

TFT LCD Preliminary Specification

MODEL NO.: V520H1 - L05

Approved Dv	TV Hea	ad Division
Approved By	LY	Chen
Reviewed By	QRA Dept.	Product Development Div.
rteviewed by =	Tomy Chen	WT Lin
	LCD TV M	arketing and Product

Prepared By

Ken Wu

Keith Chen

1

Global LCD Panel Exchange Center

Issue Date: Apr.10.2007 Model No.:V520H1-L05

Preliminary

- CONTENTS -	-
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 PACKAGE STORAGE 2.3 ELECTRICAL ABSOLUTE RATINGS 2.3.1 TFT LCD MODULE 2.3.2 BACKLIGHT INVERTER UNIT	6
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERI 3.2.2 INVERTER CHARACTERISTICS 3.2.3 INVERTER INTERFACE CHARACTERISTICS	
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE	14
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE INPUT 5.2 BACKLIGHT UNIT 5.3 INVERTER UNIT 5.4 BLOCK DIAGRAM OF INTERFACE 5.5 LVDS INTERFACE 5.6 COLOR DATA INPUT ASSIGNMENT	15
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	25
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	28
8. PRECAUTIONS 8.1 ASSEMBLY AND HANDLING PRECAUTIONS 8.2 SAFETY PRECAUTIONS 8.3 SAFETY STANDARDS	31
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD	32
10. MECHANICAL CHARACTERISTICS	34

Preliminary

REVISION HISTORY

Version	Date	Page	Section	Description
Ver.1.0	Date Apr.10, 2007		All	Preliminary Specification was first issued.

Preliminary

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V520H1-L05 is a 52" TFT Liquid Crystal Display module with 28-CCFL Backlight unit and 2ch-LVDS interface. This module supports 1920 x 1080 HDTV format and can display true 16.7M colors (8-bit/color). The inverter module for backlight is built-in.

1.2 FEATURES

- High brightness (550 nits)
- High contrast ratio (1500:1)
- Fast response time (Gray to gray average 6.5 ms)
- High color saturation (NTSC 92%)
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Optimized response time for 50/60 Hz frame rate
- Ultra wide viewing angle : Super MVA technology
- 180 degree rotation display option
- RoHS compliance

1.3 APPLICATION

- Standard Living Room TVs.
- Public Display Application.
- Home Theater Application.
- MFM Application.

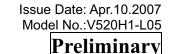
1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	1152 x 648 (52.037")	mm	(1)
Bezel Opening Area	1166.0x662.0	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920x R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.2 (H) x 0.2 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Hard coating 3H Low reflection coating< 1.3% reflection	-	(2)

Note (1) Please refer to the attached drawings in chapter 9 for more information about the front and back outlines.

Note (2) The spec of the surface treatment is temporarily for this phase. CMO reserves the rights to change this feature.

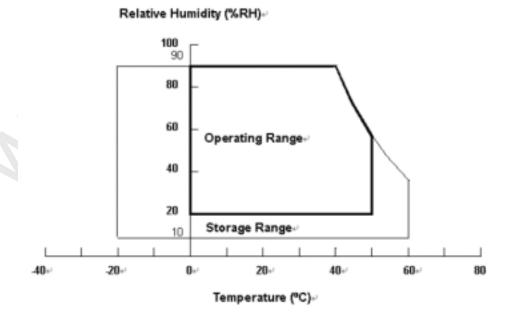
Preliminary


1.5 MECHANICAL SPECIFICATIONS

	Item		Min.	Тур.	Max.	Unit	Note
Horizontal (H)			1224.5	1226	1227.5	mm	
Module Size	Vertical (V)		718.0	719.2	720.4	mm	(1), (2)
Module Size	Depth (D)	To inv cover	56.0	57.5	59.0	mm	(1), (2)
	Deptil (D)	To rear plate	38.5	40	41.5	mm	
	Weigh	t		19600		g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth does not include connectors.


2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Itom	Symbol		Va	alue	Unit	Note	
Item			Min.	Max.	Offic	Note	
Storage Temperature	T _{ST}		-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}		0	50	°C	(1), (2)	
Shock (Non-Operating)	(±	X, ±Y		40	G	(2) (5)	
Shock (Non-Operating)	S _{NOP}	±Ζ	i - [30	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}		-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Preliminary

2.2 Package storage

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

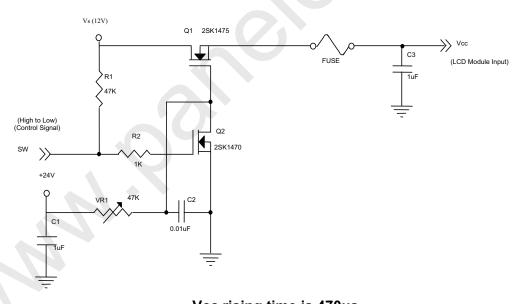
2.3.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note
item	Cymbe.	Min.	Max.		110.0
Power Supply Voltage	V _{cc}	-0.3	13.5	V	(1)
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)

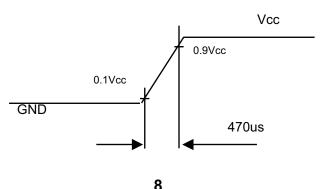
2.3.2 BACKLIGHT INVERTER UNIT

Item	Symbol	Va	lue	Unit	Note
item	Syllibol	Min.	Max.	Offic	Note
Lamp Voltage	V_W		3000	V_{RMS}	

Preliminary


3. ELECTRICAL CHARACTERISTICS

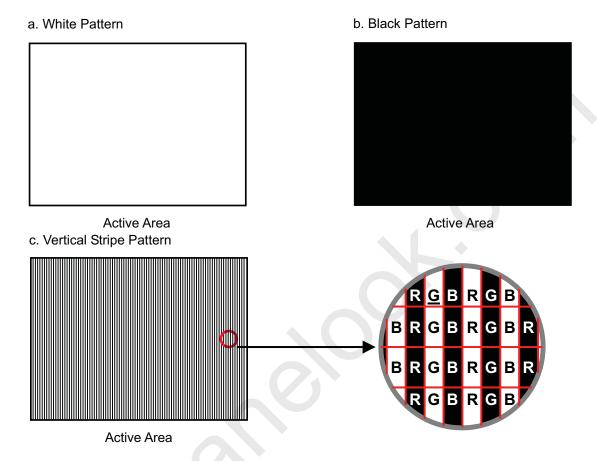
3.1 TFT LCD MODULE (Ta = 25 ± 2 °C)


					Value			
Paramete	r		Symbol	Min.	Typ.	Max.	Unit	Note
Power Su	pply Voltage		V_{CC}	10.8	12	13.2	V	(1)
Power Su	pply Ripple V	/oltage	V_{RP}	-	-	350	mV	
Rush Curr	ent		I _{RUSH}	-	-	4.5	Α	(2)
		White		-	1.5	2.1	Α	
Power Su	pply Current	Black		-	0.6	•	Α	
Vertical Stripe		Vertical Stripe	I _{cc}	-	1.1	-	Α	(3)
		tial Input High hold Voltage	V_{LVTH}	_	-	100	mV	
LVDS	Differential Input Low Threshold Voltage		V_{LVTL}	-100	-	-	mV	
Interface	Commor	Common Input Voltage		1.125	1.25	1.375	V	
in Romado I	Termina	Terminating Resistor		-	100	-	ohm	
CMOS	Input High	Threshold Voltage	V _{IH}	2.7	4	3.3	٧	-
interface	Input Low T	Threshold Voltage	V_{IL}	0	-	0.7	V	

Note (1) The module should be always operated within the above ranges.

Note (2) Measurement condition:

Vcc rising time is 470us

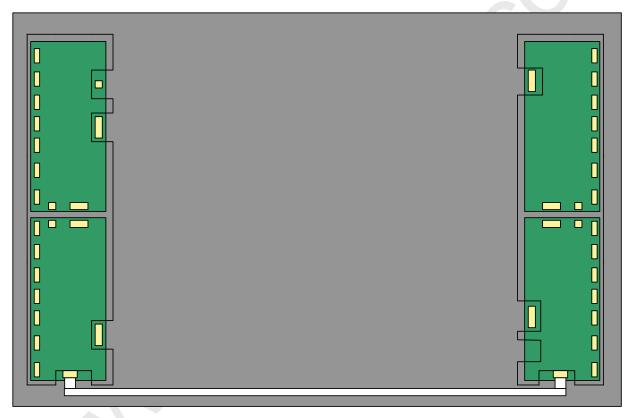

The information described in this technical specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification. **Version 1.0**

Global LCD Panel Exchange Center

Issue Date: Apr.10.2007 Model No.:V520H1-L05 Preliminary

Note (3) The specified power supply current is under the conditions at Vcc = 12 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \text{ Hz}$, whereas a power dissipation check pattern below is displayed.

Preliminary

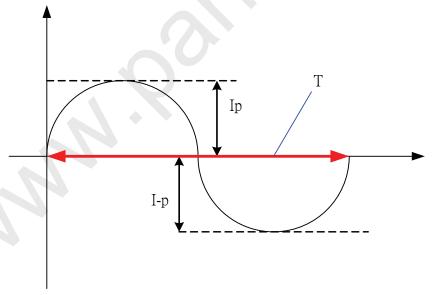

3.2 BACKLIGHT UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Cymbol		Value	Unit	Note	
Parameter	Symbol	Min. Typ. Max		Max.		
Lamp Input Voltage	V_L	-	1600	-	V_{RMS}	-
Lamp Current	ΙL	5.5	6.0	6.5	mA_{RMS}	(1)
Lamp Turn On Voltage	Vs	-	-	2640	V_{RMS}	Ta = 0 °C
Lamp Turn On Voltage		-	-	2440	V_{RMS}	Ta = 25 °C
Operating Frequency	FL	40	-	70	KHz	
Lamp Life Time	L_BL	50,000	60,000	-	Hrs	(2)

3.2.2 INVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)

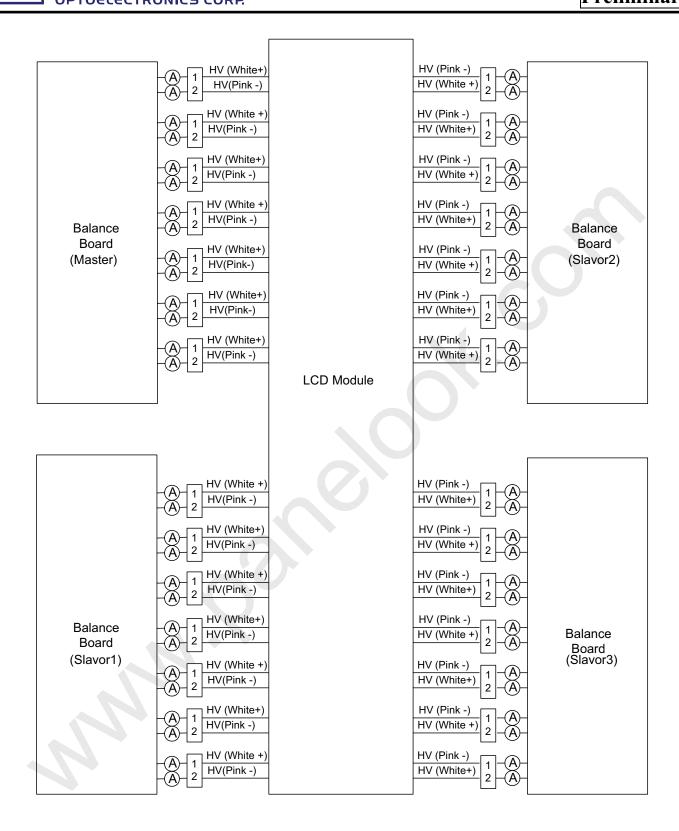
3.2.2.1 BALANCE BOARD CONFIGURATION


Preliminary

3.2.2.1 BALANCE BOARD SPECIFICATION

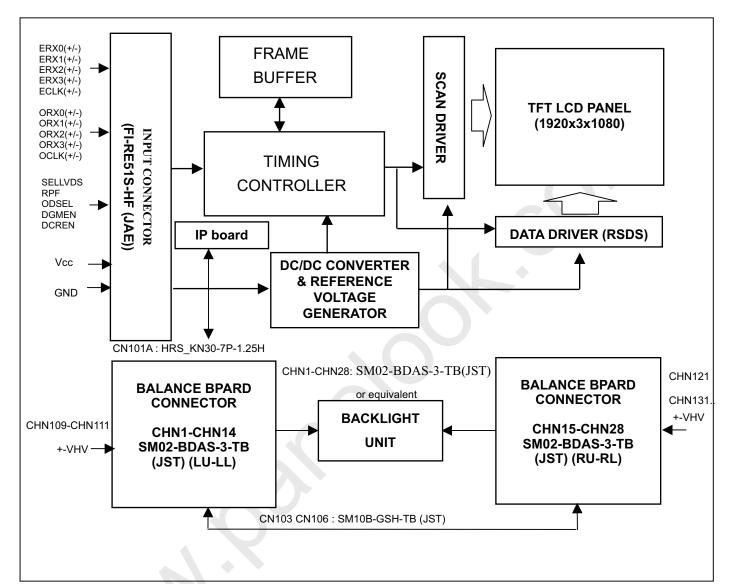
Parameter		Symbol		Value		Unit Note		
Гаі	ametei	Syllibol	Min.	Тур.	Max.	Oill	Note	
Input High Voltage		V_{HV}	1600	1720	1840	V	(1)	Lamp Voltage
Total Input (Current of Each	Lin(HV)	157.5	175	192.5	mA	(2)	
Operating F	requency	Fop	47	50	53			Switching Frequency
Lamp Curre	ent	lout	5.8	6.0	6.2	mA		
l amn	High (Normal)		-	12	13.5	V		
Lamp Detect	Low (LD)	LD	0	-	0.8	V		
Dimming Fr	equency	F _{DIM}	150	160	170	Hz		
Dimming Du	uty-Ratio	D _{PWM}	20	-	100	%		Bright Control

Note (1) Lamp current is measured by utilizing AC current probe and its value is average by measuring master and slave board.


Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.

Global LCD Panel Exchange Center

Issue Date: Apr.10.2007 Model No.:V520H1-L05 Preliminary



4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

Preliminary

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module Input

Pin	Name	Description	Note
1	VCC	+12V power supply	
2	VCC	+12V power supply	
3	VCC	+12V power supply	
4	VCC	+12V power supply	
5	VCC	+12V power supply	
6	GND	Ground	
7	GND	Ground	
8	GND	Ground	
9	GND	Ground	
10	ORX0-	Odd pixel Negative LVDS differential data input. Channel 0	
11	ORX0+	Odd pixel Positive LVDS differential data input. Channel 0	
12	ORX1-	Odd pixel Negative LVDS differential data input. Channel 1	
13	ORX1+	Odd pixel Positive LVDS differential data input. Channel 1	
14	ORX2-	Odd pixel Negative LVDS differential data input. Channel 2	
15	ORX2+	Odd pixel Positive LVDS differential data input. Channel 2	
16	GND	Ground	
17	OCLK-	Odd pixel Negative LVDS differential clock input.	
18	OCLK+	Odd pixel Positive LVDS differential clock input.	
19	GND	Ground	
20	ORX3-	Odd pixel Negative LVDS differential data input. Channel 3	
21	ORX3+	Odd pixel Positive LVDS differential data input. Channel 3	
22	N.C.	No Connection	(1)
23	N.C.	No Connection	(1)
24	GND	Ground	
25	ERX0-	Even pixel, Negative LVDS differential data input. Channel 0	
26	ERX0+	Even pixel, Positive LVDS differential data input. Channel 0	
27	ERX1-	Even pixel, Negative LVDS differential data input. Channel 1	
28	ERX1+	Even pixel, Positive LVDS differential data input. Channel 1	
29	ERX2-	Even pixel, Negative LVDS differential data input. Channel 2	
30	ERX2+	Even pixel, Positive LVDS differential data input. Channel 2	
31	GND	Ground	
32	ECLK-	Even pixel, Negative LVDS differential clock input	
33	ECLK+	Even pixel, Positive LVDS differential clock input.	
34	GND	Ground	
35	ERX3-	Even pixel, Negative LVDS differential data input. Channel 3	
36	ERX3+	Even pixel, Positive LVDS differential data input. Channel 3	
37	N.C.	No Connection	(4)
38	N.C.	No Connection	(1)
39	GND	Ground	
40	ODSEL	Overdrive Lookup Table Selection	(4)
41	DCREN	Dynamic Contrast Ratio Enable	(5)
42	N.C.	No Connection	(1)
43	RPF	Display Rotation	(3)
44	N.C.	No Connection	(1)
45	SELLVDS	LVDS Data Format Selection	(2)
46	N.C.	No Connection	\-/
		No Connection	(1)
47	N.C.	INO COMPECTION	111

14

The information described in this technical specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification. **Version 1.0**

Global LCD Panel Exchange Center

Issue Date: Apr.10.2007 Model No.:V520H1-L05 Preliminary

49	N.C.	No Connection	
50	N.C.	No Connection	(1)
51	N.C.	No Connection	

Note (1) Reserved for internal use. Please leave it open.

Note (2) Low: JEIDA LVDS Format (default), High: VESA Format.

Note (3) Low: normal display (default), High: display with 180 degree rotation

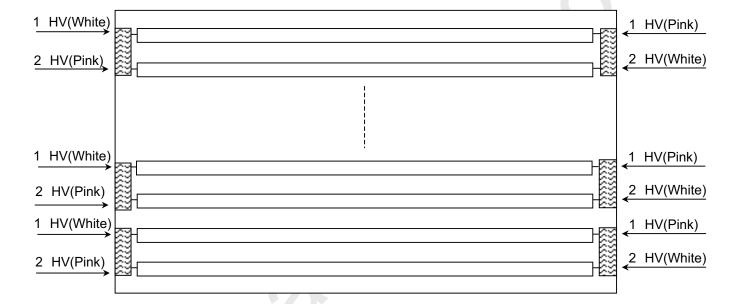
Note (4) Overdrive lookup table selection. The overdrive lookup table should be selected in accordance with the frame rate to optimize image quality.

ODSEL	Note
L	Lookup table was optimized for 60 Hz frame rate.
Н	Lookup table was optimized for 50 Hz frame rate.

Note (5) Low: function disable (default), High: Dynamic Contrast Ratio function enable.

Note (6) Low = Open or Connect to GND, High = Connect to +3.3V

Preliminary


5.2 BACKLIGHT UNIT

The pin configuration for the housing and the leader wire is shown in the table below.

CN12-CN39: CP042CL000 (Cvilux).

Pin	Name	Description	Wire Color
1	HV	High Voltage	Pink
2	HV	High Voltage	White

Note (1) The backlight interface housing for high voltage side is a model CP042CL000, manufactured by Cvilux. The mating header on inverter part number is CP042CP1MB0

Preliminary

5.3 INVERTER UNIT

CHN109 , CHN111 , CHN121 , CHN131 : SM02B-BDAS-3-TB (D)(LF)(JST)

CHN1-28: SM02B-BDAS-3-TB (D)(LF)(JST)

Connector	Pin	Symbol	Description	I/O
CHN109	1	HV-	High Voltage	
CHN111	2	HV+	High Voltage	Input
CHN121	CHN121 1		High Voltage	Input
CHN131	2	HV+	High Voltage	
CHN1-28	1	HV+	High Voltage	Output
CI IIN 1-20	2	HV-	High Voltage	Output

CN101A: HRS_KN30-7P-1.25H

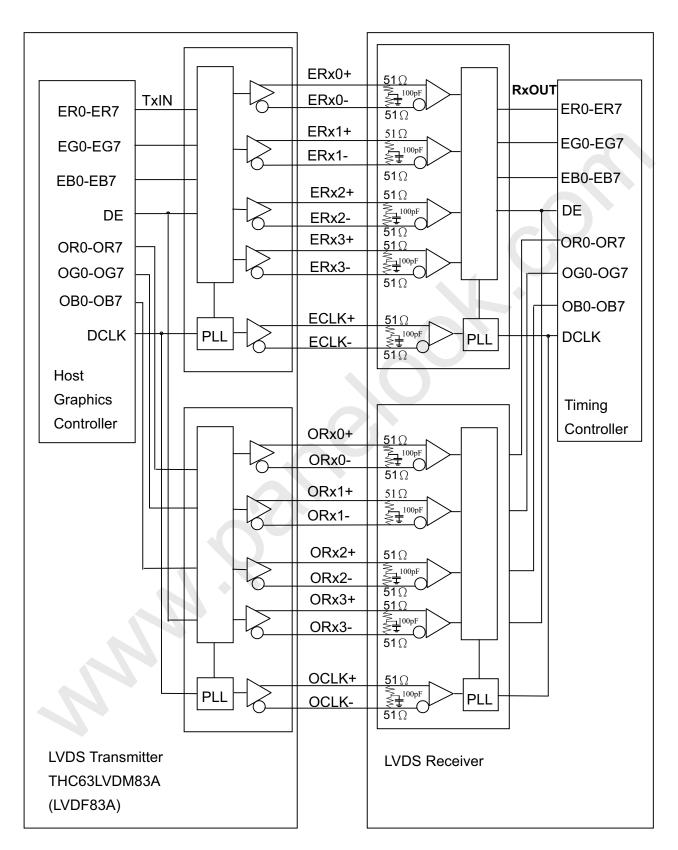
Pin №	Symbol	Feature
1	VCC	Supply voltage of balance board
2	PROTECTION	PROTECTION
3	GND	GND
4	GND	GIND
5	NC	NC
6	I_SNS	Lamp Detection
7	I_SNS	Lamp Detection

CN103, CN106: SM10B-GSH-TB (JST)

CN126 CN225	Symbol	Description
Pin №		
1		Board to Board
2		Board to Board
3		Board to Board
4	Control	Board to Board
5		Board to Board
6	Signal	Board to Board
7		Board to Board
8		Board to Board
9		Board to Board
10		Board to Board

CHN110, CHN112, CHN122, CHN132: SM02B-BDAS-3-TB (D)(LF)(JST)

Connector	Pin	Symbol	Description
CHN109	1	HV-	Board to Board
CHN111	2	HV+	Board to Board
CHN121	1	HV-	Board to Board
CHN131	2	HV+	Board to Board


CN102 , CN104 , CN105 : SM07B-GHS-TBT(JST)

Pin №	Symbol	Feature
1		Board to Board
2		Board to Board
3	Control	Board to Board
4	Signal	Board to Board
5	Olgilai	Board to Board
6		Board to Board
7		Board to Board

5.4 BLOCK DIAGRAM OF INTERFACE

Global LCD Panel Exchange Center

Issue Date: Apr.10.2007 Model No.:V520H1-L05 Preliminary

ER0~ER7: Even pixel R data EG0~EG7: Even pixel G data EB0~EB7: Even pixel B data OR0~OR7: Odd pixel R data OG0~OG7: Odd pixel G data OB0~OB7: Odd pixel B data DE : Data enable signal **DCLK** : Data clock signal

Notes: (1) The system must have the transmitter to drive the module.

- (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.
- (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

Preliminary

5.5 LVDS INTERFACE

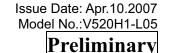
	SIG	GNAL		NSMITTER 63LVDM83A	INTER CONNE			CEIVER	TFT CON	FROL INPUT
	LVDS_SEL =H	LVDS_SEL = L or OPEN	PIN INPUT		Host	TFT-LCD	PIN	OUTPUT	LVDS_SEL =H	LVDS_SEL = L or OPEN
	R0	R2	51	TxIN0			27	Rx OUT0	R0	R2
	R1	R3	52	TxIN1			29	Rx OUT1	R1	R3
	R2	R4	54	TxIN2	TA OUT0+	Rx 0+	30	Rx OUT2	R2	R4
	R3	R5	55	TxIN3			32	Rx OUT3	R3	R5
	R4	R6	56	TxIN4			33	Rx OUT4	R4	R6
	R5	R7	3	TxIN6	TA OUT0-	Rx 0-	35	Rx OUT6	R5	R7
	G0	G2	4	TxIN7			37	Rx OUT7	G0	G2
	G1	G3	6	TxIN8		4	38	Rx OUT8	G1	G3
	G2	G4	7	TxIN9			39	Rx OUT9	G2	G4
	G3	G5	11	TxIN12	TA OUT1+	Rx 1+	43	Rx OUT12	G3	G5
	G4	G6	12	TxIN13			45	Rx OUT13	G4	G6
	G5	G7	14	TxIN14			46	Rx OUT14	G5	G7
	В0	B2	15	TxIN15	TA OUT1-	Rx 1-	47	Rx OUT15	В0	B2
	B1	В3	19	TxIN18			51	Rx OUT18	B1	В3
	B2	B4	20	TxIN19			53	Rx OUT19	B2	B4
046:4	В3	B5	22	TxIN20			54	Rx OUT20	В3	B5
24bit	B4	В6	23	TxIN21	TA OUT2+	Rx 2+	55	Rx OUT21	B4	В6
	B5	В7	24	TxIN22			1	Rx OUT22	B5	В7
	DE	DE	30	TxIN26			6	Rx OUT26	DE	DE
	R6	R0	50	TxIN27	TA OUT2-	Rx 2-	7	Rx OUT27	R6	R0
	R7	R1	2	TxIN5			34	Rx OUT5	R7	R1
	G6	G0	8	TxIN10			41	Rx OUT10	G6	G0
	G7	G1	10	TxIN11			42	Rx OUT11	G7	G1
	В6	В0	16	TxIN16	TA OUT3+	Rx 3+	49	Rx OUT16	В6	В0
	В7	B1	18	TxIN17			50	Rx OUT17	В7	B1
	RSVD 1	RSVD 1	25	TxIN23			2	Rx OUT23	NC	NC
	RSVD 2	RSVD 2	27	TxIN24	TA OUT3-	Rx 3-	3	Rx OUT24	NC	NC
	RSVD 3	RSVD 3	28	TxIN25			5	Rx OUT25	NC	NC
	DO	CLK	31	TxCLK IN	TxCLK	RxCLK	26	RxCLK	D	CLK
					OUT+	IN+		OUT		
					TxCLK	RxCLK				
					OUT-	IN-				

R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE : Data enable signal DCLK : Data clock signal

Notes: (1) RSVD (reserved) pins on the transmitter shall be "H" or "L".


Preliminary


5.6 COLOR DATA INPUT ASSIGNMENT

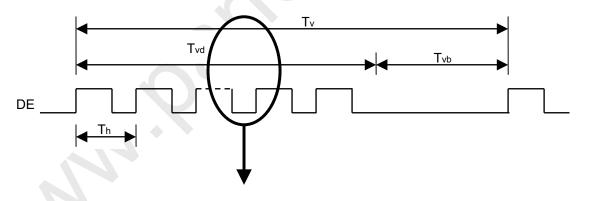
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

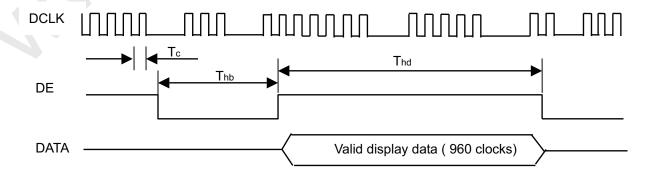
												Da	ata :	Sigr	nal										
Color					Re									reer							Βlι				
	I	R7	R6	R5	R4	R3	R2	R1	R0	G7	_	G5	G4	G3	G2	G1	G0	В7	_	B5	B4	ВЗ	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cravi	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	l :	:	:	:	:	:	:			:		:	:	:	:	:	:	:	:
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:				:	:	:	:	:	:	:	:	:
Of	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	•			:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale Of	:	:	:	:	:	:	:		÷		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray	` :	:		:		:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:	:			:	l :	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:
Of	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Blue	Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

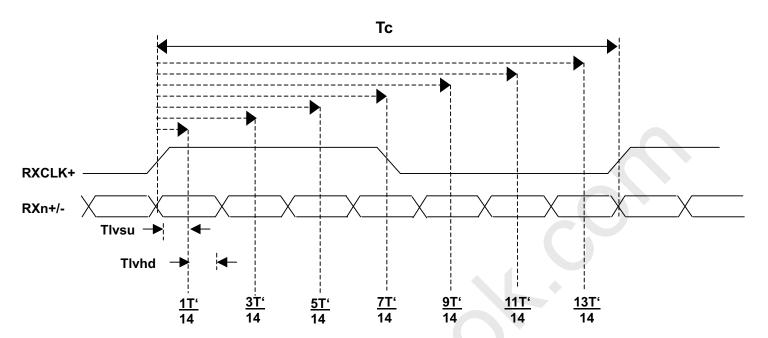

The input signal timing specifications are shown as the following table and timing diagram.


Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	1/Tc	60	74	80	MHz	-
LVDS Receiver Clock	Input cycle to cycle jitter	Trcl	-	-	200	ps	-
LVDS Receiver Data	Setup Time	Tlvsu	600	-	•	ps	-
LVD3 Receiver Data	Hold Time	Tlvhd	600	-	ı	ps	_
	Frame Rate	Fr5	47	50	53	Hz	(1)
	Frame Nate	Fr6	57	60	63	Hz	(1)
Vertical Active Display Term	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tvb
	Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	35	45	55	Th	-
	Total	Th	2100	2200	2300	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1920	1920	1920	Tc	-
	Blank	Thb	180	280	380	Tc	-

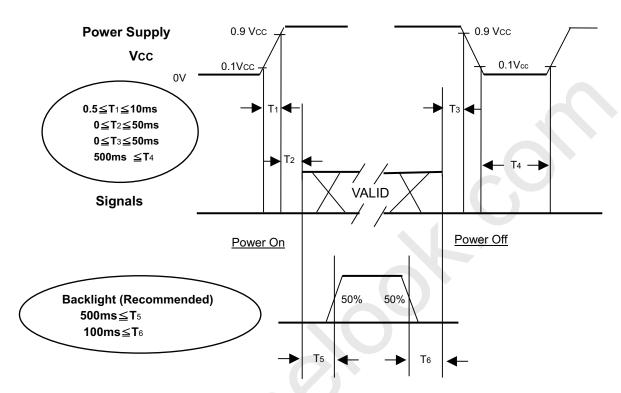
Note (1) (ODSEL) = (H), (L). Please refer to 5.1 for detail information.

Note (2) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM


24

Preliminary


LVDS INPUT INTERFACE TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the diagram below.

Power ON/OFF Sequence

Note.

- (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

Preliminary

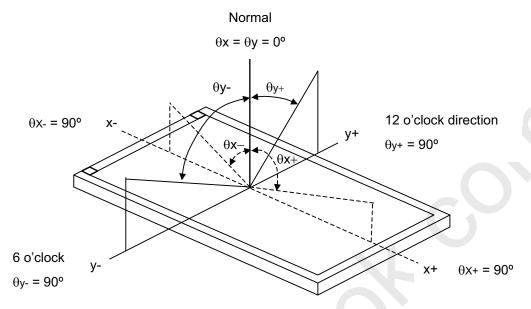
7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Ta	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V_{CC}	V _{CC} 12/18 V				
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"			
Lamp Current	I _L	6.0±0.5	mA			
Oscillating Frequency (Inverter)	F _W	50±3	KHz			
Vertical Frame Rate	Fr	60	Hz			

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).


Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR Dynamic CR	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$		1500 6000		1	Note (2)
Response Time		Gray to gray			6.5		ms	Note (3)
Center Luminance of White		L _C			550		cd/m ²	Note (4)
White Variation		δW				1.3	-	Note (7)
Cross Talk		CT				4	%	Note (5)
Color Chromaticity	Red	Rx	Viewing Angle at Normal Direction		0.658	Тур.	-	Note (6)
		Ry			0.327		-	
	Green	Gx		Тур.	0.189		-	
		Gy			0.670		-	
	Blue	Bx		-0.03	0.152	+0.03	-	
		Ву			0.059		-	
	White	Wx			0.280		-	
		Wy			0.290		-	
	Color Gamut	C.G			92		%	NTSC
Viewing Angle	Horizontal	θ_{x} +	CR≥20	80	88		Deg.	Note (1)
		θ_{x} -		80	88			
	Vertical	θ _Y +		80	88			
		θ _Y -		80	88			

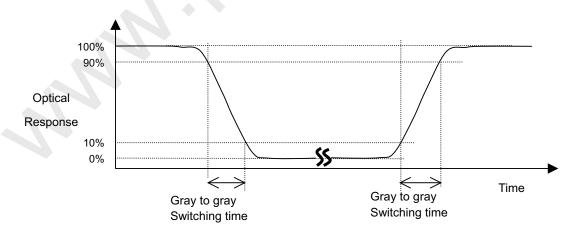
Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Eldim EZ-Contrast 160R

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Surface Luminance with all white pixels


Contrast Ratio (CR) =

Surface Luminance with all black pixels

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

The measured value will be "Dynamic CR" only when the function of dynamic contrast ratio is enabled.

Note (3) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of gray level 0, 63, 127, 191, and 255.

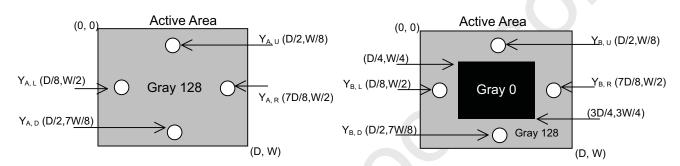
Gray to gray average time means the average switching time of gray level 0, 63,127,191,255 to each other.

Preliminary

Note (4) Definition of Luminance of White (L_C, L_{AVE}):

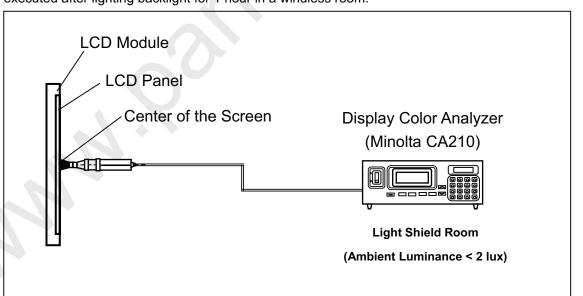
Measure the luminance of gray level 255 at center point and 5 points

 $L_C = L$ (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (7).


Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

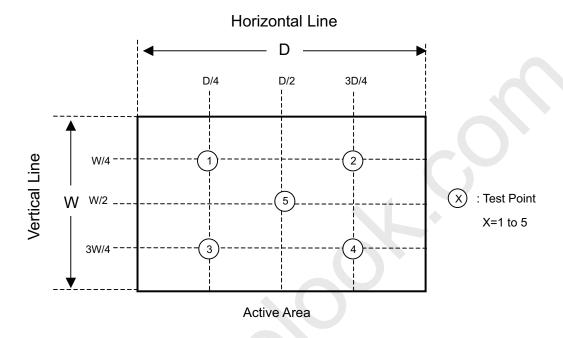
Where:


Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.



Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

8.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

8.3 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.
- (3) UL60065 or updated standard.
- (4) IEC60065 or updated standard.

9. PACKAGING

9.1 PACKING SPECIFICATIONS

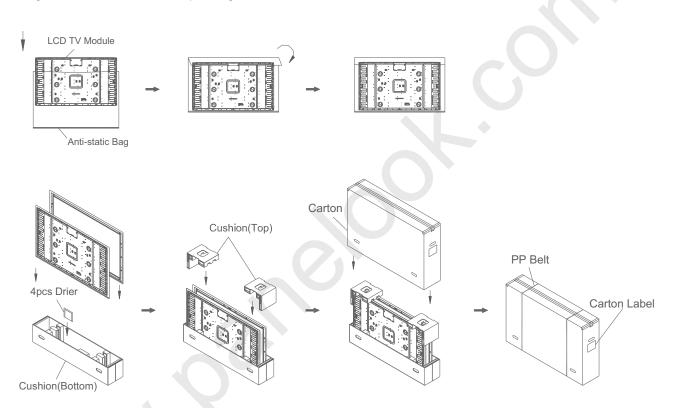
(1) 2 LCD TV modules / 1 Box

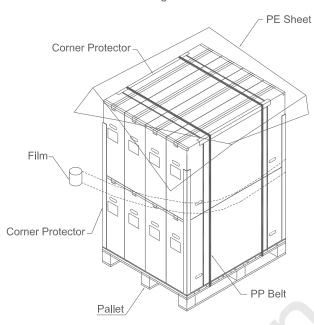
(2) Box dimensions: 1334(L) X 284 (W) X 856 (H)

(3) Weight: approximately 47.5Kg (2 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method




Figure. 9-1 packing method

Preliminary

Sea Transportation

Corner Protector:L1780*50mm*50mm Corner Protector:L1130*50mm*50mm Pallet:L1150*W1345*H140mm Pallet Stack:L1150*W1345*H1852mm Gross: 400 kg

Air Transportation

Corner Protector:L800*50mm*50mm Corner Protector:L1130*50mm*50mm Pallet:L1150*W1345*H140mm Pallet Stack:L1150*W1345*H996mm Gross: 210 kg

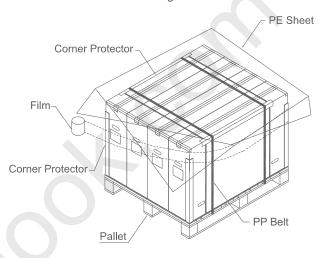
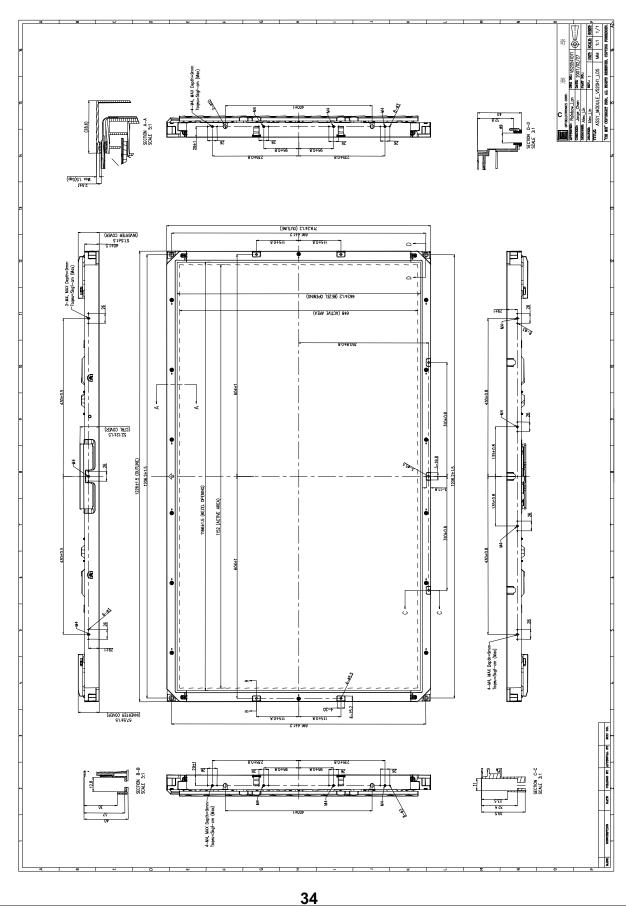
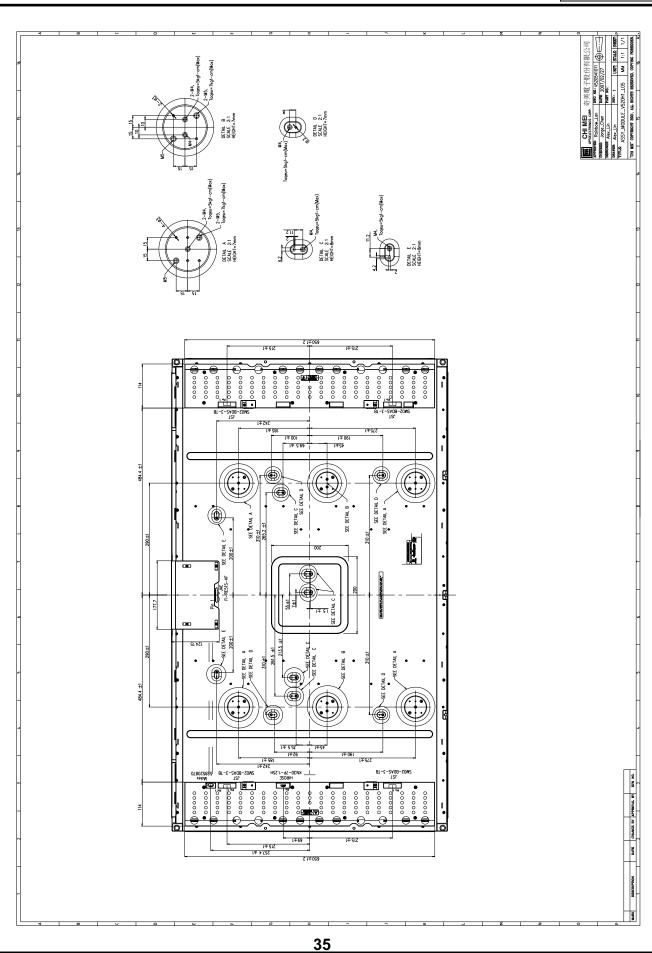



Figure. 9-2 Packing method

10. MECHANICAL CHARACTERISTICS



in a time

The information described in this technical specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification. **Version 1.0**

Preliminary

The information described in this technical specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification. **Version 1.0**