

Preliminary Specification
Approval Specification

MODEL NO.: V420H2 SUFFIX: PS2

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your consignature and comments.	nfirmation with your

Approved By	Checked By	Prepared By
Chao-Chun Chung	Ken Wu	Peggi Chiu

CONTENTS

1. GENERAL DESCRIPTION	4
1.1 OVERVIEW	4
1.2 FEATURES	4
1.3 MECHANICAL SPECIFICATIONS	4
2. ABSOLUTE MAXIMUM RATINGS	5
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	<u>5</u>
2.2 PACKAGE STORAGE	6
2.3 ELECTRICAL ABSOLUTE RATINGS	6
3. ELECTRICAL CHARACTERISTICS	7
3.1 TFT LCD MODULE	7
4. BLOCK DIAGRAM OF INTERFACE	10
4.1 TFT LCD MODULE	10
5. INTERFACE PIN CONNECTION	
5.1 TFT LCD MODULE	11
5.2 BLOCK DIAGRAM OF INTERFACE	17
5.3 LVDS INTERFACE	
5.4 COLOR DATA INPUT ASSIGNMENT	
6. INTERFACE TIMING	22
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	
6.2 POWER ON/OFF SEQUENCE	
7. OPTICAL CHARACTERISTICS	
7.1 TEST CONDITIONS	
8. DEFINITION OF LABELS	
8.1 CMI MODULE LABEL	
9. PACKAGING	34
9.1 PACKING SPECIFICATIONS	34
9.2 PACKING METHOD	34
10. INTERNATIONAL STANDARD	36
10.1 ASSEMBLY AND HANDLING PRECAUTIONS	36
10.2 SAFETY PRECAUTIONS	37

Version 1.0 2 Date: 20 May. 2011

11. MECHANICAL CHARACTERISTICS......38

REVISION HISTORY

Version	Date	Page(New)	Section	Description
Ver. 1.0	May. 20,2011	All	All	The Preliminary specification was first issued.

Version 1.0 3 Date: 20 May. 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V420H2-PS2 is a 42" TFT Liquid Crystal Display product with driver ICs and 4ch-LVDS interface. This product supports 1920 x 1080 Full HDTV format and can display 1.07G colors (8-bit + FRC).

1.2 FEATURES

CHARACTERISTICS ITEMS	SPECIFICATIONS
Screen Diagonal [in]	42.02
Pixels [lines]	1920 × 1080
Active Area [mm]	930.24(H) × 523.26(V) (42" diagonal)
Sub-Pixel Pitch [mm]	0.1615(H) × 0.4845(V)
Pixel Arrangement	RGB vertical stripe
Weight [g]	TYP. 2155 g
Physical Size [mm]	965.24(W) × 566.51(H) × 1.75(D) Typ.
Display Mode	Transmissive mode / Normallly black
Contrast Ratio	5000:1 Typ.
	(Typical value measure at CMI's module)
Glass thickness (Array / CF) [mm]	0.7 / 0.7
Viewing Angle (CR>20)	+88/-88(H), +88/-88(V) Typ. (CR≥20)
	(Typical value measure at CMI's module)
Color Chromaticity	R=(0.656, 0.326)
	G=(0.257, 0.584)
	B=(0.131,0.112)
	W=(0.289, 0.352)
	(Light source is the standard light source "C" which is defined by
	CIE and driving voltages are based on suitable gamma
	voltages.)
Cell Transparency [%]	4.8%
Polarizer Surface Treatment	Anti-Glare coating (Haze 11%), Hard coating (3H)

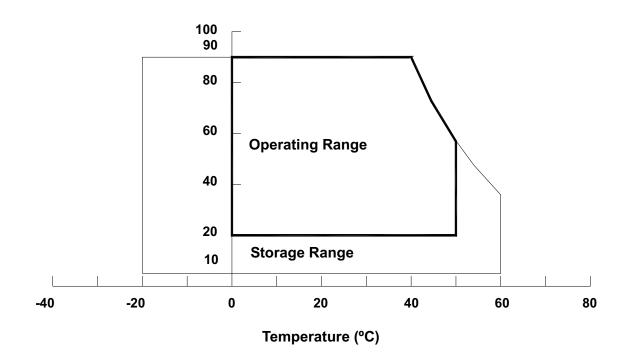
1.3 MECHANICAL SPECIFICATIONS

Item	Min.	Тур.	Max.	Unit	Note
Weight	2105	2155	2205	g	-
I/E connector mounting position	The mounting incli	nation of the conne	ector makes the		(2)
I/F connector mounting position	screen center with	in ± 0.5mm as the	horizontal.		(2)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Connector mounting position

PRODUCT SPECIFICATION


2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	n Symbol -	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(3), (4)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (4) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
- (b)The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Power Supply Voltage	Vcc	-0.3	13.5	V		
Input Signal Voltage	VIN	-0.3	3.6	V		

2.3.2 BACKLIGHT UNIT

Item	Symbol	Test Condition	Min.	Type	Max.	Unit	Note
Light Bar Voltage	V_W	Ta = 25 ℃	ı	-	60	V_{RMS}	3D Mode
Converter Input Voltage	V_{BL}	-	0	-)	30	V	
Control Signal Level	-	-	-0.3		7	V	

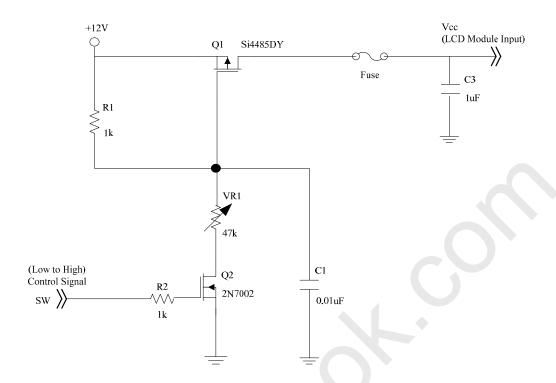
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

Note (2) No moisture condensation or freezing.

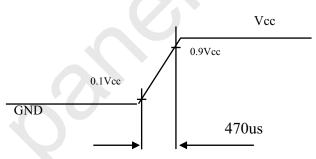
Note (3) The control signals include On/Off Control and Internal PWM Control.

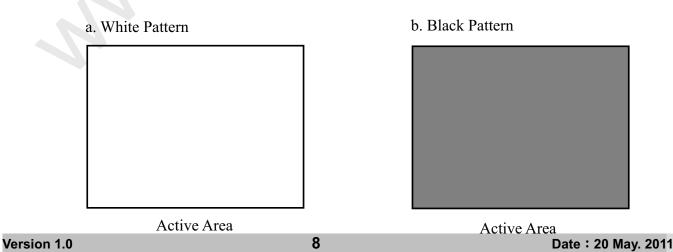
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE

Ta = 25 + 2 °C


Parameter		Symbol	Symbol			Unit	Note
		Gymbol	Min.	Тур.	Max.	Offic	NOTE
Power Supply	y Voltage	V _{cc}	10.8	12	13.2	V	(1)
Rush Current	İ	I _{RUSH}	-	-	5.1	A	(2)
	White Pattern	-		17.1	21	W	
Power Consumption	Horizontal Stripe	-		17	21.1	W	
	Black Pattern	-		6.1	7.4	W	(3)
	White Pattern	-	-	1.4	1.8	Α	
Power Supply Current	Horizontal Stripe	-	-	1.4	1.8	А	
Current	Black Pattern	-	-	0.51	0.62	А	
·	Differential Input High Threshold Voltage	V_{LVTH}	+100		-	mV	
	Differential Input Low Threshold Voltage	V _{LVTL}		-	-100	mV	40
interface	Common Input Voltage	V _{CM}	1.0	1.2	1.4	V	(4)
	Differential input voltage	V _{ID}	200	-	600	mV	
	Terminating Resistor	R _T	-	100	-	ohm	
	Input High Threshold Voltage	V _{IH}	2.7	-	3.3	>	
interface	Input Low Threshold Voltage	V _{IL}	0	-	0.7	V	

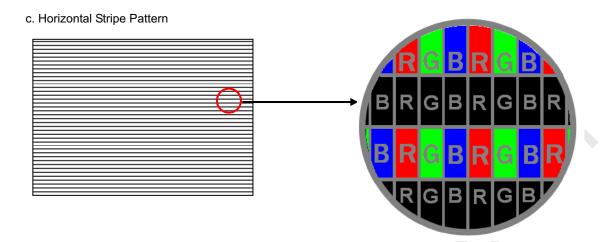
Note (1) The module should be always operated within above ranges.


Note (2) Measurement Conditions:

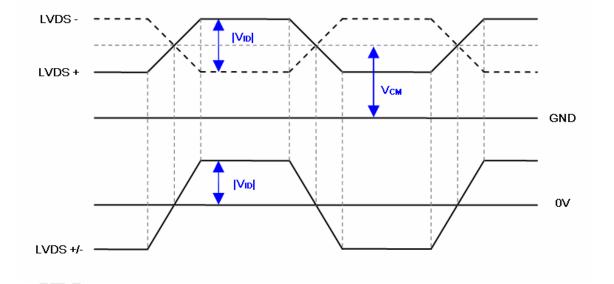

PRODUCT SPECIFICATION

Vcc rising time is 470us

Note (3) The specified power consumption and power supply current is under the conditions at Vcc = 12 V, Ta = 25 ± 2 °C, f_v = 120 Hz, whereas a power dissipation check pattern below is displayed.

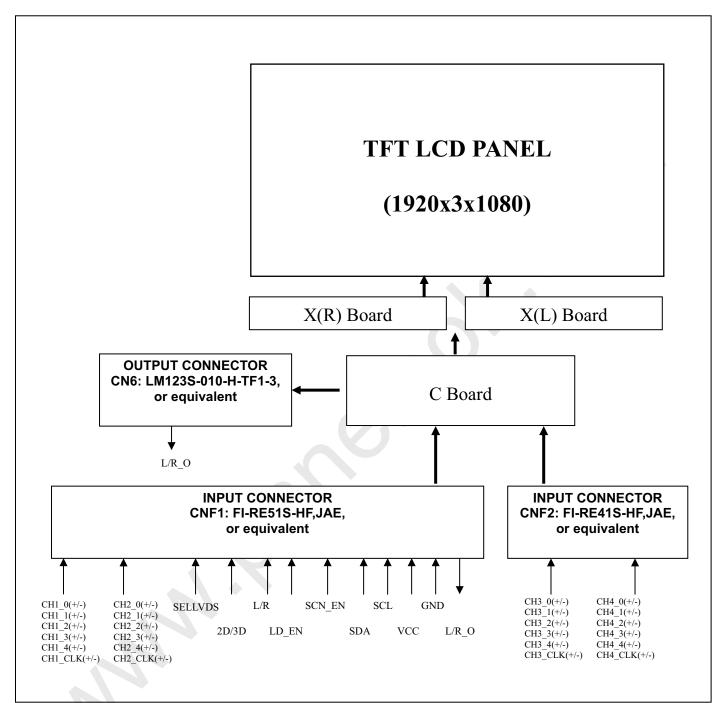


The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited



Active Area

Note (4) The LVDS input characteristics are as follows:



PRODUCT SPECIFICATION

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

5. INTERFACE PIN CONNECTION

5.1 TFT LCD MODULE

CNF1 Connector Pin Assignment: (FI-RF51S-HF(JAF) or equivalent)

Pin	Name	Description	Note				
1	N.C.	No Connection	(1)				
2	SCL	EEPROM Serial Clock (for local dimming demo function)	(11)				
3	SDA	DA EEPROM Serial Data (for local dimming demo function)					
4	N.C.	No Connection	(1)				
5	L/R_O	Output signal for Left Right Glasses control	(10)				
6	N.C.	No Connection	(1)				
7	SELLVDS	Input signal for LVDS Data Format Selection	(2)(7)				
8	N.C.	No Connection					
9	N.C.	No Connection	(1)				
10	N.C.	No Connection					
11	GND	Ground					
12	CH1[0]-	First pixel Negative LVDS differential data input. Pair 0					
13	CH1[0]+	First pixel Positive LVDS differential data input. Pair 0					
14	CH1[1]-	First pixel Negative LVDS differential data input. Pair 1	(9)				
15	CH1[1]+	1[1]+ First pixel Positive LVDS differential data input. Pair 1					
16	CH1[2]-	First pixel Negative LVDS differential data input. Pair 2					
17	CH1[2]+	First pixel Positive LVDS differential data input. Pair 2					
18	GND	Ground					
19	CH1CLK-	First pixel Negative LVDS differential clock input.	(0)				
20	CH1CLK+	First pixel Positive LVDS differential clock input.	(9)				
21	GND	Ground					
22	CH1[3]-	First pixel Negative LVDS differential data input. Pair 3					
23	CH1[3]+	First pixel Positive LVDS differential data input. Pair 3	(0)				
24	CH1[4]-	First pixel Negative LVDS differential data input. Pair 4	(9)				
25	CH1[4]+	First pixel Positive LVDS differential data input. Pair 4					
26	2D/3D	Input signal for 2D/3D Mode Selection	(3)(6)(8)				
27	L/R	Input signal for Left Right eye frame synchronous	(4)(8)				
28	CH2[0]-	Second pixel Negative LVDS differential data input. Pair 0	(9)				

29	CH2[0]+	Second pixel Positive LVDS differential data input. Pair 0	
30	CH2[1]-	Second pixel Negative LVDS differential data input. Pair 1	
31	CH2[1]+	Second pixel Positive LVDS differential data input. Pair 1	(9)
32	CH2[2]-	Second pixel Negative LVDS differential data input. Pair 2	
33	CH2[2]+	Second pixel Positive LVDS differential data input. Pair 2	
34	GND	Ground	
35	CH2CLK-	Second pixel Negative LVDS differential clock input.	(0)
36	CH2CLK+	Second pixel Positive LVDS differential clock input.	(9)
37	GND	Ground	
38	CH2[3]-	Second pixel Negative LVDS differential data input. Pair 3	
39	CH2[3]+	Second pixel Positive LVDS differential data input. Pair 3	(0)
40	CH2[4]-	Second pixel Negative LVDS differential data input. Pair 4	(9)
41	CH2[4]+	Second pixel Positive LVDS differential data input. Pair 4	
42	LD_EN	Input signal for Local Dimming Enable	(5)(8)
43	SCN_EN	Input signal for Scanning Enable	(6)(8)
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	(1)
48	VCC	+12V power supply	
49	VCC	+12V power supply	
50	VCC	+12V power supply	
51	VCC	+12V power supply	

CNF2 Connector Pin Assignment (FI-RE41S-HF (JAE) or equivalent)

Pin	Name	Description	Note
1	N.C.	No Connection	
2	N.C.	No Connection	
3	N.C.	No Connection	
4	N.C.	No Connection	(1)
5	N.C.	No Connection	(1)
6	N.C.	No Connection	
7	N.C.	No Connection	
8	N.C.	No Connection	
9	GND	Ground	
10	CH3[0]-	Third pixel Negative LVDS differential data input. Pair 0	
11	CH3[0]+	Third pixel Positive LVDS differential data input. Pair 0	
12	CH3[1]-	Third pixel Negative LVDS differential data input. Pair 1	(9)
13	CH3[1]+	Third pixel Positive LVDS differential data input. Pair 1	(9)
14	CH3[2]-	Third pixel Negative LVDS differential data input. Pair 2	
15	CH3[2]+	Third pixel Positive LVDS differential data input. Pair 2	
16	GND	Ground	
17	CH3CLK-	Third pixel Negative LVDS differential clock input.	(9)
18	CH3CLK+	Third pixel Positive LVDS differential clock input.	(9)
19	GND	Ground	
20	CH3[3]-	Third pixel Negative LVDS differential data input. Pair 3	
21	CH3[3]+	Third pixel Positive LVDS differential data input. Pair 3	(9)
22	CH3[4]-	Third pixel Negative LVDS differential data input. Pair 4	(9)
23	CH3[4]+	Third pixel Positive LVDS differential data input. Pair 4	
24	GND	Ground	
25	GND	Ground	
26	CH4[0]-	Fourth pixel Negative LVDS differential data input. Pair 0	
27	CH4[0]+	Fourth pixel Positive LVDS differential data input. Pair 0	
28	CH4[1]-	Fourth pixel Negative LVDS differential data input. Pair 1	(9)
29	CH4[1]+	Fourth pixel Positive LVDS differential data input. Pair 1	
30	CH4[2]-	Fourth pixel Negative LVDS differential data input. Pair 2	

31	CH4[2]+	Fourth pixel Positive LVDS differential data input. Pair 2	(9)
32	GND	Ground	
33	CH4CLK-	Fourth pixel Negative LVDS differential clock input.	(0)
34	CH4CLK+	Fourth pixel Positive LVDS differential clock input.	(9)
35	GND	Ground	
36	CH4[3]-	Fourth pixel Negative LVDS differential data input. Pair 3	
37	CH4[3]+	Fourth pixel Positive LVDS differential data input. Pair 3	(0)
38	CH4[4]-	Fourth pixel Negative LVDS differential data input. Pair 4	(9)
39	CH4[4]+	Fourth pixel Positive LVDS differential data input. Pair 4	
40	GND	Ground	
41	GND	Ground	

CN6 Connector Pin Assignment (LM123S-010-H-TF1-3 (UNE) or equivalent)

		gillione (Elitizada 1 1 1 1 a (Elitz) al aquivalent,	
1	N.C.	No Connection	
2	N.C.	No Connection	(1)
3	N.C.	No Connection	
4	GND	Ground	
5	N.C.	No Connection	(1)
6	L/R_O	Output signal for Left Right Glasses control	(10)
7	N.C.	No Connection	
8	N.C.	No Connection	(1)
9	N.C.	No Connection	(1)
10	N.C.	No Connection	

Note (1) Reserved for internal use. Please leave it open.

Note (2) LVDS format selection.

L= Connect to GND, H=Connect to +3.3V or Open

SELLVDS	Note
L	JEDIA Format
H or Open	VESA Format

Note (3) 2D/3D mode selection.

L= Connect to GND or Open, H=Connect to +3.3V

2D/3D	Note

L or Open	2D Mode
Н	3D Mode

Note (4) Input signal for Left Right eye frame synchronous

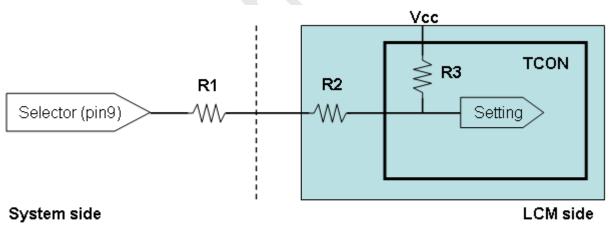
 V_{IL} =0~0.8 V, V_{IH} =2.0~3.3 V

L/R	Note
L	Right synchronous signal
Н	Left synchronous signal

Note (5) Local dimming enable selection.

L= Connect to GND or Open, H=Connect to +3.3V

LD_EN	Note
L or Open	Local Dimming Disable
Н	Local Dimming Enable


Note (6) Scanning enable selection.

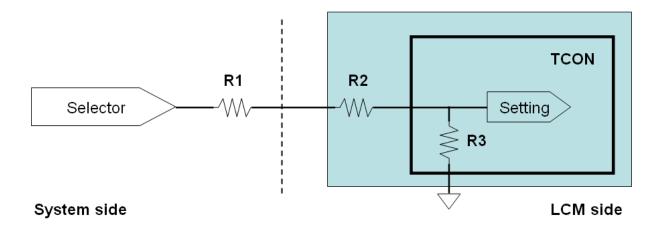
L= Connect to GND or Open, H=Connect to +3.3V

SCN_EN	Note
L or Open	Scanning Disable
Н	Scanning Enable

Note (7) SELLVDS signal pin connected to the LCM side has the following diagram.

R1 in the system side should be less than 1K Ohm. (R1 < 1K Ohm)

System side R1 < 1K


Note (8) 2D/3D, L/R and LD_EN signal pin connected to the LCM side has the following diagram.

R1 in the system side should be less than 1K Ohm. (R1 < 1K Ohm)

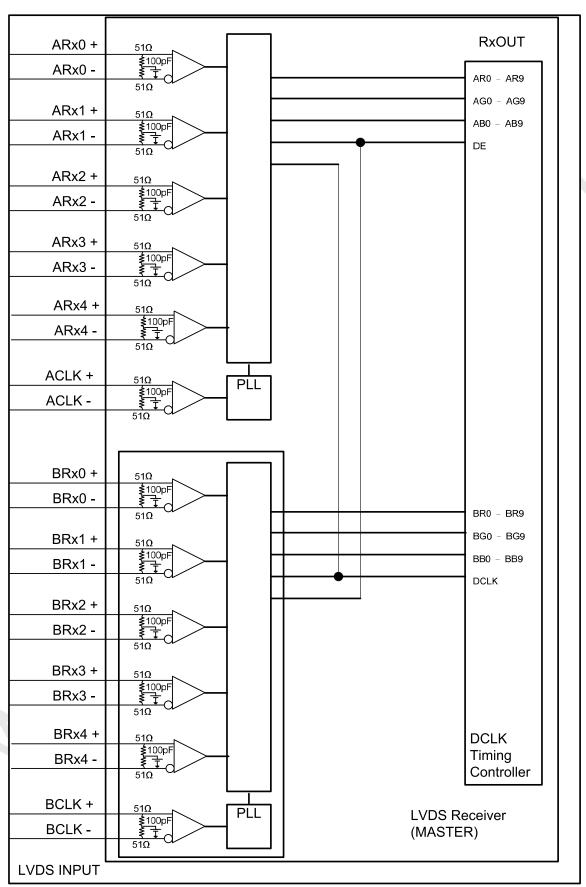
PRODUCT SPECIFICATION

System side: R1 < 1K

Note (9) LVDS 4-port Data Mapping

Port	Channel of LVDS	Data Stream
1st Port	First Pixel	1, 5, 9,1913, 1917
2nd Port	Second Pixel	2, 6, 10,1914, 1918
3rd Port	Third Pixel	3, 7, 11,1915, 1919
4th Port	Fourth Pixel	4, 8, 12,1916, 1920

Note (10) The definition of L/R_O signal as follows


L= 0V , H= +3.3V

L/R_O	Note
L	Right glass turn on
Н	Left glass turn on

5.2 BLOCK DIAGRAM OF INTERFACE

AR0~AR9: First pixel R data AG0~AG9: First pixel G data AB0~AB9: First pixel B data BR0~BR9: Second pixel R data BG0~BG9: Second pixel G data

BB0~BB9: Second pixel B data

DE: Data enable signal DCLK: Data clock signal

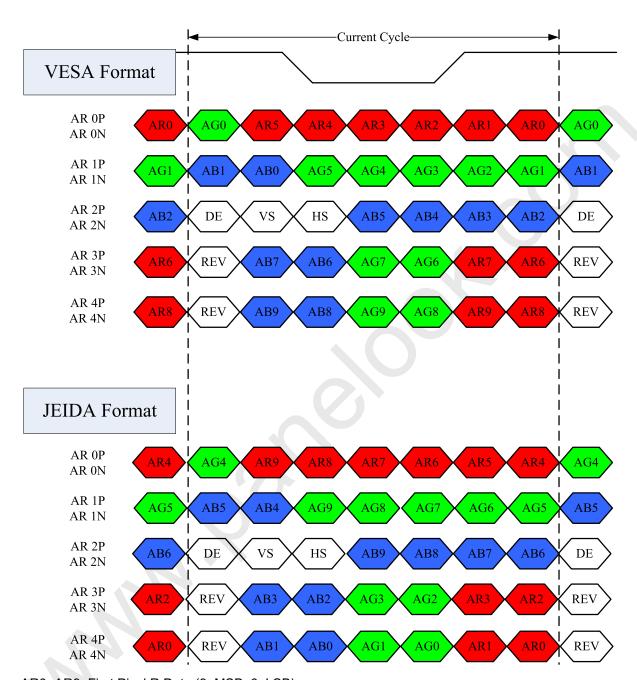
The third and fourth pixel are followed the same rules.

CR0~CR9: Third pixel R data CG0~CG9: Third pixel G data CB0~CB9: Third pixel B data DR0~DR9: Fourth pixel R data DG0~DG9: Fourth pixel G data DB0~DB9: Fourth pixel B data

Note (1) A ~ D channel are first, second, third and fourth pixel respectively.

Note (2) The system must have the transmitter to drive the module.

Note (3) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.



PRODUCT SPECIFICATION

5.3 LVDS INTERFACE

JEIDA Format : SELLVDS = L

VESA Format : SELLVDS = H or Open

AR0~AR9: First Pixel R Data (9; MSB, 0; LSB)

AG0~AG9: First Pixel G Data (9; MSB, 0; LSB)

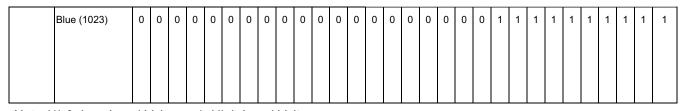
AB0~AB9: First Pixel B Data (9; MSB, 0; LSB)

DE : Data enable signal DCLK: Data clock signal

RSV: Reserved

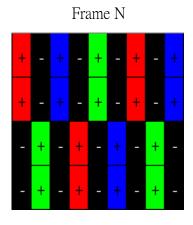
5.4 COLOR DATA INPUT ASSIGNMENT

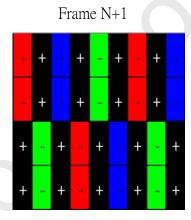
The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data


															ı	Data	Sig	nal													
	Color					R	ed					Green				Blue															
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	В9	В8	В7	В6	B5	В4	вз	B2	В1	В
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С
-	:			:	:	:	:	:	:	:	:	:		:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale Of	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:	:
Red	Red (1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Neu	Red (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Scale	:		:\	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:\	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
Oreen	Green (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1
	Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	(

Version 1.0 20 Date: 20 May. 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited




Note (1) 0: Low Level Voltage, 1: High Level Voltage

5.5 FLICKER (Vcom) ADJUSTMENT

(1) Adjustment Pattern:

Flicker pattern was shown as below. If customer need below pattern, please directly contact with Account FAE.

(2) Adjustment method: (Digital V-com)

Programmable memory IC is used for Digital V-com adjustment in this model. CMI provide Auto Vcom tools to adjust Digital V-com. The detail connection and setting instruction, please directly contact with Account FAE to refer CMI Auto V-com adjustment OI.

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

 $(Ta = 25 \pm 2 \, {}^{\circ}C)$

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz	
LVDS Receiver	Input cycle to cycle jitter	T _{rcl}	ı	-	200	ps	(3)
Clock	Spread spectrum modulation range	Fclkin_mo	F _{clkin} -2%	-	F _{clkin} +2%	MHz	(4)
	Spread spectrum modulation frequency	F _{SSM}	-	-	200	KHz	(4)
LVDS	Setup Time	Tlvsu	600		÷	ps	
Receiver Data	Hold Time	Tlvhd	600		-	ps	(5)

6.1.1 Timing spec for Frame Rate = 100Hz

iii iiiiiiig spc		10011=							
Signal	Item		Symbol	Min.	Тур.	Max.	Unit	Note	
Frame rate	2D	mode	F _{r5}	94	100	106	Hz		
	3D	mode	F _{r5}	100	100	Hz	(7)		
Vertical Active		Total	Tv	1090	1350	1395	Th	Tv=Tvd+Tvb	
	2D Mode	Display	Tvd	1080	1080	1080	Th	-	
		Blank	Tvb	10	270	315	Th	_	
Display		Total	Tv		1350		Th	(6)(8)	
Term	3D Mdoe	Display	Tvd		1080	Th	(6)		
		Blank	Tvb		270		Th	(6)(8)	
		Total	Th	520	550	670	Тс	Th=Thd+Thb	
Horizontal	2D Mode	Display	Thd	480	480	480	Тс	_	
Active		Blank	Thb	40	70	190	Тс	_	
Display		Total	Th	520	550	670	Тс	Th=Thd+Thb	
Term	3D Mdoe	doe Display		480	480	480	Tc	_	
		Blank	Thb	40	70	190	Тс	_	

6.1.2 Timing spec for Frame Rate = 120Hz

Signal	Item S			Min.	Тур.	Max.	Unit	Note
Frame rate	20) mode	F _{r6}	114	120	126	Hz	
Frame rate	30) mode	F _{r6}	120	120	120	Hz	(7)
		Total	Tv	1090	1125	1395	Th	Tv=Tvd+Tv
								b
Vertical	2D Mode	Display	Tvd	1080	1080	1080	Th	_
Active		Blank	Tvb	10	45	315	Th	_
Display Term	3D Mdoe	Total	Tv		1125		Th	(6)(8)
		Display	Tvd		1080	Th	(6)	
		Blank	Tvb		45	126 Hz 120 Hz 1395 Th 1080 Th 315 Th (6)(8)		
		Total	Th	520	550	670	Tc	Th=Thd+T
								hb
Horizontal	2D Mode	Display	Thd	480	480	480	Tc	_
Active		Blank	Thb	40	70	190	Тс	_
Display		T ()	T 1.	500	550	070	T .	Th=Thd+T
Term		Total	Tvd 1080 1080 1080 Th Tvb 10 45 315 Th Tv 1125 Th Tvd 1080 Th Tvb 45 Th Th 520 550 670 Tc Thd 480 480 480 Tc Thb 40 70 190 Tc Th 520 550 670 Tc	IC	hb			
	3D Mdoe	Display	Thd	480	480	480	Тс	_

Note (1) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

40

70

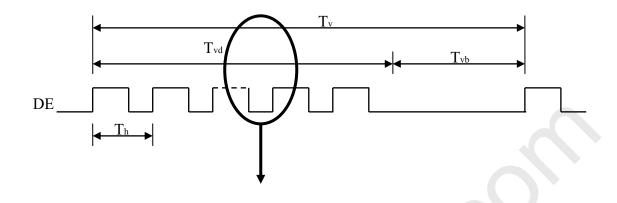
190

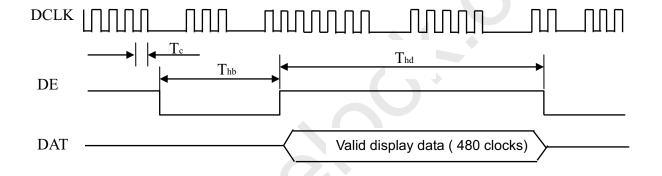
Tc

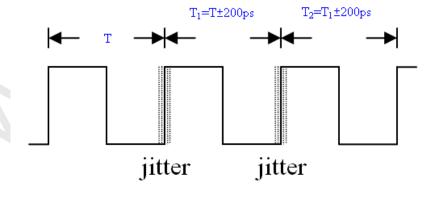
Note (2) Please make sure the range of pixel clock has follow the below equation:

Thb

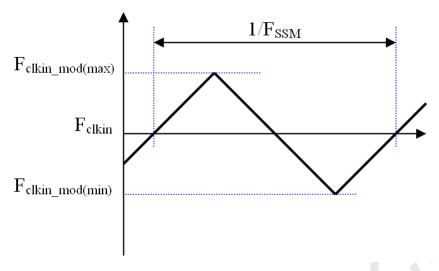
$$\mathsf{Fclkin}(\mathsf{max}) \geqq \mathsf{Fr_6} \mathop{\diagdown} \mathsf{Tv} \mathop{\diagdown} \mathsf{Th}$$

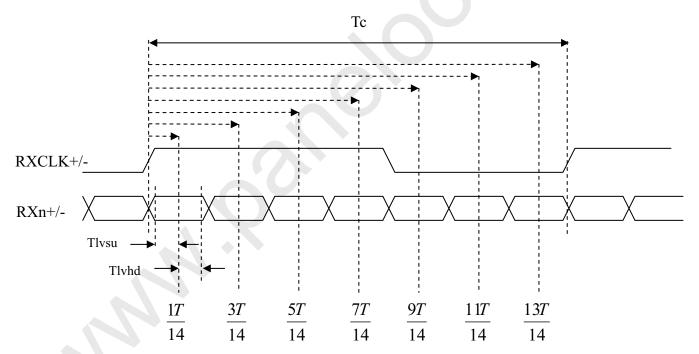

Blank


 $\mathsf{Fr}_5 \times \mathsf{Tv} \times \mathsf{Th} \ge \mathsf{Fclkin}(\mathsf{min})$


PRODUCT SPECIFICATION

INPUT SIGNAL TIMING DIAGRAM


Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I $T_1 - TI$



Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

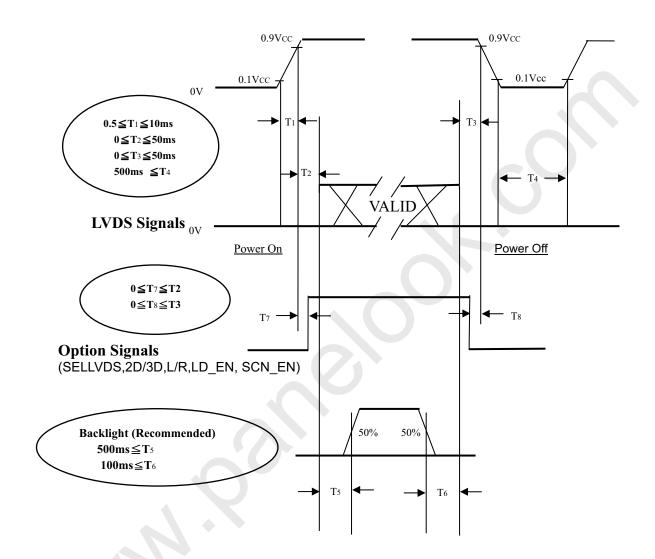
Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Note (6) Please fix the Vertical timing (Vertical Total =1350 / Display =1080 / Blank = 270) in 100Hz 3D mode and Vertical timing (Vertical Total =1125 / Display =1080 / Blank = 45) in 120Hz 3D mode

Note (7)In 3D mode, the set up Fr5 and Fr6 in Typ. $\pm 3~{\rm Hz}$.In order to ensure that the electric function performance to avoid no display symptom.(Except picture quality symptom.)

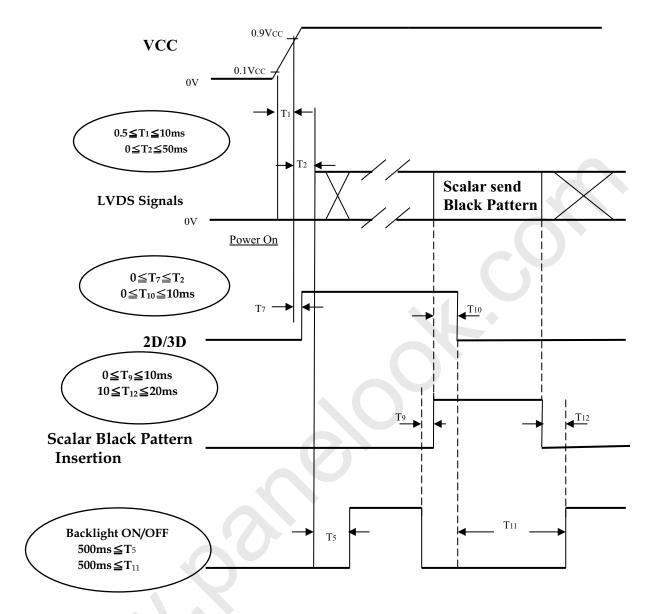
Note (8)In 3D mode, the set up Tv and Tvb in Typ. ±30.In order to ensure that the electric function performance to avoid no display symptom.(Except picture quality symptom.)



6.2 POWER ON/OFF SEQUENCE

6.2.1 POWER ON/OFF SEQUENCE(Ta = 25 ± 2 °C)

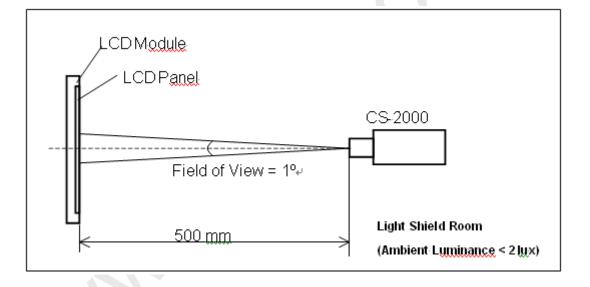
To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.



Power ON/OFF Sequence

6.2.2 2D to 3D SIGNAL SEQUENCE WITHOUT VCC TURN OFF AND TURN ON

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the LED voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.



7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

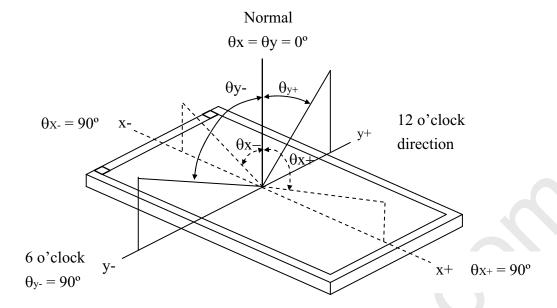
Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	оС				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	VCC	12	V				
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS						
LED Current	IL	120	mA				
Vertical Frame Rate	Fr	120	Hz				

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

Iten	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		3500	5000	-	ı	(2), (4)
Response Time		Gray to gray	$\theta_x=0^\circ, \theta_Y=0^\circ$	-	6	12	ms	(5)
Center Transmittance		T%	With CMI Module	-	4.8	-	%	(2), (8)
White Variation	Variation			-	-	1.3	ı	(2), (7)
	Red	Rcx			0.656		ı	
	Reu	Rcy			0.326			
	Green	Gcx		Typ - 0.03	0.257		-	
Color	Green	Gcy	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$		0.584	Typ +	-	(4) (6)
Chromaticity	Blue	Всх	CS-2000 Standard light source "C		0.131	0.03	-	(1),(6)
	Diue	Всу	_		0.112		-	
	White	Wcx			0.289		-	
	vviille	Wcy			0.352		-	
	Harizantal	θ_x +	+ 80		88	-		
Violuing Angle	Horizontal	θ_{x} -	CR≥20	80	88	-	Dog	(2) (2)
Viewing Angle	Vertical	θ _Y +	With CMI Module	80	88		Deg.	(2), (3)
	Vertical	Δ		80	88	_		

Note (1) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages. The calculating method is as following:


- Measure Module's and BLU's spectrums. W, R, G, B are with signal input. BLU(for V420H2_LS2) is supplied by CMI.
- 2. Calculate cell's spectrum.
- 3. Calculate cell's chromaticity by using the spectrum of standard light source "C"
- Note (2) Light source is the BLU which is supplied by CMI and driving voltages are based on suitable gamma voltages.
- Note (3) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Conoscope Cono-80 (or Eldim EZ-Contrast 160R)

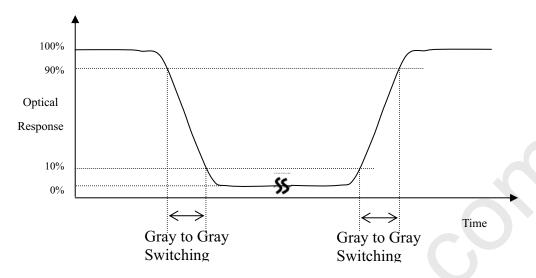
PRODUCT SPECIFICATION

Note (4) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

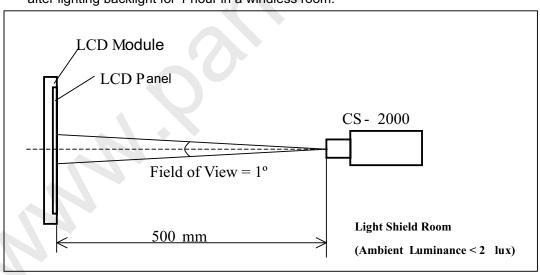
Contrast Ratio (CR) = L255 / L0

L 255: Luminance of gray level 255


L 0: Luminance of gray level 0

CR = CR (1), where CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (7).

PRODUCT SPECIFICATION


Note (5) Definition of Gray to Gray Switching Time:

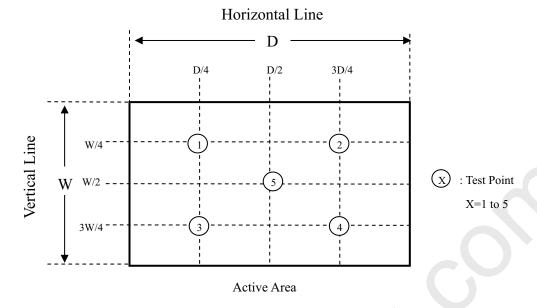
The driving signal means the signal of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023. Gray to gray average time means the average switching time of gray level 0, 124, 252, 380, 508,636, 764, 892 and 1023.

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Version 1.0


Measure the luminance of gray level 255 at 5 points δW = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]

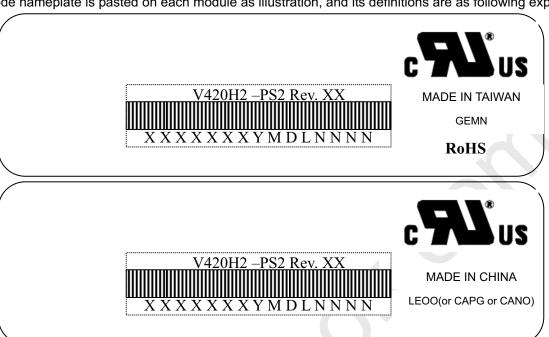
31

Date: 20 May. 2011

Note (8) Definition of Transmittance (T%):

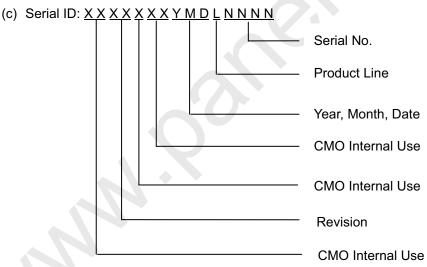
Measure the luminance of gray level 255 at center point of LCD module.

$$\label{eq:transmittance} \mbox{Transmittance} = \frac{\mbox{Luminance of LCD module}}{\mbox{Luminance of backlight}} *100\% \mbox{PRECAUTIONS}$$



8. DEFINITION OF LABELS

Global LCD Panel Exchange Center


8.1 CMI MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: V420H2-PS2

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 2001=1, 2002=2, 2003=3, 2004=4....2010=0, 2011=1, 2012=2....

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

(b) Revision Code: Cover all the change

(c) Serial No.: Manufacturing sequence of product

(d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

9. PACKAGING

9.1 PACKING SPECIFICATIONS

(1) 12PCS LCD TV Panels / 1 Box

(2) Box dimensions: 1123 (L) X 818 (W) X 245 (H)

(3) Weight: approximately 43 Kg

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

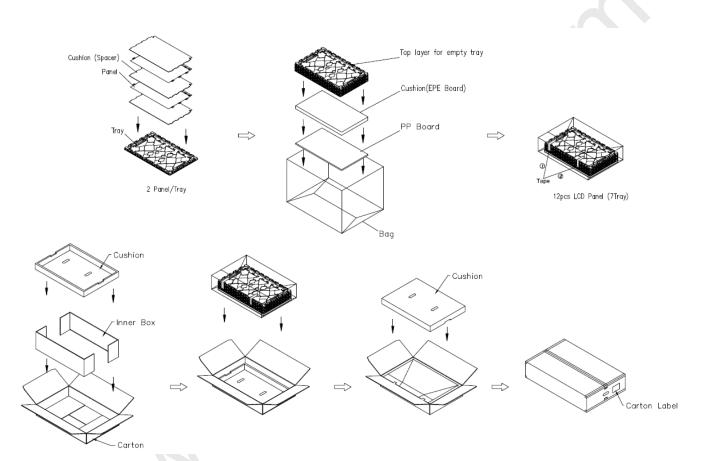


Figure.9-1 packing method

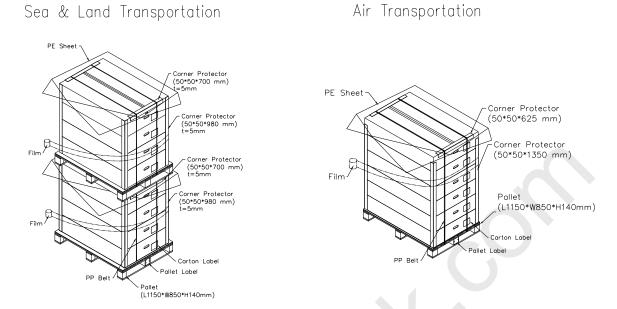
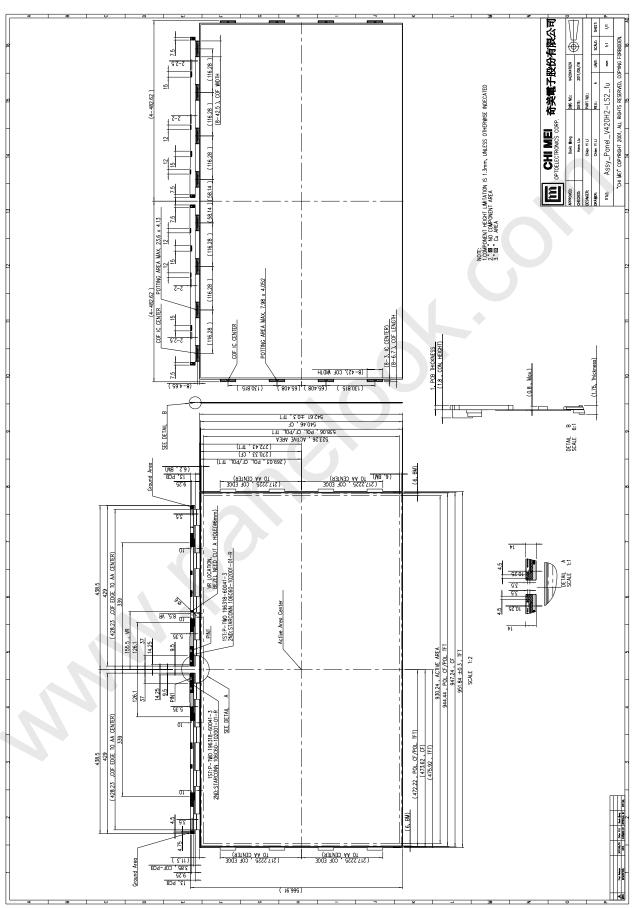


Figure.9-2 packing method

10. INTERNATIONAL STANDARD

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- [1] Do not apply rough force such as bending or twisting to the module during assembly.
- [2] It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- [3] Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- [4] Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- [5] The distance between COF edge and rib of BLU must bigger than 5mm. This can prevent the damage of COF when assemble the module.
- [6] Do not design sharp-pointed structure / parting line / tooling gate on the COF position of plastic parts, because the burr will scrape the COF.
- [7] If COF would bended to assemble in the module. Do not put the IC location on the bending corner of COF.
- [8] The gap between COF IC and any structure of BLU must bigger than 2mm. This can prevent the damage of COF IC
- [9] Bezel opening must have no burr. Burr will scrape the panel surface.
- [10] Bezel of module and bezel of set can not press or touch the panel surface. It will make light leakage or scrape.
- [11] When module used FFC / FPC, but no FFC / FPC to be attached in the open cell. Customer can refer the FFC / FPC drawing and buy it by self.
- [12] The gap between Panel and any structure of Bezel must bigger than 2mm. This can prevent the damage of Panel
- [13] Do not plug in or pull out the I/F connector while the module is in operation.
- [14] Do not disassemble the module.
- [15] Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- [16] Moisture can easily penetrate into LCD module and may cause the damage during operation.
- [17] When storing modules as spares for a long time, the following precaution is necessary.
 - [17.1] Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
 - [17.2] The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.
- [18] When ambient temperature is lower than 10°C, the display quality might be reduced.


10.2 SAFETY PRECAUTIONS

- [1] The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- [2] If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- $[\ 3\]$ After the module's end of life, it is not harmful in case of normal operation and storage.

11. MECHANICAL CHARACTERISTICS

Version 1.0 38 Date: 20 May. 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited