OPTOELECTRONICS CORP.

m

肩库:全球液晶屏交易中心

 \oslash

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval

TFT LCD Approval Specification

<u>MODEL NO.:</u> V420H1 – LE1

Customer:	
Approved by:	
Note:	

Approved Dy	TV Product Marketing & Management Div
Approved By	Chao-Chun Chung

Reviewed By	QA Dept.	Product Development Div.
neviewed by _	Hsin-Nan Chen	WT Lin

Propered Py	LCD TV Marketing and Product Management Div.				
Prepared By	CY Chang	HT Hung			

Version 2.0

Issued Date: Nov. 23, 2009 Model No.: V420H1 - LE1 Approval

3

Clobal LOD Faller Exchange Ochief	mm.panoloon.co
CHINE OPTOELECTRONICS CORP.	
	- CONTENTS -
REVISION HISTORY	

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2PACKAGE STORAGE 2.3ELECTRICAL ABSOLUTE RATINGS 2.3.1 TFT LCD MODULE 2.3.2 BACKLIGHT UNIT	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT CONVERTER UNIT 3.2.1 LED LIGHT BARCHARACTERISTICS 3.2.2 CONVERTER CHARACTERISTICS 3.2.3 CONVERTER INTERFACE CHARACTERISTICS	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE	10
5. INTERFACE PIN CONNECTION 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 CONVERTER UNIT 5.4 BLOCK DIAGRAM OF INTERFACE 5.5 LVDS INTERFACE 5.6 COLOR DATA INPUT ASSIGNMENT	11
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	 21
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 24
8. DEFINITION OF LABELS 8.1 CMO MODULE LABEL	 28
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD	 29
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS	 31
11. MECHANICAL CHARACTERISTICS	 32

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 2.0	Oct 13,09'	All	All	Approval Specification was first issued.
Ver 2.0	Oct 13,09'	All	AII	Approval Specification was first issued.

3

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V420 H1- LE1 is a 42" TFT Liquid Crystal Display module with LED Backlight and 4ch-LVDS interface. This module supports 1920 x 1080 Full HDTV format and can display 1.07G colors (8-bit +FRC). The converter module for backlight is built-in.

1.2 FEATURES

- -High brightness (450 nits)
- Ultra-high contrast ratio (4000:1)
- Faster response time (gray to gray average 4.5 ms)
- High color saturation NTSC 72%
- Ultra wide viewing angle: 176(H)/176(V) (CR≥20) with Super MVA technology
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- -Optimized response time for 100/120 Hz frame rate

1.3 APPLICATION

- Standard Living Room TVs
- Public Display Application
- Home Theater Application

1.4 GENERAL SPECIFICATIONS

Item	Unit	Note	
Active Area 930.24 (H) x 523.26 (V) (42" diagonal)		mm	(1)
Bezel Opening Area	937.24 (H) x 530.26 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	
Pixel Number	1920 x R.G.B. x 1080	pixel	
Pixel Pitch (Sub Pixel)	0.1615 (H) x 0.4845 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Display Colors	1.07G	color	
Display Operation Mode	Transmissive mode / Normally Black	-	
Surface Treatment	Anti-Glare Coating (Haze 11%) Hard Coating (3H)	-	

1.5 MECHANICAL SPECIFICATIONS

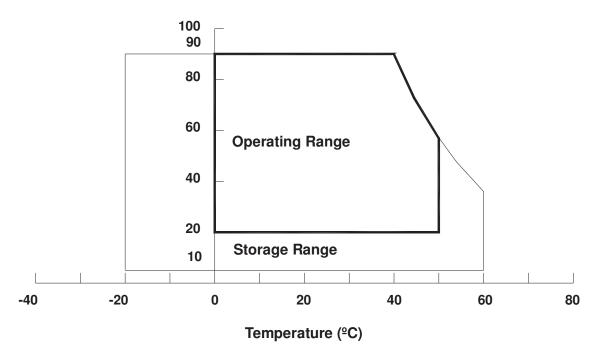
Item		Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	-	983	-	mm	(1)
Module Size	Vertical(V)	-	576	-	mm	(1)
Nouule Size	Depth(D)	10	11	12	mm	
	Depth(D)		26.8		mm	To converter cover
W	Weight		8600			

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

肩库:全球液

Issued Date: Nov. 23, 2009 Model No.: V420H1 - LE1 oprova

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note		
litein	Symbol	Min.	Max.	Unit	NOLE	
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	35	G	(3), (5)	
Vibration (Non-Operating)	V _{NOP}	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

(a) 90 %RH Max. (Ta \leq 40 °C).

- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

CHIME OPTOELECTRONICS CORP.

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval

2.2 Package storage

When storing modules as spares for a long time, the following precaution is necessary.

(a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.

(b)The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
liem	Symbol	Min.	Max.	Unit		
Power Supply Voltage	Vcc	-0.3	13.5	V	(1)	
Input Signal Voltage	VIN	-0.3	3.6	V	(1)	

2.3.2 BACKLIGHT UNIT

Item	Symbol	Test Condition	Min.	Туре	Max.	Unit	Note
Light Bar Voltage	Vw	Ta = 25 ℃	-	-	60	V_{RMS}	
Converter Input Voltage	V _{BL}	-	0		30	V	
Control Signal Level	-	-	-0.3	-	7	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating condition.

Version 2.0

 \oslash

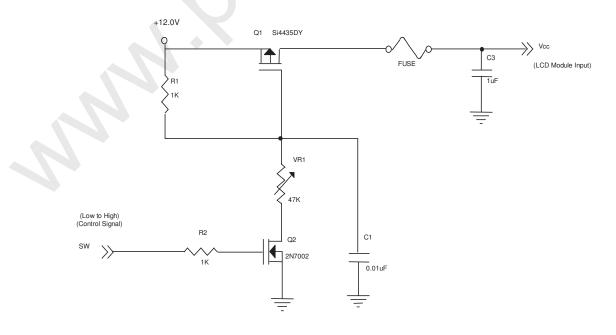
Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval

3. ELECTRICAL CHARACTERISTICS

E

CTRONICS CORP.

3.1 TFT LCD MODULE


ΟΡΤΟΕ

(Ta = 25 ± 2 °C)

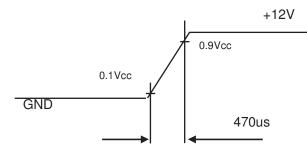
	Parameter S		Symbol		Value		Unit	Note	
	Faranielei			Min.	Тур.	Max.	Unit	NOLE	
Power Supply Voltage		V _{cc}	10.8	12	13.2	V	(1)		
Rush Cur	rent		I _{RUSH}	-	-	5.4	Α	(2)	
White Pattern		-	-	1.3	1.69	Α			
Power Su	pply Current	Horizontal Stripe	-	-	1.32	1.716	А	(3)	
	Black Pattern		-	-	0.83	(-)	А		
	Differential Input High Threshold Voltage Differential Input Low Threshold Voltage		V _{lvth}	+100	-	-	mV		
LVDS			V _{LVTL}	-		-100	mV		
interface	Common Inp	out Voltage	V_{CM}	1.0	1.2	1.4	V	(4)	
	Differential in	Differential input voltage		200	-	600	mV		
	Terminating Resistor		RT	-	100	-	ohm		
CMOS	Input High T	hreshold Voltage	VIH	2.7	-	3.3	V		
interface	Input Low Th	nreshold Voltage	VIL	0	-	0.7	V		

Note (1) The module should be always operated within above ranges.

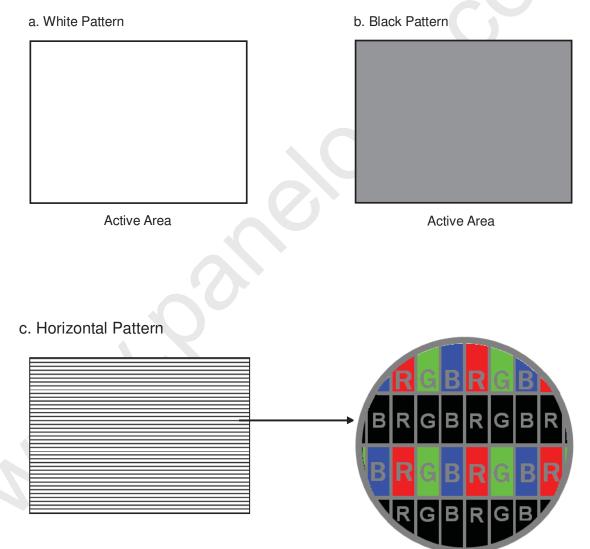
Note (2) Measurement Conditions:

 $\langle \mathcal{P} \rangle$

www.panelook.com

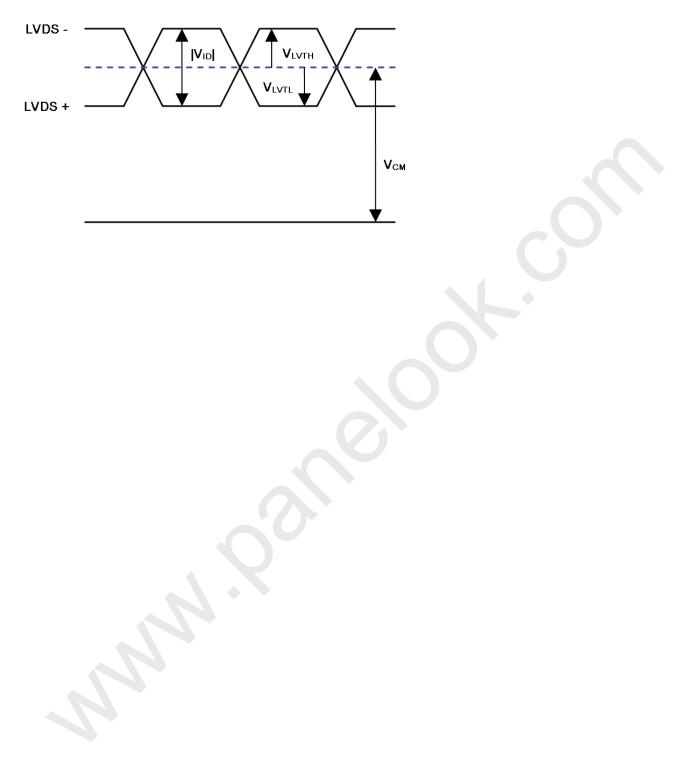

屏库:全球液晶屏交易中心

 \oslash


Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval

Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc =12V, Ta = $25 \pm 2 \degree C$, $f_v = 120 \text{ Hz}$, whereas a power dissipation check pattern below is displayed.


www.panelook.com

屏库:全球液晶屏交易中心

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval \oslash

Note (4) The LVDS input characteristics are as follows:

 $\langle p \rangle$

Issued Date: Nov. 23, 2009 Model No.: V420H1 - LE1

Approval

3.2 BACKLIGHT CONVERTER UNIT

3.2.1 LED LIGHT BARCHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol	Value			Unit	Note
Farameter	Symbol	Min.	Тур.	Max.	Unit	NOLE
Light Bar Voltage	Vw	-	-	44.2	V _{RMS}	I _L =60 mA
LED Forward Voltage	V _f	3.0	3.2	3.4	V _{RMS}	$I_L = 60 \text{mA}$
LED Current	١L	56.4	60	63.6	mA	

3.2.2 CONVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value		Unit	Note
Falameter	Symbol	Min.	Тур.	Max.	Offic	NOLE
Power Consumption	P_{BL}	-	84	92.4	W	
Converter Input Voltage	V_{BL}	22.8	24	25.2	V _{DC}	
Converter Input Current	I _{BL}	-	3.5	-	Α	
Dimming Frequency	F _B	150	160	170	Hz	
Minimum Duty Ratio	D _{MIN}	-	5	-	%	

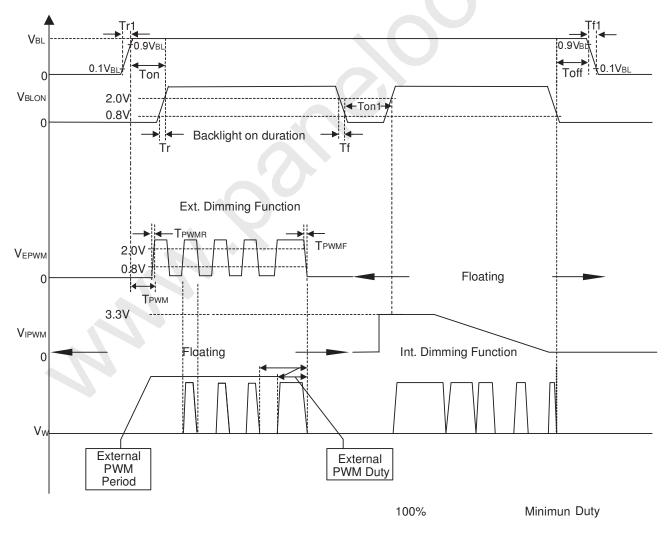
3.2.3 CONVERTER INTERFACE CHARACTERISTICS

External dimming: 150Hz~170Hz, duty ratio: 5%~100%

Parameter		Symbol	Test	Value			Unit	Note	
		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
On/Off Control Voltage	ON	VBLON		2.0	_	5.0	V		
On/On Control Voltage	OFF	VBLON	-	0	—	0.8	V		
Internal PWM Control	МАХ	VIPWM	_	3.15	_	3.45	V	maximum duty ratio	
Voltage	MIN			_	0	_	V	minimum duty ratio	
External PWM Control	н		—	2.0	_	5.0	V	Duty on	
Voltage	LO	VEPWM	_	0	—	0.8	V	Duty off	
Status Signal	н	Status		3.0	3.3	3.6	V	Normal	
Status Signal	LO			0	—	0.8	V	Abnormal	
VBL Rising Time		Tr1		30		_	ms	10%-90%V _{BL}	
VBL Falling Time		Tf1		30	_	_	ms	10 /o-30 /o v _{BL}	
Control Signal Rising Tir	ne	Tr	_	_	_	100	ms		
Control Signal Falling Time		Tf		_	_	100	ms		
PWM Signal Rising Time		TPWMR		_	_	50	us		
PWM Signal Falling Tim	е	TPWMF		_	—	50	US		

 $\langle p \rangle$

CTRONICS CORP.

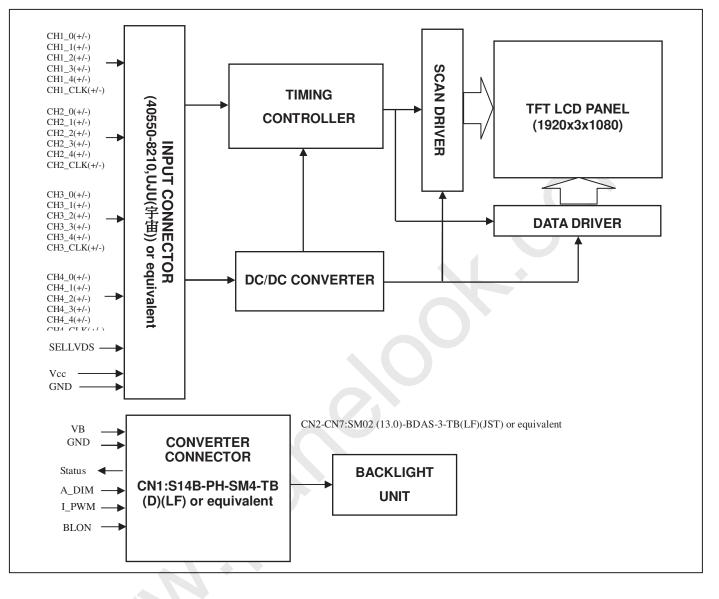

Issued Date: Nov. 23, 2009 Model No.: V420H1 - LE1

Approval

Input Impedance	Rin	_	1	_	_	MΩ	
PWM Delay Time	TPWM		100			ms	
BLON Delay Time	T_{on}	_	300	_	_	ms	
BLON Delay Time	T _{on1}		300	_	_	ms	
BLON Off Time	Toff	_	300	_		ms	

- Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM signal during backlight turn on period.
- Note (2) The power sequence and control signal timing are shown in the following figure. For a certain reason, the converter has a possibility to be damaged with wrong power sequence and control signal timing.
- Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions: Turn ON sequence: VBL \rightarrow PWM signal \rightarrow BLON

11


Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1

 \oslash

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

 \oslash

CHIMEI OPTOELECTRONICS CORP. Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1

5. INTERFACE PIN CONNECTION

5.1 TFT LCD MODULE

CNF2 Connector Pin Assignment (FI-RE41S-HF(JAE) or equivalent)

Pin	Name	Description	Note	
1	GND	Ground		
2	N.C.	No Connection		
3	N.C.	No Connection		
4	N.C.	No Connection		
5	N.C.	No Connection	(1)	
6	N.C.	No Connection		
7	N.C.	No Connection		
8	N.C.	No Connection		
9	GND	Ground		
10	CH3_0N	Third Pixel Negative LVDS differential data input. Channel 0		
11	CH3_0P	Third Pixel Positive LVDS differential data input. Channel 0		
12	CH3_1N	Third Pixel Negative LVDS differential data input. Channel 1	(4)	
13	CH3_1P	Third Pixel Positive LVDS differential data input. Channel 1	(4)	
14	CH3_2N	Third Pixel Negative LVDS differential data input. Channel 2		
15	CH3_2P	Third Pixel Positive LVDS differential data input. Channel 2		
16	GND	Ground		
17	CH3_CLKN	Third Pixel Negative LVDS differential clock input.		
18	CH3_CLKP	Third Pixel Positive LVDS differential clock input.		
19	GND	Ground		
20	CH3_3N	Third Pixel Negative LVDS differential data input. Channel 3		
21	CH3_3P	Third Pixel Positive LVDS differential data input. Channel 3	(4)	
22	CH3_4N	Third Pixel Negative LVDS differential data input. Channel 4	(4)	
23	CH3_4P	Third Pixel Positive LVDS differential data input. Channel 4		
24	N.C.	No Connection	(1)	
25	N.C.	No Connection	(1)	
26	CH4_0N	Fourth Pixel Negative LVDS differential data input. Channel 0		
27	CH4_0P	Fourth Pixel Positive LVDS differential data input. Channel 0		
28	CH4_1N	Fourth Pixel Negative LVDS differential data input. Channel 1	(4)	
29	CH4_1P	Fourth Pixel Positive LVDS differential data input. Channel 1	(4)	
30	CH4_2N	Fourth Pixel Negative LVDS differential data input. Channel 2		
31	CH4_2P	Fourth Pixel Positive LVDS differential data input. Channel 2		
32	GND	Ground		
33	CH4_CLKN	Fourth Pixel Negative LVDS differential clock input.		
34	CH4_CLKP	Fourth Pixel Positive LVDS differential clock input.		
35	GND	Ground		
36	CH4_3N	Fourth Pixel Negative LVDS differential data input. Channel 3		
37	CH4_3P	Fourth Pixel Positive LVDS differential data input. Channel 3	(4)	
38	CH4_4N	Fourth Pixel Negative LVDS differential data input. Channel 4		
39	CH4_4P	Fourth Pixel Positive LVDS differential data input. Channel 4		
40	N.C.	No Connection	(1)	
41	N.C.	No Connection	(1)	

Version 2.0

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1

 \oslash

CNF1 Connector Pin Assignment (FI-RE51S-HF (JAE) or equivalent)

Pin	Name	Description	Note
1	N.C.	No Connection	
2	N.C.	No Connection	(1)
3	N.C.	No Connection	(1)
4	N.C.	No Connection	
5	ODSEL	Overdrive Lookup Table Selection	(3)
6	N.C.	No Connection	(1)
7	SELLVDS	LVDS data format Selection	(2)
8	N.C.	No Connection	(1)
9	N.C.	No Connection	(1)
10	N.C.	No Connection	
11	GND	Ground	
12	CH1_0N	First Pixel Negative LVDS differential data input. Channel 0	
13	CH1_0P	First Pixel Positive LVDS differential data input. Channel 0	
14	CH1_1N	First Pixel Negative LVDS differential data input. Channel 1	(A)
15	CH1_1P	First Pixel Positive LVDS differential data input. Channel 1	(4)
16	CH1_2N	First Pixel Negative LVDS differential data input. Channel 2	
17	CH1_2P	First Pixel Positive LVDS differential data input. Channel 2	
18	GND	Ground	
19	CH1_CLKN	First Pixel Negative LVDS differential clock input.	
20	CH1_CLKP	First Pixel Positive LVDS differential clock input.	
21	GND	Ground	
22	CH1_3N	First Pixel Negative LVDS differential data input. Channel 3	
23	CH1_3P	First Pixel Positive LVDS differential data input. Channel 3	(4)
24	CH1_4N	First Pixel Negative LVDS differential data input. Channel 4	(4)
25	CH1_4P	First Pixel Positive LVDS differential data input. Channel 4	
26	N.C.	No Connection	(1)
27	N.C.	No Connection	(1)
28	CH2_0N	Second Pixel Negative LVDS differential data input. Channel 0	
29	CH2_0P	Second Pixel Positive LVDS differential data input. Channel 0	
30	CH2_1N	Second Pixel Negative LVDS differential data input. Channel 1	(4)
31	CH2_1P	Second Pixel Positive LVDS differential data input. Channel 1	(4)
32	CH2_2N	Second Pixel Negative LVDS differential data input. Channel 2	
33	CH2_2P	Second Pixel Positive LVDS differential data input. Channel 2	
34	GND	Ground	
35	CH2_CLKN	Second Pixel Negative LVDS differential clock input.	
36	CH2_CLKP	Second Pixel Positive LVDS differential clock input.	
37	GND	Ground	
38	CH2_3N	Second Pixel Negative LVDS differential data input. Channel 3	
39	CH2_3P	Second Pixel Positive LVDS differential data input. Channel 3	
40	CH2_4N	Second Pixel Negative LVDS differential data input. Channel 4	(4)
41	CH2_4P	Second Pixel Positive LVDS differential data input. Channel 4	
42	N.C.	No Connection	(1)

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1

43	N.C.	No Connection	
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	(1)
48	Vin	Power input (+12V)	
49	Vin	Power input (+12V)	
50	Vin	Power input (+12V)	
51	Vin	Power input (+12V)	

Note (1) Reserved for internal use. Please leave it open.

ECTRONICS CORP.

Note (2) Low or Open: VESA Format(default), connect to GND. High: JEIDA Format, connect to

+3.3V.

Note (3) Overdrive lookup table selection. The overdrive lookup table should be selected in accordance with the frame

rate to optimize image quality.

ODSEL	Note
L	Lookup table was optimized for 120 Hz frame rate.
Н	Lookup table was optimized for 100 Hz frame rate.

Note (4) LVDS 4-Port Data Mapping

Port	CH of LVDS	Data Stream
1st Port	First pixel	1, 5, 9,, 1913, 1917
2nd Port	Second pixel	2, 6, 10,, 1914, 1918
3rd Port	Third pixel	3, 7, 11,, 1915, 1919
4th Port	Fourth pixel	4, 8, 12,, 1916, 1920

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval

5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

CN2-CN7 (Housing): 51281-1094 (Molex) or Aces 91500-01001

	(5)	()
Pin No.	Symbol	Description
1	VLED	Positive of LED String
2	VLED	Positive of LED Stilling
3	NC	
4	NC	No Connection
5	NC	
6	N1	
7	N2	
8	N3	Negative of LED String
9	N4]
10	N5	

Note (1) The backlight interface housing for high voltage side is a model 51281-1094, manufactured by Molex or equivalent. The mating header on converter part number is 51281-0994

Issued Date: Nov. 23, 2009 Model No.: V420H1 - LE1

Approval

5.3 CONVERTER UNIT

CN1(Header): S14B-PH-SM4-TB (JST) or CI0114M1HR0-LA (CvilLux)

Pin No.	Symbol	Description	
1			
2			
3	VBL	+24V Power input	
4			
5			
6			
7			
8	GND	Ground	
9			
10			
11	STATUS	Normal (3.3V) Abnormal (0V)	
12	E_PWM	External PWM control signal	
13	I_PWM	Internal PWM control signal	
14	BLON	Backlight on/off control	

Notice:

#PIN 12:PWM Dimming Control (Use Pin 12) : Pin 13 must open.

#PIN 13:Analog Dimming Control (Use Pin 13) : 0V~3.3V and Pin 12 must open.

#Pin 13(I_PWM) and Pin 12(E_PWM) can not open in same period.

CN2 CN4 CN5 CN7 : 51281-1094 (Molex) or Aces 91500-01001

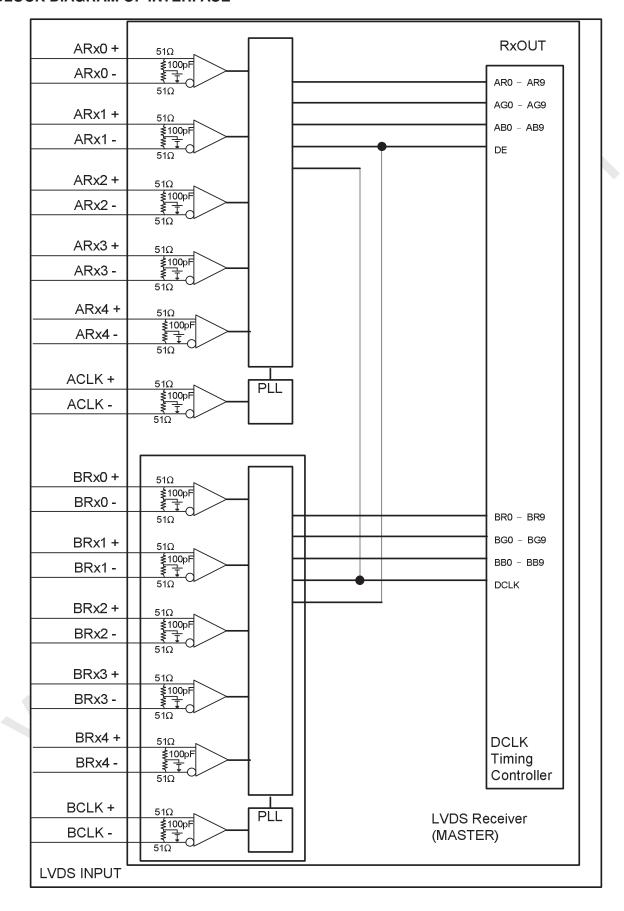
Pin №	Symbol	Feature
1	VLED	Positive of LED String
2	VLED	Toshive of LLD String
3	NC	
4	NC	No Connection
5	NC	
6	N1	
7	N2	
8	N3	Negative of LED String
9	N4	
10	N5	

CN3 CN6 : 51281-1094 (Molex) or Aces 91500-01001

Pin №	Symbol	Feature
1	N5	
2	N4	
3	N3	Negative of LED String
4	N2	
5	N1	
6	NC	
7	NC	No Connection
8	NC	
9	VLED	Positive of LED String
10	VLED	I USITIVE OF LED Stilling

m

屏库:全球液晶屏交易中心



Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1

5.4 BLOCK DIAGRAM OF INTERFACE

OPTOELECTRONICS CORP.

Version 2.0

Issued Date: Nov. 23, 2009 Model No.: V420H1 - LE1

Approval

AR0~AR9: First pixel R data AG0~AG9: First pixel G data AB0~AB9: First pixel B data BR0~BR9: Second pixel R data BG0~BG9: Second pixel G data BB0~BB9: Second pixel B data DE: Data enable signal DCLK: Data clock signal

The third and fourth pixel are followed the same rules.

CR0~CR9: Third pixel R data

CG0~CG9: Third pixel G data

CB0~CB9: Third pixel B data

DR0~DR9: Fourth pixel R data

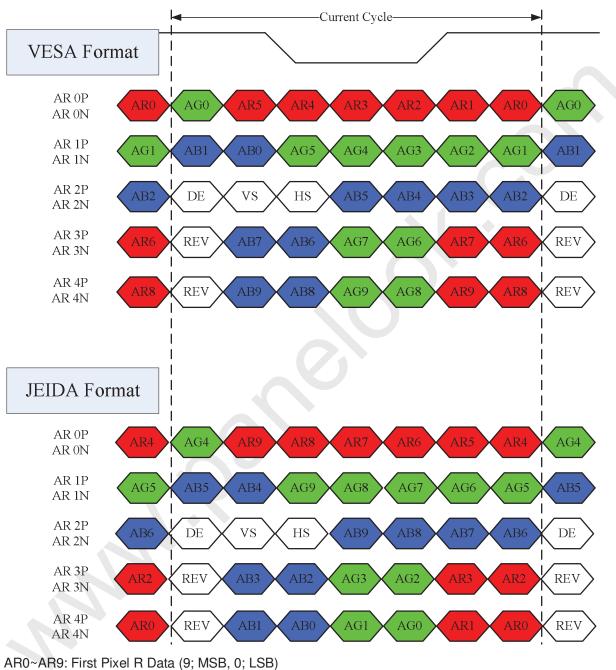
DG0~DG9: Fourth pixel G data

DB0~DB9: Fourth pixel B data

Note (1) A ~ D channel are first, second, third and fourth pixel respectively.

Note (2) The system must have the transmitter to drive the module.

Note (3) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.



m OPTOELECTRONICS CORP. Issued Date: Nov. 23, 2009 Model No.: V420H1 - LE1

5.5 LVDS INTERFACE

VESA Format : SELLVDS = L or Open JEIDA Format : SELLVDS = H

AG0~AG9: First Pixel G Data (9; MSB, 0; LSB) AB0~AB9: First Pixel B Data (9; MSB, 0; LSB) DE : Data enable signal DCLK : Data clock signal **RSVD** : Reserved

Version 2.0

m

肩库:全球液晶屏交易中心

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval

OPTOELECTRONICS CORP.

5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

												-			l	Data	Sig	nal													
	Color					R	ed									Gre	en									В	lue				
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	B9	B8	B7	B6	B5	Β4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:			:	:	:	:	:	:	:	:	÷	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:			:	:	:	:	:	:	÷	:	÷	÷	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:	:
Red	Red (1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0 <	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Ċ.	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
	Green (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Scale	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1

Version 2.0

 \oslash

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1

	oval

Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

CHINEL OPTOELECTRONICS CORP.

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

(Ta = 25 ± 2 °C)

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz	
LVDS Receiver	Input cycle to cycle jitter	T _{rcl}	-	-	200	ps	(3)
Clock	Spread spectrum modulation range	Fclkin_mo d	F _{clkin} -2%	-	F _{clkin} +2%	MHz	(4)
	Spread spectrum modulation frequency	F _{SSM}	-	-	200	KHz	(4)
LVDS	Setup Time	Tlvsu	600	-	-	ps	
Receiver Data	Hold Time	Tlvhd	600		-	ps	(5)
	Frame Rate	F _{r5}		100	-	Hz	(6)
Vertical		F _{r6}		120	-	Hz	
Active Display	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tv b
Term	Display	Tvd	1080	1080	1080	Th	
	Blank	Tvb	35	45	55	Th	_
Horizontal Active	Total	Th	525	550	575	Тс	Th=Thd+T hb
Display	Display	Thd	480	480	480	Тс	_
Term	Blank	Thb	45	70	95	Тс	—

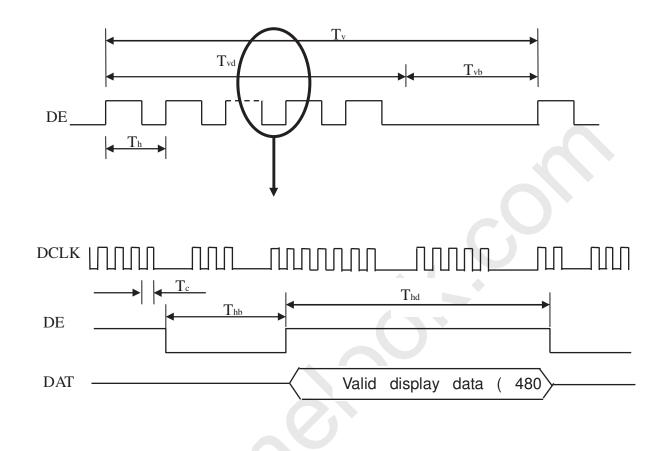
Note (1) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

Note (2) Please make sure the range of pixel clock has follow the below equation:

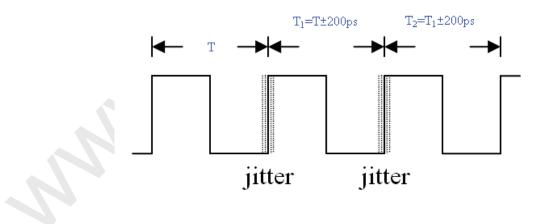
 $Felkin(max) \ge Fr_6 \times Tv \times Th$

 $Fr_5 \times Tv \times Th \ge Fclkin(min)$

www.panelook.com


肩库:全球液晶屏交易中心

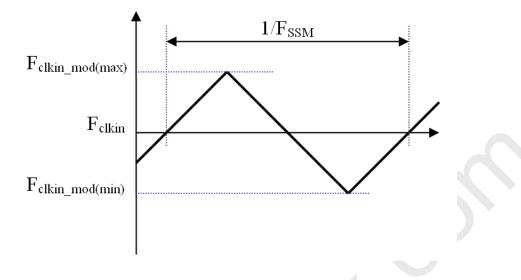
 \oslash

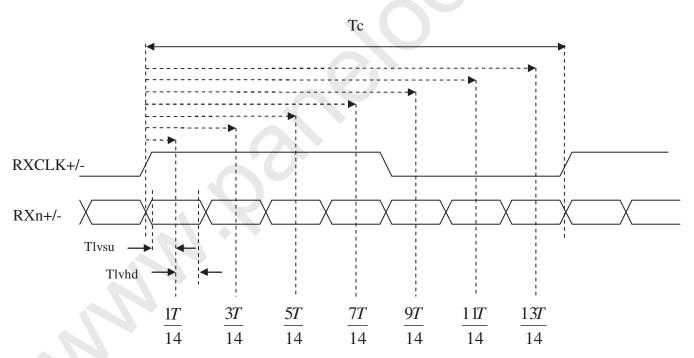


Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval

INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $I T_1 - TI$




CHIME OPTOELECTRONICS CORP.

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval

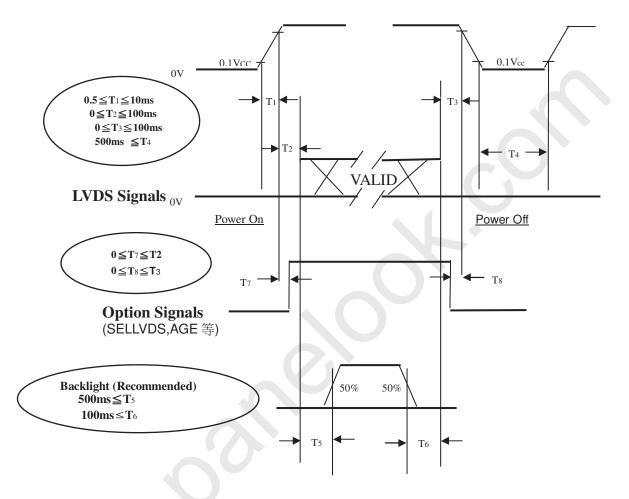
Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Note (6) : (ODSEL) = H/L or open for 100/120Hz frame rate. Please refer to 5.1 for detail information

25


CHINEL OPTOELECTRONICS CORP.

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval

6.2 POWER ON/OFF SEQUENCE

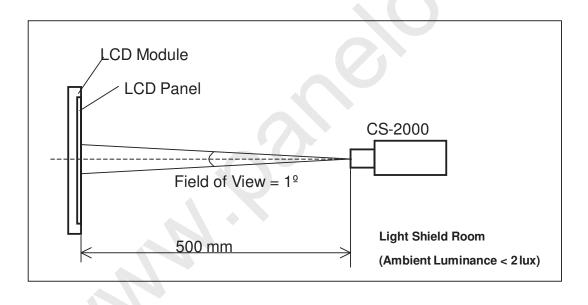
(Ta = 25 ± 2 °C)

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the diagram below.

Power ON/OFF Sequence

Note.

- (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance. If T2<0, that maybe cause electrical overstress failures.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.


Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval $\langle p \rangle$

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	oC				
Ambient Humidity	Ha	50±10	%RH				
Supply Voltage	VCC	12	V				
Input Signal	According to typical v	alue in "3. ELECTRICAL (CHARACTERISTICS"				
LED Current	IL	60	mA				
Vertical Frame Rate	Fr	120	Hz				

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

I	tem	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Rati	0	CR		3000	4000	-	-	Note (2)
Response Tir	ne	Gray to gray		-	4.5	10	ms	Note (3)
Center Lumin	nance of White	LC		360	450	-	cd/m ²	Note (4)
White Variati	ion	δW		-	-	1.4	-	Note (6)
Cross Talk		СТ		-	-	4	%	Note (5)
	Ded	Rx	0.00.00		0.638)	-	
	Red	Ry	$\theta x=0^{\circ}, \ \theta y=0^{\circ}$ Viewing angle		0.345		-	
	Creation	Gx	at normal direction		0.316		-	
Color	Green	Gy		Тур. –	0.613	Тур+	-	
Chromaticit	DI	Bx		0.03	0.151	0.03	-	-
У	Blue	Ву			0.051		-	
	377.1	Wx			0.285		-	
	White	Wy	\bigcirc		0.293		-	
	Color Gamut	C.G		-	72	-	%	NTSC
		θ x +		80	88	-		
Viewing	Horizontal	θχ-		80	88	-		NL-1 (4)
Angle		θ Y +	CR≥20	80	88	-	Deg.	Note (1)
	Vertical	θΥ-		80	88	-		

Note (1) Definition of Viewing Angle (θx , θy):

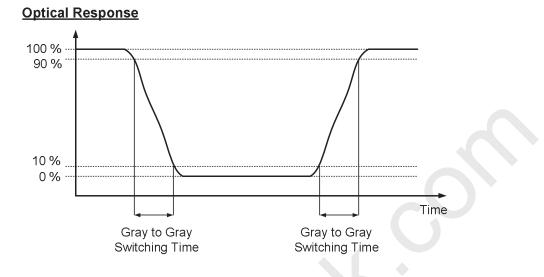
Viewing angles are measured by Conoscope Cono-80

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = Surface Luminance with all white pixels Surface Luminance with all black pixels

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).



Issued Date: Nov. 23, 2009 Model No.: V420H1 - LE1

Approval

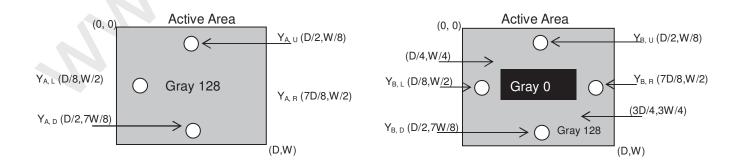
Note (3) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023 Gray to gray average time means the average switching time of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023 to each other .

Note (4) Definition of Luminance of White (L_C, L_{AVE}) :

Measure the luminance of gray level 255 at center point and 5 points

 $L_{C} = L(5)$, where L(X) is corresponding to the luminance of the point X at the figure in Note (6).


Note (5) Definition of Cross Talk (CT):

 $CT = |YB - YA| / YA \times 100$ (%)

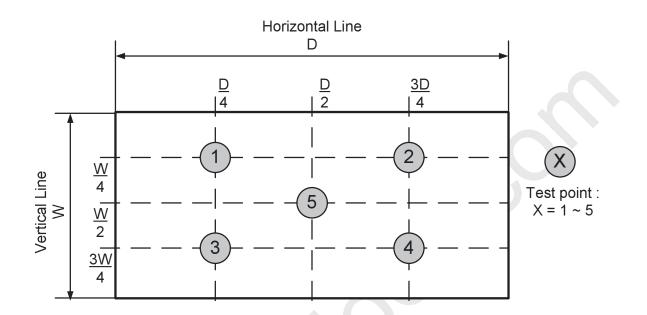
Where:

YA = Luminance of measured location without gray level 0 pattern (cd/m2)

YB = Luminance of measured location with gray level 0 pattern (cd/m2)

29

CHINEL OPTOELECTRONICS CORP.

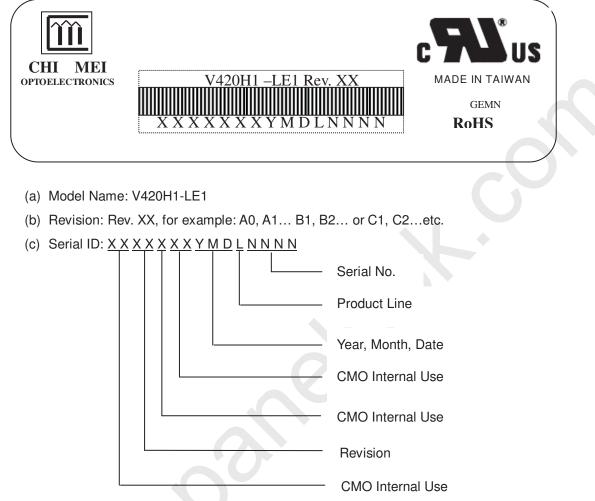

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1

Approval

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

δW = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]


OPTOELECTRONICS CORP.

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval

8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2000~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: $1 \sim 9$, $A \sim Y$, for 1^{st} to 31^{st} , exclude I, O, and U.

- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

Issued Date: Nov. 23, 2009 Model No.: V420H1 - LE1

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 5 LCD TV modules / 1 Box
- (2) Box dimensions : 1085(L)x296(W)x653(H)mm
- (3) Weight : Approx. 48 Kg(5 modules per carton)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

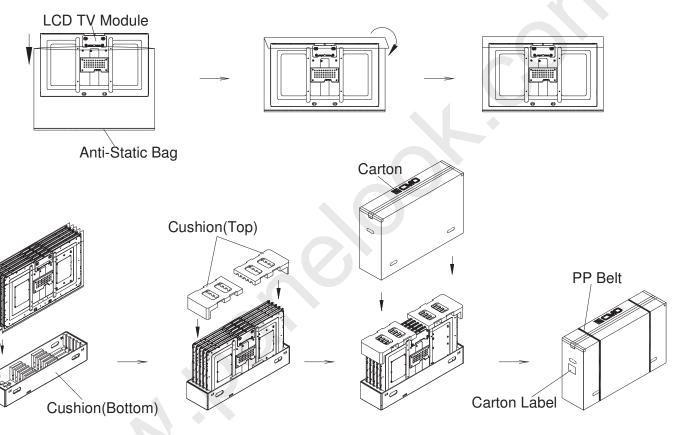


Figure.9-1 packing method

 \oslash

Sea / Land Transportation

(40ft Container)

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval

Air Transportation

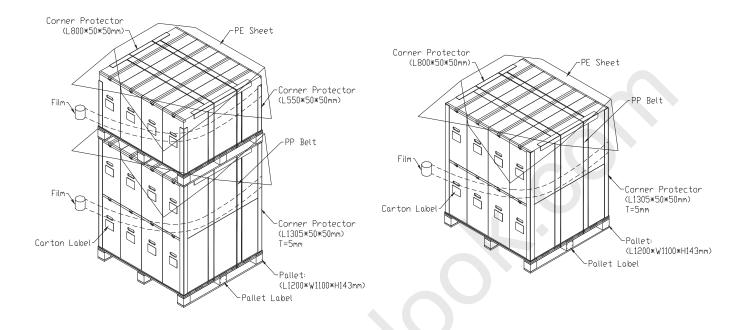


Figure.9-2 packing method

Version 2.0

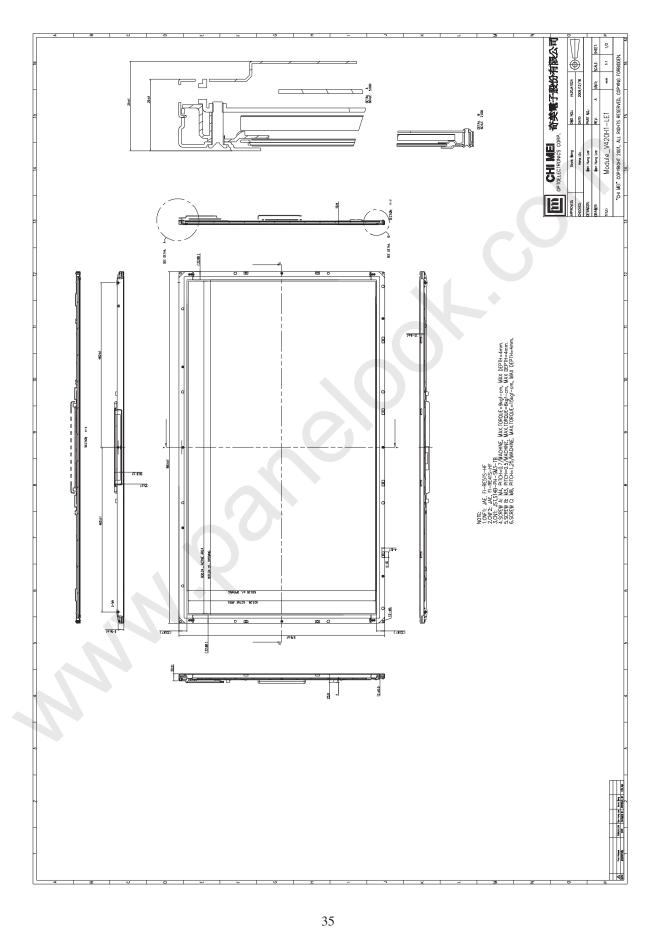
Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

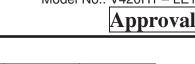
- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of LED light bar will be higher than that of room temperature.

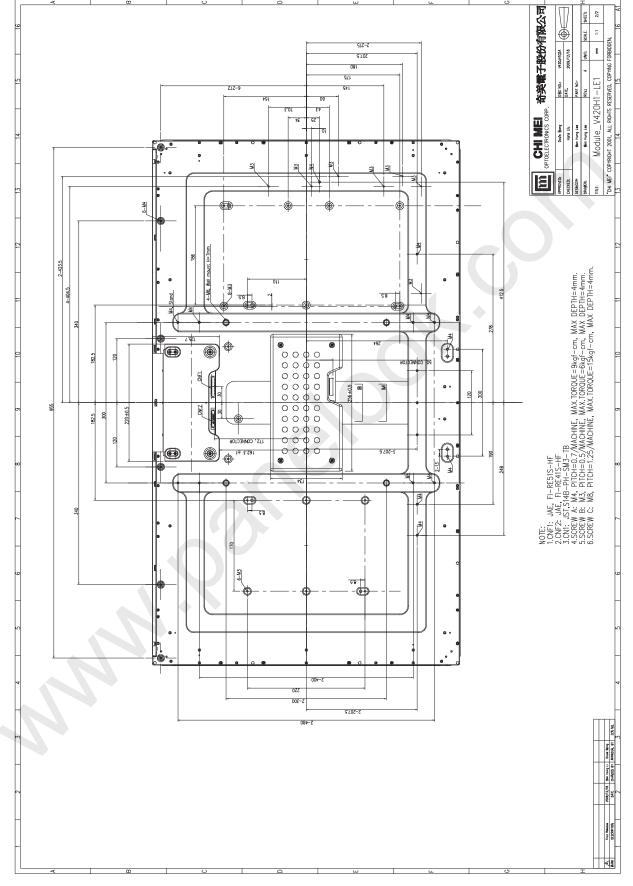
10.2 SAFETY PRECAUTIONS


- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the converter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

 \oslash

Issued Date: Nov. 23, 2009 Model No.: V420H1 – LE1 Approval


11. MECHANICAL CHARACTERISTICS



Issued Date: Nov. 23, 2009 Model No.: V420H1 - LE1

