

Tentative

TFT LCD Tentative Specification

MODEL NO.: V460H1 - LH9-901

Approved Dy	TV Product Marketing & Management Div						
Approved By	Chao-Chun Chung						
Reviewed By	QA Dept.	Product Development Div.					
Heviewed by	<u>Hsin-Nan Chen</u>	WT Lin					
Propared By	LCD TV Marketing and	Product Management Div.					
Prepared By	Josh Chi	Steven Tu					

CONTENTS -

REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT INVERTER UNIT		5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 3.2.1 CCFL(Cold Cathode Fluorescent Lamp) CHARACTI 3.2.2 INVERTER CHARACTERISTICS 3.2.3 INVERTER INTERFACE CHARACTERISTICS	ERISTICS	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE		15
5. INTERFACE PIN CONNECTION 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 INVERTER UNIT 5.4 BLOCK DIAGRAM OF INTERFACE 5.5 LVDS INTERFACE 5.6 COLOR DATA INPUT ASSIGNMENT)	16
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		25
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		28
8. DEFINITION OF LABELS		32
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		34
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS 10.3 SAFETY STANDARDS		37
11. MECHANICAL CHARACTERISTICS		38

Tentative

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 0.0	Nov. 27,'09	All	All	Tentative Specification was first issued.

Tentative

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V460H1-LH9 is a 46" TFT Liquid Crystal Display module with 14-CCFL Backlight unit and 2ch-LVDS interface. This module supports 1920 x 1080 HDTV format and can display true 16.7M colors (8-bit/color). The inverter for backlight is built-in.

1.2 FEATURES

- High brightness (450nits)
- High contrast ratio (6000:1)
- Fast response time (Gray to Gray average 6.5 ms)
- High color saturation (72% NTSC)
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Optimized response time for 100/120 Hz frame rate
- Ultra wide viewing angle: Super MVA technology

1.3 APPLICATION

- Standard Living Room TVs.
- Public Display Application.
- Home Theater Application.
- MFM Application.

1.4 GENERAL SPECIFICATIONS

Item	Item Specification				
Active Area 1018.08(H) x 572.67(V) (46" diagonal)		mm	(1)		
Bezel Opening Area	1024.4(H) x 579.2(V)	mm	(1)		
Driver Element	a-si TFT active matrix	-	-		
Pixel Number	er 1920x R.G.B. x 1080				
Pixel Pitch(Sub Pixel)	0.17675(H) x 0.53025(V)	mm	-		
Pixel Arrangement	RGB vertical stripe	-	-		
Display Colors	16.7M	color	-		
Display Operation Mode	Transmissive mode / Normally black	-	-		
Surface Treatment	Anti-Glare coating (Haze 11%) Hardness (3H)	-	(2)		

Note (1) Please refer to the attached drawings in chapter 9 for more information about the front and back outlines.

Note (2) The spec of the surface treatment is temporarily for this phase. CMO reserves the rights to change this feature.

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	-	1083	-	mm	
Module Size	Vertical (V)	-	627	-	mm	(1), (2)
	Depth (D)	-	51.2	-	mm	
,	Weight		TBD	-	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

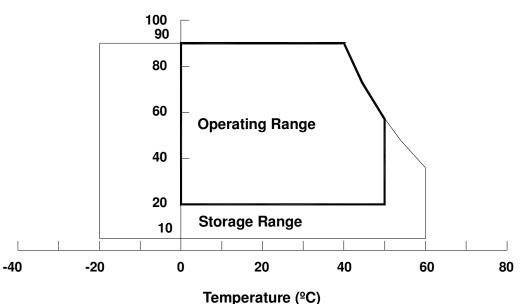
Global LCD Panel Exchange Center

Issued Date: Nov. 27, 2009 Model No.: V460H1 - LH9-901

Tentative

Note (2) Module Depth does not include connectors.

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	C.v	mbol	Va	lue	Unit	Note		
item	Symbol		Min.	Max.	Offic	Note		
Storage Temperature	T _{ST}		T _{ST}		-20	+60	ºC	(1)
Operating Ambient Temperature	T _{OP}		T _{OP}		0	50	ºC	(1), (2)
Shock (Non-Operating)	c	X, Y axis	-	50	G	(3), (5)		
Shock (Non-Operating)	S _{NOP}	Z axis	-	35	G	(3), (5)		
Vibration (Non-Operating)		NOP	-	1.0	G	(4), (5)		

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 $^{\circ}$ C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, and $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture. The module would not be twisted or bent by the fixture.

Tentative

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note
	Symbol	Min.	Max.	Offic	Note
Power Supply Voltage	V _{CC}	-0.3	13.5	V	(1)
Logic Input Voltage	V _{IN}	-0.3 3.6		V	(1)

2.2.2 BACKLIGHT INVERTER UNIT

Item	Symbol	Va	lue	Unit	Note	
item	Syllibol	Min.	Max.	Offic	Note	
Lamp Voltage	V _W	_	3000	V_{RMS}		

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

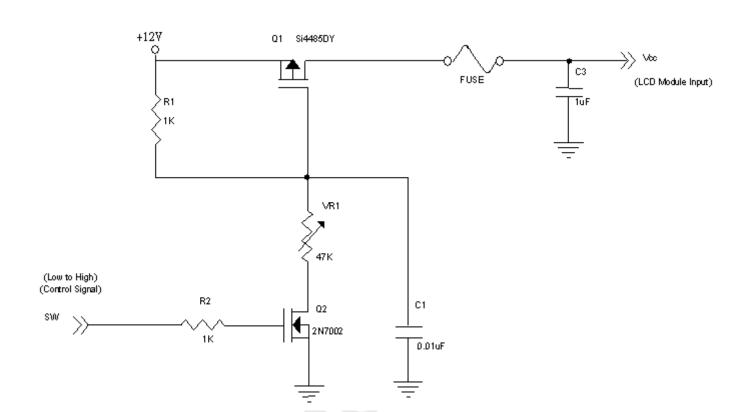
Tentative

3. ELECTRICAL CHARACTERISTICS

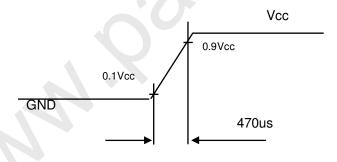
3.1 TFT LCD MODULE (Ta = 25 ± 2 ${}^{\circ}$ C)

		, ,	1						
Parameter		Symbol		Value		Unit	Note		
		Symbol	Min.	Тур.	Max.	Offit	Note		
Power Supply Voltage		V _{CC}	10.8	12	13.2	V	(1)		
Rush Curi	rent		I _{RUSH}	-	-	3.5	Α	(2)	
		White Pattern		-	0.9	-	Α		
Power Su	pply Current	Black Pattern	I _{cc}	-	0.86	-	Α	(3)	
'	,	Horizontal Stripe		-	2	2.4	A		
	Differential In Threshold Vo		V_{LVTH}	+100	-	-	mV	>	
LVDS Interface		Differential Input Low Threshold Voltage		-	-	-100	mV	(4)	
	Common Inp	nmon Input Voltage		1.0	1.2	1.4	V	(- /	
Differential i		put voltage	$ V_{ID} $	200	-	600	ohm		
	Terminating Resistor		R_T	-	100	-			
	Input High Th	Input High Threshold Voltage		2.7		3.3	V		
interface	Input Low Th	reshold Voltage	V_{IL}	0	-//	0.7	V		

Note (1) The module should be always operated within the above ranges.

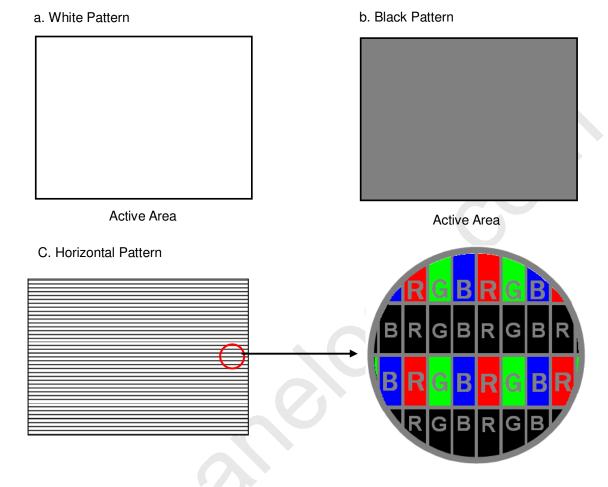


Global LCD Panel Exchange Center


Issued Date: Nov. 27, 2009 Model No.: V460H1 - LH9-901

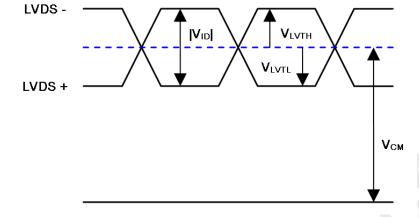
Tentative

Note (2) Measurement condition:


Vcc rising time is 470us

Tentative

Note (3) The specified power supply current is under the conditions at Vcc = 12V, Ta = 25 \pm 2 $^{\circ}$ C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.



Global LCD Panel Exchange Center

Issued Date: Nov. 27, 2009 Model No.: V460H1 - LH9-901

Tentative

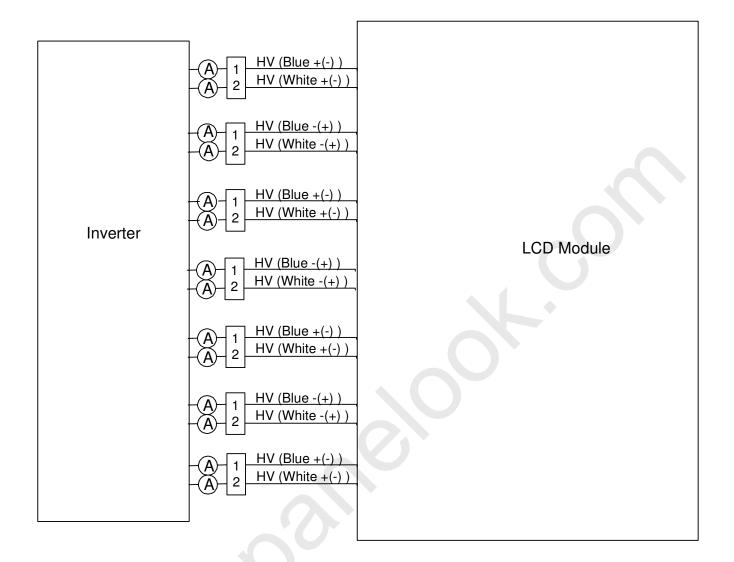
Note (4) The LVDS input characteristics are as follows:

Tentative

3.2 BACKLIGHT UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Doromotor	Cumbal		Value	Unit	Note	
Parameter	Symbol	Min. Typ. N		Max.	Uffil	Note
Lamp Input Voltage	V_L	-	1100	-	V_{RMS}	-
Lamp Current	ΙL	9.7	10.2	10.7	mA_{RMS}	(1)
Lamp Turn On Voltage	Vs	ı	-	1820	V_{RMS}	(2), Ta = 0 ^o C
Lamp rum on voitage	v _S	ı	-	1650	V_{RMS}	(2), Ta = 25 ^o C
Operating Frequency	F_L	30	-	80	KHz	(3)
Lamp Life Time	L_BL	50,000	-	-	Hrs	(4)


3.2.2 INVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)

		•	,			
Parameter	Symbol		Value	Unit	Note	
	Symbol	Min.		Max.	Offic	INOLE
Total Power Consumption	P ₂₅₅	-	155	TBD	V	(6)
Power Supply Voltage	V_{BL}	22.8	24	25.2	V	
Power Supply Current	I _{BL}	-	6.46	TBD	Arms	No Dimming
Input Ripple Noise	-	-	-	912	kHz	
Oscillating Frequency	Fw	37	40	43	mA	H.V (5)
Dimming frequency	F _B	150	160	170	Hz	Dimming frequency
Minimum Duty Ratio	D _{MIN}	-	20	-	%	Minimum Duty Ratio

- Note (1) Lamp current is measured by utilizing AC current probe and its value is average by measuring master and slave board.
- Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = 25 $\pm 2^{\circ}$ C and $I_L = 9.7^{\sim} 10.7$ mArms.
- Note (5) The power supply capacity should be higher than the total inverter power consumption P_{BL}. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.
- Note (6) The measurement condition of Max. value is based on 46" backlight unit under input voltage 24V, average lamp current 10.5 mA and lighting 30 minutes later.

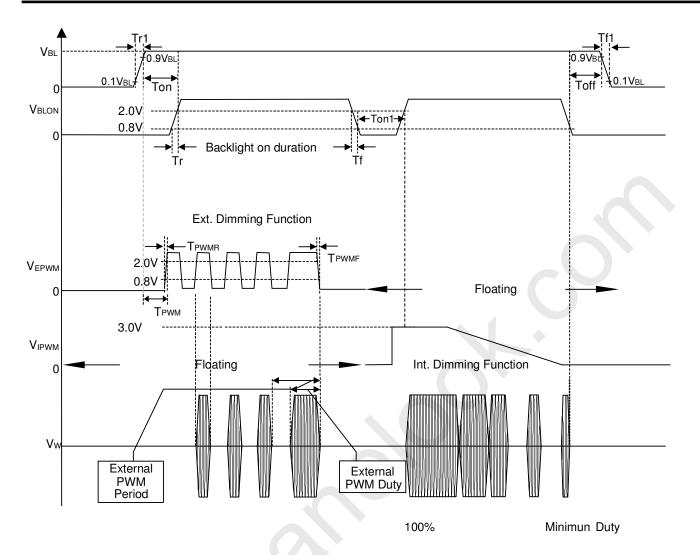
Tentative

Tentative

3.2.3 INVERTER INTERFACE CHARACTERISTICS

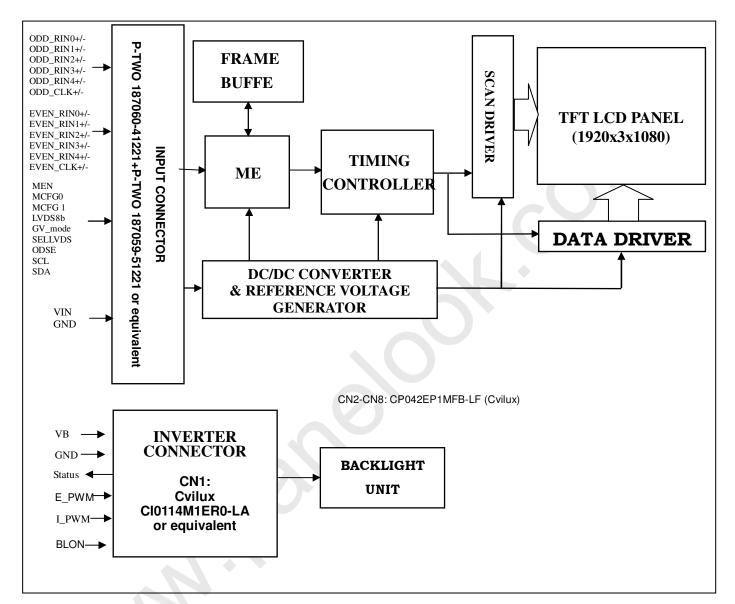
		Symbol	Test		Value				
Parameter	Parameter		Condition	Min.	Тур.	Max.	Unit	Note	
On/Off Control Voltage	ON	V	_	2.0	_	5.0	V		
On/On Control voitage	OFF	V_{BLON}	_	0	_	0.8	V		
Internal PWM Control	MAX	V	_	2.85	3.0	3.15	٧	Maximum duty ratio	
Voltage	MIN	V_{IPWM}		_	0	_	٧	Minimum duty ratio	
External PWM Control	Ξ	V	_	2.0	_	5.0	V	Duty on	
Voltage	LO	V_{EPWM}		0	_	0.8	V	Duty off	
Status Signal	HI	Status		3.0	3.3	3.6	V	Normal	
Status Signal	LO	Status		0	_	0.8	٧	Abnormal	
VBL Rising Time		Tr1	_	30	_	_	ms	10%-90%V _{BL}	
VBL Falling Time		Tf1	_	30	_	_	ms	1076-9076 V BL	
Control Signal Rising Tin	ne	Tr	_	_	_	100	ms		
Control Signal Falling Tir	ne	Tf	_	_	_	100	ms		
PWM Signal Rising Time)	T _{PWMR}	_	_	-	50	us		
PWM Signal Falling Time	Э	T _{PWMF}	_	_	_	50	us		
Input impedance		R _{IN}	_	1	/-		МΩ		
PWM Delay Time		T_{PWM}	_	100		/ –	ms		
		Ton	-	300		_	ms		
BLON Delay Time		T _{on1}	-	300))—	_	ms		
BLON Off Time	_	Toff	_	300	_	_	ms		

- Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM signal during backlight turn on period.
- Note (2) The power sequence and control signal timing are shown in the following figure. For a certain reason, the inverter has a possibility to be damaged with wrong power sequence and control signal timing.
- Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:


Turn ON sequence: $VBL \rightarrow PWM \text{ signal } \rightarrow BLON$

Turn OFF sequence: BLOFF → PWM signal → VBL

Tentative



Tentative

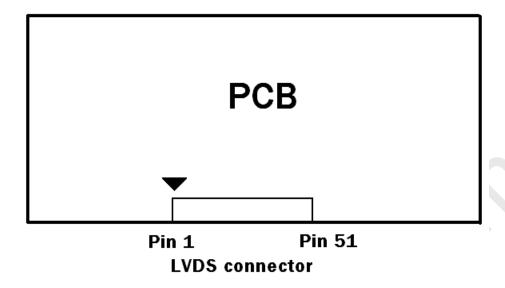
4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

Tentative

5 <u>.INPUT TERMINAL PIN ASSIGNMENT</u>

5.1 TFT LCD Module


CNF1 Connector Part No.: JAE Taiwan (台灣航空電子) FI-RE51S-HF or equivalent.

Pin	Name	or Part No.: JAE Taiwan (台灣航空電子) FI-RESIS-HF or equi Description	Note
1	RPF	Reverse picture function (default low)	11010
2	MEN	MEMC function selection	
3	MCFG0	MEMC function selection	
4	MCFG1	MEMC function selection	
5	LVDS8b	8bit/10bit LVDS input selection	
6	GV_mode	Graphic / Video mode selection	
7	SELLVDS	LVDS data format Selection	
8	SCL	I2C CLK Signal	
9	SDA.	I2C CER Signal	
10	ODSEL	Overdrive Lookup Table Selection	
		1	
11	GND	Ground	
12	ERX0-	2nd pixel Negative LVDS differential data input. Channel 0	
13	ERX0+	2nd pixel Positive LVDS differential data input. Channel 0	
14	ERX1-	2nd pixel Negative LVDS differential data input. Channel 1	
15	ERX1+	2nd pixel Positive LVDS differential data input. Channel 1	
16	ERX2-	2nd pixel Negative LVDS differential data input. Channel 2	
17	ERX2+	2nd pixel Positive LVDS differential data input. Channel 2	
18	GND	Ground	
19	ECLK-	2nd pixel Negative LVDS differential clock input.	
20	ECLK+	2nd pixel Positive LVDS differential clock input.	
21	GND	Ground	
22	ERX3-	2nd pixel Negative LVDS differential data input. Channel 3	
23	ERX3+	2nd pixel Positive LVDS differential data input. Channel 3	
24	ERX4-	2nd pixel Negative LVDS differential data input. Channel 4	
25	ERX4+	2nd pixel Positive LVDS differential data input. Channel 4	
26	N.C.	No Connection	
27	N.C.	No Connection	
28	ORX0-	1st pixel Negative LVDS differential data input. Channel 0	
29	ORX0+	1st pixel Positive LVDS differential data input. Channel 0	
30	ORX1-	1st pixel Negative LVDS differential data input. Channel 1	
31	ORX1+	1st pixel Positive LVDS differential data input. Channel 1	
32	ORX2-	1st pixel Negative LVDS differential data input. Channel 2	
33	ORX2+	1st pixel Positive LVDS differential data input. Channel 2	
34	GND	Ground	
35	OCLK-	1st pixel Negative LVDS differential clock input.	
36	OCLK+	1st pixel Positive LVDS differential clock input.	
37	GND	Ground	
38	ORX3-	1st pixel Negative LVDS differential data input. Channel 3	
39	ORX3+	1st pixel Positive LVDS differential data input. Channel 3	
40	ORX4-	1st pixel Negative LVDS differential data input. Channel 4	
41	ORX4+	1st pixel Positive LVDS differential data input. Channel 4	
42	N.C.	No Connection	
43	N.C.	No Connection	
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	
48	VCC	+12V power supply	
49	VCC	+12V power supply	
50	VCC	+12V power supply	
51	VCC	+12V power supply	

Note (1) LVDS connector pin orderdefined as follows

Tentative

Note (2) Reserved for internal use. Please leave it open.

Note (3)

SELLVDS	Mode
L(default)	VESA
Н	JEIDA

L: Connect to GND, H: Connect to +3.3V

Note (4) Overdrive lookup table selection. The overdrive lookup table should be selected in accordance with the frame rate to optimize image quality.

ODSEL	Description
L(default)	Lookup table was optimized for 60 Hz frame rate input.
Н	Lookup table was optimized for 50 Hz frame rate input.

L: Connect to GND, H: Connect to +3.3V

Note (5) Motion Engine (ME) Level & Demo Function Table

Motion engine level must be adjusted after video mode is selected (or entered).

Adjusting the motion engine level in graphic mode has no effect

		MEN	MCFG1	MCFG0	Notes					
	Blanking disable	0	0	(a)						
Blanking	Auto blanking	0	0	1	(b)					
	Blanking enable	0	1	0						
Effect of ME → De blur De judder Halo										
Demo n	node (d)	0	1	1		Demo Window	v			
	Strong	1	0	0	Enable	Strong	Strong			
ME	Medium(Default)	1	0	1	Enable	Normal	Normal			
Level	Weak	1	1	0	Enable ×		×			
Level	OFF	1	1	1	×	×				
			(e) (f) (g)							

 $⁽a)\ Module\ re\text{-starts}\ processing\ video\ signals\ from\ Frontend\ scaler\ control\ board.$

Tentative

- (b) During sync unstable period such as format change, 60Hz <-> 50Hz. MCFG0 can be used to insert blanking of 500ms. This signal is toggled.
- (c) Module continues to insert blanking until blanking disable signal is received from frontend scaler board.
- (d) Demo window mode: Demo Window appears to the left half of display area. Left side with frame is 120Hz with MEMC, and right side is 120Hz w/o motion compensation.
- (e) GPIO (General Purpose I/O) sequence of ME Level: (1) MEN; (2) MCFG1; (3) MCFG0. GPIO sequence of Blanking Enable, Blanking Disable and Demo window: (1) MCFG1; (2) MCFG0; (3) MEN.
- (f) Each scaler command must be maintained the same voltage level at least 100ms.
- (g) 0: Connect to GND, 1:+3.3V

Note (6) 8bit/10bit LVDS input selection

LVDS8b	Bit depth
H(default)	8bit
L	10bit

L: Connect to GND, H: Connect to +3.3V

Note (7) Graphic / Video mode selection

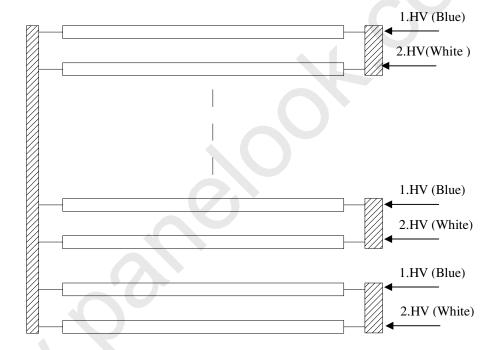
There is no prohibited time period for switching between Graphic mode and Video mode.

When this switching signal is input, LCD will be reset and will re-start selected mode.

GV_mode	Mode select	MEMC ON/OFF
H(default)	Graphic mode	MEMC OFF
L	Video mode	MEMC ON

L: Connect to GND, H: Connect to +3.3V

Tentative


5.2 BACKLIGHT UNIT

The pin configuration for the housing and the leader wire is shown in the table below.

CN2-CN8: CP042EP1MFB-LF (Cvilux)

Pin	Name	Description	Wire Color
1	HV	High Voltage	Blue
2	HV	High Voltage	White

Note (1) The backlight interface housing for high voltage side is a model CP042EP1MFB-LF, manufactured by Cvilux. The mating header on inverter part number is CP042EP1MFB-LF (Cvilux)

Tentative

5.3 INVERTER UNIT

CN1: CI0114M1ER0-LA (Cvilux) or equivalent

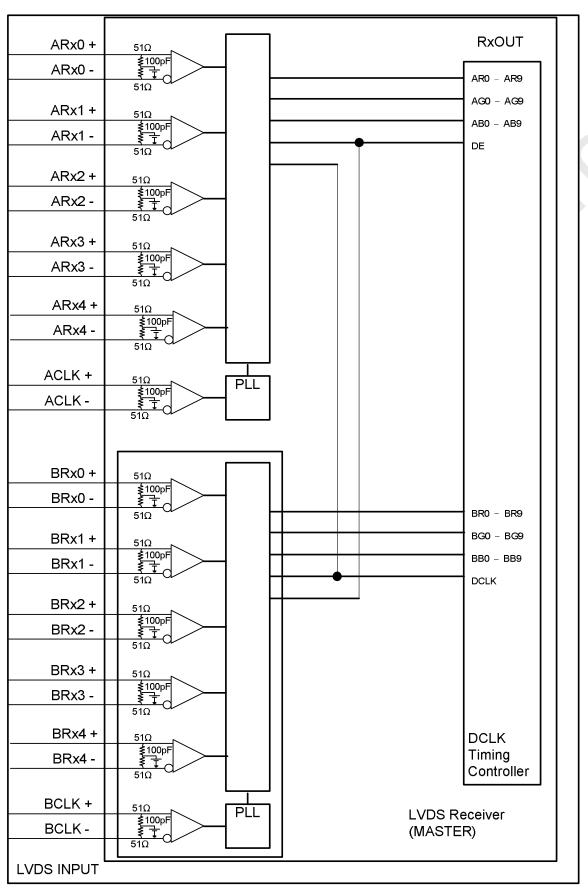
Pin №	Symbol	Feature
1		
2		
3	VBL	+24V
4		
5		
6		
7		
8	GND	GND
9		
10		
11	STATUS	Normal (3.3V) Abnormal(GND)
12	E_PWM	External PWM Control Signal
13	I_PWM	Internal PWM Control Signal
14	BLON	BL ON/OFF

Note (1) Pin 12: External PWM control (use pin 12): Pin 13 must open.

Note (2) Pin 13: Internal PWM control (use pin 13): Pin 12 must open.

Note (3) Pin 12 and Pin 13 can't open in the same period.

CN2~CN8: CP042EP1MFB-LF (Cvilux)


Pin №	Symbol	Description						
1	CCFL HOT	CCFL high voltage						
2	CCFL HOT	CCFL high voltage						

Tentative

5.4 BLOCK DIAGRAM OF INTERFACE

Tentative

AR0~AR9: First pixel R data AG0~AG9: First pixel G data AB0~AB9: First pixel B data BR0~BR9: Second pixel R data BG0~BG9: Second pixel G data

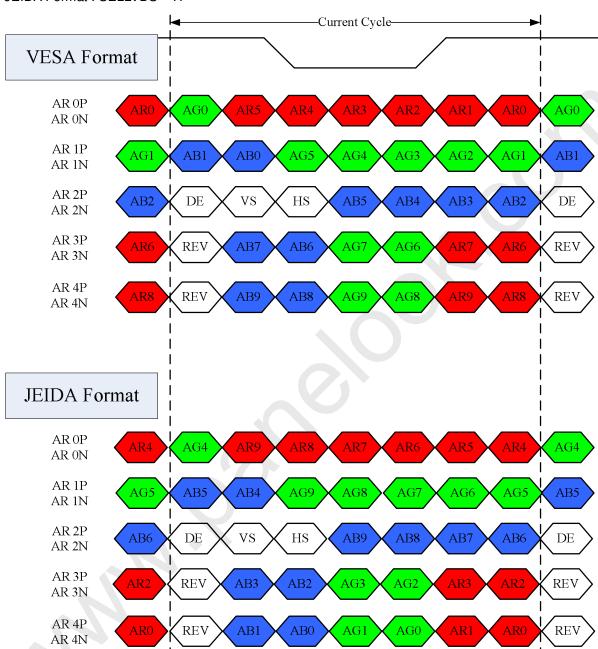
BB0~BB9: Second pixel B data

DE: Data enable signal DCLK: Data clock signal

Notes:

- (1) The system must have the transmitter to drive the module.
- (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.
- (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

Global LCD Panel Exchange Center


Issued Date: Nov. 27, 2009 Model No.: V460H1 - LH9-901

Tentative

5.5 LVDS INTERFACE

VESA Format : SELLVDS = L or Open

JEIDA Format : SELLVDS = H

AR0~AR9: First Pixel R Data (9; MSB, 0; LSB) AG0~AG9: First Pixel G Data (9; MSB, 0; LSB) AB0~AB9: First Pixel B Data (9; MSB, 0; LSB)

DE : Data enable signal DCLK: Data clock signal

RSVD: Reserved

23

Tentative

5.6 COLOR DATA INPUT ASSIGNMENT

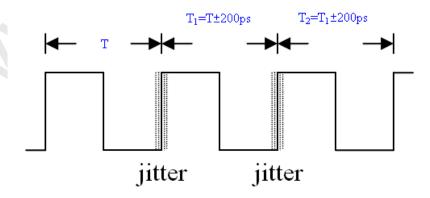
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

												Da		Sigr				•							
	Color				Re									reer	_						Βlι				
	Int I	R7	R6	R5	R4	R3	R2	R1	R0	G7		G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:		:-			:	:	:	:	:	:	:	:
Of	<u> </u>	:	:	:	:	:	:	:	:	:	:	:	÷	-:			:	:	:	:	:	:	:	:	:
Red	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.00	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	- (:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	.:	:	:	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
G.1 0011	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:		:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Diac	Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Tentative

6. INTERFACE TIMING

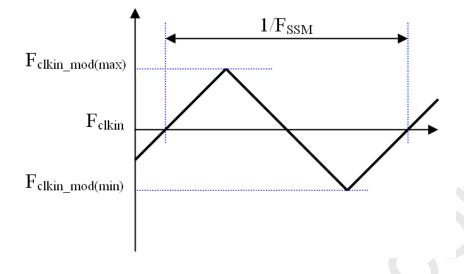

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
	Frequency	1/Tc	60	74.25	78	MHZ	-	
	Input cycle to cycle jitter	Trcl	_		200	ps	(3)	
LVDS Receiver Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%	1	F _{clkin} +2%	MHz		
	Spread spectrum modulation frequency	F _{SSM}	30	30 –		KHz	(4)	
LVDS Receiver Data	Setup Time	Tlvsu	600			ps	-	
LVD3 Neceivei Dala	Hold Time	Tlvhd	600	600 —		ps	-(5)	
	Every a Data	Fr6	47	50	\$ 53	Hz	(C)	
	Frame Rate	Fr5	57	60	62		(6)	
Vertical Active Display Term	Total	Tv	1110	1128	1135	Th	Tv=Tvd+Tvb	
	Display	Tvd	1080	1080	1080	Th	-	
	Blank	Tvb	30	45	55	Th	-	
	Total	Th	1050	110 0	1150	Тс	Th=Thd+Thb	
Horizontal Active Display Term	Display	Thd	960	960	960	Tc	-	
	Blank	Thb	90	140	190	Tc	-	

Note (1) Please make sure the range of frame rate has follow the below equation:

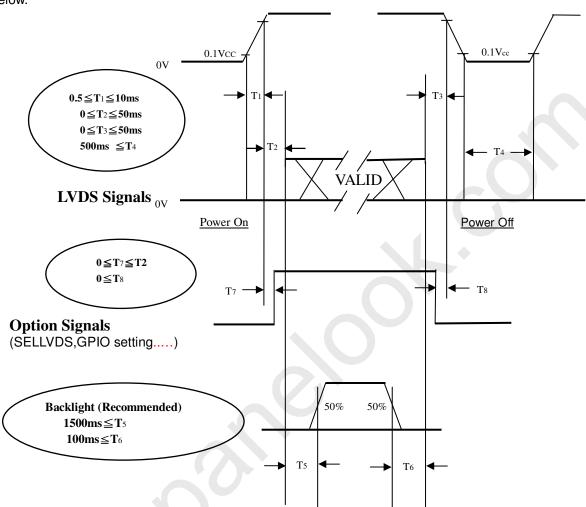
 $Fr(max) \ge Fclkin / Tv \times Th \le Fr(min)$

Note (2) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$



Note (3) The SSCG (Spread spectrum clock generator) is defined as below figures.

Tentative



Tentative

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

Note:

- (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

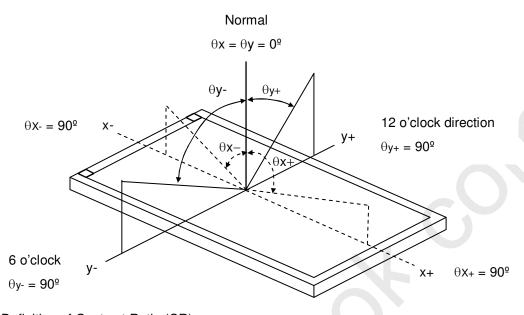
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V_{CC}	12V	V
Input Signal	According to typical value	alue in "3. ELECTRICAL (CHARACTERISTICS"
Lamp Current	L	12.0±0.5	mA
Oscillating Frequency (Inverter)	F _w	40±3	KHz
Vertical Frame Rate	Fr	60	Hz

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR	\C	4500	6000	-	-	Note (2)
Response Time		Gray to gray		-	6.5	12	ms	Note (3)
Center Luminance of White		Lc		360	450	-	cd/ m ²	Note (4)
White Variation		δW		-	-	1.3	-	Note (7)
Cross Talk		CT		-	-	4	%	Note (5)
Color Chromaticity	Red	Rx	θ _x =0°, θ _Y =0° Viewing angle at normal direction	Typ 0.03	0.633	Typ.+ 0.03	-	Note (6)
		Ry			0.324		-	
	Green	Gx			0.284		-	
		Gy			0.599		-	
	Blue	Bx			0.147		-	
		By			0.048		-	
	White	Wx			0.280		-	
		Wy			0.290		-	
	Color Gamut			70	72	-	%	NTSC
Viewing Angle	Horizontal	θ_{x} +	CR≥20	80	88	-	Deg.	Note (1)
		θ_{x} -		80	88	-		
	Vertical	θ_{Y} +		80	88	-		
		θ _Y -		80	88	-		



Global LCD Panel Exchange Center

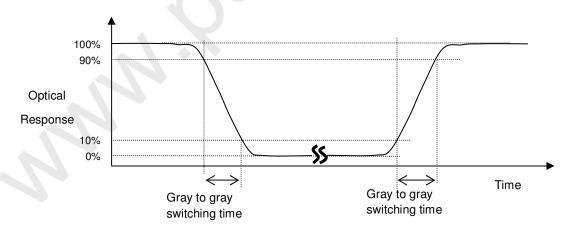
Issued Date: Nov. 27, 2009 Model No.: V460H1 - LH9-901 Tentative

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7)

Note (3) Definition of Gray to Gray Switching Time:

The driving signal means the signal of gray level 0, 63, 127, 191, and 255.

Gray to gray average time means the average switching time of gray level 0,63,127,191,255 to each other.

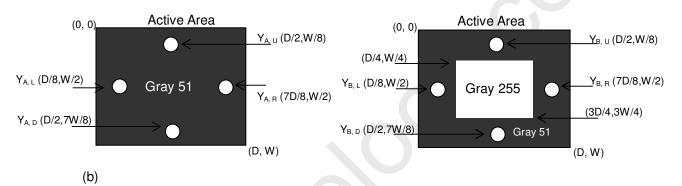
Issued Date: Nov. 27, 2009 Model No.: V460H1 - LH9-901 Tentative

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point.

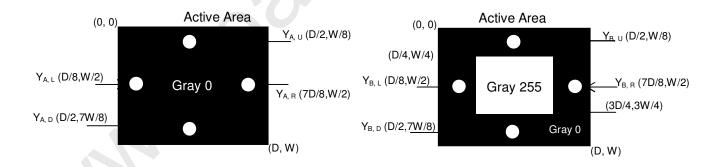
 $L_C = L$ (5), where L (x) is corresponding to the luminance of the point X at the figure in Note (7).

Note (5) Definition of Cross Talk (CT):


$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

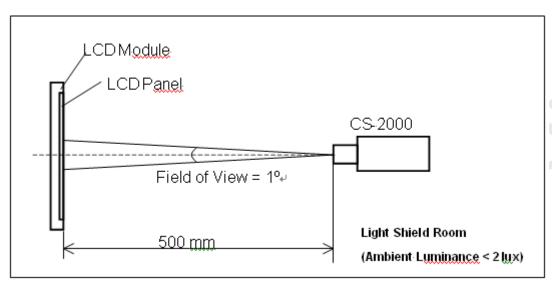
(a)


Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)

Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)

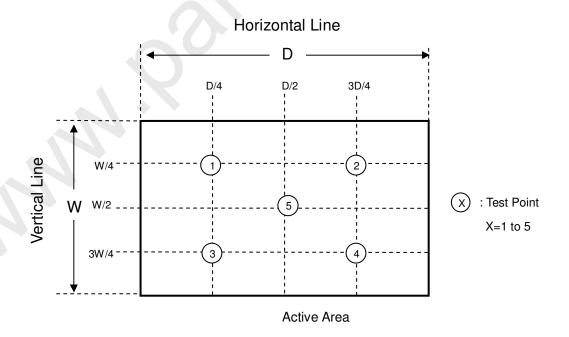
Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)



Global LCD Panel Exchange Center

Issued Date: Nov. 27, 2009 Model No.: V460H1 - LH9-901 Tentative

Note (6) Measurement Setup:

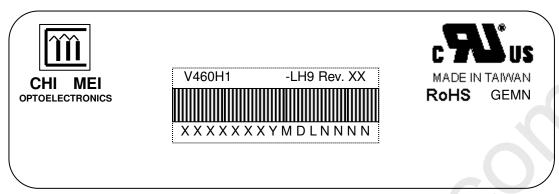

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

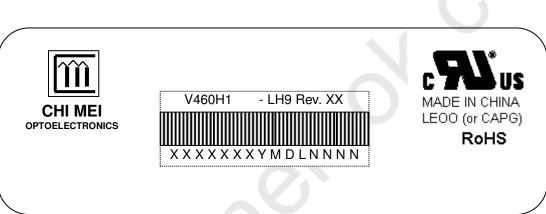
Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

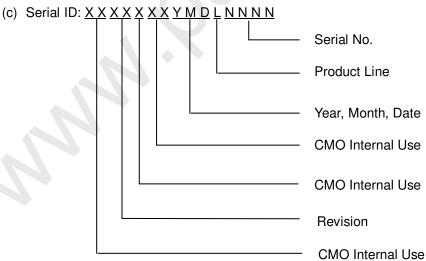
 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Global LCD Panel Exchange Center


Issued Date: Nov. 27, 2009 Model No.: V460H1 - LH9-901


Tentative

8. DEFINITION OF LABELS


8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V460H-LH9
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(d) Production Location:XXXX, for example:TAIWAN or CHINA.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2000~2009

Month: 1~9, A~C, for Jan. ~ Dec.

32

Tentative

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

(b) Revision Code: Cover all the change

(c) Serial No.: Manufacturing sequence of product

Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

Tentative

9. PACKAGING

9.1 PACKING SPECIFICATIONS

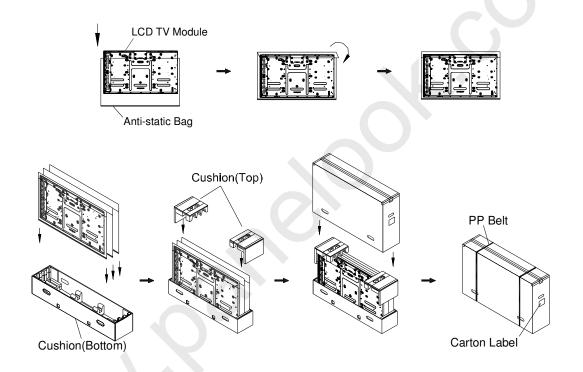
(1) 3 LCD TV modules / 1 Box

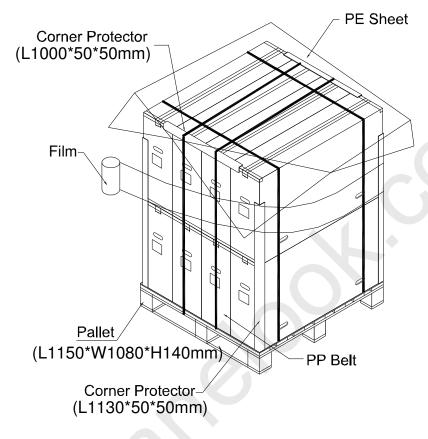
(2) Box dimensions: 1144(L)x 266(W)x 725(H)mm

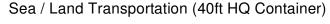
(3) Weight: approximately 45Kg (3 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method




Figure.9-1 packing method


Tentative

Tentative

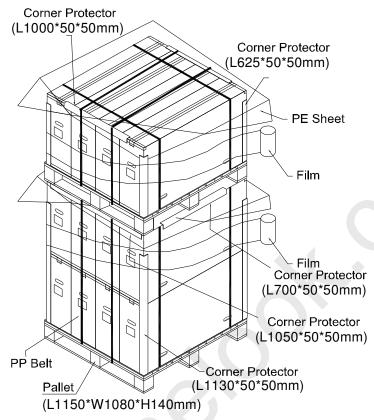


Figure.9-2 packing method

Tentative

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

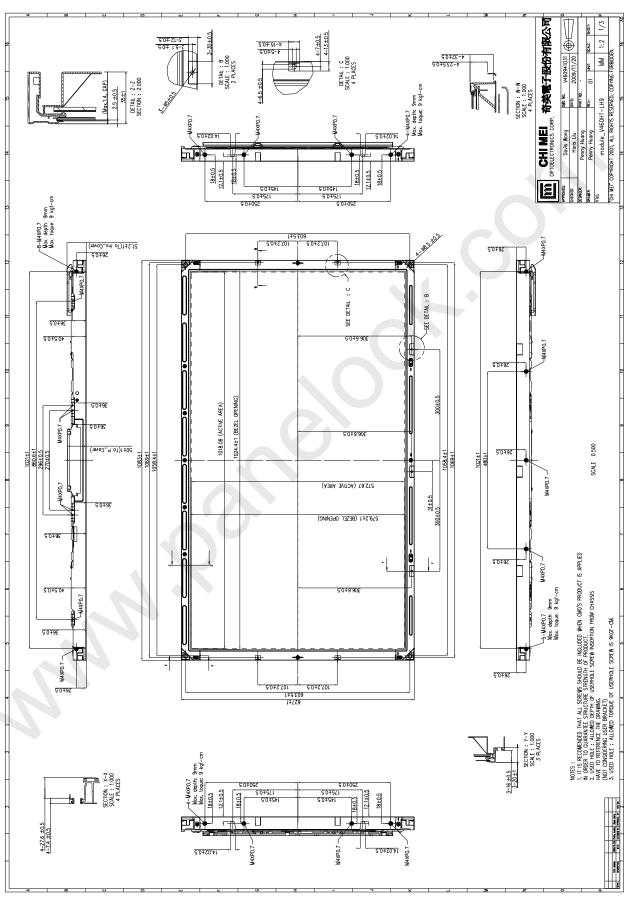
- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

10.3 SAFETY STANDARDS

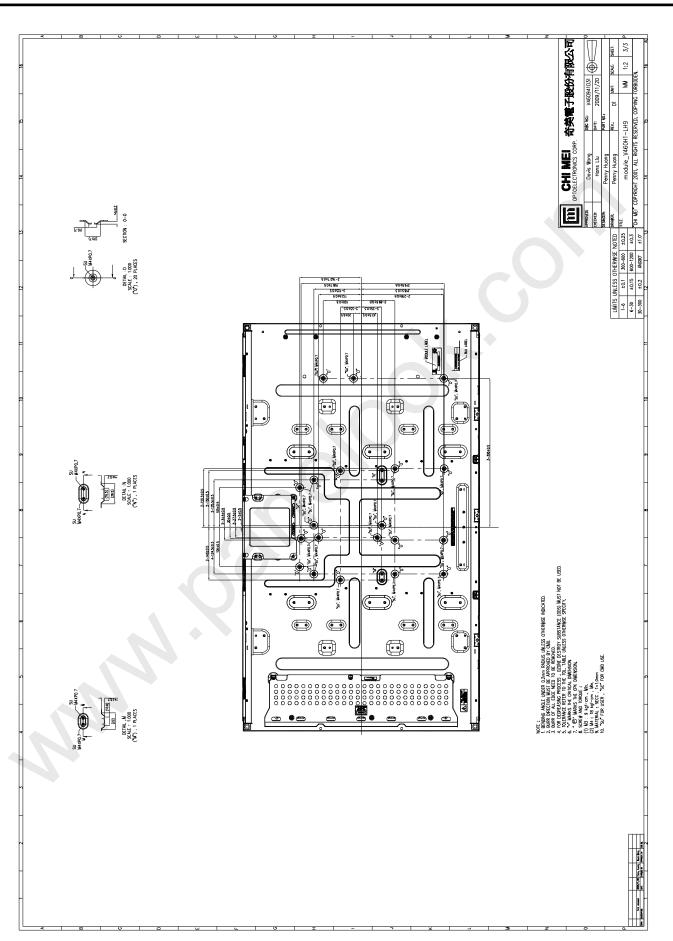
The LCD module should be certified with safety regulations as follows:


Regulatory	Item	Standard
	UL	UL 60950-1: 2003
Information Technology equipment	cUL	CAN/CSA C22.2 No.60950-1-03
	СВ	IEC 60950-1:2001
	UL	UL 60065: 2003
Audio/Video Apparatus	cUL	CAN/CSA C22.2 No.60065-03
	СВ	IEC 60065:2001

If the module displays the same pattern for a long period of time, the phenomenon of image sticking may be occurred.

Tentative

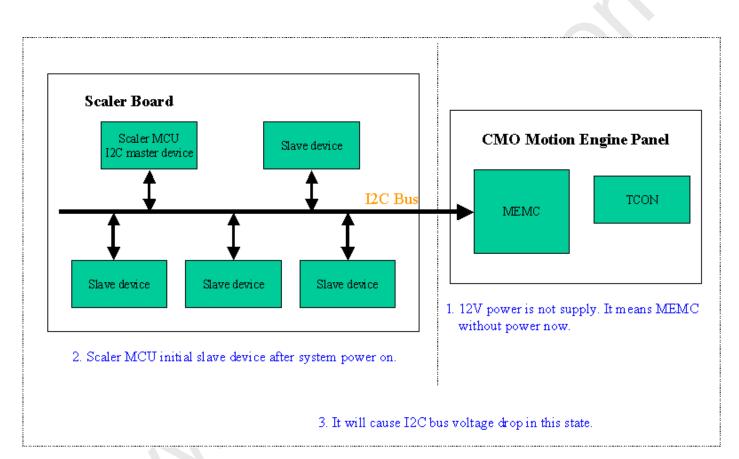
11. MECHANICAL CHARACTERISTIC


Tentative

Tentative

Tentative

Appendix – TWO Wire BUS INTRODUCTION


A.1 PIN ASSIGNMENT

51pins LVDS connector

Pin8: SCL Pin9: SDA

A.2 I2C BUS APPLICATION NOTE

I2C bus: (The I2C bus must for MEMC only or prevent the I2C bus voltage drop down in initial state)

A.3 TWO WIRE BUS DEVICE ADDRESS

Two wire device address: default is 0x40, 1 byte

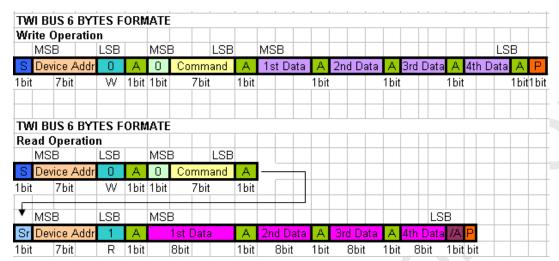
Two wire command: the range is 0x00 to 0xFF, 1 byte, see the two wire command table.

Two wire bus format:

Tentative

Dev	ice i	Addı	ess	: 0x	40	def	ault		Command								
D7	D6	D5	D4	D3	D2	D1	D0		D7	D6	D5	D4	D3	D2	D1	D0	
0	1	0	0	0	0	0	W/R		L	Х	Х	Х	Х	Х	Х	Х	
N/F			; Rea			th:	0: 4B)	to Da	ta I	one	ıth						
Sr	L 1 : 1Byte Data Length; 0: 4Byte Data Length S TWI-Bus Start condition from master Sr TWI-Bus Start condition from master																
	_	_				_	bit fror dge bit										
P Da	TWI ata	-Bus	Sto	p c Da	ond ta f	itior rom	from maste salve	maste								20 3	

Global LCD Panel Exchange Center


Issued Date: Nov. 27, 2009 Model No.: V460H1 - LH9-901

Tentative

A.4 TWO WAY TO CONTROL THE TWO WIRE BUS

There are two options to control the two wires bus command.

Two wire bus 6 bytes format

Two wire bus 3 bytes format

Note:

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets and a STOP condition. An empty message, consisting of a START followed by a STOP condition, is illegal. Note that the wired-ANDing of the SCL line can be used to implement handshaking between the master and the slave. The slave can extend the SCL low period by pulling the SCL line low. This is useful if the clock speed set up by the master is too fast for the slave, or the slave needs extra time for processing between the data transmissions. The slave extending the SCL low period will not affect the SCL high period, which is determined by the master. As a consequence, the slave can reduce the TWI data transfer speed by prolonging the SCL duty cycle.

Tentative

A.5 TWO WIRE BUS COMMAND TABLE

There is two wire bus command table.

Command Name		Access Mode	Description
All OSD Protection	0x00	R/W	OSDx Enable Flag Contorl
OSD1_Start_Protection	0x01	R/W	OSD1 Protection Start Position
OSD2_Start_Protection	0x02	R/W	OSD2 Protection Start Position
OSD3_Start_Protection	0x03	R/W	OSD3 Protection Start Position
OSD4_Start_Protection	0x04	R/W	OSD4 Protection Start Position
OSD1_End_Protection	0x05	R/W	OSD1 Protection End Position
OSD2_End_Protection	0x06	R/W	OSD2 Protection End Position
OSD3_End_Protection	0x07	R/W	OSD3 Protection End Position
OSD4_End_Protection	0x08	R/W	OSD4 Protection End Position
Demo Window	0x09	R/W	ME Performance Demo
MEMC Level	0x0A	R/W	ME Performance
GV Mode	0x0B	R/W	ME Operation
Blanking	0x0C	R/W	Blinking the screen
RPF	0x0D	R/W	Rotation picture function

(x1, y1)

OSD protection is rectangle. Please locate the position as below,

(x1-Left, y1-Top) (x2-Right, y2-Bottom)

Motion engine is not active in this blue area.

(x2, y2)

Tentative

Enable All OSD Protection

						Allo	SD F	rote	ct	tion : 0x00	
4 Bytes Data Leng	th										
1st BYTE DATA	D31	D30	D29	D28	D27	D26	D25	D24	I	D31~D28	Unused
	Unused OSDx									D27	OSD4 flag 1 : On ; 0 : Off
2nd BYTE DATA	D23 D22 D21 D20 D19 D18 D17 D1									D26	OSD3 flag 1 : On ; 0 : Off
				Unu	sed					D25	OSD2 flag 1 : On ; 0 : Off
3rd BYTE DATA	D15	D14	D13	D12	D11	D10	D9	D8		D24	OSD1 flag 1 : On ; 0 : Off
				Unu	sed					D23~D0	Unused
4th BYTE DATA	4th BYTE DATA D7 D6 D5 D4 D3 D2 D1 D										
				Unu	sed						
						Allo	SD F	rote	:c1	tion : 0x80	
1 Byte Data Lengti	h										
1st BYTE DATA	D7	D6	D5	D4	D3	D2	D1	DO	Ι	D7~D4	Unused
		Unu	ised			OS	Юx			D3	OSD4 flag 1 : On ; 0 : Off
										D2	OSD3 flag 1 : On ; 0 : Off
										D1	OSD2 flag 1 : On ; 0 : Off
										D0	OSD1 flag 1 : On ; 0 : Off
									Γ		

OSD # 1~4 Start Protection

					05	SD1_	Star	t_Pro	ot	tection : 0x0	1				
	OSD2_Start_Protection : 0x02														
	OSD3_Start_Protection : 0x03														
					05	SD4_	Star	ot	tection : 0x0	4					
4 Bytes Data Leng	th														
1st BYTE DATA	D31	D30	D29	D28	D27	D26	D25	D24	l	D31	OSDx flag 1 : On ; 0 : Off				
		Unused								D30~D27	Unused				
2nd BYTE DATA	D23	D22	D21	D20	D19	D18	D17	D16		D26~D16	OSDx Left position				
				OSD	Left					D15~D11	Unused				
3rd BYTE DATA	D15	D14	D13	D12	D11	D10	D9	D8		D10~D0	OSDx Top position				
4th BYTE DATA	D7	D6	D5	D4	D3	D2	D1	D0							
	OSDx Top										n Max : 1919				
										Top positio	n Max : 1079				

OSD # 1~4 End Protection

					0	SD1	End	l_Pro	ıtı	ection : 0x0	5				
	OSD2_End_Protection : 0x06														
	OSD3_End_Protection : 0x07														
	OSD4_End_Protection: 0x08														
4 Bytes Data Leng	Bytes Data Length														
1st BYTE DATA	D31	D30	D29	D28	D27	D26	D25	D24	ı	D31~D27	Unused				
		U	nuse	ed					l	D26~D16	OSDx Right position				
2nd BYTE DATA	D23	D22	D21	D20	D19	D18	D17	D16		D15~D11	Unused				
			(OSD	Right	t				D10~D0	OSDx Bottom position				
3rd BYTE DATA	D15	D14	D13	D12	D11	D10	D9	D8							
		U	nuse	ed					1						
4th BYTE DATA	D7	D6	D5	D4	D3	D2	D1	DO	Right position Max : 1919						
			0	SD E	3otto	m			1	Bootom po	sition Max : 1079				
									1						
									4		1				

Tentative

Demo Window

	Demo Window : 0x09														
4 Bytes Data Leng	ŗth														
1st BYTE DATA	D31 D	30 D2	9 D28	D27	D26	D25	D24		D31~D25	Unused					
			Unuse	ed					D24	Demo Window 1 : On ; 0 : Off					
2nd BYTE DATA	D23 D)22 D2	1 D20	D19	D18	D17	D16		D23~D0	Unused					
			Unu	ised											
3rd BYTE DATA	D15 D)14 D1	3 D12	D11	D10	D9	D8								
			Unu	ised											
4th BYTE DATA	D7 [D6 D5	5 D4	D3	D2	D1	D0								
			Unu	ised											
					De	emo	Wind	do	w : 0x89						
1 Byte Data Lengt	h														
1st BYTE DATA	D7 [D6 D5	5 D4	D3	D2	D1	D0		D7~D1	Unused					
			Unuse	ed					D0	Demo Window 1 : On ; 0 : Off					

MEMC Level

		ME Leve	I: 0x0A	
4 Bytes Data Leng	ŗth			
1st BYTE DATA	D31 D30 D29	D28 D27 D26 D25 D24	D31~D29	Unused
	Unused	ME Level	D28~24	ME Level 0~16
2nd BYTE DATA	D23 D22 D21	D20 D19 D18 D17 D16		
		Unused		0 : Strong
3rd BYTE DATA	D15 D14 D13	D12 D11 D10 D9 D8		1 : Normal
		Unused		2 : Weak
4th BYTE DATA	D7 D6 D5	D4 D3 D2 D1 D0		3: Off
		Unused	D23~D0	Unused
		ME Leve	l : 0x8A	
1 Byte Data Lengt	h			
1st BYTE DATA	D7 D6 D5	D4 D3 D2 D1 D0	D7~D5	Unused
	Unused	ME Level	D4~D0	ME Level 0~16
				0 : Strong
				1 : Normal
				2 : Weak
				3: Off

GV Mode

					G'	√ Mo	de	: 0x0B						
4 Bytes Data Leng	gth													
1st BYTE DATA	D31 D30	D29	D28 [D27	D26 D2	5 D24		D31~D25	Unused					
		U	nused	d				D24	1 : Graphic ; 0 : Video					
2nd BYTE DATA	D23 D22	2 D21	D20 [D19	D18 D1	7 D16		D23~D0	Unused					
			Unus	sed										
3rd BYTE DATA	D15 D14	1D13	D12	D11	D10 D:	9 D8								
			Unus	sed										
4th BYTE DATA	D7 D6	D5	D4	D3	D2 D	1 D0								
			Unus	sed										
					G'	۷ Mo	de	: 0x8B						
1 Byte Data Lengt	h													
1st BYTE DATA	D7 D6	D5	D4	DЗ	D2 D	1 D0		D7~D1	Unused					
		U	nused	d			D0	1 : Graphic ; 0 : Video						
						1								

Tentative

Blanking (Enable/Disable)

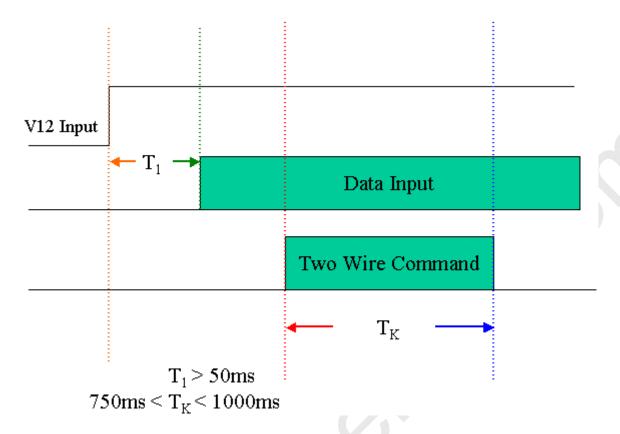
							Bla	nking	g	: 0x0C	
4 Bytes Data Leng	ŗth										
1st BYTE DATA	D31	D30	D29	D28	D27	D26	D25	D24		D31~D26	Unused
		Unused								D24	Blanking; 1 : On ; 0 : Off
2nd BYTE DATA	D23	D23 D22 D21 D20 D19 D18 D17								D23~D0	Unused
	Unused										
3rd BYTE DATA	3rd BYTE DATA D15 D14 D13 D12 D11 D10 D9										
				Unu	ised						
4th BYTE DATA	D7	D6	D5	D4	D3	D2	D1	DO		When the i	nput signal is unstable,
				Unu	ised					the screer	n should be blanked.
							Bla	nking	g	: 0x8C	
1 Byte Data Lengt	h										
1st BYTE DATA	1st BYTE DATA D7 D6 D5 D4 D3 D2 D1									D7~D1	Unused
			U	nuse	ed					D0	Blanking; 1 : On ; 0 : Off

RPF : 0x0D															
4 Bytes Data Leng	4 Bytes Data Length														
1st BYTE DATA	D31	D30 [D29	D28	D27	D26	D25	D24	I	D31~D25	Unused				
			Ur	nuse	d					D24	1 : Rotation ; 0 : Default				
2nd BYTE DATA	D23	D22 [D21	D20	D19	D18	D17	D16		D23~D0	Unused				
				Unu	sed										
3rd BYTE DATA	D15	D14 [D13	D12	D11	D10	D9	D8							
				Unu	sed										
4th BYTE DATA	D7	D6	D5	D4	D3	D2	D1	DO							
				Unu	sed										
							G۷	Mod	е	: 0x8D					
1 Byte Data Lengt	h														
1st BYTE DATA	D7	D6	D5	D4	D3	D2	D1	D0	T	D7~D1	Unused				
	Unused										1 : Rotation ; 0 : Default				
	1 1	-							1						

Tentative

A.6 TWO WIRE BUS REQUIREMENT

Symbol	Parameter	Condition	Min	Mex	Unite
V_L	Input Low-voltage		0	0.7	V
VH	Input High-voltage		2.7	3.3	v
V _{hys} ⁽¹⁾	Hysteresis of Schmitt Trigger Inputs		0.16	_	٧
Vα. ⁽¹⁾	Output Low-voltage	3 mA sink current	0	0.4	٧
ţ, ⁽¹⁾	Rise Time for both SDA and SCL		20 + 0.1C _b (3)(2)	300	na
$t_{of}^{(1)}$	Output Fall Time from V _{IHnin} to V _{ILmax}	10 pF < C _b < 400 pF ⁽¹⁾	20 + 0.1C _b (3)(2)	250	na
t _{SP} ⁽¹⁾	Spikes Suppressed by Input Filter		0	50 ⁽²⁾	ПЗ
l _i	Input Current each I/O Pin	0.1V _{CC} < V _i < 0.9V _{CC}	-10	10	μA
C _i (1)	Capacitance for each I/O Pin		_	10	pF
f _{SCL}	SCL Clock Frequency	f _{CK} ⁽⁴⁾ > max(16f _{SCL} , 250kHz) ⁽⁶⁾	0	400	kHz
		f _{SCL} ≤ 100 kHz	3000	1000ns C _b	Ω
Пp	Value of Pull-up resistor	f _{SCL} > 100 kHz	3000	300ns C₁	Ω
t _{HD:STA}	Hold Time (repeated) START Condition	f _{sct.} ≤ 100 kHz	4.0	_	μs
нцам	, , , , ,	f _{scL} > 100 kHz	0.6	_	μs
t _{LOW}	Low Period of the SCL Clock	f _{scL} ≤ 100 kHz ^(e)	4.7	_	μs
LOW		f _{sot} > 100 kHz ⁽⁷⁾	1.3	_	μs
[‡] нкн	High period of the SCL clock	f _{scL} ≤ 100 kHz	4.0	_	µs
HAH		f _{act} > 100 kHz	0.6	_	μs
t _{SU,STA}		f _{acL} ≤ 100 kHz	4.7	_	μs
SUSIA	Set-up time for a repeated START condition	f _{act} > 100 kHz	0.6	_	рs
t _{HD:DAT}	Data hold time	f _{act} ≤ 100 kHz	0	3.45	ps
НЦЦМІ		f _{SCL} > 100 kHz	0	0.0	με
t _{SUKDAT}	Data setup time	f _{scL} ≤ 100 kHz	250	_	ne
SOLIAI		f _{SCL} > 100 kHz	100	_	ne
t _{susto}	Selup time for STOP condition	f _{SCL} ≤ 100 kHz	4.0	_	μe
-20210		f _{SCL} > 100 kHz	0.6	_	µв
teur	Bus free time between a STOP and START	f _{SCL} ≤ 100 kHz	4.7	_	µв
40-	condition	f _{SCL} > 100 kHz	1.9	_	μa
	I .				



Global LCD Panel Exchange Center

Issued Date: Nov. 27, 2009 Model No.: V460H1 - LH9-901

Tentative

A.7 THE TWO WIRE BUS SEQUENCE

