

Approval

TFT LCD Approval Specification

MODEL NO.:V460H1-PH2

Approved By	TV Product Marketing & Management Div
Approved By	Chao-Chun Chung

Reviewed By	QRA Dept.	Product Development Div.
Tieviewed by	Hsin-Nan Chen	WT Lin

Dropored Dv	LCD TV Marketing and	Product Management Div.
Prepared By	Josh Chi	Lynn Cheng

Approval

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 CHARACTERISTICS 1.3 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED OF 2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CEIL) 2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD OPEN CELL 3.2 RSDS CHARACTERISTICS	7
4. BLOCK DIAGRAM 4.1 TFT LCD OPEN CELL	 10
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BLOCK DIAGRAM OF INTERFACE 5.3 LVDS INTERFACE 5.4 COLOR DATA INPUT ASSIGNMENT	11
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE (Ta = 25 ± 2 °C)	 16
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 20
8. DEFINITION OF LABELS 8.1 OPEN CELL LABEL 8.2 CARTON LABEL	 25
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD	 26
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS	 28
11. MECHANICAL DRAWING	 29

Approval

REVISION HISTORY

Version	Date	Page (New)	Section	REVISION HISTORY Description
Ver 2.0	Nov, 19, '09	All	All	Approval Specification was first issued.

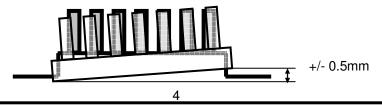
Approval

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V460H1- PH2 is a 46" TFT Liquid Crystal Display cell with driver ICs and 4ch-LVDS interface This module supports 1920 x 1080 full HDTV format and can display true 1.073G colors (8bit+Hi-FRC/color)..

1.2 CHARACTERISTICS


CHARACTERISTICS	T			
CHARACTERISTICS ITEMS	SPECIFICATIONS			
Screen Diagonal [in]	46			
Pixels [lines]	1920 x 1080			
Active Area [mm]	1018.08(H) x 572.67(V) (46" diagonal)			
Sub -Pixel Pitch [mm]	0.17675(H) x 0.53025(V)			
Pixel Arrangement	RGB vertical stripe			
Weight [g]	TYP. 2450			
Physical Size [mm]	1050.58(W) x 627.52(H) * 1.78(D) Typ.			
Display Mode	Transmissive mode / Normally black			
Contract Datio	7500:1 Typ.			
Contrast Ratio	(Typical value measured at CMO's module)			
Glass thickness (Array/CF) [mm]	0.7 / 0.7			
Visuing Angle (CR, 20)	+88/-88(H),+88/-88(V) Typ.			
Viewing Angle (CR>20)	(Typical value measured at CMO's module)			
	R=(0.643, 0.323)			
	G=(0.287, 0.602)			
Color Chromaticity	B=(0.148, 0.056)			
~ (W=(0.280, 0.290)			
	(Typical value measured at CMO's module)			
Cell Transparency [%]	5%Typ.			
Cell Transparency [70]	(Typical value measured at CMO's module)			
Polarizer (CF side)	Super Wide View Glare coating, 1030.18 (W) x 586.37(H).			
1 Oldrizer (Or Side)	Hardness: 3H			
Polarizer (TFT side)	Super Wide View, 1030.18(W) x 586.37(H).			

1.3 MECHANICAL SPECIFICATIONS

Item	Min.	Тур.	Max.	Unit	Note
Weight	2150	2450	2750	g	-
I/F connector mounting position	The mounting in the screen center	clination of the crawithin ±0.5mm a	connector makes is the horizontal.		(2)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Connector mounting position

Approval

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMO MODULE V460H1-PH1)

Item	Symbol	Va	Unit	Note	
Item	Syllibol	Min.	Max.	Offic	Note
Storage Temperature	T _{ST}	-20	+60	ōC	(1), (3)
Operating Ambient Temperature	T _{OP}	0	50	ōC	(1), (2), (3)
Altitude Operating	A _{OP}	0	5000	М	(3)
Altitude Storage	A _{ST}	0	12000	М	(3)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 ${}^{\circ}$ C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation..

Relative Humidity (%RH)

- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.
- Note (3) The rating of environment is base on LCD module. Leave LCD cell alone, this environment condition can't be guaranteed. Except LCD cell, the customer has to consider the ability of other parts of LCD module and LCD module process.

Approval

2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

Storage Condition: With shipping package.

Storage temperature range : 25±5 $^{\circ}\mathrm{C}$ Storage humidity range: 50±10%RH

Shelf life: a month

2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

2.3.1 ELECTRICAL ABSOLUTE RATINGS

Item	Symbol	Va	Value		Note	
item	Symbol	Min.	Max.	Unit	Note	
Power Supply Voltage	VCC	-0.3	13.5	V	(1)	
Logic Input Voltage	VIN	-0.3	3.6	V	(1)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

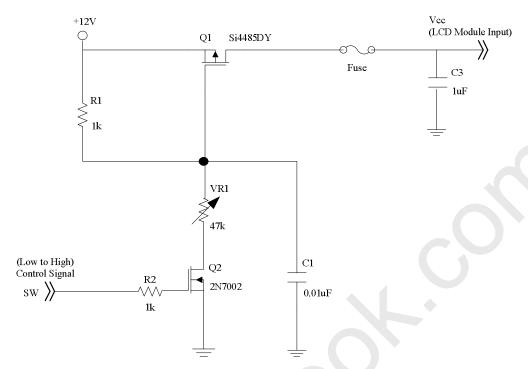
Approval

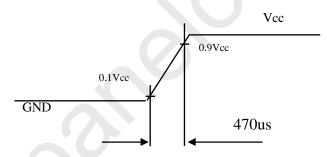
3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $(Ta = 25 \pm 2 \,{}^{\circ}C)$

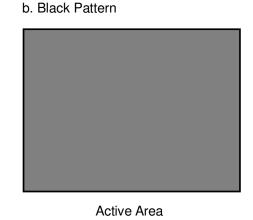
Parameter		Symbol	Symbol			Unit	Note		
	rarameter			Min.	Тур.	Max.	Offic	Note	
Power Supply Voltage		V _{CC}	10.8	12	13.2	V	(1)		
Rush Curr	ent		I _{RUSH}	-	-	5	Α	(2)	
White Pattern		-	-	0.51	0.663	Α			
Power Sup	oply Current	Horizontal Stripe	-	-	0.98	1.274	Α	(3)	
		Black Pattern	-	-	0.45	0.585	Α		
	Differential Input High Threshold Voltage		V_{LVTH}	+100	- 1	-	mV		
	Differential I	Differential Input Low Threshold Voltage		-		-100	mV		
LVDS interface	Common Inp	Common Input Voltage		1.0	1.2	1.4	V	(4)	
	Differential in	Differential input voltage		200	-	600	mV		
	Terminating Resistor		R _T	-	100	-	ohm		
CMOS	Input High T	hreshold Voltage	V _{IH}	2.7	-	3.3	V		
interface	Input Low Threshold Voltage		V _{IL}	0	-	0.7	V		


Note (1) The module should be always operated within the above ranges.

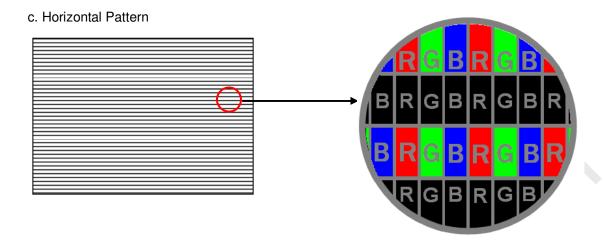


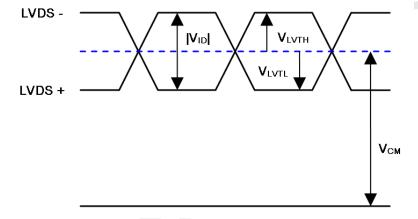
Approval

Note (2) Measurement condition:



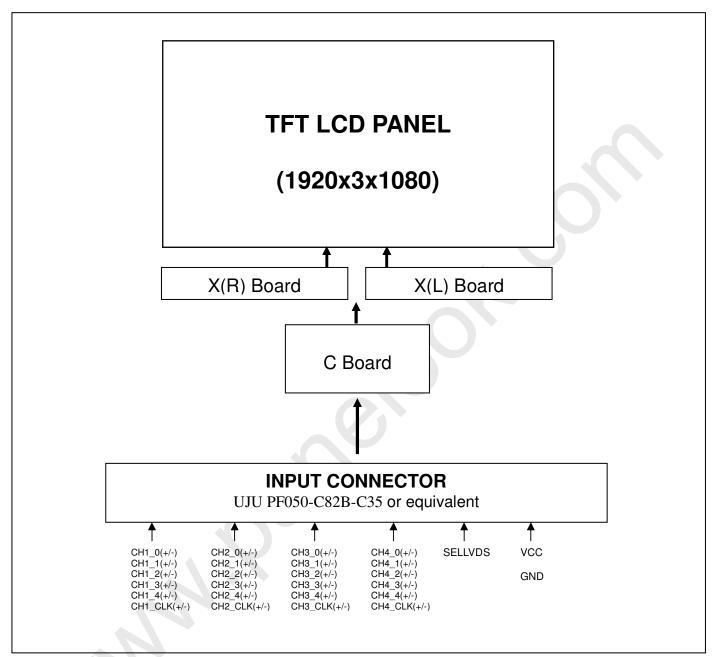
Vcc rising time is 470us


Note (3) The specified power supply current is under the conditions at Vcc = 12 V, $Ta = 25 \pm 2 \, ^{\circ}\text{C}$, $f_v = 120 \text{ Hz}$, whereas a power dissipation check pattern below is displayed.



Approval

Note (4) The LVDS input characteristics are as follows:



Approval

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD OPEN CELL

Approval

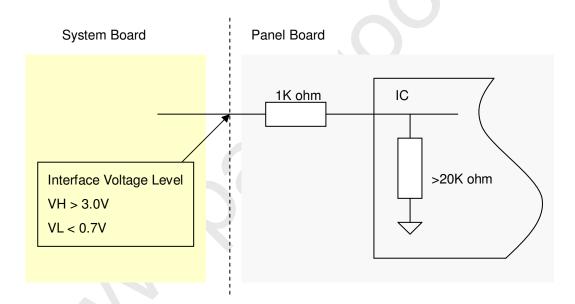
5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module

CNF1 Connector Pin Assignment (40550-8210.UJU(宇宙) or equivalent)

Pin	Name	Description	Note
1	VCC	+12V power supply	
2	VCC	+12V power supply	
3	VCC	+12V power supply	
4	VCC	+12V power supply	
5	VCC	+12V power supply	
6	N.C.	No Connection	(1)
7	GND	Ground	
8	GND	Ground	
9	GND	Ground	
10	CH1[0]-	First pixel Negative LVDS differential data input. Pair 0	
11	CH1[0]+	First pixel Positive LVDS differential data input. Pair 0	
12	CH1[1]-	First pixel Negative LVDS differential data input. Pair 1	
13	CH1[1]+	First pixel Positive LVDS differential data input. Pair 1	
14	CH1[2]-	First pixel Negative LVDS differential data input. Pair 2	
15	CH1[2]+	First pixel Positive LVDS differential data input. Pair 2	
16	GND	Ground	
17	CH1CLK-	First pixel Negative LVDS differential clock input.	
18	CH1CLK+	First pixel Positive LVDS differential clock input.	
19	GND	Ground	
20	CH1[3]-	First pixel Negative LVDS differential data input. Pair 3	
21	CH1[3]+	First pixel Positive LVDS differential data input. Pair 3	
22	CH1[4]-	First pixel Negative LVDS differential data input. Pair 4	
23	CH1[4]+	First pixel Positive LVDS differential data input. Pair 4	
24	GND	Ground	
25	CH3[0]-	Third pixel Negative LVDS differential data input. Pair 0	
26	CH3[0]+	Third pixel Positive LVDS differential data input. Pair 0	
27	CH3[1]-	Third pixel Negative LVDS differential data input. Pair 1	
28	CH3[1]+	Third pixel Positive LVDS differential data input. Pair 1	
29	CH3[2]-	Third pixel Negative LVDS differential data input. Pair 2	
30	CH3[2]+	Third pixel Positive LVDS differential data input. Pair 2	
31	GND	Ground	
32	CH3CLK-	Third pixel Negative LVDS differential clock input.	
33	CH3CLK+	Third pixel Positive LVDS differential clock input.	
34	GND	Ground	

Approval


35	CH3[3]-	Third pixel Negative LVDS differential data input. Pair 3	
36	CH3[3]+	Third pixel Positive LVDS differential data input. Pair 3	
37	CH3[4]-	Third pixel Negative LVDS differential data input. Pair 4	
38	CH3[4]+	Third pixel Positive LVDS differential data input. Pair 4	
39	GND	Ground	
40	SCL	I2C Bus	
41	N.C.	No Connection	(1)
42	N.C.	No Connection	(1)
43	WP	Write Protection for EEPROM	
44	SDA	I2C Bus	
45	LVDS_SEL	LVDS Data Format Selection	(2)
46	N.C.	No Connection	(1)
47	N.C.	No Connection	(1)
48	N.C.	No Connection	(1)
49	N.C.	No Connection	(1)
50	N.C.	No Connection	(1)
51	N.C.	No Connection	(1)
52	GND	Ground	
53	CH4[4]+	Fourth pixel Positive LVDS differential data input. Pair 4	
54	CH4[4]-	Fourth pixel Negative LVDS differential data input. Pair 4	
55	CH4[3]+	Fourth pixel Positive LVDS differential data input. Pair 3	
56	CH4[3]-	Fourth pixel Negative LVDS differential data input. Pair 3	
57	GND	Ground	
58	CH4CLK+	Fourth pixel Positive LVDS differential clock input.	
59	CH4CLK-	Fourth pixel Negative LVDS differential clock input.	
60	GND	Ground	
61	CH4[2]+	Fourth pixel Positive LVDS differential data input. Pair 2	
62	CH4[2]-	Fourth pixel Negative LVDS differential data input. Pair 2	
63	CH4[1]+	Fourth pixel Positive LVDS differential data input. Pair 1	
64	CH4[1]-	Fourth pixel Negative LVDS differential data input. Pair 1	
65	CH4[0]+	Fourth pixel Positive LVDS differential data input. Pair 0	
66	CH4[0]-	Fourth pixel Negative LVDS differential data input. Pair 0	
67	GND	Ground	
68	CH2[4]+	Second pixel Positive LVDS differential data input. Pair 4	
69	CH2[4]-	Second pixel Negative LVDS differential data input. Pair 4	
70	CH2[3]+	Second pixel Positive LVDS differential data input. Pair 3	
71	CH2[3]-	Second pixel Negative LVDS differential data input. Pair 3	
72	GND	Ground	

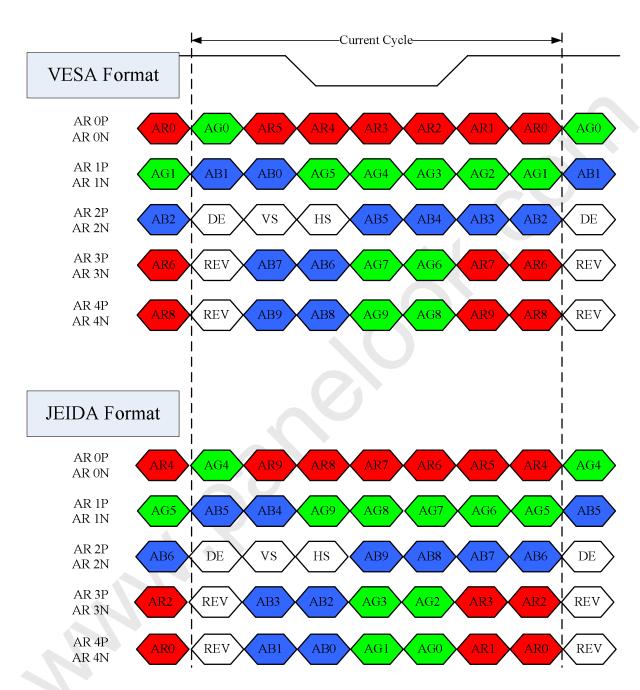
Approval

73	CH2CLK+	Second pixel Positive LVDS differential clock input.	
74	CH2CLK-	Second pixel Negative LVDS differential clock input.	
75	GND	Ground	
76	CH2[2]+	Second pixel Positive LVDS differential data input. Pair 2	
77	CH2[2]-	Second pixel Negative LVDS differential data input. Pair 2	
78	CH2[1]+	Second pixel Positive LVDS differential data input. Pair 1	
79	CH2[1]-	Second pixel Negative LVDS differential data input. Pair 1	
80	CH2[0]+	Second pixel Positive LVDS differential data input. Pair 0	
81	CH2[0]-	Second pixel Negative LVDS differential data input. Pair 0	
82	GND	Ground	

- Note (1) Reserved for internal use. Please leave it open.
- Note (2) High=connect to +3.3V or Open: VESA Format ; Low= connect to GND: JEIDA Format.
- Note (3) Interface optional pin has internal scheme as following diagram. Customer should keep the interface voltage level requirement as below.

Note (4) LVDS 4-port Data Mapping

Port	Channel of LVDS	Data Stream
1st Port	First Pixel	1, 5, 9,1913, 1917
2nd Port	Second Pixel	2, 6, 10,1914, 1918
3rd Port	Third Pixel	3, 7, 11,1915, 1919
4th Port	Fourth Pixel	4, 8, 12,1916, 1920



Approval

5.2 LVDS INTERFACE

VESA Format : SELLVDS = H or Open

JEIDA Format : SELLVDS = L

AR0~AR9: First Pixel R Data (9; MSB, 0; LSB) AG0~AG9: First Pixel G Data (9; MSB, 0; LSB) AB0~AB9: First Pixel B Data (9; MSB, 0; LSB)

DE: Data enable signal DCLK: Data clock signal

RSV: Reserved

Approval

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

10.000	Data Signal																														
						Re	<u> </u>										Sig een		<u> </u>							ום	ue				_
Color		R	В	R	R	R	R	R	R	R	R	_	G			G	G	G	G	G	G	В	В	В	В	В	ue B	В	В	В	В
		9	R 8	7	6					1		G	8	G	G 6	5		3	2	1		9	8	7	В		l				
		0	0	0	0	5	0	3	2	0	0	9	0	7	0	0	0	0	0	0	0	0	0	0	6	5	4	3	0	0	0
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	ő	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
		0	0	ő	Ö	0	0	0	0	ő	ő	1	1	1	1	1	1	1	1	1	1	1	1	i	1	1	1	1	1	1	i
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	o	Ö	Ö	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:			:	:	:	:	:	:	:	:	:	:	:	:	:					. :	:	:	:	:	:	:	:	:	:	:
Of	<u> </u>			:	:	:	:	:	:	:	:	:	:	:	:	÷		\cdot	÷	:	:	;	:	:	:	:	:	:	:	:	:
Red	Red (1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0)/ Dark	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:		:	:	:	:	: (•		:	:	:	:	:	:		:	:	:	:	:	:	:	:	:		
Of	Green (1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	i	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
Green	Green (1022)	Ö	0	Ö	0	Ö	0	Ô	Ö	ō	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	Ö	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	Ŏ	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:		:	:)):	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1
5.00	Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Approval

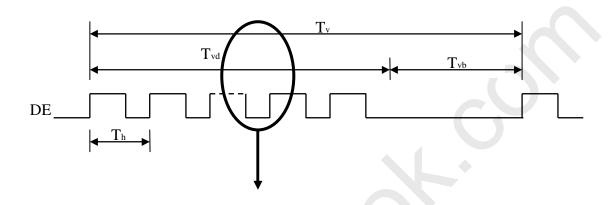
6. INTERFACE TIMING

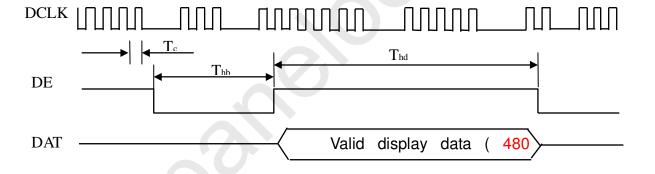
6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

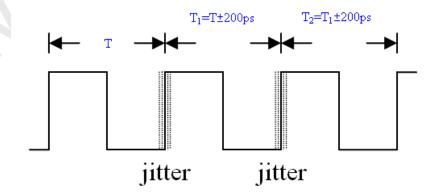
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
LVDS Receiver Clock	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz		
	Input cycle to cycle jitter	T _{rcl}	-	-	200	ps	(3)	
	Spread spectrum modulation range	Fclkin_mo	F _{clkin} -2%	-	F _{clkin} +2%	MHz	(4)	
	Spread spectrum modulation frequency	F _{SSM}	-	-	200	KHz	(4)	
LVDS	Setup Time	Tlvsu	600	-	-	ps		
Receiver Data	Hold Time	Tlvhd	600	-		ps	(5)	
Vertical	Frame Rate	F _{r5}	97	100	103	Hz	(6)	
	Frame hate	F _{r6}	117	120	123	Hz	(6)	
Active	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tvb	
Display Term	Display	Tvd	1080	1080	1080	Th	_	
IEIIII	Blank	Tvb	35	45	55	Th	_	
Horizontal	Total	Th	540	550	575	Tc	Th=Thd+Thb	
Active	Display	Thd	480	480	480	Тс	_	
Display Term	Blank	Thb	60	70	95	Tc	_	

Note (1) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.



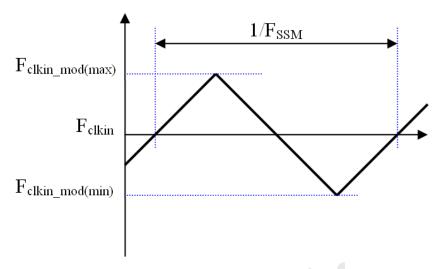

Approval

Note (2) Please make sure the range of pixel clock has follow the below equation:


$$\begin{aligned} & \text{Fclkin(max)} \, \ge \, \text{Fr6} \, \bigotimes \text{Tv} \, \bigotimes \text{Th} \\ & \text{Fr5} \, \bigotimes \text{Tv} \, \bigotimes \text{Th} \, \ge \, \text{Fclkin(min)} \end{aligned}$$

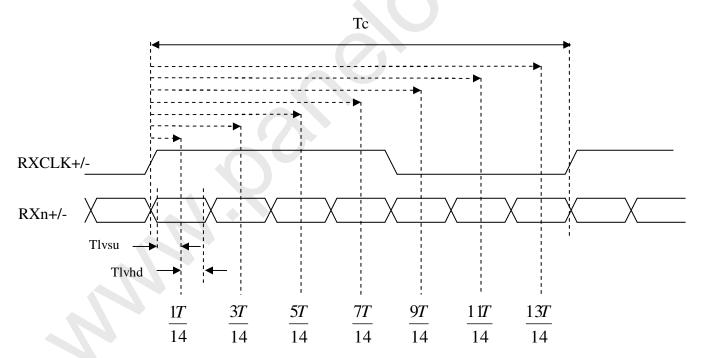
INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$



Global LCD Panel Exchange Center

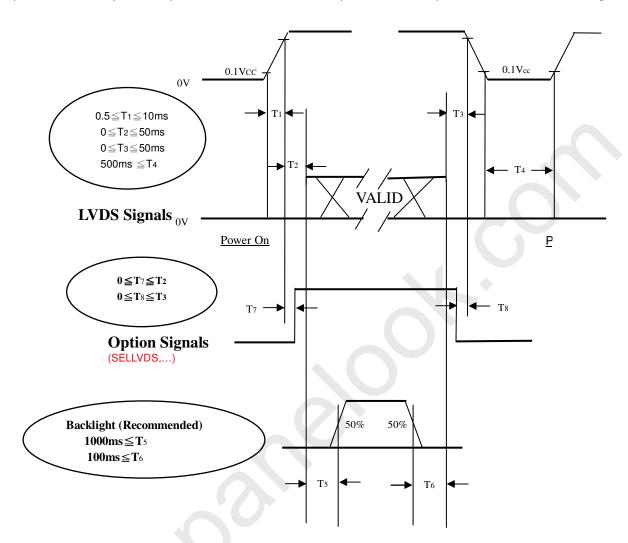
Issued Date: Nov. 19, 2009 Model No.: V460H1-PH2


Approval

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM


Note (6): (ODSEL) = H/L or open for 100/120Hz frame rate. Please refer to 5.1 for detail information

Approval

6.2 POWER ON/OFF SEQUENCE (Ta = 25 ± 2 $^{\circ}$ C)

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0, that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

Approval

7. OPTICAL CHARACTERISTICS

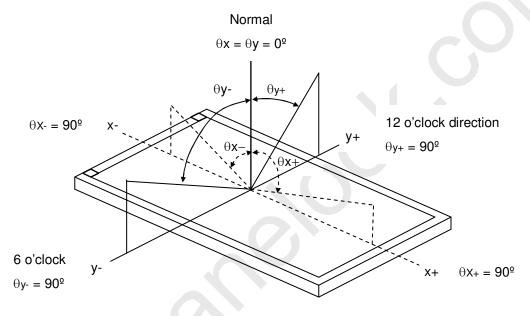
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V_{CC}	12V	V
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"
Lamp Current	I_L	10.5±0.3	mA
Oscillating Frequency (Inverter)	F_W	46±3	KHz
Vertical Frame Rate	Fr	120	Hz

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Ito	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio)	CR		4500	6500	-	-	Note (2)	
Response Time		Gray to gray		_	4.5	8	ms	Note (3)	
Center Luminance of White		Lc		400	500	-	cd/ m ²	Note (4)	
White Variation		δW		-	-	1.3	-	Note (7)	
Cross Talk		СТ		-	-	4	%	Note (5)	
	Red	Rcx	$\theta_x=0^\circ, \theta_Y=0^\circ$		0.654		-		
	neu	Rcy	Viewing angle at		0.325		-		
	Green	Gcx	normal direction		0.301		-		
Calar	Green	Gcy		Тур	0.600	Typ.+ 0.03	-	Note (6)	
Color Chromaticity	Blue	Bcx		0.03	0.144		-	Note (6)	
Chromaticity	Diue	Всу			0.076		-		
	White	Wcx			0.335		-		
	vvriite	Wcy			0.377		-]	
	Color Gamut				72	-	%	NTSC	
	Horizontal	θ_x +		80	88	-			
Viewing	וזטווצטווומו	θ_{x} -	CR≥20	80	88	-	Doa	Note (1)	
Angle	Vertical	θ _Y +	UH≥2U	80	88	-	Deg.	Note (1)	
	vertical	θ _Y -		80	88	-			


Approval

Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltage are based on suitable gamma voltages. The calculating method is as following:

- (a) Measure Module's and BLU's spectrum. White is without signal input and R,G,B are with signal input. BLU(for V460H1-LH7) is supplied by CMO.
- (b) Calculate cell's spectrum.
- (c) Calculate cell's chromaticity by using the spectrum of standard light source "C".

Note (1) Definition of Viewing Angle (θx , θy):

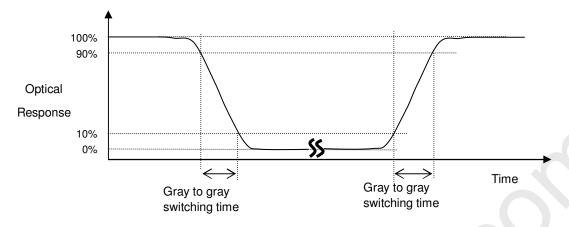
Viewing angles are measured by Autronic Conoscope Cono-80

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255


L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7)

Approval

Note (3) Definition of Gray to Gray Switching Time :

The driving signal means the signal of gray level 0, 63, 127, 191, and 255

Gray to gray average time means the average switching time of gray level 0, 63, 127, 191, and 255 to each other .

Note (4) Definition of Luminance of White (L_{C}):

Measure the luminance of gray level 255 at center point.

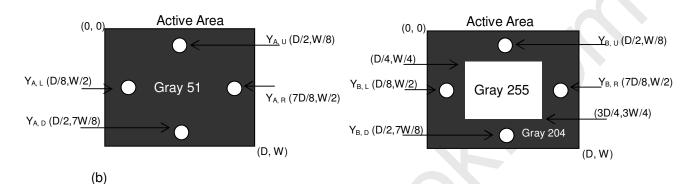
 $L_{C} = L(5)$, where L(x) is corresponding to the luminance of the point X at the figure in Note (7).

Global LCD Panel Exchange Center

Issued Date: Nov. 19, 2009 Model No.: V460H1-PH2

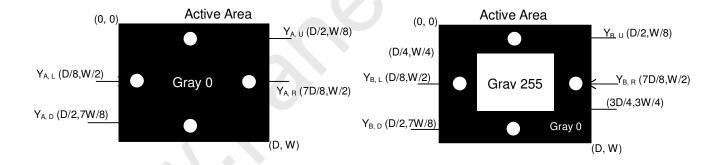
Approval

Note (5) Definition of Cross Talk (CT):


$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

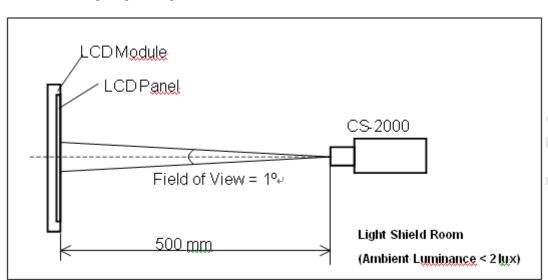
(a)


Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)

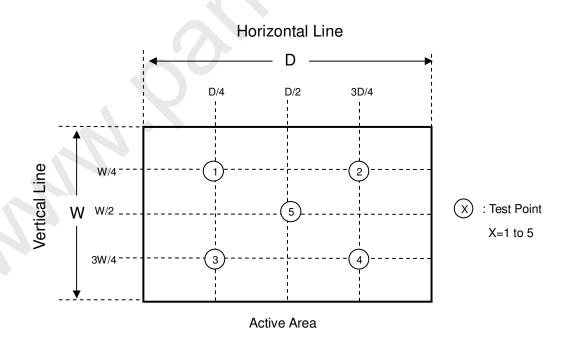
Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)



Approval

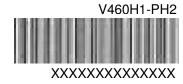
Note (6) Measurement Setup:


The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$


Approval

8. DEFINITION OF LABELS

Global LCD Panel Exchange Center

8.1 OPEN CELL LABEL

The barcode nameplate is pasted on each open cell as illustration for CMO internal control.

8.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation

(a) Model Name: V460H1-PH2

(b) Carton ID: CMO internal control

(c) Quantities: 8

Approval

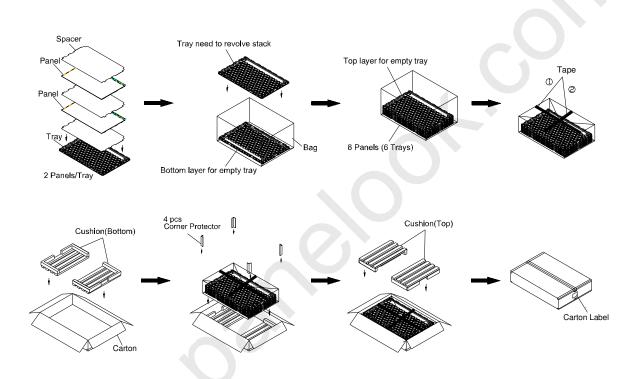
9. PACKAGING

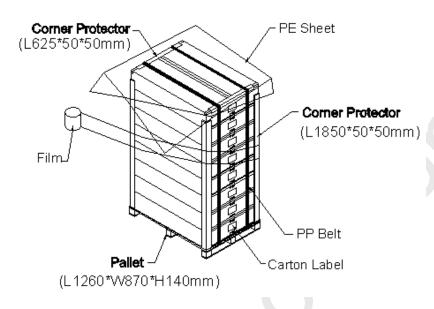
9.1 PACKING SPECIFICATIONS

- (1) 8 LCD TV Panels / 1 Box
- (2) Box dimensions :1238 (L) X 842 (W) X 240(H)
- (3) Weight: approximately 38Kg (8 panels per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method




Figure.9-1 packing method

Approval

Sea & Land Transportation Gross: 319kg

Air Transportation Gross: 243kg

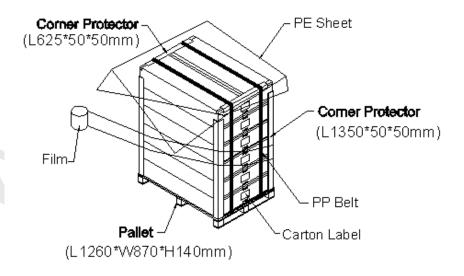


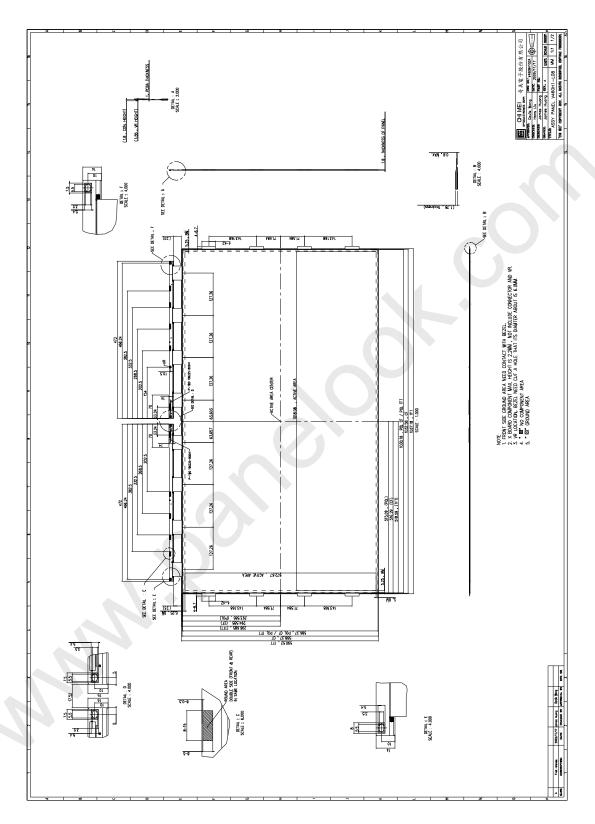
Figure.9-2 packing method

Approval

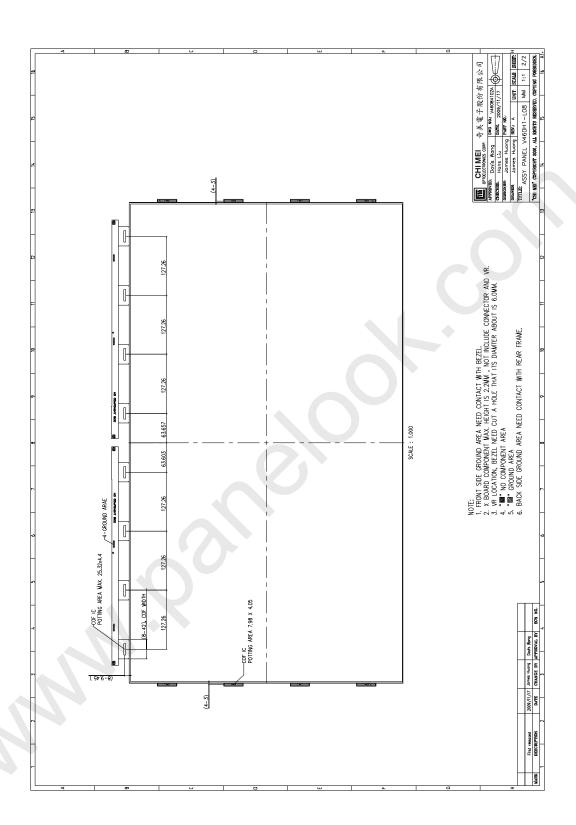
10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble backlight or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture come into or contacted the product, because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.


10.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.


Approval

11. Mechanical Drawing

Approval

