

PRODUCT SPECIFICATION

- □ Tentative Specification
- Preliminary Specification
- □ Approval Specification

MODEL NO.: V546H1 **SUFFIX: PH6**

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your cosignature and comments.	onfirmation with your

Approved By	Checked By	Prepared By
Chao-Chun Chung	Josh Chi	Andy Chen

Date: 18 May. 2011 Version 1.0

CONTENTS

REVISION HISTORY	4
1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURES	5
1.3 MECHANICAL SPECIFICATIONS	5
2. ABSOLUTE MAXIMUM RATINGS	
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	6
2.2 PACKAGE STORAGE	
2.3 ELECTRICAL ABSOLUTE RATINGS	
2.3.1 TFT LCD MODULE	7
3. ELECTRICAL CHARACTERISTICS	Ω
3.1 TFT LCD MODULE	
3.1 TFT LCD WODOLE	0
4. BLOCK DIAGRAM OF INTERFACE	
4.1 TFT LCD MODULE	11
5. INPUT TERMINAL PIN ASSIGNMENT	份未定義書籤。
5.1 TFT LCD MODULE INPUT	
5.2 LVDS INTERFACE	
5.3 COLOR DATA INPUT ASSIGNMENT	18
5.4 FLICKER (Vcom) ADJUSTMENT	19
O INTERES OF TIMINO	00
6. INTERFACE TIMING	
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	
6.2 POWER ON/OFF SEQUENCE	23
7. OPTICAL CHARACTERISTICS	24
7.1 TEST CONDITIONS	24
7.2 OPTICAL SPECIFICATIONS	25
8. PRECAUTIONS	28
8.1 ASSEMBLY AND HANDLING PRECAUTIONS	
8.2 SAFETY PRECAUTIONS	
0.2 0, 4 E111 (NEO) (0110) (0110)	29

Version 1.0

Date: 18 May. 2011

4

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

9. DEFINITION OF LABELS	30
9.1 OPEN CELL LABEL	30
9.2 CARTON LABEL	30
10 . PACKAGING	31
11 MECHANICAL CHARACTERISTIC	33

REVISION HISTORY

		1	REVISIO	N HISTORY
Version	Date	Page(Ne w)	Section	Description
Ver. 1.0		All	All	The preliminary specification was first issued.

Date: 18 May. 2011 Version 1.0

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

VV546H1-PH6 is a 54.6" TFT Liquid Crystal Display product with driver ICs and 4ch-LVDS interface. This product supports 1920 x 1080 Full HDTV format and can display 1.07G colors (8-bit+Hi-FRC/color). The backlight unit is not built in.

1.2 FEATURES

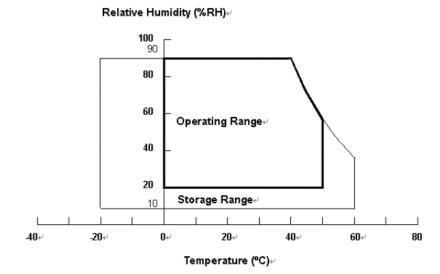
CHARACTERISTICS ITEMS	SPECIFICATIONS
Screen Diagonal [in]	54.6
Pixels [lines]	1920 × 1080
Active Area [mm]	1209.6(H) x 680.4(V) (54.6" diagonal)
Sub-Pixel Pitch [mm]	0.1615(H) × 0.4845(V)
Pixel Arrangement	RGB vertical stripe
Weight [g]	TYP. 3360
Physical Size [mm]	1251.4(W) x 737(H) x 1.75(D) Typ
Display Mode	Transmissive mode / Normallly black
Contrast Ratio	6000:1 Typ.
	(Typical value measure at CMI's module)
Glass thickness (Array / CF) [mm]	0.7 / 0.7
Viewing Angle (CR>20)	+88/-88(H), +88/-88(V) Typ. (CR≥20)
	(Typical value measure at CMI's module)
Color Chromaticity	R = (0.655, 0.328)
	G = (0.266, 0.583)
	B = (0.131, 0.116)
	W= (0.301, 0.358)
	* Please refer to "color chromaticity" on p.23
Cell Transparency [%]	5.3%
Polarizer Surface Treatment	Super clear coating , Hardness(3H)

1.3 MECHANICAL SPECIFICATIONS

Item	Min.	Тур.	Max.	Unit	Note
Weight	3310	3360	3410	g	-
I/F connector mounting position	The mounting inclination of the connector makes the				

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Connector mounting position


2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Itom	Symbol	Va	lue	Unit	Note	
Item	Symbol	Min.	Max.	Offic	Note	
Storage Temperature	TST	-20	+60	°C	(1)	
Operating Ambient Temperature	TOP	0	50	°C	(1), (2)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 $\,^{\circ}$ C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

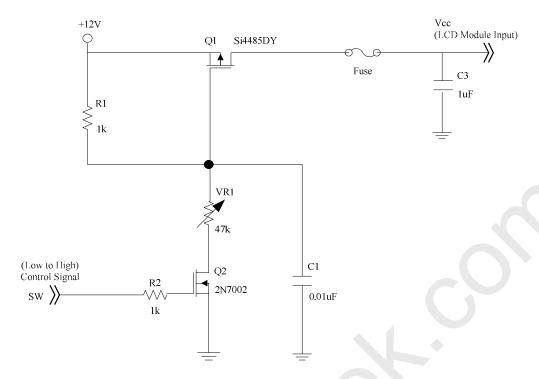
2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

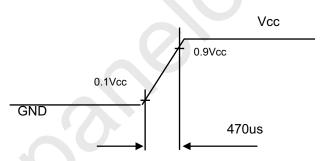
Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Power Supply Voltage	VCC	-0.3	13.5	V	(4)
Logic Input Voltage	VIN	-0.3	3.6	V	(1)

3. ELECTRICAL CHARACTERISTICS

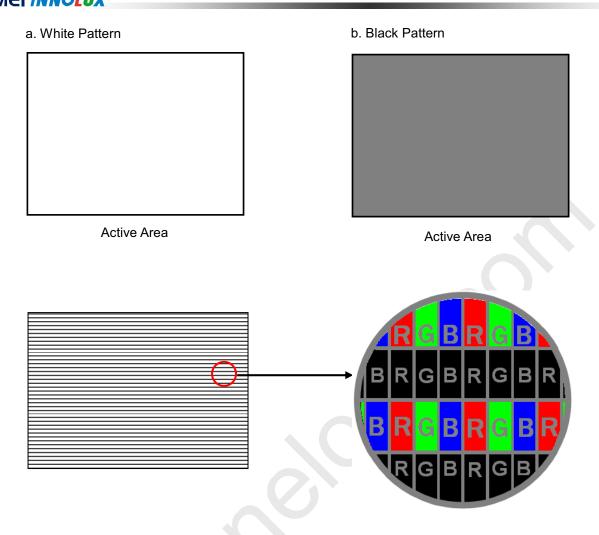
3.1 TFT LCD MODULE

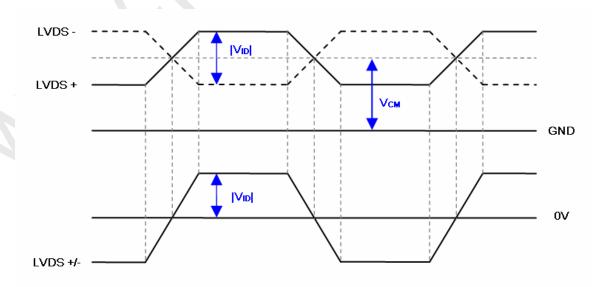

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

Doromotor		Symbol	Value			Lloit	Note	
	Parameter			Min.	Тур.	Max.	Unit	note
Power Su	Power Supply Voltage			10.8	12	13.2	V	(1)
Rush Curr	ent		I _{RUSH}	_	_	4.5	Α	(2)
Power Supply Current Horizontal Stripe Black Pattern		_	_	0.504	_	Α		
		Horizontal Stripe	_	_	1.38	1.68	А	(3)
		Black Pattern	_	_	0.48		Α	
	Differential Input High Threshold Voltage		V _{LVTH}	+100	-		mV	
		Differential Input Low Threshold Voltage		_	1	-100	mV	
LVDS interface	Common Inp	Common Input Voltage		1.0	1.2	1.4	V	(4)
interruce	Differential in	Differential input voltage		200	7	600	mV	
	Terminating Resistor		R _T		100	_	ohm	
CMOS	Input High Threshold Voltage		V _{IH}	2.7	_	3.3	V	
interface	Input Low Threshold Voltage		VII	0	_	0.7	V	


Note (1) The module should be always operated within the above ranges.

Note (2) Measurement condition:

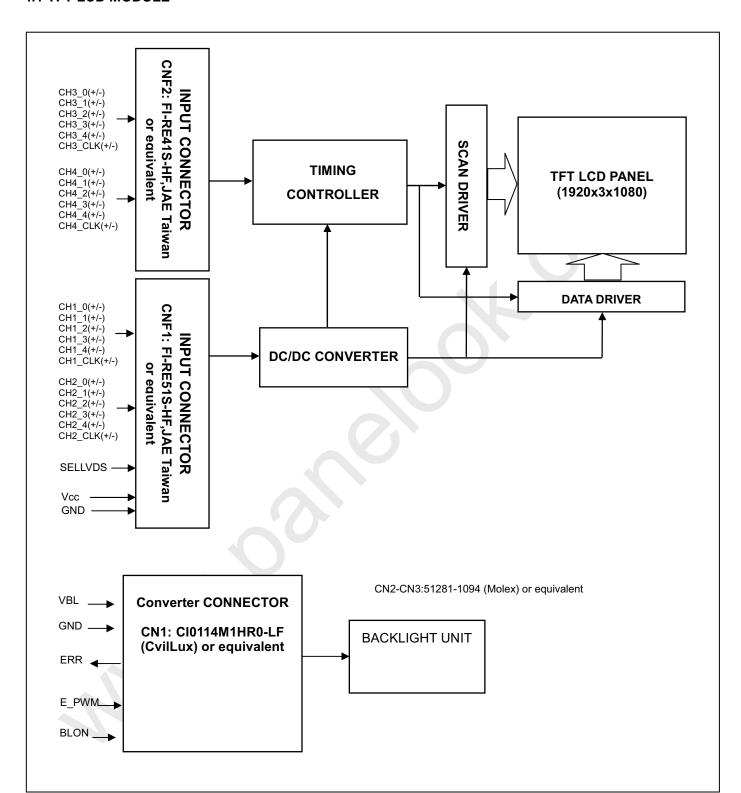

Vcc rising time is 470us


Note (3) The specified power supply current is under the conditions at Vcc = 12 V, $Ta = 25 \pm 2 \text{ °C}$, $f_v = 120 \text{ Hz}$, whereas a power dissipation check pattern below is displayed.

PRODUCT SPECIFICATION

Note (4) The LVDS input characteristics are as follows:

Date: 18 May. 2011 Version 1.0 10



PRODUCT SPECIFICATION

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module Input

CNF1 Connector Pin Assignment (FI-RE51S-HF(JAE) or equivalent)

Pin	Name	Description	Note
1	GND	Ground	
2	N.C.	No Connection	(1)
3	N.C.	No Connection	(1)
4	N.C.	No Connection	(1)
5	N.C.	No Connection	(1)
6	N.C.	No Connection	(1)
7	SELLVDS	LVDS Data Format Selection	(2)
8	N.C.	No Connection	(1)
9	N.C.	No Connection	(1)
10	N.C.	No Connection	(1)
11	GND	Ground	
12	CH1[0]-	First pixel Negative LVDS differential data input. Pair 0	
13	CH1[0]+	First pixel Positive LVDS differential data input. Pair 0	
14	CH1[1]-	First pixel Negative LVDS differential data input. Pair 1	
15	CH1[1]+	First pixel Positive LVDS differential data input. Pair 1	
16	CH1[2]-	First pixel Negative LVDS differential data input. Pair I 2	
17	CH1[2]+	First pixel Positive LVDS differential data input. Pair 2	
18	GND	Ground	
19	CH1CLK-	First pixel Negative LVDS differential clock input.	
20	CH1CLK+	First pixel Positive LVDS differential clock input.	
21	GND	Ground	
22	CH1[3]-	First pixel Negative LVDS differential data input. Pair 3	
23	CH1[3]+	First pixel Positive LVDS differential data input. Pair 3	
24	CH1[4]-	First pixel Negative LVDS differential data input. Pair 4	
25	CH1[4]+	First pixel Positive LVDS differential data input. Pair 4	
26	N.C.	No Connection	(1)
27	N.C.	No Connection	(1)
28	CH2[0]-	Second pixel Negative LVDS differential data input. Pair 0	

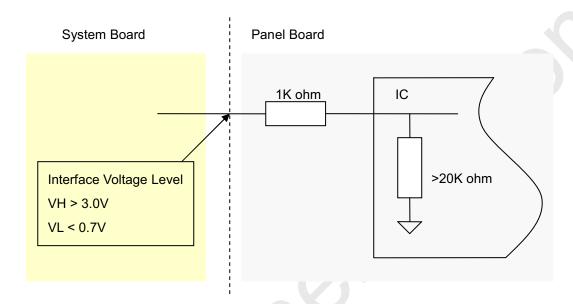
29	CH2[0]+	Second pixel Positive LVDS differential data input. Pair 0	
30	CH2[1]-	Second pixel Negative LVDS differential data input. Pair 1	
31	CH2[1]+	Second pixel Positive LVDS differential data input. Pair 1	
32	CH2[2]-	Second pixel Negative LVDS differential data input. Pair 2	
33	CH2[2]+	Second pixel Positive LVDS differential data input. Pair 2	
34	GND	Ground	
35	CH2CLK-	Second pixel Negative LVDS differential clock input.	
36	CH2CLK+	Second pixel Positive LVDS differential clock input.	
37	GND	Ground	
38	CH2[3]-	Second pixel Negative LVDS differential data input. Pair 3	
39	CH2[3]+	Second pixel Positive LVDS differential data input. Pair 3	
40	CH2[4]-	Second pixel Negative LVDS differential data input. Pair 4	
41	CH2[4]+	Second pixel Positive LVDS differential data input. Pair 4	
42	N.C.	No Connection	(1)
43	N.C.	No Connection	(1)
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	(1)
48	VCC	+12V power supply	
49	VCC	+12V power supply	
50	vcc	+12V power supply	
51	vcc	+12V power supply	

CNF2 Connector Pin Assignment (FI-RE41S-HF(JAE) or equivalent)

Pin	Name	Description	Note
1	GND	Ground	
2	N.C.	No Connection	(1)
3	N.C.	No Connection	(1)
4	N.C.	No Connection	(1)
5	N.C.	No Connection	(1)
6	N.C.	No Connection	(1)

Date: 18 May. 2011 Version 1.0

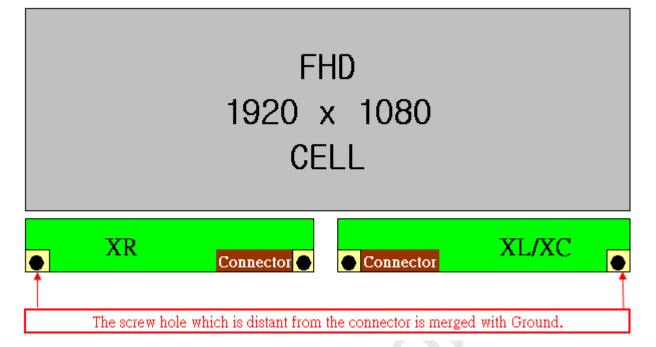
IIIVICI	IMMOLOX		
7	N.C.	No Connection	(1)
8	N.C.	No Connection	(1)
9	GND	Ground	
10	CH3[0]-	Third pixel Negative LVDS differential data input. Pair 0	
11	CH3[0]+	Third pixel Positive LVDS differential data input. Pair 0	
12	CH3[1]-	Third pixel Negative LVDS differential data input. Pair 1	
13	CH3[1]+	Third pixel Positive LVDS differential data input. Pair 1	
14	CH3[2]-	Third pixel Negative LVDS differential data input. Pair 2	
15	CH3[2]+	Third pixel Positive LVDS differential data input. Pair 2	
16	GND	Ground	
17	CH3CLK-	Third pixel Negative LVDS differential clock input.	
18	CH3CLK+	Third pixel Positive LVDS differential clock input.	
19	GND	Ground	
20	CH3[3]-	Third pixel Negative LVDS differential data input. Pair 3	
21	CH3[3]+	Third pixel Positive LVDS differential data input. Pair 3	
22	CH3[4]-	Third pixel Negative LVDS differential data input. Pair 4	
23	CH3[4]+	Third pixel Positive LVDS differential data input. Pair 4	
24	N.C.	No Connection	(1)
25	N.C.	No Connection	(1)
26	CH4[0]-	Fourth pixel Negative LVDS differential data input. Pair 0	
27	CH4[0]+	Fourth pixel Positive LVDS differential data input. Pair 0	
28	CH4[1]-	Fourth pixel Negative LVDS differential data input. Pair 1	
29	CH4[1]+	Fourth pixel Positive LVDS differential data input. Pair 1	
30	CH4[2]-	Fourth pixel Negative LVDS differential data input. Pair 2	
31	CH4[2]+	Fourth pixel Positive LVDS differential data input. Pair 2	
32	GND	Ground	
33	CH4CLK-	Fourth pixel Negative LVDS differential clock input.	
34	CH4CLK+	Fourth pixel Positive LVDS differential clock input.	
35	GND	Ground	
36	CH4[3]-	Fourth pixel Negative LVDS differential data input. Pair 3	
37	CH4[3]+	Fourth pixel Positive LVDS differential data input. Pair 3	
38	CH4[4]-	Fourth pixel Negative LVDS differential data input. Pair 4	


Date: 18 May. 2011 Version 1.0

PRODUCT SPECIFICATION

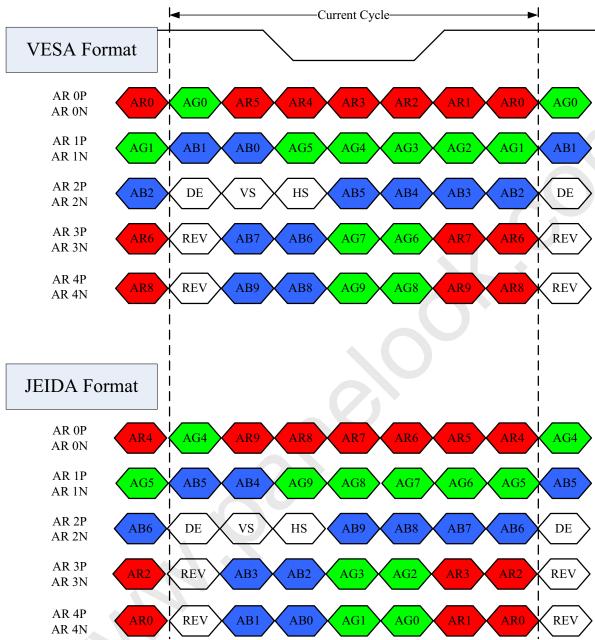
39	CH4[4]+	Fourth pixel Positive LVDS differential data input. Pair 4	
40	N.C.	No Connection	(1)
41	N.C.	No Connection	(1)

- Note (1) Reserved for internal use. Please leave it open.
- Note (2) High=connect to +3.3V: JEIDA Format ; Low= connect to GND or Open: VESA Format.
- Note (3) Interface optional pin has internal scheme as following diagram. Customer should keep the interface voltage level requirement as below.


Note (4) LVDS 4-port Data Mapping

Port	Channel of LVDS	Data Stream
1st Port	First Pixel	1, 5, 9,1913, 1917
2nd Port	Second Pixel	2, 6, 10,1914, 1918
3rd Port	Third Pixel	3, 7, 11,1915, 1919
4th Port	Fourth Pixel	4, 8, 12,1916, 1920

Note (5) The screw hole which is distant from the connector is merged with Ground



5.2 LVDS INTERFACE

VESA Format : SELLVDS = L or Open

JEIDA Format : SELLVDS = H

AR0~AR9: First Pixel R Data (9; MSB, 0; LSB) AG0~AG9: First Pixel G Data (9; MSB, 0; LSB) AB0~AB9: First Pixel B Data (9; MSB, 0; LSB)

DE : Data enable signal DCLK : Data clock signal

RSV: Reserved

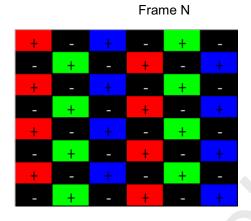
5.3 COLOR DATA INPUT ASSIGNMENT

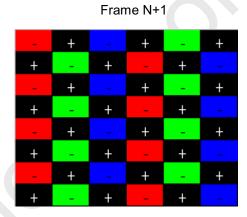
The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus

															D	ata	Sigr	al				1									_
	Color					Re	ed									Gre	een									ВІ	ue				
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	В9	В8	В7	В6	B5	B4	ВЗ	B2	В1	В
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	
Colors	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ī
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
_	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Gray	:			:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Scale	:			:	:	:	:	:	:		:		:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:	
Of .	Red (1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Red	Red (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	
_	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	
Gray	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Scale		:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Of	Green (1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	
Green	Green (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	İ
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
cale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Blue	Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	

Version 1.0 Date: 18 May. 2011 18

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited


Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1


Note (1) 0: Low Level Voltage, 1: High Level Voltage

5.4 FLICKER (Vcom) ADJUSTMENT

(1) Adjustment Pattern:

Flicker pattern was shown as below. If customer need below pattern, please directly contact with Account FAE.

(2) Adjustment method: (Digital V-com)

Programmable memory IC is used for Digital V-com adjustment in this model. CMI provide Auto Vcom tools to adjust Digital V-com. The detail connection and setting instruction, please directly contact with Account FAE or refer CMI Auto V-com adjustment OI. Below items is suggested to be ready before Digital V-com adjustment in customer LCM line.

PRODUCT SPECIFICATION

6. INTERFACE TIMING

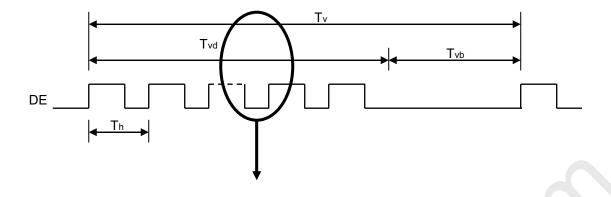
6.1 INPUT SIGNAL TIMING SPECIFICATIONS

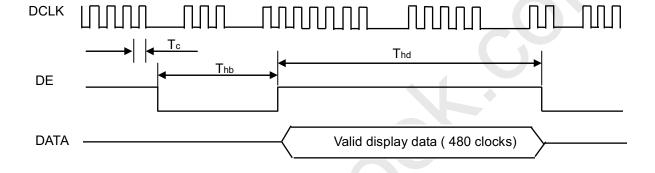
 $(Ta = 25 \pm 2 \, ^{\circ}C)$

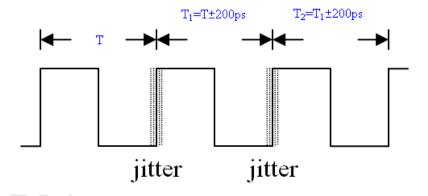
The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
- 3	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz		
LVDS	Input cycle to cycle jitter	T _{rcl}	_	_	200	ps	(3)	
Receiver Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%		F _{clkin} +2%	MHz	(4)	
	Spread spectrum modulation frequency	F _{SSM}			200	KHz	(4)	
LVDS	Setup Time	Tlvsu	600	- \	- •	ps		
Receiver Data	Hold Time	Tlvhd	600	7	-	ps	(5)	
	Frame Rate	F _{r5}	_	100	_	Hz	(6)	
Vertical	Frame Rate	F _{r6}	-	120	_	Hz	(6)	
Active	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tvb	
Display Term	Display	Tvd	1080	1080	1080	Th	_	
	Blank	Tvb	35	45	55	Th	_	
'Horizontal	Total	Th	540	550	575	Тс	Th=Thd+Thb	
Active	Display	Thd	480	480	480	Тс	_	
Display Term	Blank	Thb	60	70	95	Тс	_	

Note (1) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

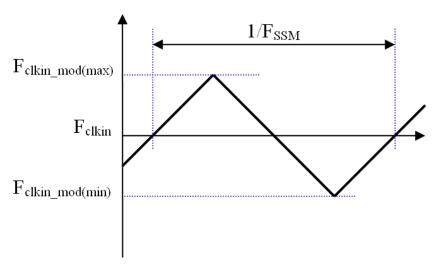

Note (2) Please make sure the range of pixel clock has follow the below equation:


Fclkin(max)
$$\geq$$
 Fr6 \times Tv \times Th
Fr5 \times Tv \times Th \geq Fclkin(min)

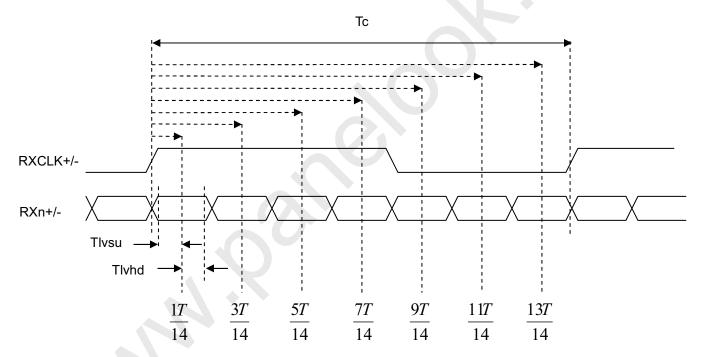


PRODUCT SPECIFICATION

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$



Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

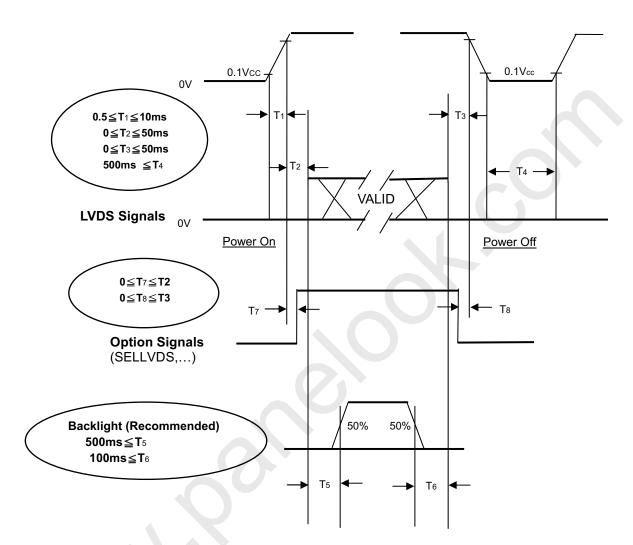


PRODUCT SPECIFICATION

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Date: 18 May. 2011 Version 1.0



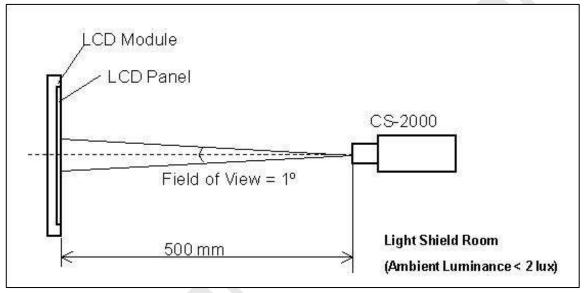
6.2 POWER ON/OFF SEQUENCE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.



7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Та	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V _{CC}	12.0	V			
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"			
Vertical Frame Rate	Fr	120	Hz			

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring in a windless room.

7.2 OPTICAL SPECIFICATIONS

Global LCD Panel Exchange Center

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

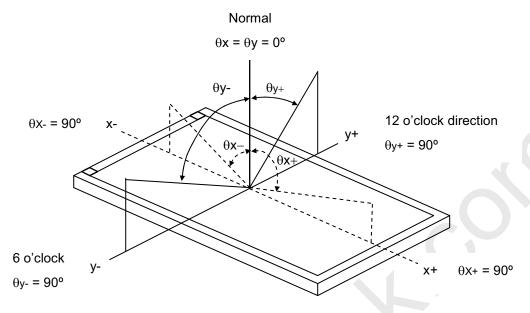
lte	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rcx			0.655		-	
	Red	Rcy			0.328		-	
	Green	Gcx	θ _x =0°, θ _Y =0°		0.266		-	
Color	Green	Gcy	Viewing Angle at Normal		0.583		-	(0)
Chromaticit	y Blue	Всх	Direction	-	0.131	-	-	(0)
	blue	Всу	Standard light source "C"		0.116		-	
	White	Wcx			0.301		-	
	vviille	Wcy			0.358		-	
Center Tran	smittance	Т%	θ _x =0°, θ _Y =0°	-	5.3	-	%	(1),(6)
Contrast Ra	ntio	CR	with CMI module	4000	6000	ı	-	(1),(3)
Response T	īme	Gray to gray	θ_x =0°, θ_Y =0° with CMI Module		6.5	12	ms	(1),(4)
White Varia	tion	δW	θ_x =0°, θ_Y =0° with CMI module	<u>)</u>	-	1.3	-	(1),(5)
	Horizontal	θ_x +		-	88	-		
Viewing	nonzoniai	θ _x -	CR≥20	-	88	-	Dog	(1) (2)
Angle	Vertical	θ _Y +	with CMI module	-	88	-	Deg.	(1),(2)
	vertical	θ _Y -		-	88	-		

Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages. The calculating method is as following:

Measure Module's and BLU's spectrums. W, R, G, B are with signal input. BLU(for V546H1-LH1) is supplied by CMO.

Calculate cell's spectrum.

Calculate cell's chromaticity by using the spectrum of standard light source "C"

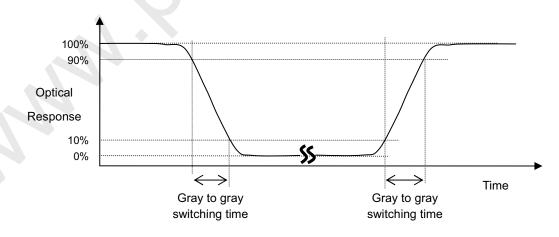

Note (1) Light source is the BLU which is supplied by CMO and driving voltages are based on suitable gamma voltages.

PRODUCT SPECIFICATION

Note (2) Definition of Viewing Angle (x, y):

Viewing angles are measured by Autronic Conoscope Cono-80

Note (3) Definition of Contrast Ratio (CR):


The contrast ratio can be calculated by the following expression.

L255: Luminance of gray level 255

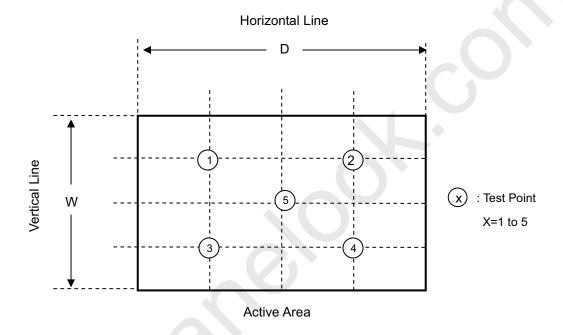
L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (4) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023. Gray to gray average time means the average switching time of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023 to each other.

Note (5) Definition of White Variation (δW):


Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Note (7) Definition of Transmittance (T%) :

Measure the luminance of gray level 255 at center point of LCD module.

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- Do not apply rough force such as bending or twisting to the module during assembly.
- It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- [4] Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- [5] The distance between COF edge and rib of BLU must bigger than 5mm. This can prevent the damage of COF when assemble the module.
- [6] Do not design sharp-pointed structure / parting line / tooling gate on the COF position of plastic parts, because the burr will scrape the COF.
- [7] If COF would bended to assemble in the module. Do not put the IC location on the bending corner of COF.
- [8] The gap between COF IC and any structure of BLU must bigger than 2mm. This can prevent the damage of COF IC
- [9] Bezel opening must have no burr. Burr will scrape the panel surface.
- [10] Bezel of module and bezel of set can not press or touch the panel surface. It will make light leakage or scrape.
- [11] When module used FFC / FPC, but no FFC / FPC to be attached in the open cell. Customer can refer the FFC / FPC drawing and buy it by self.
- [12] The gap between Panel and any structure of Bezel must bigger than 2mm. This can prevent the damage of Panel.
- [13] Do not plug in or pull out the I/F connector while the module is in operation.
- [14] Do not disassemble the module.
- [15] Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- [16] Moisture can easily penetrate into LCD module and may cause the damage during operation.
- [17] When storing modules as spares for a long time, the following precaution is necessary.
 - [17.1] Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35℃ at normal humidity without condensation.
 - [17.2] The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.
- [18] When ambient temperature is lower than 10°C, the display quality might be reduced.

8.2 SAFETY PRECAUTIONS

- [1] The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- [2] If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- [3] After the module's end of life, it is not harmful in case of normal operation and storage.

9. DEFINITION OF LABELS

9.1 OPEN CELL LABEL

The barcode nameplate is pasted on each open cell as illustration for CMI internal control.

V546H1-PH6 Rev.XX

Made in China

9.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation.

- (a) Model Name: V546H1-PH6
- (b) Carton ID: CMI internal control
- (c) Quantities: 6 pcs

PRODUCT SPECIFICATION

10. PACKAGING

10.1 packing specifications

(1) 6 LCD TV Panels / 1 Box

(2) Box dimensions: 1454 (L) X 994 (W) X 210 (H)

(3) Weight: approximately 42Kg (6 panels per box)

9.2 packing Method

Figures 9-1 and 9-2 are the packing method

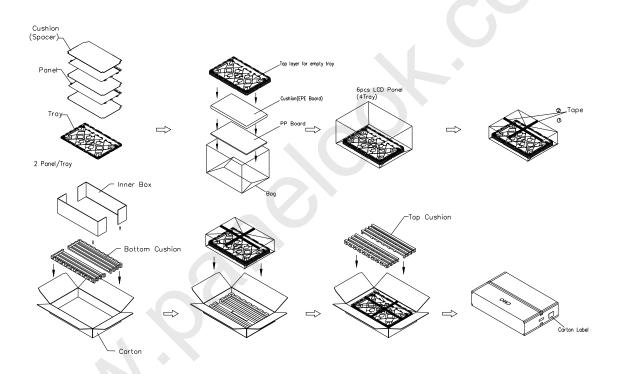
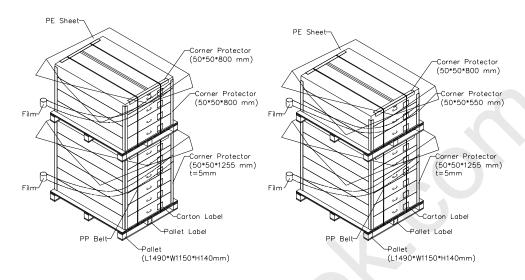


Figure.9-1 packing method



Global LCD Panel Exchange Center

Sea / Land Transportation (40ft HQ Container)

Sea / Land Transportation

Air Transportation

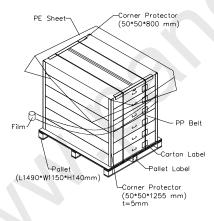
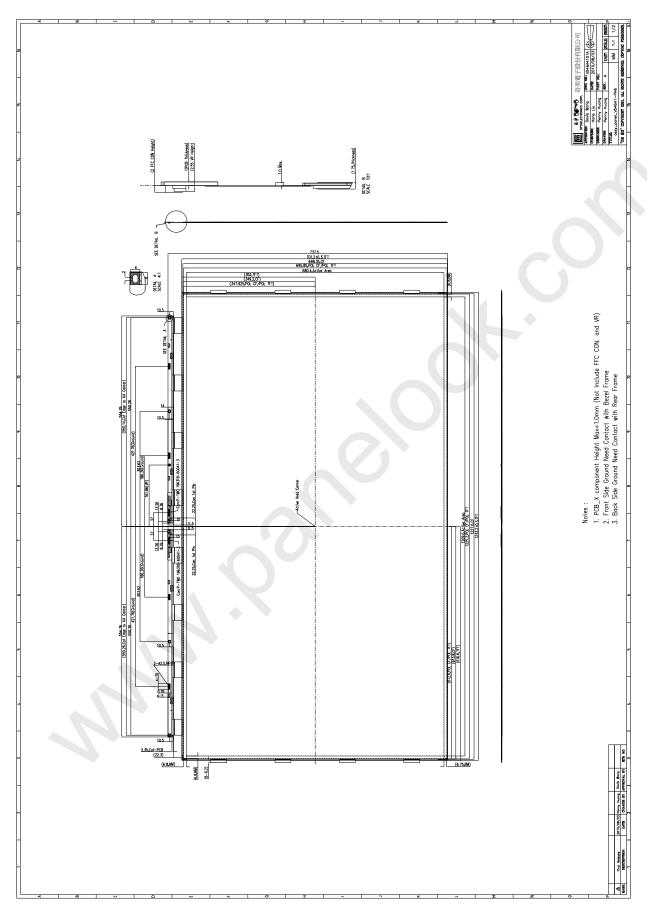
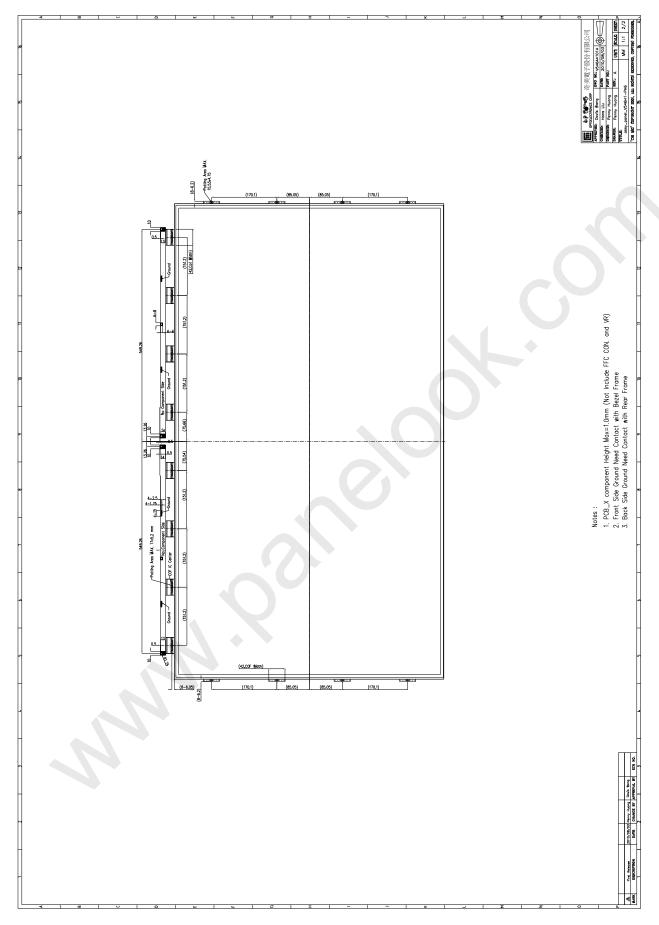



Figure.9-2 packing method

11. MECHANICAL CHARACTERISTIC



Date: 18 May. 2011 Version 1.0

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

Version 1.0 Date: 18 May. 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited