

rentative Specification
☐Preliminary Specification
Approval Specification

MODEL NO.: V460H1 **SUFFIX: P09**

REV.: C3

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note:	
Please return 1 copy for your corsignature and comments.	nfirmation with your

Approved By	Checked By	Prepared By		
Chao-Chun Chung	Ken Wu	John Yen		

②

panelook.com 屏库:全球液晶屏交易中心 PRODUCT SPECIFICATION

- CONTENTS -

REVISION HISTORY	3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 CHARACTERISTICS 1.3 MECHANICAL SPECIFICATIONS	4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON 2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL 2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)	
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD OPEN CELL 3.2 RSDS CHARACTERISTICS	
4. BLOCK DIAGRAM 4.1 TFT LCD OPEN CELL	10
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BLOCK DIAGRAM OF INTERFACE 5.3 LVDS INTERFACE 5.4 COLOR DATA INPUT ASSIGNMENT 5.5 PATTERN FOR VCOM ADJUSTMENT	
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE (Ta = 25 ± 2 °C)	19
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	23
8. DEFINITION OF LABELS 8.1 OPEN CELL LABEL 8.2 CARTON LABEL	27
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD	28
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS	30
11. MECHANICAL DRAWING	3

REVISION HISTORY

	REVISION HISTORY					
Version	Date	Page (New)	Section	Description		
Ver 2.0	Mar,01,2010	All	All	Approval Specification was first issued.		
	Apr,16,2010	28	9.2	Update Figures 9-1 and 9-2 are the packing method		
Ver 2.2	May.01,2011	1		Revision C3		
	May.01,2011	31,32	11	Update Fab8 Cell 2D Drawing.		

Date: 01. May. 2011 Version 2.2

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V460H1- P09 is a 46" TFT Liquid Crystal Display cell with driver ICs and 2ch-LVDS interface This cell supports 1920 x 1080 HDTV format and can display true 16.7M colors (8bit /color).

1.2 CHARACTERISTICS

CHARACTERISTICS ITEMS	SPECIFICATIONS			
Screen Diagonal [in]	46			
Pixels [lines]	1920 x 1080			
Active Area [mm]	1018.08(H) x 572.67(V) (46" diagonal)			
Sub -Pixel Pitch [mm]	0.17675(H) x 0.53025(V)			
Pixel Arrangement	RGB vertical stripe			
Weight [g]	TYP. 2550			
Physical Size [mm]	1050.58(W) x 631.92(H) * 1.78(D) Typ.			
Display Mode	Tranmissive mode / Normally black			
0.1.15.1	6000:1 Typ.			
Contrast Ratio	(Typical value measured at CMO's module)			
Glass thickness (Array/CF) [mm]	0.7 / 0.7			
) ((OD) (O)	+88/-88(H),+88/-88(V) Typ.			
Viewing Angle (CR>20)	(Typical value measured at CMO's module)			
	Rc=(0.651, 0.326)			
	Gc=(0.299, 0.600)			
Color Chromaticity	Bc=(0.145, 0.082)			
Select Community	Wc=(0.329, 0.371)			
	(Light source is the standard light source "C" which is defined			
	by CIE)			
Call Transparancy [0/1	4.4%Typ.			
Cell Transparency [%]	(Typical value measured at CMO's module)			
Delerizor (CE aida)	Super Wide View Glare coating, 1030.18 (W) x 586.37(H).			
Polarizer (CF side)	Hardness: 3H			
Polarizer (TFT side)	Super Wide View, 1030.18(W) x 586.37(H).			


1.3 MECHANICAL SPECIFICATIONS

Item	Min.	Тур.	Max.	Unit	Note
Weight	2250	2550	2850	g	ı
I/F connector mounting position	unting position The mounting inclination of the connector makes the screen center within ±0.5mm as the horizontal.				

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) Connector mounting position

Version 2.2

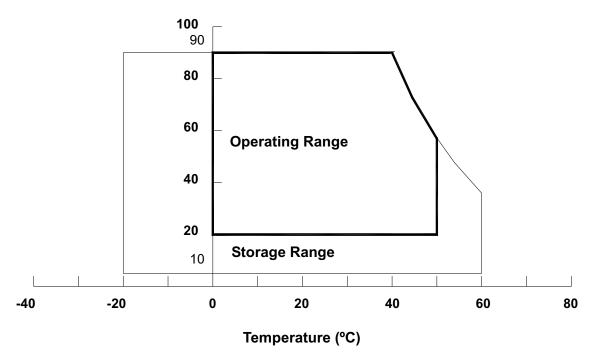
The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

Date: 01. May. 2011

Version 2.2

PRODUCT SPECIFICAT

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMO MODULE V460H1-L09)

Item	Symbol	Va	lue	Unit	Note	
iteiii	Symbol	Min.	Max.	5	Note	
Storage Temperature	T _{ST}	-20	+60	ပ္	(1), (3)	
Operating Ambient Temperature	T _{OP}	0	50	ပ္	(1), (2), (3)	
Altitude Operating	A OP	0	5000	М	(3)	
Altitude Storage	A _{ST}	0	12000	М	(3)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation..

Relative Humidity (%RH)

Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.

Note (3) The rating of environment is base on LCD module. Leave LCD cell alone, this environment condition can't be guaranteed. Except LCD cell, the customer has to consider the ability of other parts of LCD module and LCD module process.

2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

Storage Condition: With shipping package.

Storage temperature range : 25±5 °C Storage humidity range: 50±10%RH

Shelf life: a month

2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

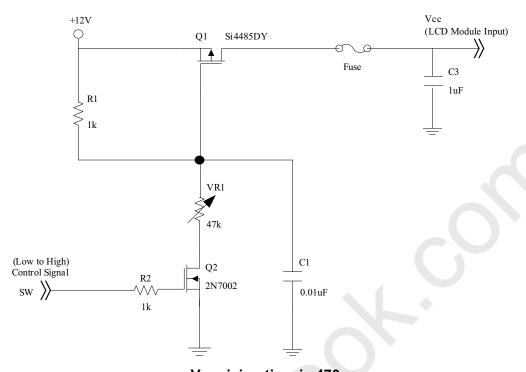
2.3.1 ELECTRICAL ABSOLUTE RATINGS

Item	Symbol	Value		Unit	Note	
item	Min.	Max.	Offic	Note		
Power Supply Voltage	VCC	-0.3	13.5	V	(1)	
Logic Input Voltage	VIN	-0.3	3.6	V	(1)	

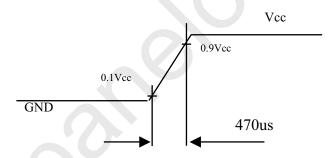
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

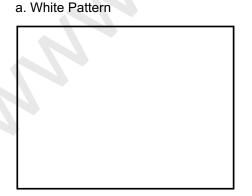
3. ELECTRICAL CHARACTERISTICS

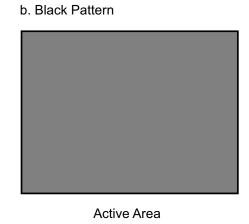
3.1 TFT LCD MODULE

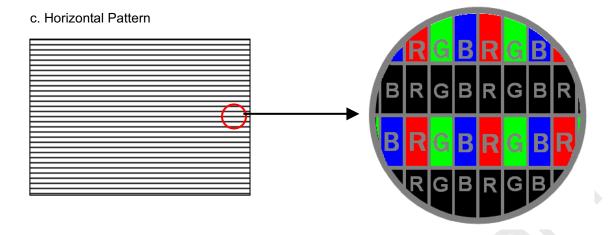

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

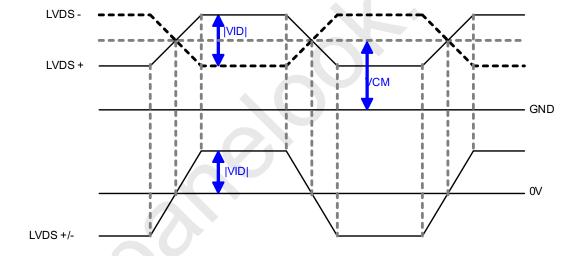
Deventer		Symbol		Value		1.1	Nists	
	Parameter			Min.	Тур.	Max.	Unit	Note
Power Supply Voltage			V _{CC}	10.8	12	13.2	V	(1)
Rush Cur	rent		I _{RUSH}	_	_	4.7	Α	(2)
		White Pattern		_	0.58	_	Α	
Power Su	pply Current	Black Pattern	I _{cc}	_	0.5	_	Α	(3)
		Horizontal Stripe		_	1.2	1.5	Α	
	Differential Input High Threshold Voltage Differential Input Low Threshold Voltage Common Input Voltage Differential input voltage (single-end)		V_{LVTH}	+100	_	-	mV	
LVDS			V_{LVTL}	_	_	-100	mV	
Interface			V_{CM}	1.0	1.2	1.4	V	(4)
			V _{ID}	200		600	mV	
Terminating Resistor		R_T	-	100	-	ohm		
CMOS	Input High Th	reshold Voltage	V_{IH}	2.7	_)	3.3	V	
interface	Input Low Thr	eshold Voltage	V _{IL}	0		0.7	V	


Note (1) The module should be always operated within the above ranges.

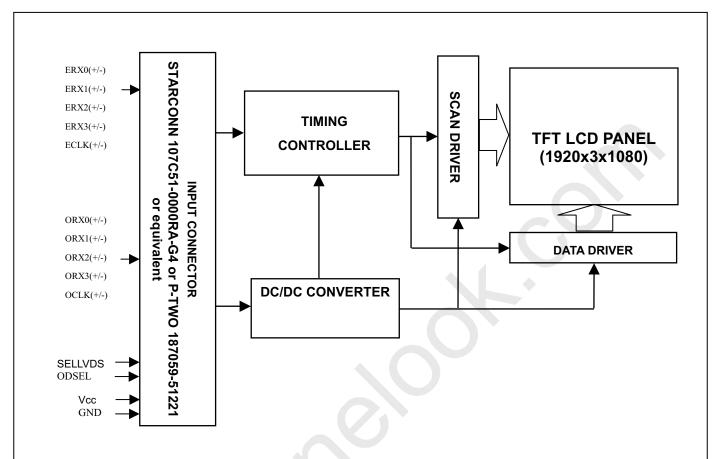

Note (2) Measurement condition:


Vcc rising time is 470us


Note (3) The specified power supply current is under the conditions at Vcc = 12 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.


Active Area

Note (4) The LVDS input characteristics are as follows:



CHIMEI INNOLUX

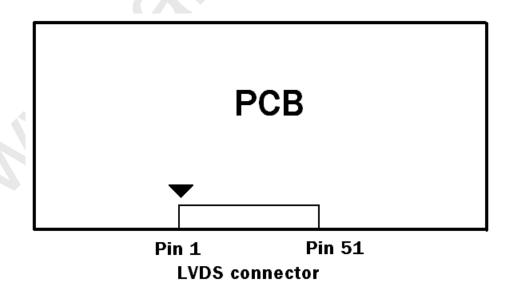
4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD OPEN CELL

②

PRODUCT SPECIFICATION

5. INPUT TERMINAL PIN ASSIGNMENT


5.1 TFT LCD Module

NF1 C	Connector Pa	rt No.:187059-51221 (P-TWO) or equivalent	
Pin	Name	Description	Note
1	GND	Ground	
2	SCL	Series clock input	
3	SDA	Series data input	
4	N.C.	No Connection	
5	N.C.	No Connection	(2)
6	N.C.	No Connection	
7	SELLVDS	LVDS data format Selection	(3)(5)
8	N.C.	No Connection	(2)
9	ODSEL	Overdrive Lookup Table Selection	(4)(6)
10	TST_PGM	Write protect input.	(2)
11	GND	Ground	
12	ERX0-	Even pixel Negative LVDS differential data input. Channel 0	(7)
13	ERX0+	Even pixel Positive LVDS differential data input. Channel 0	(7)
14	ERX1-	Even pixel Negative LVDS differential data input. Channel 1	(7)
15	ERX1+	Even pixel Positive LVDS differential data input. Channel 1	(7)
16	ERX2-	Even pixel Negative LVDS differential data input. Channel 2	(7)
17	ERX2+	Even pixel Positive LVDS differential data input. Channel 2	(7)
18	GND	Ground	
19	ECLK-	Even pixel Negative LVDS differential clock input.	(7)
20	ECLK+	Even pixel Positive LVDS differential clock input.	(7)
21	GND	Ground	
22	ERX3-	Even pixel Negative LVDS differential data input. Channel 3	(7)
23	ERX3+	Even pixel Positive LVDS differential data input. Channel 3	(7)
24	N.C.	No Connection	(2)
25	N.C.	No Connection	(2)
26	GND	Ground	
27	GND	Ground	
28	ORX0-	Odd pixel Negative LVDS differential data input. Channel 0	(7)
29	ORX0+	Odd pixel Positive LVDS differential data input. Channel 0	(7)
30	ORX1-	Odd pixel Negative LVDS differential data input. Channel 1	(7)
31	ORX1+	Odd pixel Positive LVDS differential data input. Channel 1	(7)
32	ORX2-	Odd pixel Negative LVDS differential data input. Channel 2	(7)

33	ORX2+	Odd pixel Positive LVDS differential data input. Channel 2	(7)
34	GND	Ground	
35	OCLK-	Odd pixel Negative LVDS differential clock input	(7)
36	OCLK+	Odd pixel Positive LVDS differential clock input	(7)
37	GND	Ground	
38	ORX3-	Odd pixel Negative LVDS differential data input. Channel 3	(7)
39	ORX3+	Odd pixel Positive LVDS differential data input. Channel 3	(7)
40	N.C.	No Connection	(2)
41	N.C.	No Connection	(2)
42	GND	Ground	
43	GND	Ground	
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	(2)
48	VCC	Power input (+12V)	
49	VCC	Power input (+12V)	
50	VCC	Power input (+12V)	
51	VCC	Power input (+12V)	

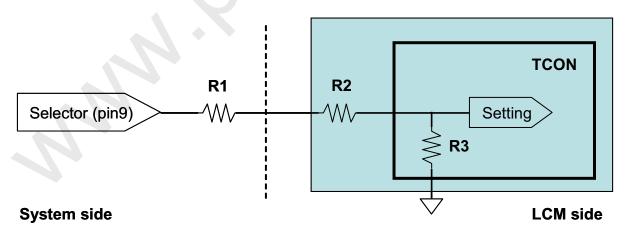
Note (1) LVDS connector pin order defined as follows

- Note (2) Reserved for internal use. Please leave it open.
- Note (3) Low = Open or connect to GND: VESA Format, High = Connect to +3.3V: JEIDA Format.
- Note (4) Overdrive lookup table selection. The overdrive lookup table should be selected in accordance with the frame rate to optimize image quality.

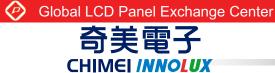


Low = Open or connect to GND, High = Connect to +3.3V

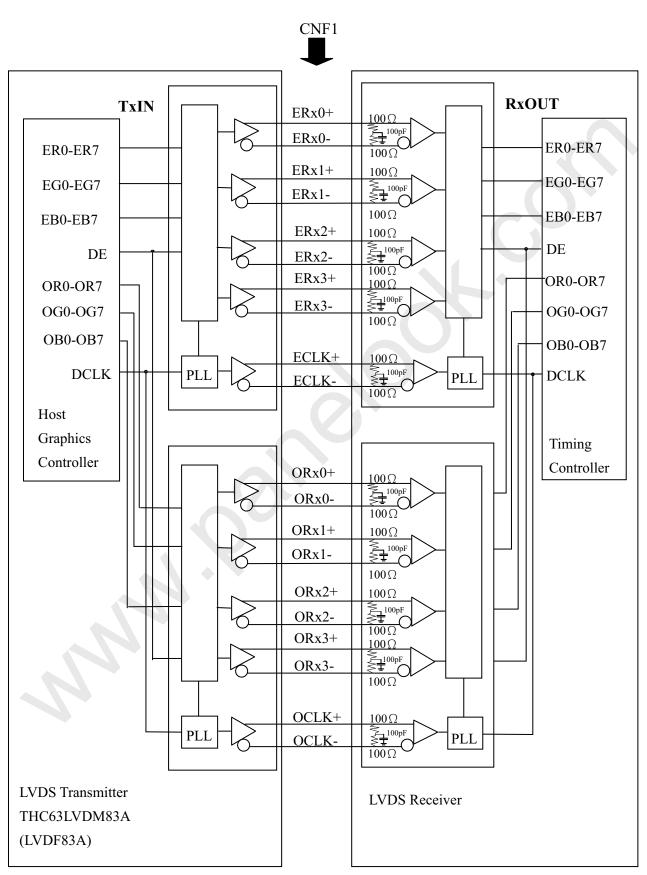
ODSEL	Note
L or open	Lookup table was optimized for 60 Hz frame rate.
Н	Lookup table was optimized for 50 Hz frame rate.


Note (5) LVDS signal pin connected to the LCM side has the following diagram.

R1 in the system side should be less than 1K Ohm. (R1 < 1K Ohm)



Note (6) ODSEL signal pin connected to the LCM side has the following diagram.


R1 in the system side should be less than 1K Ohm. (R1 < 1K Ohm)

Note (7) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

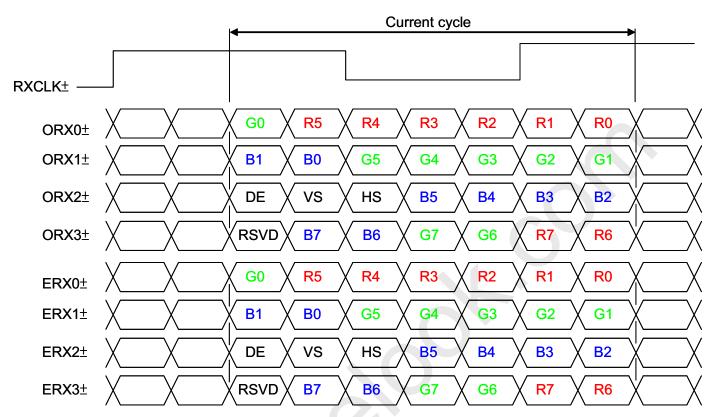
5.2 BLOCK DIAGRAM OF INTERFACE

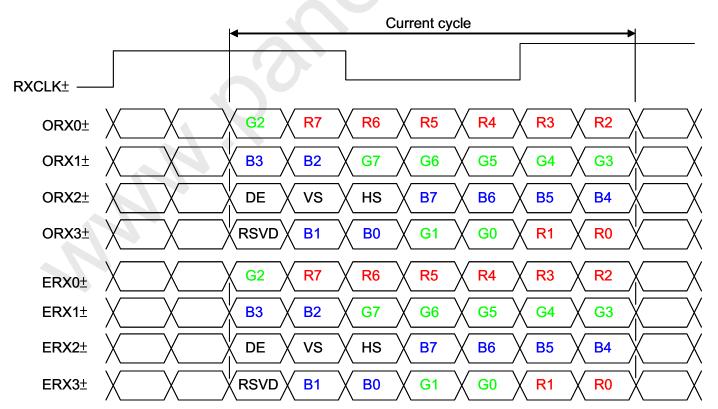
Version 2.2 14 Date: 01. May. 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

ER0~ER7: Even pixel R data EG0~EG7: Even pixel G data EB0~EB7: Even pixel B data OR0~OR7: Odd pixel R data OG0~OG7: Odd pixel G data OB0~OB7: Odd pixel B data DE : Data enable signal **DCLK** : Data clock signal

- Notes (1) The system must have the transmitter to drive the module.
- Notes (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.
- Notes (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.


②


PRODUCT SPECIFICATION

5.3 LVDS INTERFACE

VESA LVDS format: (SELLVDS pin=L or OPEN)

JEIDA LVDS format: (SELLVDS pin=H)

R0~R7: Pixel R Data (7; MSB, 0; LSB)

Version 2.2 16 Date: 01. May. 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

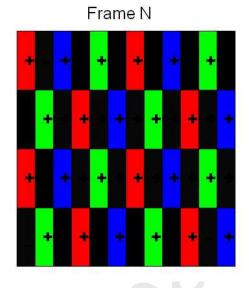
G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

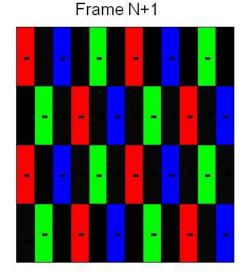
DE : Data enable signal DCLK : Data clock signal

Notes: (1) RSVD (reserved) pins on the transmitter shall be "H" or "L".

5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.


versus	data input.										_	_													
												Da	ata	Sigr	nal										
	Color				Re	ed							G	reer	1						Bl	ue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	B4	ВЗ	B2	В1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C = a v	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Croy	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0



	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Dide	Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

5.5 PATTERN FOR VCOM ADJUSTMENT

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

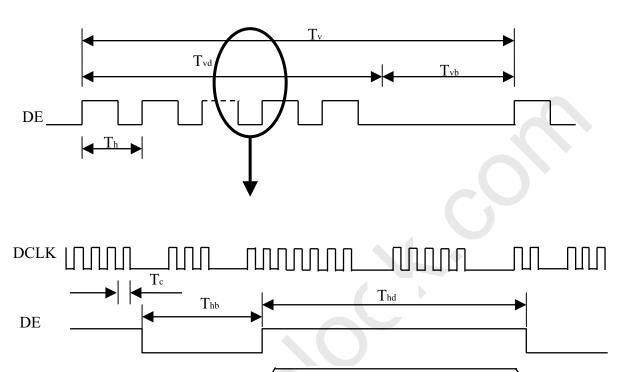
 $(Ta = 25 \pm 2 \, ^{\circ}C)$

The input signal timing specifications are shown as the following table and timing diagram.

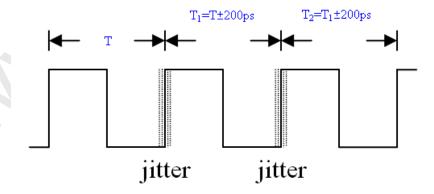
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/Tc)	60	74.25	80	MHz	
LVDS Receiver	Input cycle to cycle jitter	T _{rcl}	-200	I	200	ps	(3)
Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%	_	F _{clkin} +2%	MHz	(4)
	Spread spectrum modulation frequency	F _{SSM}			200	KHz	(4)
LVDS	Setup Time	Tlvsu	600	_		ps	
Receiver Data	Hold Time	Tlvhd	600) -	ps	(5)
	Frame Rate	F _{r5}	47	50	53	Hz	(6)
Vertical	Traine Nate	F _{r6}	57	60	63	Hz	(0)
Active	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tvb
Display Term	Display	Tvd	1080	1080	1080	Th	_
	Blank	Tvb	35	45	55	Th	_
Horizontal	Total	Th	1050	1100	1150	Тс	Th=Thd+Thb
Active	Display	Thd	960	960	960	Тс	_
Display Term	Blank	Thb	90	140	190	Тс	_

Note (1) Please make sure the range of pixel clock has follow the below equation:

$$\mathsf{Fclkin}(\mathsf{max}) \ge \mathsf{Fre} \times \mathsf{Tv} \times \mathsf{Th}$$

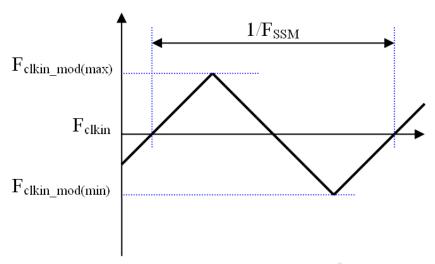

 $Fr_5 \times Tv \times Th \ge Fclkin(min)$

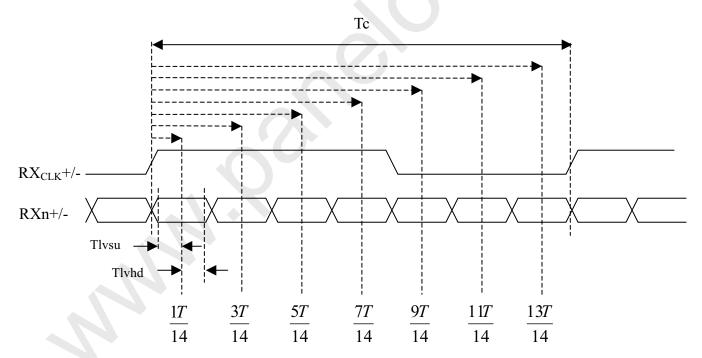
DAT


Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below :

INPUT SIGNAL TIMING DIAGRAM

Valid display data (960 clocks)


Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I $T_1 - TI$

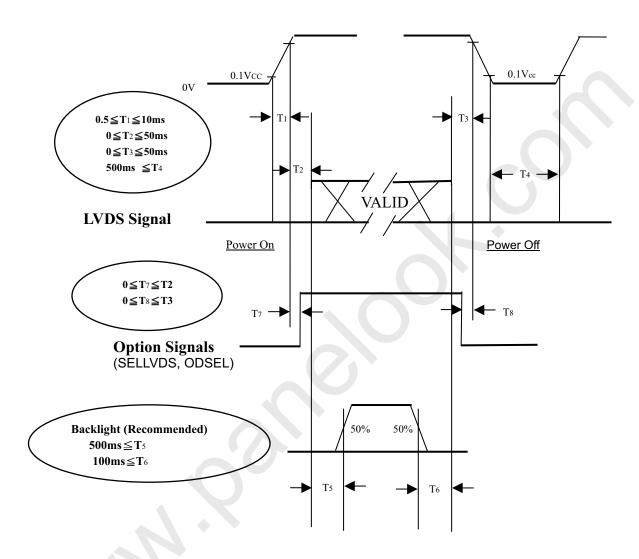


Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Note (6): (ODSEL) = H/L or open for 50/60Hz frame rate. Please refer to 5.1 for detail information


anelook.com 屏库:全球液晶屏交易中心 PRODUCT SPECIFICATION

6.2 POWER ON/OFF SEQUENCE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0, that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

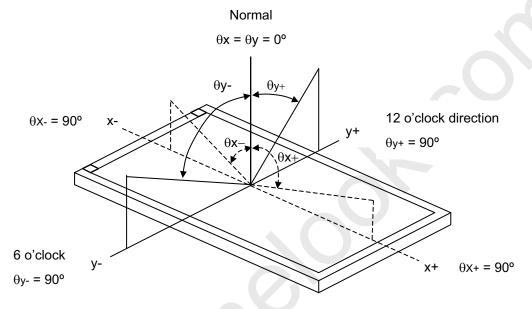
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Та	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V_{CC}	12V	V
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"
Lamp Current	IL	11.0±0.5	mA
Oscillating Frequency (Inverter)	F_W	40±3	KHz
Vertical Frame Rate	Fr	60	Hz

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (7).

Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note		
Contrast Ratio		CR		4000	6000	-	-	Note (3)		
Response Time Center Luminance of White		Gray to gray	\C	-	6.5	12	ms	Note (4)		
		L _C		360	450	-	cd/ m ²	Note (5)		
White Variation	า	δW		-	-	1.3	-	Note (8)		
Cross Talk		СТ		-	-	4	%	Note (6)		
	Dad	Rcx	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$		0.651		-			
	Red	Rcy	Viewing angle at		0.326		-			
Color	C A	Gcx	normal direction		0.299		-			
0.1.	Green	Gcy		Тур	0.600	Тур.+	-	Note (1)		
	Divis	Всх		0.03	0.145	0.03	-	Note (7)		
Chromaticity	Blue	Всу			0.082		-			
	\\/hito	Wcx			0.329		-			
	White	Wcy			0.371		-			
	Color Gamut				72	-	%	NTSC		
	Horizontol	θ_x +		80	88	ı				
Viewing	Horizontal	θ_{x} -	CD>20	80	88	-	Dog	Note (2)		
Angle	Vertical	θ _Y +	CR≥20	80	88	-	Deg.	Note (2)		
	Vertical	θ _Y -		80	88	-				



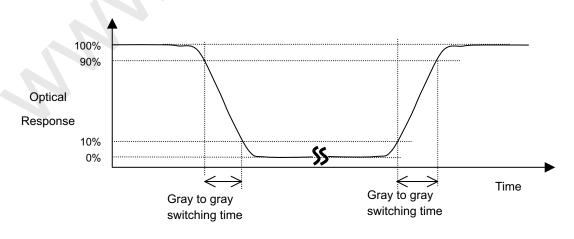
- Note (1) Light source is the standard light source "C" which is defined by CIE and driving voltage are based on suitable gamma voltages. The calculating method is as following:
 - (a) Measure Module's and BLU's spectrum. BLU(for V460H1-L09) is supplied by CMO.
 - (b) Calculate cell's spectrum.
 - (c) Calculate cell's chromaticity by using the spectrum of standard light source "C".

Note (2) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80

Note (3) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7)

Note (4) Definition of Gray to Gray Switching Time :

The driving signal means the signal of gray level 0, 63, 127, 191, and 255.

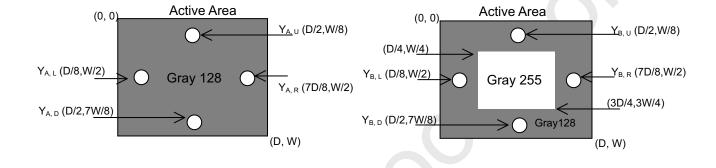
panelook.com 屏库:全球液晶屏交易中心 PRODUCT SPECIFICATION

Gray to gray average time means the average switching time of gray level 0, 63, 127, 191, 255 to each other.

Note (5) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point.

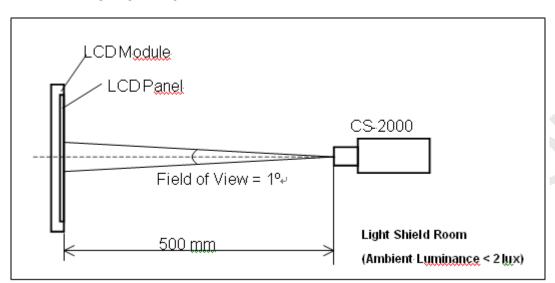
 $L_C = L$ (5), where L (x) is corresponding to the luminance of the point X at the figure in Note (7).


Note (6) Definition of Cross Talk (CT):

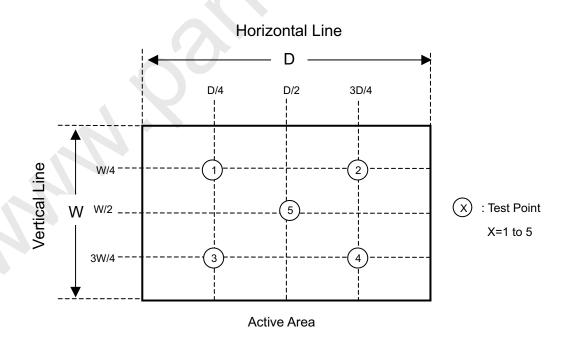
$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

 Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)


 Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)

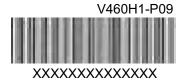
Note (7) Measurement Setup:


The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

Note (8) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$



8. DEFINITION OF LABELS

8.1 OPEN CELL LABEL

The barcode nameplate is pasted on each open cell as illustration for CMO internal control.

8.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation

(a) Model Name: V460H1- P09

(b) Carton ID: CMO internal control

(c) Quantities: 8

panelook.com 屏库:全球液晶屏交易中心 PRODUCT SPECIFICATION

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 8 LCD TV Panels / 1 Box
- (2) Box dimensions :1238 (L) X 842 (W) X 240(H)
- (3) Weight: approximately 38Kg (8 panels per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

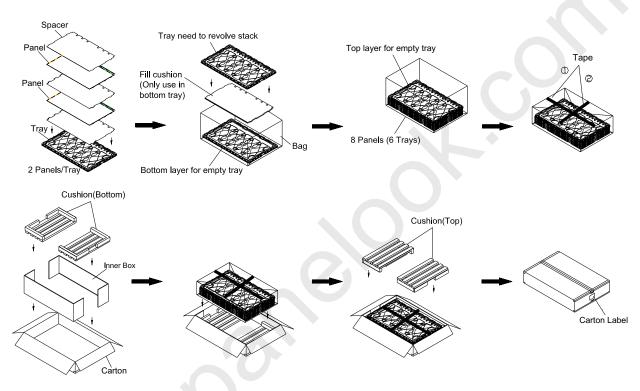
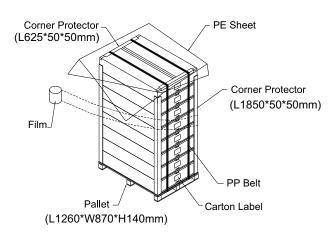



Figure.9-1 packing method

Sea & Land Transportation

Air Transportation

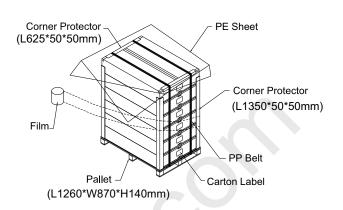


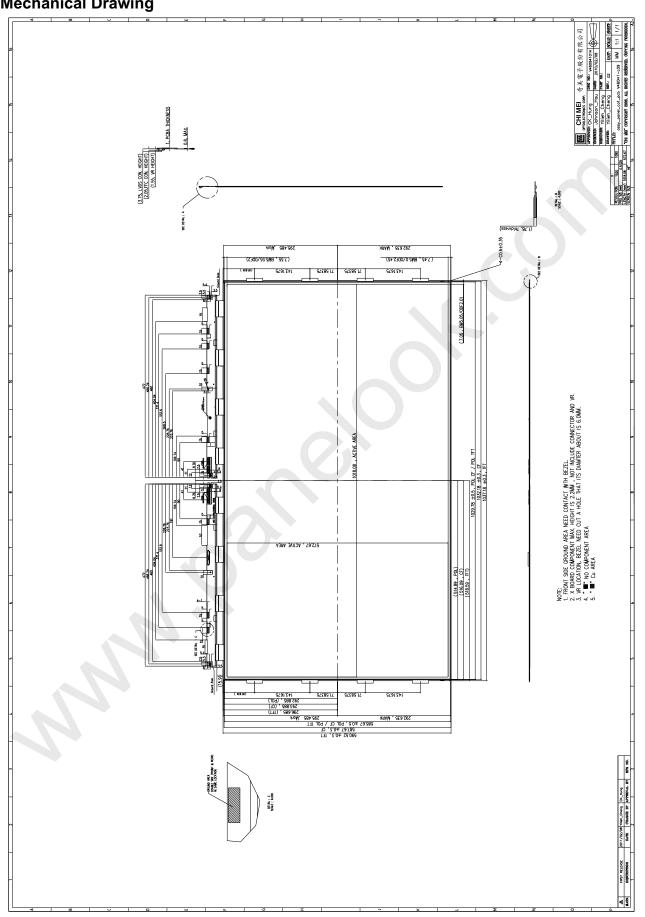
Figure.9-2 packing method

10. PRECAUTIONS

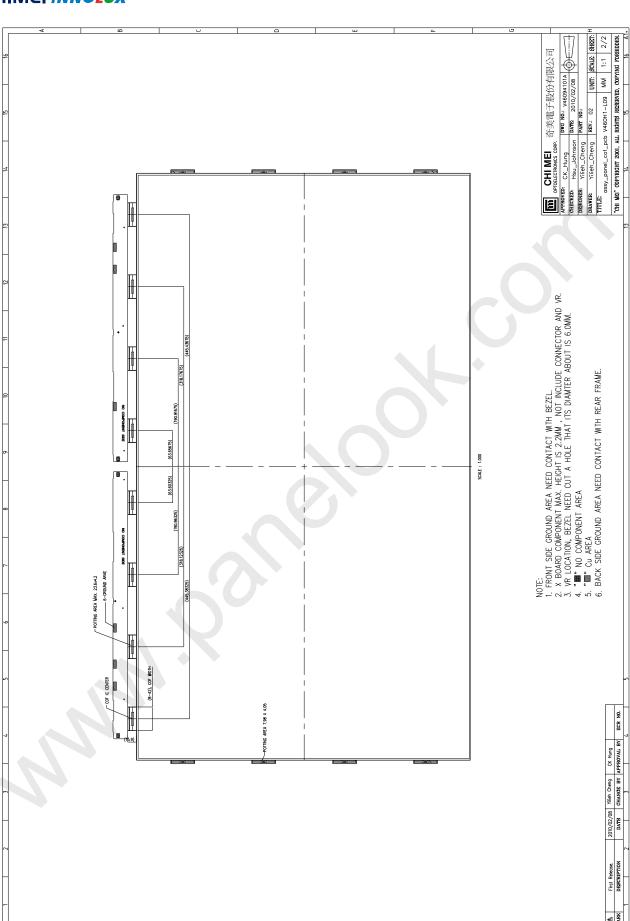
10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble backlight or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture come into or contacted the product, because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.

10.2 SAFETY PRECAUTIONS


- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.

panelook.com 屏库:全球液晶屏交易中心 PRODUCT SPECIFICATION


11. Mechanical Drawing

Version 2.2

32 Date: 01. May. 2011

Global LCD Panel Exchange Center

