

V61C16 FAMILY HIGH PERFORMANCE LOW POWER 2K x 8 BIT CMOS STATIC RAM

Features

- High Speed
 - Maximum access time of 45/55/70 ns
 - Equal access and cycle times
- Low Power
 - 200 mW typical operating
 - 0.5 µW typical standby
 - 0.1 µW typical data retention
- Battery backup
- 2 volt data retention (L version)
- Six transistor CMOS memory cell
- CMOS process virtually eliminates alpha particle induced soft errors without die coating
- Fully static operation
- No clock or refresh required
- Pin Compatible with standard 16K static RAMS and EPROMS in 300 and 600 mil DIP
- TTL compatible

Description

The V61C16 is a high speed, low power, 2048-word by 8-bit CMOS static RAM fabricated using high-performance CMOS process technology. This high reliability process, coupled with innovative circuit design techniques, yields access times of 45 ns maximum.

When the chip select is high, the device assumes a standby mode in which the device power dissipation is reduced to $0.5 \,\mu$ W (typically). The low power version has a data retention mode that guarantees that data will remain valid at a minimum power supply voltage of 2.0 volts.

Using CMOS technology, supply voltages from 2.0 to 5.5 volts have little effect on supply current in data retention mode. Reducing the supply voltage to minimize current drain is unnecessary with the V61C16 family.

Package	Std.	Skinny	Pin Count
Plastic DIP	Р	S	24
SOIC (Mini Flat Pack)	F		24

6

Device Usage Chart

Operating	Pack	age Out	line	A	ccess Time (ns	\$	Pow	/er	Temperature
Temperature Range	Р	S	F	45	55	70	Low	Std.	Mark
0°C –70°C	•	•	•	•	•	•	•	•	Blank

V61C16 Rev. 01 6/90

6-2

Absolute Maximum Ratings⁽¹⁾

Symbol	Parameter	Rating	Unit
V _{TERM} Voltage on any Pin with Respect to V _{SS}		-0.5* to +7.0	v
T _A	Operating Temperature Under Bias	-55 to +125	°C
T _{STG}	Storage Temperature	-65 to +150	°C
PT	Power Dissipation	1.0	w
Iout	DC Output Current	60	mA

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{DD}	Supply Voltage	4.5	5.0	5.5	v
V _{ss}	Supply Voltage	0.0	0.0	0.0	v
V _{IH}	Input High Voltage	2.2	3.5	V _{DD}	۷
V _{IL}	Input Low Voltage	-0.5*	-	+0.8	V

* -3.5V for 20 ns pulse.

* -3.5V for 20 ns pulse.

NOTE:

 Operation at or above absolute maximum ratings may affect device reliability.

AC Test Conditions

Signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0.0 to 3.0V, output loading as shown in diagrams below.

* including scope and jig

Truth Table

Mode	CS	ŌĒ	WE	I/O Operation
Standby	н	x	x	High Z
Read	L	L	н	D _{OUT}
Read	L	н	н	High Z
Write	L	x	L	D _{IN}

Capacitance

 $T_{A} = 25^{\circ}C, f = 1.0 \text{ MHz}$

Symbol	Parameter	Conditions	Max.	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V	6	pF
c _{vo}	Input/Output Capacitance	V _{I/O} = 0V	8	pF

NOTE:

These parameters are sampled and not 100% tested.

Commercial Temperature Range DC Characteristics

 T_{A} = 0°C to 70°C, V_{DD} = 5V \pm 10%, V_{SS} = 0V, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
μ _L Ι	Input Leakage Current	$V_{DD} = 5.5V, V_{IN} = V_{SS} \text{ to } V_{DD}$		-	2	μA
II _{LO} I	Output Leakage Current	$\overline{CS} = V_{ H}$ or $\overline{OE} = V_{ H}$	—	-	2	μA
		$V_{I/O} = V_{SS}$ to V_{DD}				
I _{DD}	Operating Power Supply Current	$\overline{CS} = V_{IL}, i_{I/O} = 0.0 \text{mA}$	—	55	95	mA
		Duty Cycle = 100%				
I _{SB}		$\overline{CS} = V_{IH}$		2	5	mA
I _{SB1}	Standby Power Supply Current	$\overline{CS} \ge V_{DD}^{-}$ 0.2V, $V_{IN}^{-} = 0.0$ to V_{DD}^{-}	-	4	1000	μA
V _{OL}	Output Low Voltage	I _{OL} = 8 mA	-		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -4.0 mA	2.4	_	-	V

Low Power DC Characteristics

 $T^{}_{A}$ = 0°C to 70°C, $V^{}_{DD}$ = 5V \pm 10%, $V^{}_{SS}$ = 0V, unless otherwise noted.

			۱ ۱	*L		
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
{L1}	Input Leakage Current	$V{DD} = 5.5 V$, $V_{IN} = V_{SS}$ to V_{DD}	—	-	2	μA
I _{LO}	Output Leakage Current	$\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{IH}$	—	-	2	μA
		$V_{I/O} = V_{SS}$ to V_{DD}				
I _{DD}	Operating Power Supply Current	$\overline{CS} = V_{IL}, I_{I/O} = 0.0 \text{mA}$	—	55	80	mA
		Duty Cycle = 100%				
I _{SB}	Chandhu Davias Cuanki Cumant	CS = V _{IH}	_	2	5	mA
I _{SB1}	Standby Power Supply Current	$\overline{CS} \ge V_{DD}^{-}$ - 0.2V, V_{IN}^{-} = 0.0 to V_{DD}^{-}	—	0.1	20	μΑ
V _{OL}	Output Low Voltage	I _{OL} = 8.0 mA	—		0.4	V
V _{он}	Output High Voltage	I _{OH} = -4.0 mA	2.4	-	—	V

Low V_{DD} Data Retention Characteristics For low power versions only, $T_A = 0^{\circ}$ C to 70°C, $V_{DD} = 5$ V ± 10%, $V_{SS} = 0$ V, unless otherwise noted.

	Limits						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Data retention supply voltage	VDDDR	2.0	_	5.5	٧	$V_{IN} = 0.0$ to V_{DD} , $\overline{CS} \ge V_{DD} - 0.2V$	
Data retention supply current	IDDDR	-	0.05	2.0	μA	$\frac{V_{DD}}{CS} = 3.0V, V_{iN} = 0.0 \text{ to } V_{DD},$ $\frac{CS}{CS} \ge V_{DD} - 0.2V$	
Chip deselect to data retention time	t _{CDR}	0.0	—	—	ns		
Operation recovery time	t _R	t _{RC} ⁽¹⁾	_		ns		

NOTE:

1. t_{BC} = Read Cycle Time

Low V_{DD} Data Retention Waveform

AC Characteristics

At recommended operating conditions

Read Cycle

		V61C	16*45	V61C	16*55	V61C		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{RC}	Read Cycle Time	45	_	55	_	70		ns
t _{AA}	Address Access Time	T -	45		55		70	ns
1 _{ACS}	Chip Select Access Time	-	45	—	55		70	ns
t _{CLZ}	Chip Selection to Output in Low Z	5	-	5		5		ns
^t OE	Output Enable to Output Valid	_	20	_	25	—	50	ns
t _{oLZ}	Output Enable to Output in Low Z	0		5	—	5		ns
t _{CHZ}	Chip Deselection to Output in High Z	0	20	0	25	O	35	ns
t _{OHZ}	Output Disable to Output in High Z	_	20	_	25	-	35	ns
t _{OH}	Output Hold from Address Change	5		5	_	5	_	ns

6

1008 08

VITELIC

AC Characteristics (1)

At recommended operating conditions unless otherwise noted.

Write Cycle

		V61C	16*45	V61C	16*55	V61C	16*70		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
twc	Write Cycle Time	45		55		70	-	ns	
t _{cw}	Chip Selection to End of Write	35	_	40	-	40		ns	
t _{AW}	Address Valid to End of Write	40	-	50	-	65	-	ns	
t _{AS}	Address Setup Time	0		10	-	15	-	ns	
t _{WP}	Write Pulse Width	25	-	30	-	40	—	ns	
t _{wR}	Write Recovery Time	0	_	5	_	5	[ns	
t _{OHZ}	Output Disable to Output in High Z		20	_	25		35	ns	
t _{wHz}	Write to Output in High Z	0	20	0	25	0	40	ns	
t _{DW}	Data to Write Time Overlap	25	-	30	-	30	-	ns	
t _{DH}	Data Hold from Write Time	0	t –	5	-	5	-	ns	
tow	Output Active from End of Write	0	1	0	-	0	- 1	ns	

NOTE:

Test conditions assume signal transition times if 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance, as in Output Load (A).

Write Cycle 2 (1, 6)

1008 09

6

NOTES:

- 1. WE must be high during all address transitions.
- 2. A write occurs during the overlap (t_{WP}) of a low \overline{CS} and a low \overline{WE} .
- 3. t_{WB} is measured from the earlier of \overline{CS} or \overline{WE} going high to the end of the write cycle.
- 4. During this period, I/O pins are in the output state and the input signals of opposite phase to the outputs must not be applied.
- If the CS low transition occurs simultaneously with the WE low transitions or after the WE transition, outputs remain in a high impedance state.
- 6. \overline{OE} is continuously low ($\overline{OE} \leq V_{\mu}$).
- 7. D_{OUT} is the same phase of write data of this write cycle.
- 8. D_{OUT} is the read data of next address.
- 9. If CS is low during this period, I/O pins are in the output state and the data input signals of opposite phase to the outputs must not be applied to them.
- 10. Transition is measured ±500mV from steady state. This parameter is sampled and not 100% tested.
- 11. t_{WHZ} is tested with $C_L = 5 \text{ pF}$ as in Output Load (B).