 KB (µPD70F3235)			T.B.D	S
	+ terase	384 KB (µPD70F3236)				
Programming temperature	t PRG		-40		+85	°C

Note The initial write when the product is shipped, any erase \rightarrow write set of operations, or any programming operation is counted as one rewrite.

(ii) Serial Write Operation Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
FLMD0 setup time from RESET↑	t RFCF		5000/fx+α			s
Count execution time	tcount				3	ms
FLMD0 high-level width	tсн		10		100	μs
FLMD0 low-level width	tc∟		10		100	μs
FLMD rise time	tR				50	ns
FLMD fall time	t⊧				50	ns

Note " " represents the oscillation stabilization time.

1.3 Electrical Specifications of (A2)-Grade

1.3.1 Absolute maximum ratings

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD	$V_{DD} = EV_{DD} = BV_{DD}$	–0.5 to +6.5	V
	BVDD	Vdd = EVdd = BVdd	–0.5 to +6.5	V
	EVDD	Vdd = EVdd = BVdd	–0.5 to +6.5	V
	AV _{REF0}		–0.5 to +6.5	V
	Vss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
	AVss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
	BVss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
	EVss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
Input voltage	VI1	P00 to P06, P10, P11, P30 to P39, P40 to P42, P50 to P55, P90 to P915, RESET, FLMD0	-0.5 to EV _{DD} + 0.5 ^{Note}	V
	Vı2	PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	-0.5 to BV _{DD} + 0.5 ^{Note}	V
	Vı3	X1, X2, XT1, XT2	–0.5 to V _{RO} + 0.5 ^{Note}	V
Analog input voltage	VIAN	P70 to P715	-0.5 to AV _{REF0} + 0.5 Note	V

Absolute Maximum Ratings (T_A = 25°C): Flash memory products (1/2)

Note Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.

- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Conditions		Ratings	Unit
Output current, low	lo∟	P00 to P06, P10, P11, P30 to P39,	Per pin	4	mA
		P40 to P42, P50 to P55, P90 to P915	Total of all pins	50 ^{Note1}	mA
		P70 to P715	Per pin	4	mA
			Total of all pins	20 ^{Note2}	mA
		PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	Per pin	4	mA
			Total of all pins	50 ^{Note1}	mA
Output current, high	Іон	P00 to P06, P10, P11, P30 to P39, P40 to P42, P50 to P55, P90 to P915	Per pin	-4	mA
			Total of all pins	-50 ^{Note1}	mA
		P70 to P715	Per pin	-4	mA
			Total of all pins	-20 ^{Note2}	mA
		PCM0 to PCM3, PCS0, PCS1, PCT0,	Per pin	-4	mA
		PCT1, PCT4, PCT6, PDL0 to PDL13	Total of all pins	-50 ^{Note1}	mA
Operating ambient	TA	Normal operating mode	-40 to +125	°C	
temperature		Flash programming mode	-40 to +85	°C	
Storage temperature	Tstg			-40 to +125	°C

Absolute maximum ratings (T_A = 25°C): Flash memory products (2/2)

- Notes 1. This value is a value at the time of $T_A = 25$ °C. At the time of $T_A = 125$ °C, This value is 20 mA/-20 mA.
 - 2. This value is a value at the time of $T_A = 25$ °C. At the time of $T_A = 125$ °C, This value is 10 mA/-10 mA.
- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or Vcc and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD	VDD = EVDD = BVDD	-0.5 to +6.5	V
	BVDD	$V_{DD} = EV_{DD} = BV_{DD}$	–0.5 to +6.5	V
	EVDD	$V_{DD} = EV_{DD} = BV_{DD}$	-0.5 to +6.5	V
	AV _{REF0}		-0.5 to +6.5	V
	Vss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
	AVss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
	BVss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
	EVss	Vss = EVss = BVss = AVss	–0.5 to +0.5	V
Input voltage	VI1	P00 to P06, P10, P11, P30 to P39, P40 to P42, P50 to P55, P90 to P915, RESET, IC	-0.5 to EV _{DD} + 0.5 ^{Note}	V
	Vı2	PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	-0.5 to BV _{DD} + 0.5 ^{Note}	V
	Vı3	X1, X2, XT1, XT2	–0.5 to V _{RO} + 0.5 ^{Note}	V
Analog input voltage	VIAN	P70 to P715	-0.5 to AV _{REF0} + 0.5 Note	V

Absolute Maximum Ratings (T_A = 25°C): Mask ROM products (1/2)

Note Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.

- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or Vcc and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

	-		-		
Parameter	Symbol	Conditions		Ratings	Unit
Output current, low	lo∟	P00 to P06, P10, P11, P30 to P39,	Per pin	4	mA
		P40 to P42, P50 to P55, P90 to P915	Total of all pins 50 ^{Note1}	50 ^{Note1}	mA
		P70 to P715	Per pin	4	mA
			Total of all pins	20 ^{Note2}	mA
		PCM0 to PCM3, PCS0, PCS1, PCT0,	Per pin	4	mA
		PCT1, PCT4, PCT6, PDL0 to PDL13	Total of all pins	50 ^{Note1}	mA
Output current, high	Іон	P00 to P06, P10, P11, P30 to P39, P40 to P42, P50 to P55, P90 to P915 P70 to P715	Per pin	-4	mA
			Total of all pins	-50 ^{Note1}	mA
			Per pin	-4	mA
			Total of all pins	-20 ^{Note2}	mA
		PCM0 to PCM3, PCS0, PCS1, PCT0,	Per pin	-4	mA
		PCT1, PCT4, PCT6, PDL0 to PDL13	Total of all pins	-50 ^{Note1}	mA
Operating ambient	TA			-40 to +125	°C
Storage temperature	Tstg			-65 to +150	°C

Absolute maximum ratings (T_A = 25°C): Mask ROM products (2/2)

- Notes 1. This value is a value at the time of $T_A = 25$ °C. At the time of $T_A = 125$ °C, This value is 20 mA/-20 mA.
 - 2. This value is a value at the time of $T_A = 25$ °C. At the time of $T_A = 125$ °C, This value is 10 mA/-10 mA.
- Cautions 1. Avoid direct connections among the IC device output (or I/O) pins and between VDD or VCC and GND.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

1.3.2 Capacitance

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
I/O capacitance	Сю	fx = 1 MHz,			10	pF
		Unmeasured pins returned to 0 V.				

(TA = 25°C, VDD = EVDD = AVREF0 = BVDD = AVREF1 = VSS = EVSS = BVSS = AVSS = 0 V)

1.3.3 Operating conditions

$(T_{\text{A}} = -40 \text{ to } +125^{\circ}\text{C}, \text{V}_{\text{DD}} = \text{EV}_{\text{DD}} = \text{BV}_{\text{DD}} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \leq \text{AV}_{\text{REF0}} \leq 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Internal system clock frequency	fс∟к	REGC Capacity = 4.7 μ F, at operation with main clock	4		20	MHz
		REGC Capacity = 4.7 μ F, at operation with subclock (RC resonator)	12.5 ^{Note}		27.5 ^{Note}	kHz

Note The internal system clock frequency is half the oscillation frequency.

1.3.4 Oscillator Characteristics

Main clock oscillator characteristics

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillation frequency (fx)		4		5	MHz
		Oscillation	After reset release		2 ¹⁶ /fx		s
		stabilization time ^{Note 2}	After STOP mode release	0.5 ^{Note 3}	Note 4		ms
			After IDLE2 mode release	0.35	Note 4		ms
Crystal resonator	111	Oscillation frequency (fx) ^{Note 1}		4		5	MHz
		Oscillation	After reset release		2 ¹⁶ /fx		s
		stabilization time Note 2	After STOP mode release	0.5 ^{Note 3}	Note 4		ms
			After IDLE2 mode release	350	Note 4		μS

Notes 1. Indicates only oscillator characteristics.

- 2. Time required to stabilize the crystal resonator after reset or STOP mode is released.
- 3. Time required to stabilize access to the internal flash memory.
- 4. The value differs depending on the OSTS register settings.
- Cautions 1. When using the main clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. When the main clock is stopped and the device is operating on the subclock, wait until the oscillation stabilization time has been secured by the program before switching back to the main clock.

Subclock Oscillator Characteristics

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
RC resonator		Oscillation frequency (fxr) ^{Notes1, 4}	R = 390 kΩ \pm 5% ^{Note 3} C = 47 pF \pm 10% ^{Note 3}	25	40	55	kHz
		Oscillation stabilization time ^{Note 2}				100	μs

- Notes 1. Indicates only oscillator characteristics. Refer to 27. 3. 10 AC Characteristics for CPU operating clock.
 - 2. Time required from when V_{DD} reaches oscillation voltage range (MIN.: 3.5 V) to when the crystal resonator stabilizes.
 - 3. In order to avoid the influence of wiring capacity, shorten wiring as much as possible.
 - **4.** RC oscillation frequency is 40 kHz (Typ.). This clock is divided (1/2) internally. In case of RC oscillator, internal system clock frequency (fxT) is 12.5 kHz (Min.), 20 kHz (Typ.), and 27.5 kHz (Max.).

Cautions 1. When using the subclock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. The subclock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main clock oscillator. Particular care is therefore required with the wiring method when the subclock is used.

1.3.5 PLL Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input frequency	fx		4		5	MHz
Output frequency	f _{xx}		16		20	MHz
Clock time	t PLL	After VDD reaches MIN.: 3.5 V			800	μs

$(T_{A} = -40 \text{ to } +125^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

1.3.6 Ring-OSC Characteristics

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output frequency	fr		100	200	400	kHz

1.3.7 Voltage Regulator Characteristics

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage	VDD		3.5		5.5	V
Output voltage	VRO			2.5		V
Lock time	treg	After VDD reaches MIN.: 3.5 V			1	ms
		Connect C = 4.7 mF \pm 20% to REGC pin				

Note 1. The lock time does not have to be considered for devices that have POC.

1.3.8 DC Characteristics

(1) Input/Output level

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P30, P34, P38, P41, P98, P91	1	0.7EVDD		EVDD	V
	VIH2	P00 to P06, P10, P11, P31 to P40, P42, P50 to P55, P90 to P912 to P915	P33, P35, P39, P97, P99, P910,	0.8EV _{DD}		EVDD	V
	Vінз	PCM0 to PCM3, PCS0, PCS1, PCT4, PCT6, PDL0 to PDL13	PCT0, PCT1,	0.7BVdd		BVDD	V
	VIH4	P70 to P715		0.7AVREF0		AV _{REF0}	V
	VIH5	RESET, FLMD0		0.8EVDD		EVDD	V
Input voltage, low	VIL1	P30, P34, P38, P41, P98, P91	1	EVss		0.3EVDD	V
	VIL2	P00 to P06, P10, P11, P31 to P40, P42, P50 to P55, P90 to P912 to P915	EVss		0.2EV _{DD}	V	
	VIL3	PCM0 to PCM3, PCS0, PCS1, PCT4, PCT6, PDL0 to PDL13	BVss		0.3BVDD	V	
	VIL4	P70 to P715	AVss		0.3AVREFO	V	
	VIL5	RESET, FLMD0		EVss		0.2EVDD	V
Output voltage,	V _{OH1}	P00 to P06, P10, P11,	Іон = -1.0 mA	EV _{DD} - 1.0		EVDD	V
high		P30 to P39, P40 to P42, P50 to P55, P90 to P915	Iон = -0.1 mA	$EV_{\text{DD}} - 0.5$		EVDD	V
	Vон2	PCM0 to PCM3, PCS0,	Іон = -1.0 mA	BV _{DD} - 1.0		BVDD	V
		PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	Iон = -0.1 mA	$BV_{\text{DD}} - 0.5$		BVDD	V
	Vонз	P70 to P715	Іон = -1.0 mA	AVREF0 - 1.0		AV _{REF0}	V
			Іон = -0.1 mA	AVREF0 - 0.5		AV REF0	V
Output voltage, Note 1 Iow	Vol1	P00 to P06, P10, P11, P30 to P39, P40 to P42, P50 to P55, P90 to P915	IoL = 1.0 mA	0		0.4	V
	Vol2	PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL13	IoL = 1.0 mA	0		0.4	V
	Vol3	P70 to P715	lo∟ = 1.0 mA	0		0.4	V
Pull-up resistor	R1	V1 = 0 V		10	30	100	kΩ
Pull-down resistor	R2	$V_{I} = V_{DD}$		10	30	100	kΩ

Notes 1. Total IOH/IOL (Max.) of EVDD is 20 mA/-20 mA.

Total IOH/IOL (Max.) of AVREFO is 10 mA/-10 mA.

2. DRST pin only (OCDM0 is the control register).

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

(2) Pin leakage current

((T _A = -40 to +125°C	. VDD = EVDD = BVDD = 3.5 V to 5.5 V.	4.0 V < AVREE0 < 5.5 V	. Vss = EVss = BVss = AVss = 0 V	١
	(1 - 40 + 120 - 0)			, •35 - E • 35 - B • 35 - A • 35 - 0 •	

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	$V_{\text{IN}} = V_{\text{DD}}$	Analog pins			+1.0	μA
			Other pins			+5.0	
Input leakage current, low		$V_{IN} = 0 V$	Analog pins			-1.0	μA
			Other pins			-5.0	
Output leakage current, high	ILOH1	Vo = Vdd	Analog pins			+1.0	μA
			Other pins			+5.0	
Output leakage current, low	ILOL1	Vo = 0 V	Analog pins			-1.0	μA
			Other pins			-5.0	

(3) Supply current

Supply current (V850ES/FG: μ PD70F3236, μ PD70F3235, μ PD70F3234)

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
Flash memory products Note 1 supply current	Idd1	Normal operation,	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		30	45	mA
lash memory products upply current			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		22		mA
	Idd2	HALT mode	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		18	30	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		11		mA
	Idd3	IDLE1 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.6	1.5	mA
	Idd4	IDLE2 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.25	1.15	mA
	IDD5	Subclock operation Notes 2, 3 mode	RC resonator f _{XT} = 40 kHz Note 4		200	850	μA
	IDD6	Sub-IDLE mode ^{Notes 2, 3}	RC resonator f _{XT} = 40 kHz ^{Note} ⁴		35	590	μA
l	IDD7	Stop mode ^{Notes 2, 5}	POC stopped, Ring-OSC stopped		7	500	μA
			POC operating, Ring-OSC stopped		10	505	μA
			POC stopped, Ring-OSC operating		15	515	μA
			POC operating, Ring-OSC operating		18	520	μA

Notes 1. Total current of VDD, EVDD, and BVDD (all ports stopped).

The current of AV_{REF0} and the port buffer current including the current flowing through the on-chip pull-up/pull-down resistors are not included.

- **2.** When the main OSC is stopped.
- 3. POC operating, Ring-OSC operating.
- 4. The RC oscillation frequency is 40 kHz(TYP.). This clock is internally divided by 2.
- 5. When the sub-OSC is not used.

Supply current (V850ES/FG2: *µ* PD703235, *µ* PD703234)

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
Mask ROM products supply current ^{Note} 1	Idd1	Normal operation,	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		25	40	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		20		mA
	Idd2	HALT mode	fxx = 20 MHz (OSC = 5 MHz), all peripheral functions operating		14	26	mA
			fxx = 20 MHz (OSC = 5 MHz), all peripheral functions stopped		9		mA
	Idd3	IDLE1 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.25	1.15	mA
	Idd4	IDLE2 mode	fxx = 5 MHz (OSC = 5 MHz), PLL off		0.2	1.15	mA
	Idds	Subclock operation mode Notes 2, 3	RC resonator f _{XT} = 40 kHz Note 4		50	800	μA
	Idd6	Sub-IDLE Notes 2, 3 mode	RC resonator f _{XT} = 40 kHz ^{Note 4}		35	590	μA
	Idd7	Stop mode ^{Notes 2, 5}	POC stopped, Ring-OSC stopped		7	500	μA
			POC operating, Ring-OSC stopped		10	505	μA
			POC stopped, Ring-OSC operating		15	515	μA
			POC operating, Ring-OSC operating		18	520	μA

Notes 1. Total current of VDD, EVDD, and BVDD (all ports stopped).

The current of AVREFO and the port buffer current including the current flowing through the on-chip pull-up/pull-down resistors are not included.

- 2. When the main OSC is stopped.
- **3.** POC operating, Ring-OSC operating.
- 4. The RC oscillation frequency is 40 kHz (TYP.). This clock is internally divided by 2.
- 5. When the sub-OSC is not used.

1.3.9 Data Retention Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	VDDDR	In STOP mode	1.9		5.5	V
Data retention current	Idddr	VDDDR = 2.0 V		6	450	μA
Supply voltage rise time	trvd		1			μs
Supply voltage fall time	tevd		1			μs
Supply voltage retention time	t hvd	After STOP mode release	0			ms
STOP release signal input time	t DREL	After VDD reaches MIN.: 3.5 V	0			μs
Data retention input voltage, high	VIHDR	All input ports	0.9Vdddr		VDDDR	V
Data retention input voltage, low	VILDR	All input ports	0		0.1VDDDR	V

STOP Mode ($T_A = -40$ to $+125^{\circ}$, VDD = EVDD = BVDD = 1.9 V to 5.5 V	, Vss = EVss = BVss = AVss = 0 V)
---	--------------------------------------	-----------------------------------

Caution Shifting to STOP mode and restoring from STOP mode must be performed within the rated operating range.

1.3.10 AC Characteristics

AC Test Input Measurement Points (VDD, AVDD, EVDD, BVDD)

AC Test Output Measurement Points

Load Conditions

(1) CLKOUT output timing

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Output cycle	tсүк		50 ns	80 <i>µ</i> s	
High-level width	twкн		tсүк/2 – 15		ns
Low-level width	twĸ∟		tсүк/2 – 15		ns
Rise time	tкв			15	ns
Fall time	tĸ⊧			15	ns

Clock Timing

(2) Basic Operation

(a) Reset, Interrupt timing

$(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
RESET low-level width	twrsl		500		ns
NMI high-level width	twniн	Analog noise elimination	500		ns
NMI low-level width	twnil	Analog noise elimination	500		ns
INTPn ^{Note 1} high-level	twitн	Analog noise elimination $(n = 0 \text{ to } 7)$	500		ns
width		Digital noise elimination (n = 3)	Note 2		ns
INTPn ^{Note 1} low-level	twi⊤∟	Analog noise elimination ($n = 0$ to 7)	1		ns
width		Digital noise elimination (n = 3)	Note 2		ns

Notes 1. ADTRG is same spec (P03/INTP0/ADTRG). DRST is same spec (P05/INTP2/DRST).

2Tsamp + 20 or 3Tsamp + 20Tsamp: Sampling clock for noise elimination

Reset/Interrupt

(b) Key return timing

 $(T_A = -40 \text{ to } +125^{\circ}C, V_{DD} = EV_{DD} = BV_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le AV_{REF0} \le 5.5 \text{ V}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
KRn input high-level width	twĸĸн	Analog noise elimination $(n = 0 \text{ to } 7)$	500		ns
KRn input low-level width	t wkrl		500		ns

(c) Timer input timing

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
TIn high-level width	tтıн	TIP00, TIP01, TIP10, TIP11, TIP20, TIP21, TIP30, TIP31,	Note		ns
TIn low-level width	t⊤ı∟	TIQ00 to TIQ03, TIQ10 to TIQ13	Note		ns

Note 2Tsamp + 20 or 3Tsamp + 20

Tsamp: Sampling clock for noise elimination

(d) CSIB timing

(i) Master mode

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCKBn cycle time	t KCYn		125		ns
SCKBn high-level width	t KHn		tксүл/2 – 15		ns
SCKBn low-level width	t KLn		tксүл/2 – 15		ns
SIBn setup time (to SCKBn↑)	t sıĸn		30		ns
SIBn hold time (from SCKBn↑)	t KSIn		25		ns
Output delay time from $\overline{\text{SCKBn}}\downarrow$ to SOBn	t KSOn			25	ns

Remark n = 0, 1

(ii) Slave mode

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCKBn cycle time	t KCYn		200		ns
SCKBn high-level width	t KHn		90		ns
SCKBn low-level width	t KLn		90		ns
SIBn setup time (to SCKBn↑)	t SIKn		50		ns
SIBn hold time (from SCKBn [↑])	t KSIn		50		ns
Output delay time from $\overline{SCKBn}\downarrow$ to SOBn	t KSOn			50	ns

Remark n = 0, 1

(e) UART timing

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Communication rate				312.5	kbps
ASCK0 cycle time				10	MHz

(f) CAN timing

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate				1	Mbps
Internal delay time				100	ns

Note Internal delay time (tNODE) = Internal transfer delay time (tOUTPUT) + Internal receive delay time (tINPUT)

(g) A/D converter

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V} \text{ to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EVss} = \text{BVss} = \text{AVss} = 0 \text{ V}, \text{CL} = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution					10	bit
Overall error Note		$4.0 \leq AV_{\text{REF0}} \leq 5.5 \text{ V}$		±0.15	±0.35	%FSR
Conversion time	t CONV		3.1		16	μs
Analog input voltage	VIAN		AVss		AV _{REF0}	V
AVREFO current	I AREF0	When using A/D converter		5	10	mA
		When not using A/D converter		1	10	μA

Note Excluding quantization error (±0.05%FSR). Indicates the ratio to the full-scale value (%FSR).

Remark FSR: Full Scale Range

(h) POC circuit characteristics

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V} \text{ to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{Vss} = \text{EVss} = \text{BVss} = \text{AVss} = 0 \text{ V}, \text{CL} = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC0		3.5	3.7	3.9	V
Power supply startup time	tртн	$V_{\text{DD}} = 0 \text{ V} \rightarrow 3.5 \text{ V}$	0.002			ms
Response delay time 1 ^{Note}	tртнd	In case of power on. After VDD reaches 3.9 V.			3.0	ms
Response delay time 2 Note	tpd	In case of power off. After V _{DD} drops 3.5 V.			1	ms
Minimum VDD width	tew		0.2			ms

Notes 1. From detect voltage to release reset signal.

2. From detect voltage to output reset signal.

(i) LVI circuit characteristics

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VLVIO		4.2	4.4	4.6	V
	VLVI1		4.0	4.2	4.4	V
Response time ^{Note 1}	t∟D	After V _{DD} reaches V _{LVI0} /V _{LVI1} (Max.). After V _{DD} drops V _{LVI0} /V _{LVI1} (Min.).		0.2	2.0	ms
Minimum VDD width	t∟w		0.2			ms
Reference voltage stabilization wait time ^{Note 2}	L IWAIT	After V _{DD} reaches 3.5 V. After LVION bit (LVIM.bit7) = $0 \rightarrow 1$		0.1	0.2	ms

Notes 1. The time required to output an interrupt/reset after the detection voltage is detected.

2. Unnecessary when the POC function is used.

(j) RAM retention flag characteristics

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 1.9 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{\text{REF0}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VRAMH		1.9	2.0	2.1	V
Supply voltage rise time	t RAMHTH	$V_{\text{DD}} = 0 \text{ V} \rightarrow 3.5 \text{ V}$	0.002		1,800	ms
Response time ^{Note}	t RAMHD	After the supply voltage reaches the detection voltage (MAX.)		0.2	2.0	ms
Minimum Vod width	tramhw		0.2			ms

Note Time required to set the RAMF bit after the detection voltage is detected.

(k) Flash memory programming characteristics

(i) Basic characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fcpu		4		20	MHz
Supply voltage	VDD		3.5		5.5	V
Number of writes	Cwrt Note				100	Times
Input voltage, high	VIH	FLMD0	0.8EVDD		EVDD	V
Input voltage, low	VIL	FLMD0	EVss		0.2EVss	V
Write time + erase time	t IWRT	Flash: 256 KB (µPD70F3235)			T.B.D	S
	+ terase	384 KB (µPD70F3236)				
Programming temperature	t PRG		-40		+85	°C

Note The initial write when the product is shipped, any erase \rightarrow write set of operations, or any programming operation is counted as one rewrite.

(ii) Serial Write Operation Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{BV}_{DD} = 3.5 \text{ V to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{AV}_{REF0} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
FLMD0 setup time from RESET↑	t RFCF		5000/fx+α			s
Count execution time	tcount				3	ms
FLMD0 high-level width	tсн		10		100	μs
FLMD0 low-level width	tc∟		10		100	μs
FLMD rise time	tR				50	ns
FLMD fall time	t⊧				50	ns

Note " " represents the oscillation stabilization time.

2. Injected Current Specification

2.1 Injected Current Specification of (A)-Grade

2.1.1 Absolute Maximum Ratings

(Ta = +25 °C)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Pos. Overload Current	I _{IN.IPM}	Digital input pins	Per pin			4	mA
$V_{IN} > V_{DD}$			Total			50	mA
		Analog input pins	Per pin			4	mA
			Total			20	mA
Neg. Overload Current	I _{INJNM}	Digital input pins	Per pin			-4	mA
$V_{IN} < V_{SS}$			Total			-50	mA
		Analog input pins	Per pin			-4	mA
			Total			-20	mA

Caution: Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

Remark: Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.

2.1.2 DC Characteristics for overload current

 $(Ta = -40 \text{ to } +85 \text{ °C}, V_{pp} = EV_{pp} = BV_{pp} = 3.5V \text{ to } 5.5V, AV_{ppen} = 4.0V \text{ to } 5.5V, V_{es} = EV_{ss} = BV_{es} = AV_{ss} = 0V)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Pos. Overload Current	I _{IN.IP}	Digital input pins	Per pin			2	mA
$V_{IN} > V_{DD}$			Total			16	mA
		Analog input pins	Per pin			0.5	mA
			Total			2	mA
Neg. Overload Current	I _{INJN}	Digital input pins Note1	Per pin			-0.3	mA
$V_{IN} < V_{SS}$			Total			-2.4	mA
		Analog input pins	Per pin			-0.3	mA
			Total			-1.2	mA

Remark(s):

1. Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.

2. These specifications are not tested in outgoing inspection, but specified based on the device characterization.

3. Refer to the next pages for Input leakage current and A/D characteristics.

Note(s):

1. In case of using Sub clock, an adjacent pin of XT2 pin is the following specification.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Neg. Overload Current $V_{IN} < V_{SS}$	I _{injn}	an adjacent pin of XT2 pin Note2	Per pin			-0.1	mA

Note(s):

2. An adjacent pin of XT2 pin is as follows:

V850ES/FE2: P00 pin, V850ES/FF2: P05 pin, V850ES/FG2: P02 pin, V850ES/FJ2: P02 pin

NEC

2.1.3 DC Characteristics for pins influenced by injected current on an adjacent pin

(Ta = -40 to +85 °C, V_{DD}	=EV _{DD} =BV	_{op} = 3.5V to	5.5V, $AV_{REFO} = 4.0V$ to 5.5V, $V_{SS} = EV_{SS} = BV_{SS}$	=AV _{ss} =0'	V)		
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current	I _{lih}	$V_{I} = V_{DD}$	Digital input pins				
High			I _{INIP} : 2mA(per pin), 4mA(total)		-	0.5	uA
			Analog input pins				
			I _{INIP} : 0.5mA(per pin), 1mA(total)		-	0.2	uA
Input leakage current	ILIL	$V_{1} = 0$	Digital input pins				
Low			ا _{اساما} : -0.3mA(per pin), -0.6mA(total)		5	40	uA
			I _{ININ} : -0.1mA(per pin), -0.2mA(total)		1	10	uA
			Analog input pins				
			I _{INUN} : -0.3mA(per pin), -0.6mA(total)		5	40	uA
			I _{ININ} : -0.1mA(per pin), -0.2mA(total)		1	10	uA

Remark(s):

1. Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.

2. These specifications are not tested in outgoing inspection, but specified based on the device characterization.

3. Measurement conditions are shown in Figure 1.

4. TYP. is the value of Ta=+25 $^{\circ}$ C.

2.1.4 A/D converter influenced by injected current on an adjacent pin

(Ta = -40 to +85 °C, $V_{DD} = BV_{DD} = 3.5V$ to 5.5V, $AV_{BEED} = 4.0V$ to 5.5V, $V_{SS} = BV_{SS} = BV_{SS} = AV_{SS} = 0V$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Degradation of Overall error Note1		I _{INJP} : 0.5mA(per pin), 1mA(total)			+/- 0.10	%FSR
		I _{INJN} : -0.3mA(per pin), -0.6mA(total)			+/- 0.25	%FSR

Remark(s):

1. These specifications are not tested in outgoing inspection, but specified based on the device characterization.

2. Measurement conditions are shown in Figure 1.

Note(s):

This value is the degradation by injected current on an adjacent pin. Therefore, this value is added to the specification of A/D converter's overall error defined separately as the electrical specifications.

Caution(s):

When there is a leakage current, the effect on the ADC accuracy depends on the external analog source impedance.

Example) Conditions: AVREF0 = 5.0V, external analog source impedance = 10K ohm

If there is a leakage current of 10uA by injected current, the effect on the ADC accuracy is

10(uA) x 10K(ohm) / 5(V) = 2 %FSR

2.2 Injected Current Specification of (A1)-Grade

2.2.1 Absolute Maximum Ratings

(Ta = +25 °C)

Parameter	Symbol	Cond	Conditions		TYP.	MAX.	Unit
Pos. Overload Current	I _{INJPM}	Digital input pins	Per pin			4	mA
$V_{IN} > V_{DD}$			Total			50	mA
		Analog input pins	Per pin			4	mA
			Total			20	mA
Neg. Overload Current	I _{INJNM}	Digital input pins	Per pin			-4	mA
$V_{IN} < V_{SS}$			Total			-50	mA
		Analog input pins	Per pin			-4	mA
			Total			-20	mA

Caution: Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

Remark: Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.

2.2.2 DC Characteristics for overload current

 $(Ta = -40 \text{ to } +110 \text{ °C}, V_{DD} = BV_{DD} = 3.5V \text{ to } 5.5V, AV_{REFD} = 4.0V \text{ to } 5.5V, V_{SS} = BV_{SS} = AV_{SS} = 0V)$

Parameter	Symbol	Condi	Conditions		TYP.	MAX.	Unit
Pos. Overload Current	I _{INJP}	Digital input pins	Per pin			2	mA
$V_{IN} > V_{DD}$			Total			16	mA
		Analog input pins	Per pin			0.5	mA
			Total			2	mA
Neg. Overload Current	l _{injn}	Digital input pins Note1	Per pin			-0.3	mA
$V_{IN} < V_{SS}$			Total			-2.4	mA
		Analog input pins	Per pin			-0.3	mA
			Total			-1.2	mA

Remark(s):

1. Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.

2. These specifications are not tested in outgoing inspection, but specified based on the device characterization.

3. Refer to the next pages for Input leakage current and A/D characteristics.

Note(s):

1. In case of using Sub clock, an adjacent pin of XT2 pin is the following specification.

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Neg. Overload Current	I _{INJN}	an adjacent pin of XT2 pin ^{Note2}	Per pin			-0.1	mA

Note(s):

2. An adjacent pin of XT2 pin is as follows.

V850ES/FE2: P00 pin, V850ES/FF2: P05 pin, V850ES/FG2: P02 pin, V850ES/FJ2: P02 pin

2.2.3 DC Characteristics for pins influenced by injected current on an adjacent pin

$(Ta = -40 \text{ to } +110 \text{ °C}, V_{DD} = EV_{DD} = 3.5V \text{ to } 5.5V, AV_{BEED} = 4.0V \text{ to } 5.5V, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0V)$							
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current	I _{LIH}	$V_1 = V_{DD}$	Digital input pins				
High			I _{INIP} : 2mA(per pin), 4mA(total)		-	2	uA
			Analog input pins				
			I _{INUP} : 0.5mA(per pin), 1mA(total)		-	2	uA
Input leakage current	I _{LIL}	$V_{_{1}} = 0$	Digital input pins				
Low			I _{اسا} : -0.3mA(per pin), -0.6mA(total)		5	60	uA
			I _{ININ} : -0.1mA(per pin), -0.2mA(total)		1	15	uA
			Analog input pins				
			ا _{یدید} : -0.3mA(per pin), -0.6mA(total)		5	60	uA
			I _{ININ} : -0.1mA(per pin), -0.2mA(total)		1	15	uA

Remark(s):

1. Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.

2. These specifications are not tested in outgoing inspection, but specified based on the device characterization.

3. Measurement conditions are shown in Figure 2.

4. TYP. is the value of Ta=+25 $^{\circ}$ C.

2.2.4 A/D converter influenced by injected current on an adjacent pin

(Ta = -40 to +110 °C, V_{pp} =EV_pp=BV_pp= 3.5V to 5.5V, AV_{perp}= 4.0V to 5.5V, V_{es} =EV_s=BV_s=AV_s=0V)

1 10	100 10	1 / REEU / 55 55 5	5 55	/		
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Degradation of Overall error Note1		ا _{الاله} : 0.5mA(per pin), 1mA(total)			+/- 0.10	%FSR
		I _{NUN} : -0.3mA(per pin), -0.6mA(total)			+/- 0.25	%FSR

Remark(s):

1. These specifications are not tested in outgoing inspection, but specified based on the device characterization.

2. Measurement conditions are shown in Figure 2.

Note(s):

This value is the degradation by injected current on an adjacent pin. Therefore, this value is added to the specification of A/D converter's overall error defined separately as the electrical specifications.

Caution(s):

When there is a leakage current, the effect on the ADC accuracy depends on the external analog source impedance.

Example) Conditions: AVREF0 = 5.0V, external analog source impedance = 10K ohm

If there is a leakage current of 10uA by injected current, the effect on the ADC accuracy is

10(uA) x 10K(ohm) / 5(V) = 2 %FSR

2.3 Injected Current Specification of (A2)-Grade

2.3.1 Absolute Maximum Ratings

(Ta = +25 °C)

Parameter	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
Pos. Overload Current	I _{INJPM}	Digital input pins	Per pin			4	mA
$V_{iN} > V_{DD}$			Total			50	mA
		Analog input pins	Per pin			4	mA
			Total			20	mA
Neg. Overload Current	I _{INJNM}	Digital input pins	Per pin			-4	mA
$V_{\rm IN} < V_{\rm SS}$			Total			-50	mA
		Analog input pins	Per pin			-4	mA
			Total			-20	mA

Caution: Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

Remark: Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.

2.3.2 DC Characteristics for overload current

 $(Ta = -40 \text{ to } +125 \text{ °C}, V_{np}=EV_{np}=BV_{np}=3.5V \text{ to } 5.5V, AV_{BEE0}=4.0V \text{ to } 5.5V, V_{SS}=EV_{SS}=BV_{SS}=AV_{SS}=0V)$

Parameter	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
Pos. Overload Current	I	Digital input pins	Per pin			2	mA
$V_{IN} > V_{DD}$			Total			16	mA
		Analog input pins	Per pin			0.5	mA
			Total			2	mA
Neg. Overload Current	I _{INJN}	Digital input pins Note1	Per pin			-0.3	mA
$V_{IN} < V_{SS}$			Total			-2.4	mA
		Analog input pins	Per pin			-0.3	mA
			Total			-1.2	mA

Remark(s):

1. Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.

2. These specifications are not tested in outgoing inspection, but specified based on the device characterization.

3. Refer to the next pages for Input leakage current and A/D characteristics.

Note(s):

1. In case of using Sub clock, an adjacent pin of XT2 pin is the following specification.

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Neg. Overload Current $V_{IN} < V_{SS}$	I _{injn}	an adjacent pin of XT2 pin ^{Note2}	Per pin			-0.1	mA

Note(s):

2. An adjacent pin of XT2 pin is as follows.

V850ES/FE2: P00 pin, V850ES/FF2: P05 pin, V850ES/FG2: P02 pin, V850ES/FJ2: P02 pin

2.3.3 DC Characteristics for pins influenced by injected current on an adjacent pin

$Ia = -40 t0 + 125 °C, v_{pp} = Ev_{pp} = 3.50 t0 5.50, Av_{BEE0} = 4.00 t0 5.50, v_{ss} = Ev_{ss} = Bv_{ss} = Av_{ss} = 00 $							
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current	I _{LIH}	$V_{I} = V_{DD}$	Digital input pins				
High			I _{INIP} : 2mA(per pin), 4mA(total)		-	5	uA
			Analog input pins				
			I _{INJP} : 0.5mA(per pin), 1mA(total)		-	3	uA
Input leakage current	I	$V_{1} = 0$	Digital input pins				
Low			I _{IMM} : -0.3mA(per pin), -0.6mA(total)		5	60	uA
			I _{ININ} : -0.1mA(per pin), -0.2mA(total) 1		15	uA	
			Analog input pins				
			ا _{اسم} : -0.3mA(per pin), -0.6mA(total)		5	60	uA
			I _{ININ} : -0.1mA(per pin), -0.2mA(total)		1	15	uA

Remark(s):

Analog input pins are pins of Port7 and Port12. Digital input pins are pins except analog input pins.
These specifications are not tested in outgoing inspection, but specified based on the device characterization.

3. Measurement conditions are shown in Figure 3.

4. TYP. is the value of Ta=+25 $^{\circ}$ C.

2.3.4 A/D converter influenced by injected current on an adjacent pin

$Ta = -40 \text{ to } +125 \text{ °C}, V_{DD} = EV_{DD} = BV_{DD} = 3.5V \text{ to } 5.5V, AV_{REED} = 4.0V \text{ to } 5.5V, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0V $						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Degradation of Overall error Note1		I _{است} : 0.5mA(per pin), 1mA(total)			+/- 0.10	%FSR
		I _{⊪⊾⊪} : -0.3mA(per pin), -0.6mA(total)			+/- 0.25	%FSR

Remark(s):

1. These specifications are not tested in outgoing inspection, but specified based on the device characterization.

2. Measurement conditions are shown in Figure 3.

Note(s):

This value is the degradation by injected current on an adjacent pin. Therefore, this value is added to the specification of A/D converter's overall error defined separately as the electrical specifications.

Caution(s):

When there is a leakage current, the effect on the ADC accuracy depends on the external analog source impedance.

Example) Conditions: AVREF0 = 5.0V, external analog source impedance = 10K ohm

If there is a leakage current of 10uA by injected current, the effect on the ADC accuracy is

10(uA) x 10K(ohm) / 5(V) = 2 %FSR

3. Package Drawings

100-PIN PLASTIC LQFP (FINE PITCH) (14x14)

ŗs ↓ ∫ 万Л

detail of lead end

NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
А	16.00±0.20
В	14.00±0.20
С	14.00±0.20
D	16.00±0.20
F	1.00
G	1.00
н	$0.22\substack{+0.05\\-0.04}$
I	0.08
J	0.50 (T.P.)
К	1.00±0.20
L	0.50±0.20
М	$0.17\substack{+0.03 \\ -0.07}$
Ν	0.08
Р	1.40 ± 0.05
Q	0.10±0.05
R	3° ^{+7°} -3°
S	1.60 MAX.
S100	GC-50-8EU, 8EA-2

4. Recommended Soldering Conditions

Table 4-1: Soldering Conditions

(1) µPD70F3236MxGC(Ax)-8EA, µPD70F3235MxGC(Ax)-8EA, µPD70F3234MxGC(Ax)-8EA

Soldering Method	Soldering Condition	Symbol of Recommended Soldering Condition
Infrared Reflow	Package Peak Temperature: 235°C Time: 30 seconds max. (210°C min.) Count: 3 max	IR35-207-3
	Exposure Limit: 7 days ^{Note}	

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period. After that, prebaking is necessary at 125 °C for 20 to 72 hours.