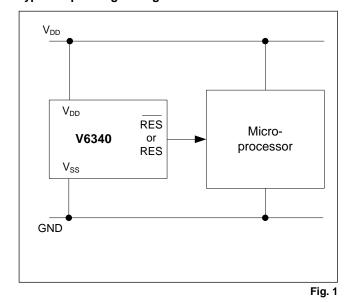


Ultra Low Cost 3-Pin Microprocessor Reset

Description

The V6340 monitors the supply voltage of any electronic system, and generates the appropriate Reset signal. The threshold must be chosen to the minimum allowed voltage which guarantees the good functionality of the system. As long as $V_{\rm DD}$ stays upside this voltage level, the output stays inactive. If $V_{\rm DD}$ drops below $V_{\rm TH}$, the output gets active. The threshold voltage may be obtained in different versions: 2.6V, 3.0V, 3.7V and 4.4V.

Features


- SOT-23 package
- □ Reset output state guaranteed down to V_{DD} = 1V @ 25°C
- □ Low supply current: stays stable during switching versions B, H, N: typ. 19μ A at $V_{DD} = 5V$ other versions: typ. 38μ A at $V_{DD} = 5V$
- ☐ High noise immunity
- No external components required
- Push-pull or Open drain output
- ☐ Pin compatible with MAX 809 in SOT-23, by appropriate layout on PCB
- TTL output compatibility

Applications


Applications needing a voltage detection:

- □ Computer electronics
- White / Brown goods
- Industrial electronics
- □ Telecom systems
- □ Hand-held systems

Typical Operating Configuration

Pin Assignment

Absolute Maximum Ratings

Parameter	Symbol	Conditions
Voltage at V _{DD} to V _{SS}	V_{DD}	-0.3V to +8V
Minimum voltage at RES or RES	V _{min}	V _{SS} – 0.3V
Maximum voltage at RES or RES	V _{max}	V _{DD} + 0.3V
Storage Temperature Range	T _{STO}	-65°C to +150°C

Table 1

Stresses above these listed maximum ratings may cause permanent damages to the device. Exposure beyond specified operating conditions may affect device reliability or cause malfunction.

Handling Procedures

This device has built-in protection against high static voltages or electric fields; however, it is advised that normal precautions be taken as for any other CMOS component. Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the voltage range.

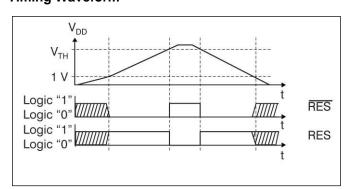
Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating Temperature 1)	TA	-40	+125	°C
Positive Supply Voltage 2)	V_{DD}	1	5.5	V

Table 2

Electrical Characteristics

 $T_A = +25$ °C, unless otherwise specified


Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Supply current	I _{DD}	V _{DD} = 5V, output open		38	50	μA
Threshold voltage	V _{TH}	C, I, O	2.94	3.02	3.10	V
· ·	V _{TH}	D, J, P	3.62	3.72	3.82	V
	V_{TH}	F, L, R	4.27	4.39	4.51	V
Threshold hysteresis	V _{HYS}			5		mV
RES Output Low Level	V _{OL}	$V_{DD} = 1.6V, I_{OL} = 1mA$		200	270	mV
•	Vol	$V_{DD} = 2.5V$, $I_{OL} = 2mA$		195	250	mV
	V_{OL}	$V_{DD} = 3.5V, I_{OL} = 3mA$		198	250	mV
	Vol	$V_{DD} = 5V$, $I_{OL} = 4mA$		185	250	mV
RES Output High Level	Vон	$V_{DD} = 1.6V, I_{OH} = -1mA$	1.25	1.36		V
	Vон	$V_{DD} = 2.5V$, $I_{OH} = -1.5mA$	2.2	2.3		V
	V _{OH}	$V_{DD} = 3.5V$, $I_{OH} = -2.5mA$	3.15	3.27		V
	Vон	$V_{DD} = 5V$, $I_{OH} = -3.5mA$	4.65	4.76		V
Output leakage current ¹⁾	II FAK	V _{DD} = 5V		0.005	1	uА

Only for version B, H and N

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Supply current	I _{DD}	V _{DD} = 5V, output open		19	31	μA
Threshold voltage	V_{TH}	B, H, N	2.56	2.65	2.74	V
Threshold hysteresis	V _{HYS}			32		mV

Table 3

Timing Waveform

Block Diagram

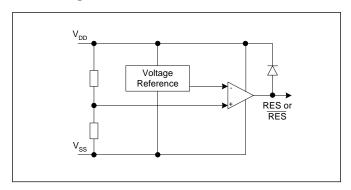
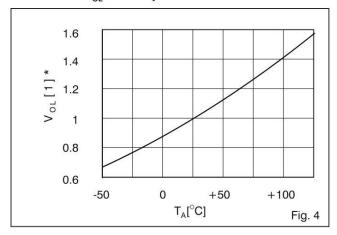
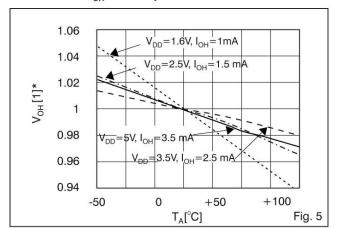


Fig.3 Fig.4

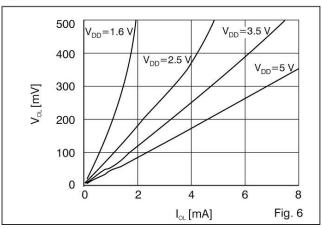
¹⁾The maximum operating temperature is confirmed by sampling at initial device qualification. In production, all devices are tested at +25°C

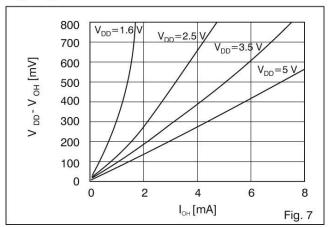

²⁾ V_{DD} = 1V guaranteed at +25°C (see Fig. 14 for more information)

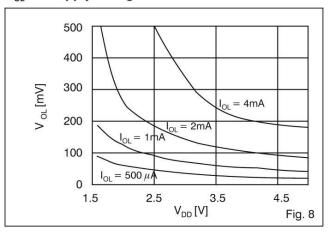
Only for Open drain versions

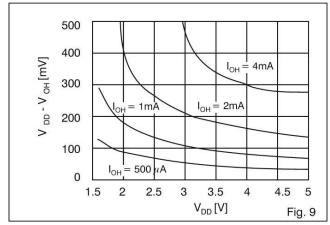


Typical Characteristics

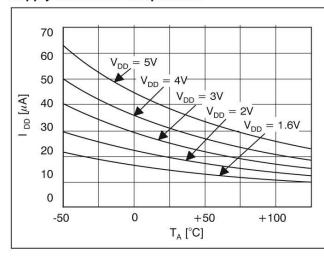

Normalized $V_{\rm OL}$ vs. Temperature

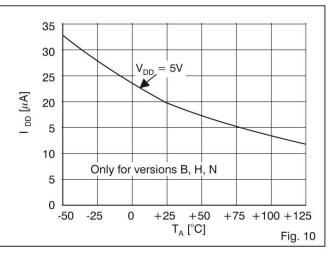

Normalized V_{OH} vs. Temperature


V_{OL} vs. Output Current

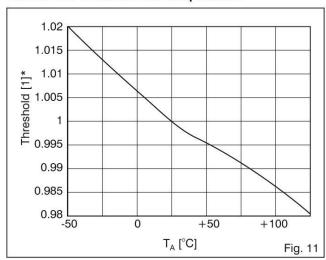

V_{DD} - V_{OH} vs. Output Current

V_{OL} vs. Supply Voltage

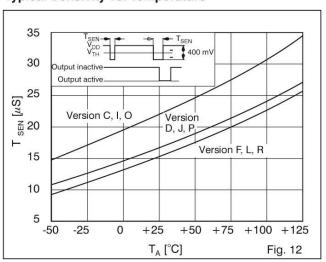

 ${
m V}_{
m DD}$ - ${
m V}_{
m OH}$ vs. Supply Voltage

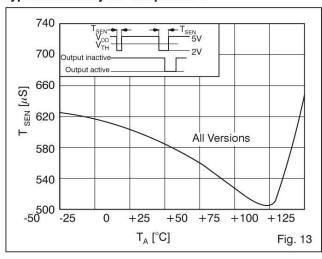


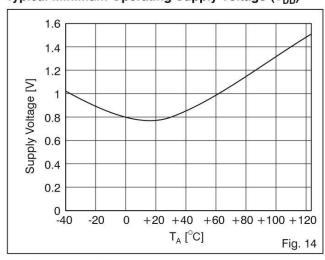
[1]* Multiply value at +25°C by this factor to determine the value at temperature



Supply Current vs. Temperature

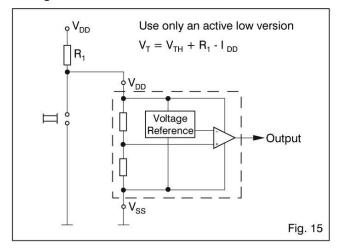



Normalized Threshold vs. Temperature

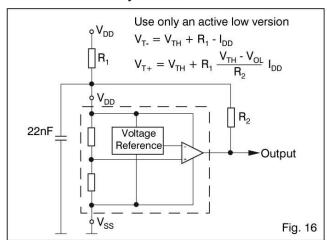

Typical Sensivity vs. Temperature

Typical Sensivity vs. Temperature

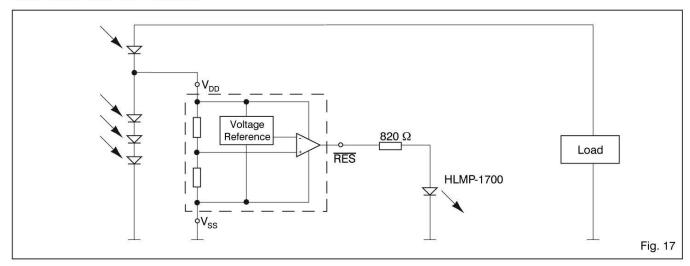
Typical Minimum Operating Supply Voltage (V_{DD})

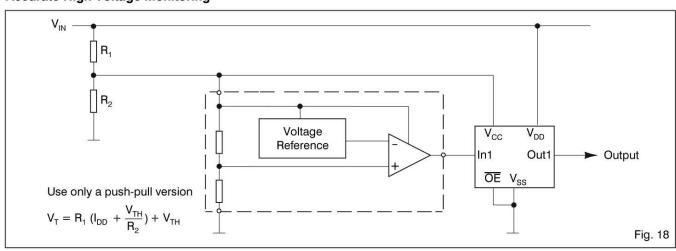


[1]* Multiply value at $+25^{\circ}$ C by this factor to determine the value at temperature



Typical Applications


Voltage Monitor with Manual Reset


Reset Circuit with Hysteresis

Solar Cell Power O.K. Indicator

Accurate High Voltage Monitoring

Pin Description

SOT23-3L

Pin	Name	Function	
1	RES or RES	Reset output	
2	V_{DD}	Positive supply	
3	V _{SS}	Supply ground	

Table 4

Packaging and Ordering Information

Dimensions of SOT23-3L Package

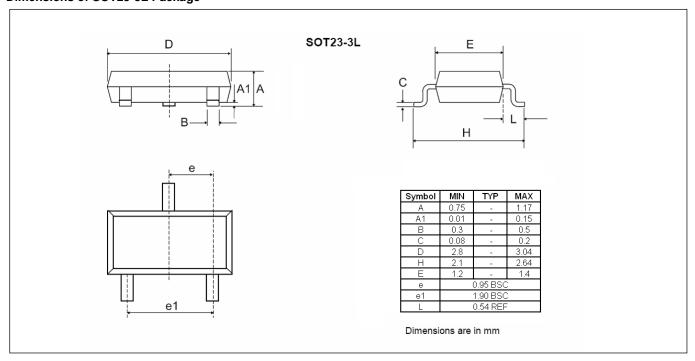
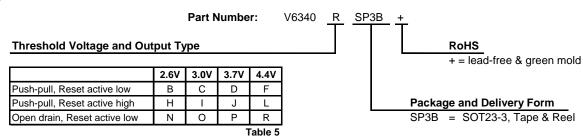



Fig. 5

Ordering Information

Note: Subject to availability (see standard versions list below). When ordering, please give complete Part Number without space between letters: eg. V6340RSP3B, etc.

Standard Versions (Top Marking)

Marking for SOT23-3 package

Part Number	Threshold Voltage	Output type	Package and Delivery Form	Top Marking ¹⁾
V6340BSP3B+	2.6V			E1##
V6340CSP3B+	3.0V			EC##
V6340DSP3B+	3.7V	Active low push-pull		BU##
V6340FSP3B+	4.4V		SOT23-3L, Tape & Reel	EA##
V6340LSP3B+	4.4V	Active high push-pull	3000 pcs	E8##
V6340OSP3B+	3.0V			EB##
V6340PSP3B+	3.7V	Active low open-drain		ED##
V6340RSP3B+	4.4V			E3##

¹⁾ Top marking is standard from 2006. No bottom marking exists. Where ## refers to the lot number (EM internal reference only)

Traceability for small packages

Due to the limited space on the package surface, the bottom marking contains a limited number of characters that provide only partial information for lot traceability. Full information for complete traceability is however provided on the packing labels of the product at delivery from EM: It is highly recommended that the customer insures full lot traceability of EM product in his final product.

Standards Version (Samples)

Part Number	
V6340BSP3B+	
V6340CSP3B+	
V6340DSP3B+	
V6340FSP3B+	

Part Number
V6340LSP3B+
V6340OSP3B+
V6340PSP3B+
V6340RSP3B+

Sample stock is generally held on **standard versions** only. Please contact factory for other versions not shown here and for availability of non standard versions.

EM Microelectronic-Marin SA ("EM") makes no warranties for the use of EM products, other than those expressly contained in EM's applicable General Terms of Sale, located at http://www.emmicroelectronic.com. EM assumes no responsibility for any errors which may have crept into this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein.

No licenses to patents or other intellectual property rights of EM are granted in connection with the sale of EM products, neither expressly nor implicitly.

In respect of the intended use of EM products by customer, customer is solely responsible for observing existing patents and other intellectual property rights of third parties and for obtaining, as the case may be, the necessary licenses.

Important note: The use of EM products as components in medical devices and/or medical applications, including but not limited to, safety and life supporting systems, where malfunction of such EM products might result in damage to and/or injury or death of persons is expressly prohibited, as EM products are neither destined nor qualified for use as components in such medical devices and/or medical applications. The prohibited use of EM products in such medical devices and/or medical applications is exclusively at the risk of the customer