

Issue Date:JUL.14.2008 Model No.: V470H1-LH4 **Preliminary**

TFT LCD Preliminary Specification

MODEL NO.: V470H1 – LH4

Approved By	TV Head Division
	LY Chen

Reviewed By	QRA Dept.	Product Development Div.
Reviewed By	Tomy Chen	WT Lin

Dropared By	LCD TV Marketing and Product Management Div				
Prepared By	Ken Wu HT Hung				

Preliminary

CONTENTS -

1.1 1.2 1.3 1.4	ENERAL DESCRIPTION OVERVIEW FEATURES APPLICATION GENERAL SPECIFICATIONS MECHANICAL SPECIFICATIONS		4
2.1 2.2 2.3 2.3	SOLUTE MAXIMUM RATINGS ABSOLUTE RATINGS OF ENVIRONMENT PACKAGE STORAGE ELECTRICAL ABSOLUTE RATINGS .1 TFT LCD MODULE .2 BACKLIGHT INVERTER UNIT		5
3.2 3.2 3.2	ECTRICAL CHARACTERISTICS I TFT LCD MODULE BACKLIGHT UNIT 1.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTI 1.2 INVERTER CHARACTERISTICS 1.3 INVERTER INTERTFACE CHARACTERISTICS	CS	7
	OCK DIAGRAM TFT LCD MODULE	1	13
5.2 5.2 5.4 5.4	PUT TERMINAL PIN ASSIGNMENT I TFT LCD MODULE BACKLIGHT UNIT I INVERTER UNIT BLOCK DIAGRAM OF INTERFACE COLOR DATA INPUT ASSIGNMENT		-14
6.1	TERFACE TIMING I INPUT SIGNAL TIMING SPECIFICATIONS POWER ON/OFF SEQUENCE	2	22
7.1	PTICAL CHARACTERISTICS TEST CONDITIONS OPTICAL SPECIFICATIONS		25
8.	RECAUTIONS ASSEMBLY AND HANDLING PRECAUTIONS SAFETY PRECAUTIONS	2	29
9. DE	FINITION OF LABELS		30
9.1	CMO MODULE LABEL		
10.	ACKAGING 1 PACKING SPECIFICATIONS 2 PACKING METHOD		31
11 M	ECHANICAL CHARACTERISTICS		33

Preliminary

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver.1.0	Dec, 26,07'	All	All	Preliminary Specification was first issued.
Ver.1.1	May,12, 08'	5	1.2	High contrast ratio, High color saturation
		10	3.2.1	CCFL CHARACTERISTICS
		16	5.1	TFT LCD Module Input
		28	7.1	TEST CONDITIONS
				OPTICAL SPECIFICATIONS
Ver.1.2	Jul.14.08'	4	1.2	FEATURES
			1.5	MECHANICAL SPECIFICATIONS
		5	2	ABSOLUTE MAXIMUM RATINGS
		9	3.2.2	INVERTER CHARACTERISTICS
		13	4.1	TFT LCD MODULE
		14	5.1	TFT LCD MODULE
		16 17	5.2 5.3	BACKLIGHT UNIT
		17	5.3	INVERTER UNIT

Global LCD Panel Exchange Center

Issue Date: JUL. 14.2008 Model No.: V470H1-LH4

Preliminary

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V470H1-LH4 is a 47" TFT Liquid Crystal Display module with 20-CCFL Backlight unit and 4ch-LVDS interface. This module supports 1920 x 1080 Full HDTV format and can display true 1.0G colors (10-bit/color). The inverter module for backlight is built-in.

1.2 FEATURES

- High brightness (500nits)
- High contrast ratio (4000:1)
- Fast response time (Gray to Gray average 4 ms)
- High color saturation (NTSC 72%)
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Optimized response time for 120 Hz frame rate
- Ultra wide viewing angle: Super MVA technology
- 180 degree rotation display option

1.3 APPLICATION

- Standard Living Room TVs.
- Public Display Application.
- Home Theater Application.
- MFM Application.

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	1039.68(H) x 584.82(V) (47" diagonal)	mm	(1)
Bezel Opening Area	1049(H) x 593(V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920x R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.5415 (H) x 0.1805(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	1.0G	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti-Glare coating (Haze 25%) Hard coating (3H)	-	(2)

Note (1) Please refer to the attached drawings in chapter 11 for more information about the front and back outlines.

Note (2) The spec of the surface treatment is temporarily for this phase. CMO reserves the rights to change this feature.

1.5 MECHANICAL SPECIFICATIONS

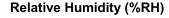
Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	ı	1096	ı	mm	
Module Size	Vertical (V)	-	640	-	mm	(1), (2)
	Depth (D)	-	52.7	-	mm	
Weight		-	15500	-	g	-

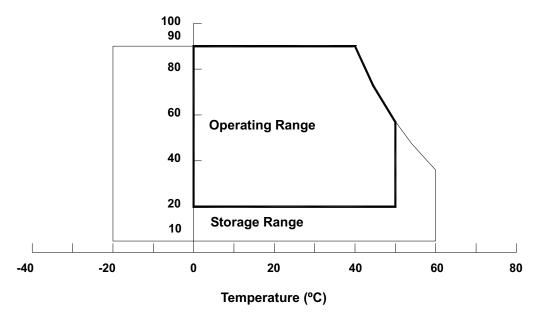
Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth does not include connectors.

Global LCD Panel Exchange Center

Issue Date: JUL. 14.2008 Model No.: V470H1-LH4 Preliminary


2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol		Va	lue	Unit	Note	
item			Min.	Max.	Offic	Note	
Storage Temperature	T _{ST}		-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}		0	+50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	X, Y axis	-	50	G	(3), (5)	
Shock (Non-Operating)		Z axis	-	35	G	(3), (5)	
Vibration (Non-Operating)	V _{NOP}		-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, and $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture. The module would not be twisted or bent by the fixture.

Preliminary

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

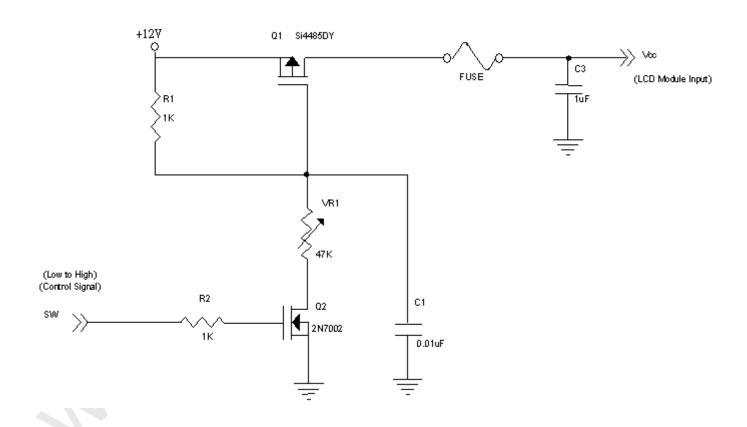
2.3.1 TFT LCD MODULE

Item	Svmbol	Value		Unit	Note
itom	Cy	Min.	Max.	01	110.0
Power Supply Voltage	V _{cc}	-0.3	13.2	V	
Logic Input Voltage	V _{IN}	-0.3	3.6	V	

2.3.2 BACKLIGHT INVERTER UNIT

Item	Symbol	Va	lue	Unit	Note	
item	Syllibol	Min.	Max.	Offic	Note	
Lamp Voltage	V_W	-	3000	V_{RMS}		
Power Supply Voltage	V_{BL}	0	30	V	(1)	
Control Signal Level	_	-0.3	7	V	(1), (3)	

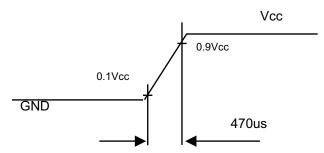
- Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.
- Note (2) No moisture condensation or freezing.
- Note (3) The control signals include On/Off Control, Internal PWM Control, External PWM Control and Internal/External PWM Selection.

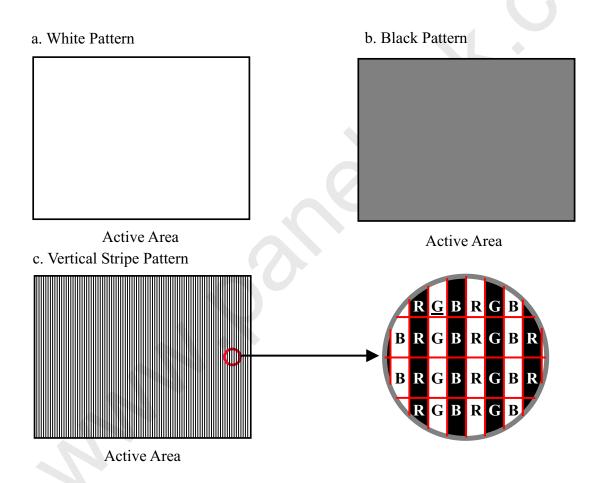

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE (Ta = 25 ± 2 °C)

	Paramet	Or.	Symbol	Symbol		Value		Note
	Faramet	EI	Symbol	Min.	Тур.	Max.	Unit	Note
Power Su	pply Voltage		V _{cc}	10.8	12	13.2	V	(1)
Power Su	pply Ripple Vo	Itage	V_{RP}	-	-	350	mV	
Rush Curi	ent		I _{RUSH}	-	-	7.0	Α	(2)
	White			-	2.5	3.0	Α	
Power Su	pply Current	Black	Icc	-	1.5	-	Α	(3)
		Vertical Stripe		-	2.0	-	Α	
LVDS	Common Inpu	ıt Voltage	V_{LVC}	1.125	1.25	1.375	V	
Interface Terminating Resistor		esistor	R _⊤	-	100	-	ohm	
CMOS	Input High Threshold Voltage		V_{IH}	2.7	-	3.3	V	
interface	Input Low Thr	eshold Voltage	V_{IL}	0	-	0.7	V	

Note (1) The module should be always operated within the above ranges.


Note (2) Measurement condition:



Issue Date:JUL.14.2008 Model No.: V470H1-LH4 **Preliminary**

Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 12 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, fv = 120 Hz, whereas a power dissipation check pattern below is displayed.

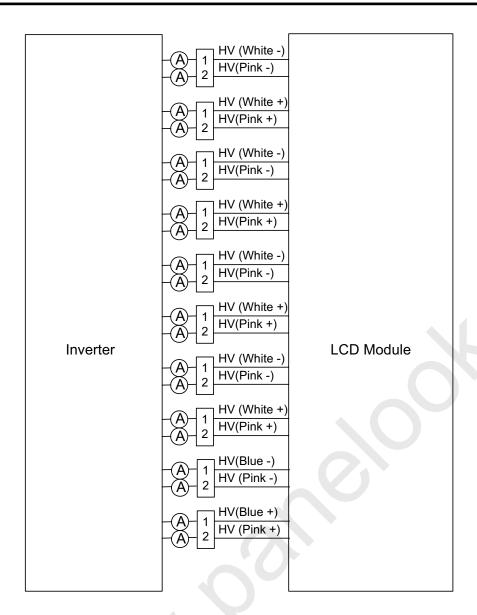
Preliminary

3.2 BACKLIGHT UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Cymbol		Value	Unit	Note	
Parameter	Symbol	Min.	Тур.	Max.	Offic	Note
Lamp Input Voltage	V_L	-	1400	-	V_{RMS}	-
Lamp Current	Ι _L	8.0	8.5	9.0	mA_{RMS}	(1)
Lamp Turn On Voltage	Vs	-	-	2050	V_{RMS}	(2), Ta = 0 °C
Lamp rum On voltage		-	-	1890	V_{RMS}	(2), Ta = 25 °C
Operating Frequency	F_L	40	-	80	KHz	(3)
Lamp Life Time	L_BL	50,000	-	-	Hrs	(4)

3.2.2 INVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)


		`	,					
Parameter	Symbol		Value	Unit	Note			
Farameter	Symbol	Min.	Тур.	Max.	Offic	Note		
Power Consumption	P _{BL}	-	216	227	W	$(3)(4)$, $I_L = 8.5 \text{ mA}$		
Power Supply Voltage	V_{BL}	22.8	24	25.2	V_{DC}			
Power Supply Current	I _{BL}	-	9.0	-	Α			
Input Ripple Noise	-	-	-	912	mV_{P-P}	V _{BL} =22.8V		
Oscillating Frequency	F _W	37	40	43	kHz			
Dimming frequency	F _B	150	160	170	Hz			
Minimum Duty Ratio	D _{MIN}	-	20	-	%			

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:

- Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second under starting up duration. Otherwise the lamp could not be lighted on completed.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point.) as the time in which it continues to operate under the condition Ta = 25 $\pm 2^{\circ}$ C and $I_{L} = 8.0 \sim 9.0 \text{mA}_{RMS}$.
- Note (5) The power supply capacity should be higher than the total inverter power consumption PBL. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current

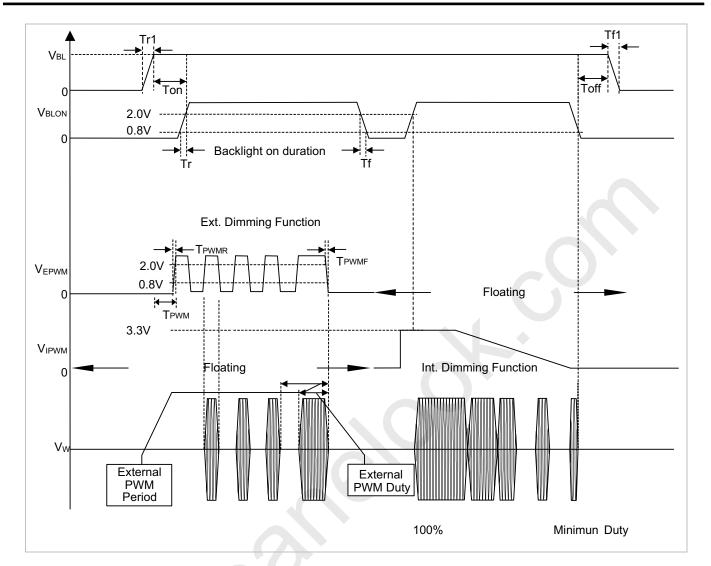
Preliminary

changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.

Note (6) The measurement of Max. value is based on 47" backlight unit under 24V input voltage and 8.8mA lamp in average after lighting for 30 minutes.

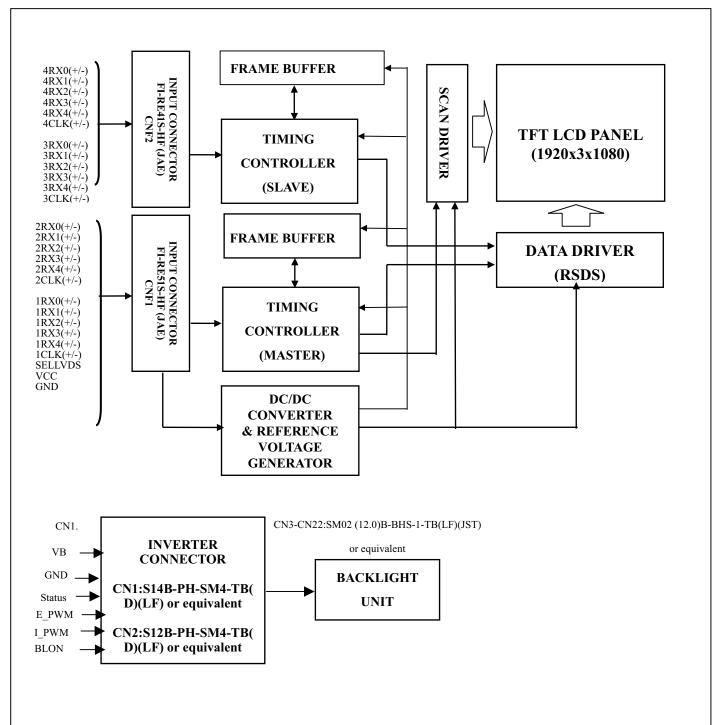
3.2.3 INVERTER INTERTFACE CHARACTERISTICS

_			, , Test		Value						
Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Note			
On/Off Control Voltage	ON	V		2.0	_	5.0	V				
On/On Control voitage	OFF	V_{BLON}	_	0	_	8.0	V				
Status Signal	HI	States		3.0	3.3	3.6	V	Inverter Normal			
Ciatae Gignar	LO	Olatoo	_	0		8.0	V	Inverter Abnormal			
Internal PWM Control	MAX	V _{IPWM}	_	2.85	3.0	3.15	V	maximum duty ratio			
Voltage	MIN	V IPWM		_	0		V	minimum duty ratio			
External PWM Control	HI	V _{EPWM}		2.0	-	5.0	V	duty on			
Voltage	LO	V EPWM		0	_	0.8	V	duty off			
VBL Rising Time		Tr1	_	30		50	ms				
VBL Falling Time		Tf1	_	30	_	50	ms				
Control Signal Rising	Гime	Tr	_			100	ms				
Control Signal Falling	Time	Tf	-		<u> </u>	100	ms				
PWM Signal Rising T	ime	T_{PWMR}	_		/-	50	us				
PWM Signal Falling T	ïme	T _{PWMF}	-	_	_	50	us				
Input impedance		R _{IN}	-	1	_	_	ΜΩ				
PWM Delay Time	T _{PWM}		100		300	mS					
BLON Delay Time		T _{on}	_	300	_	500	mS				
BLON Off Time	•	T _{OFF}	_	300	_	500	mS				


Note (1) The power sequence and control signal timing are shown in the following figure.

Note (2) The power sequence and control signal timing must follow the figure below. For a certain reason, the inverter has a possibility to be damaged with wrong power sequence and control signal timing.

Preliminary



Preliminary

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

Issue Date:JUL.14.2008 Model No.: V470H1-LH4 Preliminary

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module

CNF1 Connector Pin Assignment(FI-RE51S-HF (JAE) or equivalent)

<u> </u>		to Tim Assignment (TT NESTS Tim (SAE) of equivalent)	
Pin	Name	Description	Note
1	GND	Ground	
2	N.C.	No Connection	(1)
3	N.C.	No Connection	(1)
4	N.C.	No Connection	(1)
5	N.C.	No Connection	(1)
	N.C.	No Connection	(1)
7	SELLVDS	LVDS data format Selection	(2)
	N.C.	No Connection	(1)
	N.C.	No Connection	(1)
	N.C.	No Connection	(1)
11	GND	Ground	
	RxAo-	First pixel, Negative LVDS differential data input. Channel 0	
13	RxAo+	First pixel, Positive LVDS differential data input. Channel 0	-
14	RxBo-	First pixel, Negative LVDS differential data input. Channel 1	-
		First pixel, Negative LVDS differential data input. Channel 1	(3)
	RxBo+		1
	RxCo-	First pixel, Negative LVDS differential data input. Channel 2	-
17	RxCo+	First pixel, Positive LVDS differential data input. Channel 2	
	GND	Ground	
	RxClko-	First pixel, Negative LVDS differential clock input.	
	RxClko+	First pixel, Positive LVDS differential clock input.	
21	GND	Ground	
	RxDo-	First pixel, Negative LVDS differential data input. Channel 3	
	RxDo+	First pixel, Positive LVDS differential data input. Channel 3	(3)
24	RxEo-	First pixel, Negative LVDS differential data input. Channel 4	
25	RxEo+	First pixel, Positive LVDS differential data input. Channel 4	
26	NC	No Connection	(1)
27	NC	No Connection	(1)
28	RxAe-	Second pixel, Negative LVDS differential data input. Channel 0	
29	RxAe+	Second pixel, Positive LVDS differential data input. Channel 0	
30	RxBe-	Second pixel, Negative LVDS differential data input. Channel 1	(2)
31	RxBe+	Second pixel, Positive LVDS differential data input. Channel 1	(3)
32	RxCe-	Second pixel, Negative LVDS differential data input. Channel 2	
33	RxCe+	Second pixel, Positive LVDS differential data input. Channel 2]
34	GND	Ground	
35	RxClke-	Second pixel, Negative LVDS differential clock input.	
36	RxClke+	Second pixel, Positive LVDS differential clock input.	
37	GND	Ground	
38	RxDe-	Second pixel, Negative LVDS differential data input. Channel 3	
39	RxDe+	Second pixel, Positive LVDS differential data input. Channel 3	1
40		Second pixel, Negative LVDS differential data input. Channel 4	(3)
41	RxEe- RxEe+	Second pixel, Positive LVDS differential data input. Channel 4	1
		·	
42	GND	Ground	
43	GND	Ground	
44	GND	Ground	
45	GND	Ground	
	GND	Ground	
47	NC	No Connection	
48	Vin	Power input (+12V)	

Preliminary

49	Vin	Power input (+12V)	
50	Vin	Power input (+12V)	
51	Vin	Power input (+12V)	

CNF2 Connector Pin Assignment (FI-RE41S-HF (JAE) or equivalent)

Pin	Name	Description	Note
1	GND	Ground	
2	N.C.	No Connection	(1)
3	N.C.	No Connection	(1)
4	N.C.	No Connection	(1)
5	N.C.	No Connection	(1)
6	N.C.	No Connection	(1)
7	NC	No Connection	(1)
8	N.C.	No Connection	(1)
9	GND	Ground	
10	RxAo-	Third pixel, Negative LVDS differential data input. Channel 0	
11	RxAo+	Third pixel, Positive LVDS differential data input. Channel 0	
12	RxBo-	Third pixel, Negative LVDS differential data input. Channel 1	(0)
13	RxBo+	Third pixel, Positive LVDS differential data input. Channel 1	(3)
14	RxCo-	Third pixel, Negative LVDS differential data input. Channel 2	
15	RxCo+	Third pixel, Positive LVDS differential data input. Channel 2	
16	GND	Ground	
17	RxClko-	Third pixel, Negative LVDS differential clock input.	
18	RxClko+	Third pixel, Positive LVDS differential clock input.	
19	GND	Ground	
20	RxDo-	Third pixel, Negative LVDS differential data input. Channel 3	
21	RxDo+	Third pixel, Positive LVDS differential data input. Channel 3	
22	RxEo-	Third pixel, Negative LVDS differential data input. Channel 4	
23	RxEo+	Third pixel, Positive LVDS differential data input. Channel 4	
24	NC	No Connection	(1)
25	NC	No Connection	(1)
26	RxAe-	Fourth pixel, Negative LVDS differential data input. Channel 0	
27	RxAe+	Fourth pixel, Positive LVDS differential data input. Channel 0	
28	RxBe-	Fourth pixel, Negative LVDS differential data input. Channel 1	(2)
29	RxBe+	Fourth pixel, Positive LVDS differential data input. Channel 1	(3)
30	RxCe-	Fourth pixel, Negative LVDS differential data input. Channel 2	
31	RxCe+	Fourth pixel, Positive LVDS differential data input. Channel 2	
32	GND	Ground	
33	RxClke-	Fourth pixel, Negative LVDS differential clock input.	
34	RxClke+	Fourth pixel, Positive LVDS differential clock input.	
35	GND	Ground	
36	RxDe-	Fourth pixel, Negative LVDS differential data input. Channel 3	
37	RxDe+	Fourth pixel, Positive LVDS differential data input. Channel 3	(2)
38	RxEe-	Fourth pixel, Negative LVDS differential data input. Channel 4	(3)
39	RxEe+	Fourth pixel, Positive LVDS differential data input. Channel 4	
40	N.C.	No Connection	(1)
41	N.C.	No Connection	(1)

Note (1) Please be reserved to open.

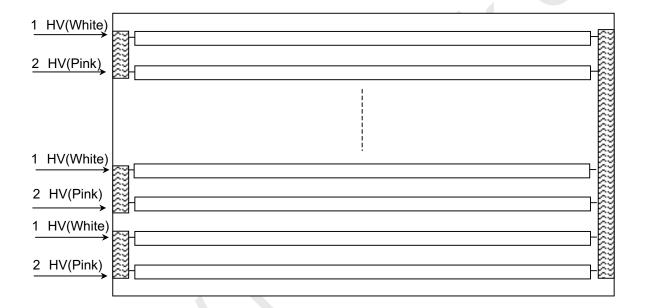
Note (2) Low or Open: VESA LVDS Format (default), High: JEIDA Format.

Note (3) LVDS 4-Port Data Mapping

Port	CH of LVDS	Data Stream
1st Port	First pixel	1, 5, 9,, 1913, 1917
2nd Port	Second pixel	2, 6, 10,, 1914, 1918

Preliminary

3rd Port	I hird pixel	3, 7, 11,, 1915, 1919
4th Port	Fourth pixel	4, 8, 12,, 1916, 1920


5.2 BACKLIGHT UNIT

The pin configuration for the housing and the leader wire is shown in the table below.

CN3-CN22: BHR-04VS-1 (JST). or equivalent

Pin	Name	Description	Wire Color
1	HV	High Voltage	Pink
2	HV	High Voltage	White

Note (1) The backlight interface housing for high voltage side is a model BHR-04VS-1, manufactured by JST. The mating header on inverter part number is SM02 (12.0)B-BHS-1-TB(LF). or equivalent

Preliminary

5.3 INVERTER UNIT

CN1 (Header): S14B-PH-SM3-TB (D)(LF)(JST) or equivalent.

Pin No.	Symbol	Description
1		
2		
3	VBL	+24V _{DC} power input
4		
5		
6		
7		
8	GND	GND
9		
10		
11	Status	Normal (3.3V) Abnormal (GND)
12	E_PWM	External PWM control signal
13	I_PWM	Internal PWM Control Signal
14	BLON	Backlight on/off control

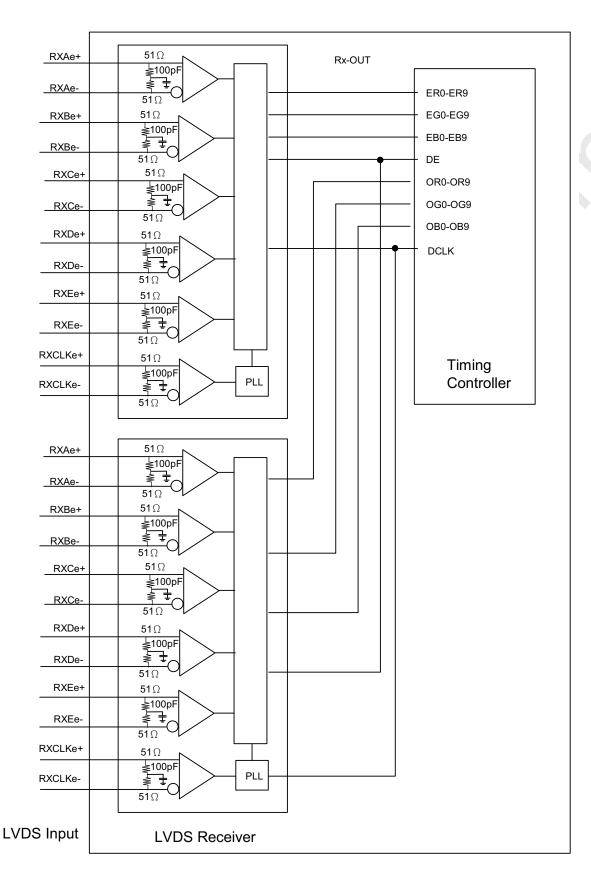
Notice:

- 1. PIN 12:External PWM Control (Use Pin 12): Pin 13 must open.
- 2. PIN 13:Intermal PWM Control (Use Pin 13): 0V~3.0V and Pin 12 must open.
- 3. Pin 12(E_PWM) and Pin 13(I_PWM) can't open in same period.

CN2 (Header): S12B-PH-SM3-TB (D)(LF)(JST) or equivalent.

Pin No.	Symbol	Description
1		
2		
3	VBL	+24V _{DC} power input
4		
5		
6		
7		
8	GND	GND
9		
10		
11	NC	NC
12	NC	NC

CN3-CN22 (Header): SM02(12.0)B-BHS-1-TB (LF)(JST) or equivalent


Pin No.	Symbol	Description
1	CCFL HOT	CCFL high voltage
2	CCFL HOT	CCFL high voltage

Preliminary

5.4 BLOCK DIAGRAM OF INTERFACE

Preliminary

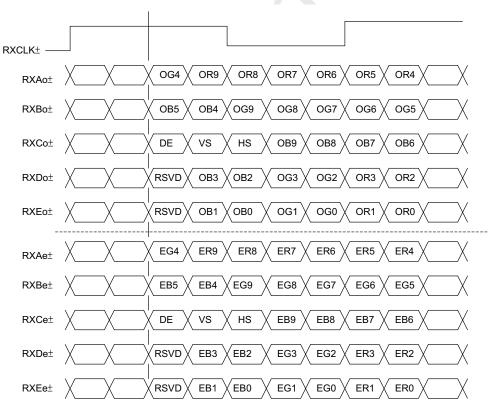
ER0~ER9 : Even pixel R data EG0~EG9 : Even pixel G data EB0~EB9 : Even pixel B data OR0~OR9 : Odd pixel R data OG0~OG9: Odd pixel G data OB0~OB9 : Odd pixel B data

DE: Data enable signal DCLK: Data clock signal

Notes: (1) The system must have the transmitter to drive the module.

(2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.




Issue Date:JUL.14.2008 Model No.: V470H1-LH4 Preliminary

5.5 LVDS INTERFACE

SELLVDS = L or Open

LVDS_SEL = H

Preliminary

B0~B9: Pixel B Data (9; MSB, 0; LSB)

DE : Data enable signal DCLK : Data clock signal

RSVD_: Reserved.

5.6 COLOR DATA INPUT ASSIGNMENT

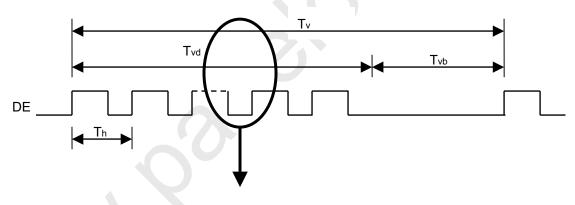
The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

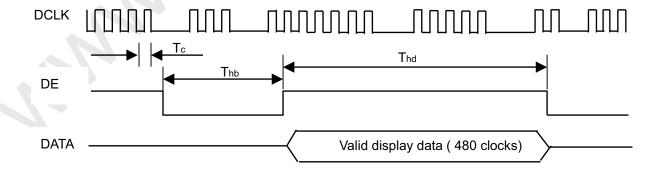
			Data Signal																												
	Color						ed						Green														ue				
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:			:	:	:	:	:	:	:	:	:	:	: \		:	/ :	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:			:	:	:	:	:	:	:	:	:					:	:	:	:	:	;	:	:	:	:	:	:	:	:	:
Of Red	Red (1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
C	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	ı :
Of	:	:	:	:	:	:	: (:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
Green	Green (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray	:	:	:	:	: /	: `		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:			1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1
Blue	Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Preliminary

6. INTERFACE TIMING

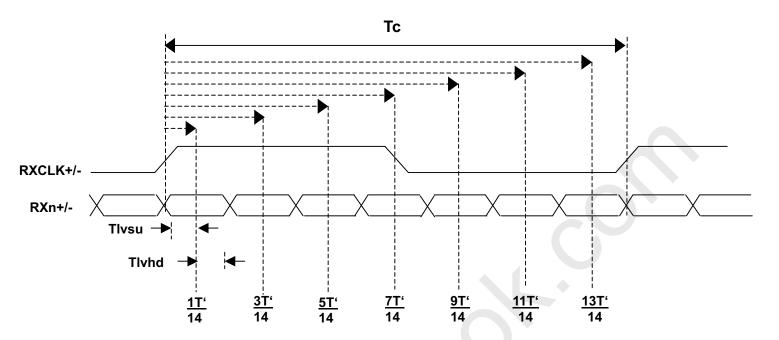

6.1 INPUT SIGNAL TIMING SPECIFICATIONS


The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
LVDS Receiver	Frequency	1/Tc	60	74.25	80	MHz	=297/4
	Input cycle to cycle jitter	Trcl	-	-	200	ps	-
LVDS Receiver	Setup Time	Tlvsu	600	-	-	ps	
Data	Hold Time	Tlvhd	600	-	-	ps	
Vertical Active Display Term	Frame Rate	Fr	-	120	-	Hz	(1)
	Total	Tv	1115	1125	1139	Th	Tv=Tvd+Tvb
	Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	35	45	59	Th	-
Horizontal Active Display Term	Total	Th	540	550	575	Тс	Th=Thd+Thb
	Display	Thd	480	480	480	Tc	-
	Blank	Thb	45	70	95	Tc	-

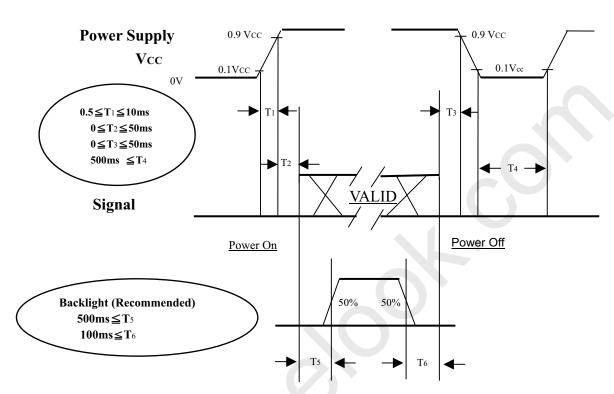
Note (1) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally..

INPUT SIGNAL TIMING DIAGRAM



Preliminary

LVDS INPUT INTERFACE TIMING DIAGRAM



Issue Date: JUL. 14.2008 Model No.: V470H1-LH4 Preliminary

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the diagram below.

Power ON/OFF Sequence

Note.

- (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen. There is no reliability issue when the T5, T6 timing missing the range.
- (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

Preliminary

7. OPTICAL CHARACTERISTICS

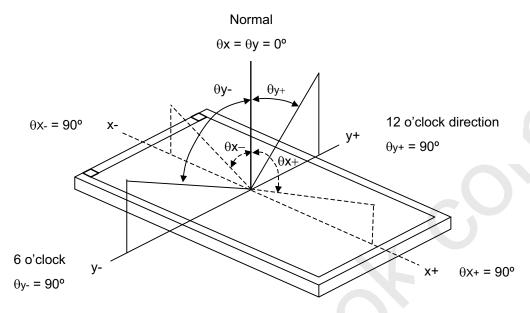
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Ta	25±2	°C		
Ambient Humidity	Ha	50±10	%RH		
Supply Voltage	V_{CC}	12V	V		
Input Signal	alue in "3. ELECTRICAL (3. ELECTRICAL CHARACTERISTICS"			
Lamp Current	I_L	8.5±0.5	mA		
Oscillating Frequency (Inverter)	F_W	40±3	KHz		
Vertical Frame Rate	Fr	120	Hz		

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		3000	4000	-	-	Note (2)
Response Time		Gray to gray		-	4	ı	ms	Note (3)
Center Luminance of White		L _C		400	500	ı	cd/ m ²	Note (4)
White Variation		δW		-	-	1.3	-	Note (7)
Cross Talk		CT	$\theta_x=0^\circ$, $\theta_Y=0^\circ$	-	-	4	%	Note (5)
Color Chromaticity	Red	Rx	Viewing Angle at Normal Direction	(0. (0. Typ (0. 0.03 (0. (0.	(0.641)		-	Note (6)
		Ry			(0.332)	Typ.+ 0.03	-	
	Green	Gx			(0.270)		-	
		Gy			(0.600)		-	
	Blue	Bx			(0.151)		-	
		Ву			(0.061)		-	
	White	Wx			(0.280)		-	
		Wy			(0.285)		-	
	Color Gamut			70	72	-	%	NTSC
Viewing Angle	Horizontal	θ_x +		80	88	-		Note (1)
		θ_{x} -	CR≥20	80	88	-	Deg.	
	Vertical	θ _Y +		80	88	-		
		θ _Y -		80	88	-		



Global LCD Panel Exchange Center

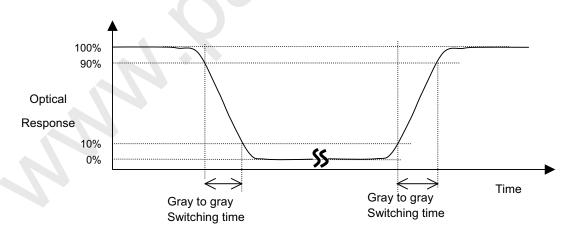
Issue Date: JUL. 14.2008 Model No.: V470H1-LH4 Preliminary

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Eldim EZ-Contrast 160R

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7)

Note (3) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of gray level 0, 63, 127, 191, and 255.

Gray to gray average time means the average switching time of gray level 0, 63,127,191,255 to each other.

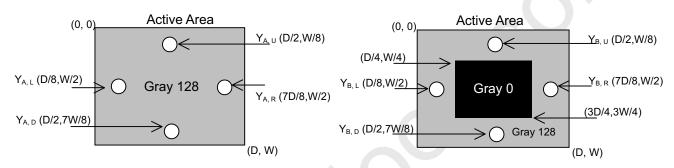
Global LCD Panel Exchange Center

Issue Date: JUL. 14.2008 Model No.: V470H1-LH4 Preliminary

Note (4) Definition of Luminance of White (L_C):

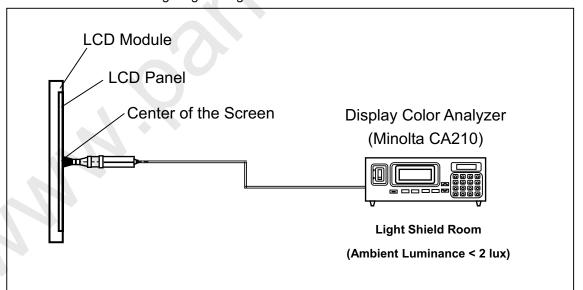
Measure the luminance of gray level 255 at center point.

 $L_C = L$ (5), where L (x) is corresponding to the luminance of the point X at the figure in Note (7).


Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

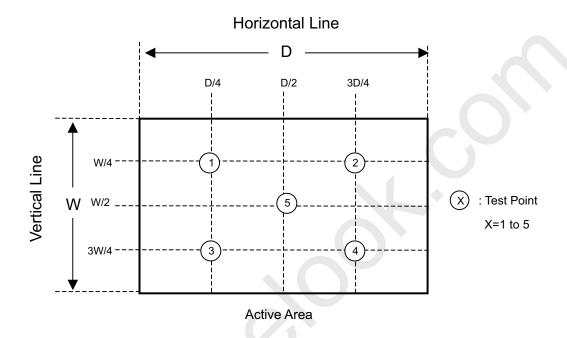
Where:


Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.



Issue Date:JUL.14.2008 Model No.: V470H1-LH4 Preliminary

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Global LCD Panel Exchange Center

Issue Date: JUL. 14.2008 Model No.: V470H1-LH4 Preliminary

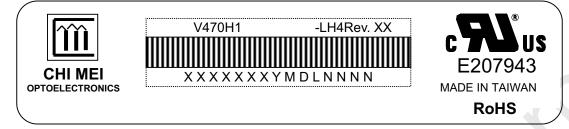
8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

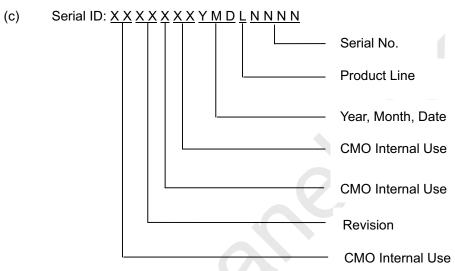
- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

8.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.



Preliminary

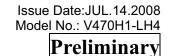

9. DEFINITION OF LABELS

9.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V470H1-LH4
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

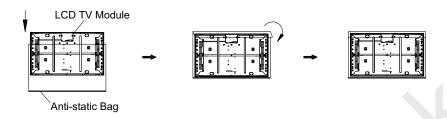
Serial ID includes the information as below:


- (a) Manufactured Date: Year: 0~9, for 2000~2009
 - Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

Global LCD Panel Exchange Center


10. PACKAGING

10.1 PACKING SPECIFICATIONS

- (1) 3 LCD TV modules / 1 Box
- (2) Box dimensions : 1190(L)x280(W)x712(H)mm
- (3) Weight: approximately 52Kg (3 modules per box)

10.2 PACKING METHOD

Figures 10-1 and 10-2 are the packing method

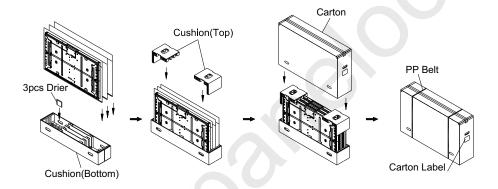
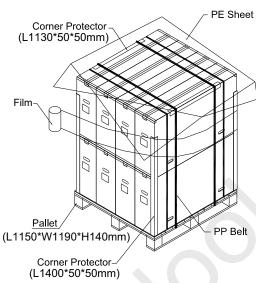


Figure.10-1 packing

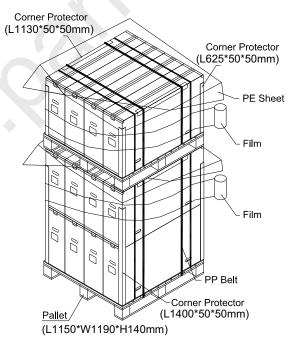


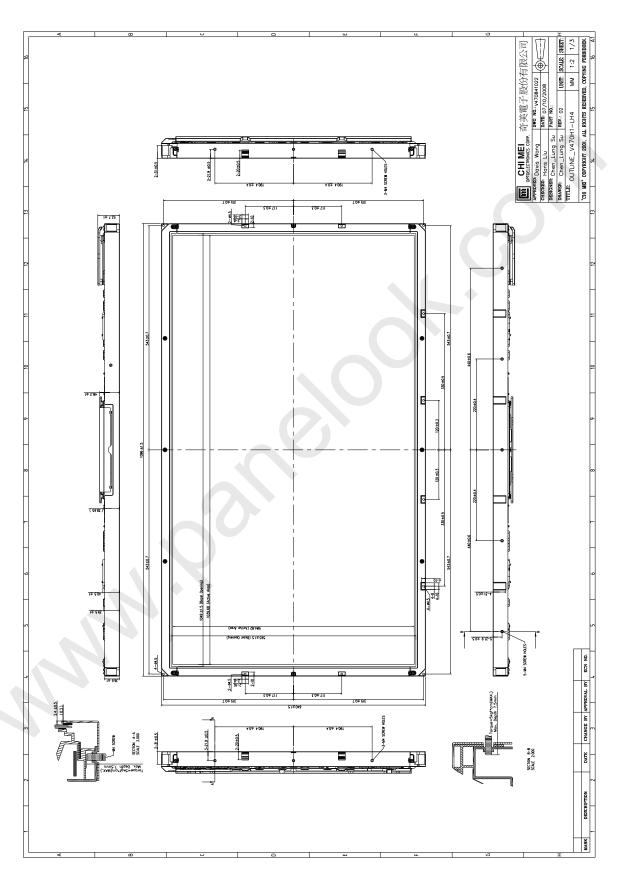
Issue Date:JUL.14.2008 Model No.: V470H1-LH4 **Preliminary**

Air Transportation & Sea / Land Transportation (40ft Container)

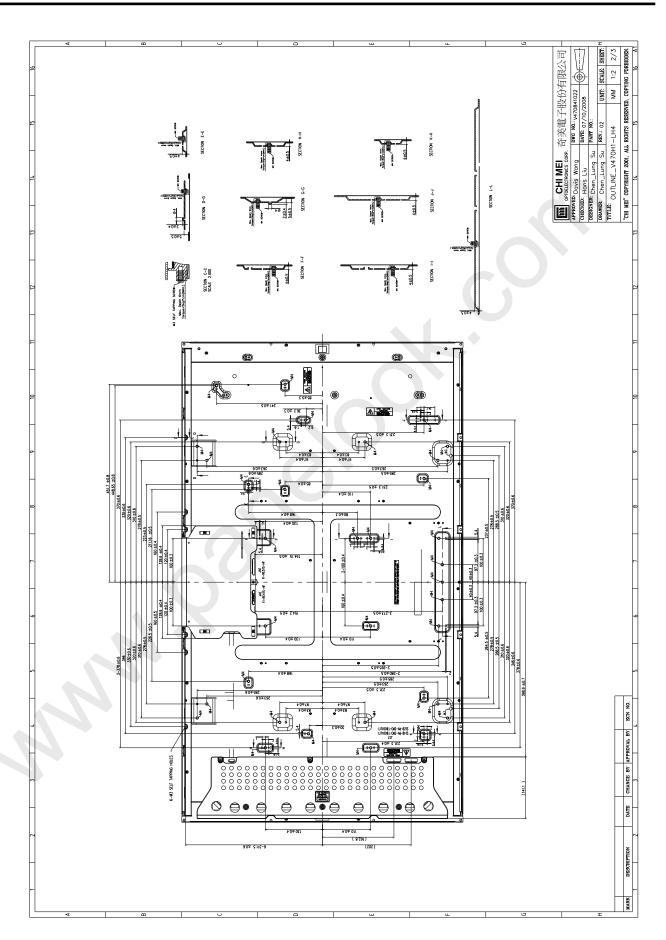
Air Transportation & Sea / Land Transportation (40ft Container)

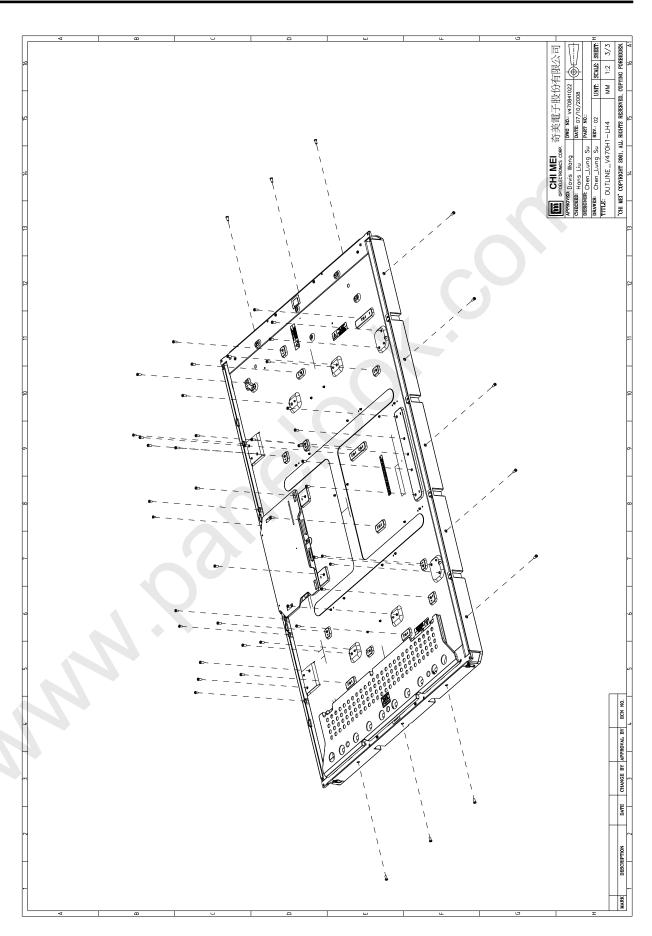
Sea / Land Transportation (40ft HQ Container)




Figure.10-2 packing

Preliminary


11. MECHANICAL CHARACTERISTIC


Preliminary

Preliminary

