



# **TFT LCD Approval Specification**

# MODEL NO.: V400H1 - PH2

Customer:

| Approved b  | y:                   |                          |  |  |  |  |
|-------------|----------------------|--------------------------|--|--|--|--|
| Note:       | Note:                |                          |  |  |  |  |
|             |                      |                          |  |  |  |  |
|             | 0,0,                 |                          |  |  |  |  |
| Approved Dy | TV                   | /HD                      |  |  |  |  |
| Approved By | CC Chung             |                          |  |  |  |  |
|             |                      |                          |  |  |  |  |
| Reviewed By | QA Dept.             | Product Development Div. |  |  |  |  |
| Hoviowed By | Hsin-nan Chen        | WT Lin                   |  |  |  |  |
|             |                      |                          |  |  |  |  |
| Prenared By | LCD TV Marketing and | Product Management Div.  |  |  |  |  |

Karen Liao

Josh Chi



Approval

# - CONTENTS -

| REVISION HISTORY                                                                                                                                  |                              | 3  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----|
| 1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 CHARACTERISTICS 1.3 MECHANICAL SPECIFICATIONS                                                             |                              | 4  |
| 2. ABSOLUTE MAXIMUM RATINGS<br>2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED O<br>2.2 PACKAGE STORAGE<br>2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL) | <br>N CMO MODULE V400H1-LH9) | 5  |
| 3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD OPEN CELL                                                                                               |                              | 7  |
| 4. BLOCK DIAGRAM<br>4.1 TFT LCD OPEN CELL                                                                                                         |                              | 9  |
| 5. INPUT TERMINAL PIN ASSIGNMENT<br>5.1 TFT LCD MODULE<br>5.2 LVDS INTERFACE<br>5.3 COLOR DATA INPUT ASSIGNMENT                                   |                              | 10 |
| 6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE                                                              |                              | 15 |
| 7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS                                                                         |                              | 19 |
| 8. DEFINITION OF LABELS<br>8.1 OPEN CELL LABEL<br>8.2 CARTON LABEL                                                                                |                              | 22 |
| 9. PACKAGING<br>9.1 PACKING SPECIFICATIONS<br>9.2 PACKING METHOD                                                                                  |                              | 23 |
| 10. PRECAUTIONS<br>10.1 ASSEMBLY AND HANDLING PRECAUTIONS<br>10.2 SAFETY PRECAUTIONS                                                              |                              | 25 |
| 11. MECHANICAL CHARACTERISTICS                                                                                                                    |                              | 26 |



# REVISION HISTORY

| Version   | Date        | Page<br>(New) | Section | Description                               |
|-----------|-------------|---------------|---------|-------------------------------------------|
| Ver 2.0 N | Nov. 19,'09 | All           | All     | Tentative Specification was first issued. |
|           |             |               |         |                                           |



## 1. GENERAL DESCRIPTION

#### 1.1 OVERVIEW

V400H1-PH2 is a 40" TFT Liquid Crystal Display cell with driver ICs and 4ch-LVDS interface. This product supports 1920 x 1080 Full HDTV format and can display 1.07G colors (8-bit+Hi-FRC/color). The backlight unit is not built-in.

### 1.2 CHARACTERISTICS

| CHARACTERISTICS ITEMS           | SPECIFICATIONS                                         |
|---------------------------------|--------------------------------------------------------|
| Screen Diagonal [in]            | 40                                                     |
| Pixels [lines]                  | 1920 x 1080                                            |
| Active Area [mm]                | 885.6(H) x 498.15 (V) (40" diagonal)                   |
| Sub -Pixel Pitch [mm]           | 0.15375 (H) x 0.46125 (V)                              |
| Pixel Arrangement               | RGB vertical stripe                                    |
| Weight [g]                      | TYP. 1908                                              |
| Physical Size [mm]              | Reference 2D Drawing                                   |
| Display Mode                    | Transmissive mode / Normally black                     |
| Q 1 2 1 D 11                    | 6500:1 Typ.                                            |
| Contrast Ratio                  | (Typical value measured at CMO's module)               |
| Glass thickness (Array/CF) [mm] | 0.7 / 0.7                                              |
| Minusia a Amela (ODs 00)        | +88/-88(H),+88/-88(V) Typ.                             |
| Viewing Angle (CR>20)           | (Typical value measured at CMO's module)               |
|                                 | R=(0.635, 0.323)                                       |
|                                 | G=(0.285, 0.602)                                       |
| Color Chromaticity              | B=(0.148, 0.056)                                       |
|                                 | W=(0.280, 0.290)                                       |
|                                 | (Typical value measured at CMO's module)               |
| Call Transparence [0/1          | 4.6% Typ.                                              |
| Cell Transparency [%]           | (Typical value measured at CMO's module)               |
| Delevisor (CF eide)             | Super Wide View Glare coating, 1030.18 (H) x 586.37(w) |
| Polarizer (CF side)             | Hardness: 3H                                           |
| Polarizer (TFT side)            | Super Wide View, 1030.18(H) x 586.37(w).               |

### 1.3 MECHANICAL SPECIFICATIONS

| Item                            | Min.                              | Тур. | Max. | Unit | Note |
|---------------------------------|-----------------------------------|------|------|------|------|
| Weight                          | 2260                              | 2560 | 2860 | g    | -    |
| I/F connector mounting position | The mounting in the screen center |      | (2)  |      |      |

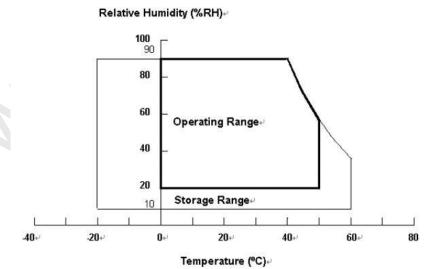
Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) Connector mounting position





Issued Date: Nov. 19, 2009 Model No.: V400H1 **Approva** 


## 2. ABSOLUTE MAXIMUM RATINGS

#### 2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASE ON CMO MODULE V400H1-LH9)

| Itom                          | Cumb ol | Va   | Unit | Note  |          |  |
|-------------------------------|---------|------|------|-------|----------|--|
| Item                          | Symbol  | Min. | Max. | Offic | Note     |  |
| Storage Temperature           | TST     | -20  | +60  | °C    | (1)      |  |
| Operating Ambient Temperature | TOP     | 0    | 50   | °C    | (1), (2) |  |
| Shock (Non-Operating)         | SNOP    | -    | 30   | G     | (3), (5) |  |
| Vibration (Non-Operating)     | VNOP    | -    | 1.0  | G     | (4), (5) |  |

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta  $\leq$  40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for  $\pm X$ ,  $\pm Y$ ,  $\pm Z$ .
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.



## 2.2 PACKAGE STORAGE

Storage condition: With shipping package.

Storage temperature rang:  $25\pm5^{\circ}$ C Storage humidity range:  $50\pm10^{\circ}$ RH

Shelf life: a month

## 2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

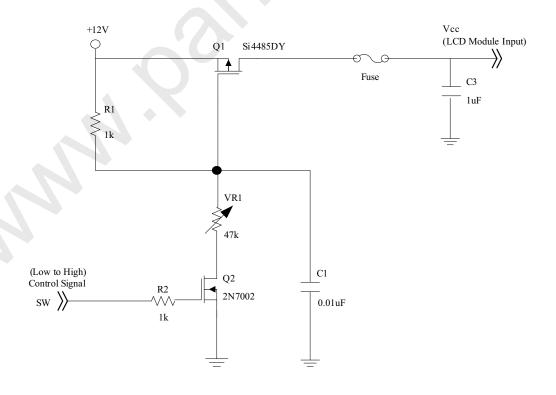
| Itom                 | Symbol | Va   | lue  | Lloit | Note |
|----------------------|--------|------|------|-------|------|
| Item                 | Symbol | Min. | Max. | Unit  | Note |
| Power Supply Voltage | VCC    | -0.3 | 13.5 | V     | (1)  |
| Logic Input Voltage  | VIN    | -0.3 | 3.6  | V     | (1)  |

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.



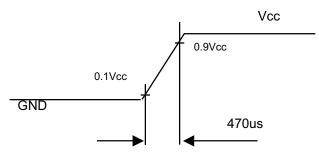
Issued Date: Nov. 19, 2009 Model No.: V400H1 Approval

## 3. ELECTRICAL CHARACTERISTICS

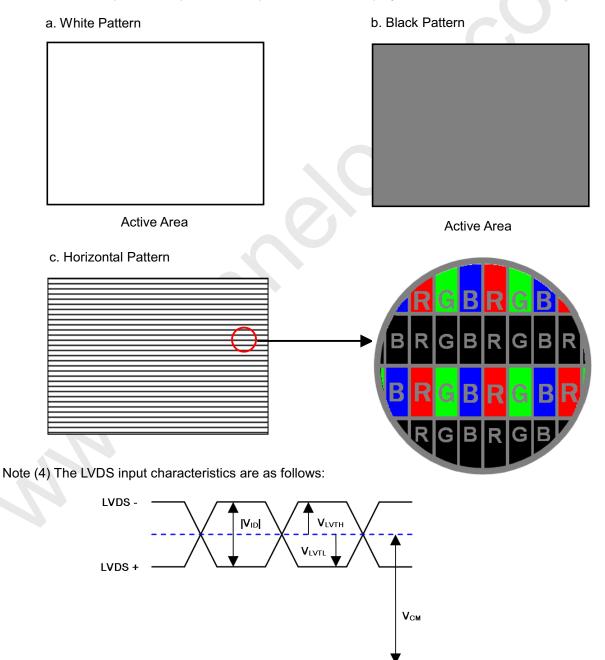

## 3.1 TFT LCD OPEN CELL

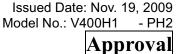
 $(Ta = 25 \pm 2 \, ^{\circ}C)$ 

| Parameter                                    |                                          |                   | Symbol            | Value |      |       | Unit  | Note |
|----------------------------------------------|------------------------------------------|-------------------|-------------------|-------|------|-------|-------|------|
|                                              |                                          |                   | Symbol            | Min.  | Тур. | Max.  | Offic | Note |
| Power Supply Voltage                         |                                          |                   | V <sub>CC</sub>   | 10.8  | 12   | 13.2  | V     | (1)  |
| Rush Current                                 |                                          |                   | I <sub>RUSH</sub> | -     | -    | 4.84  | Α     | (2)  |
|                                              |                                          | White Pattern     | -                 | -     | 0.97 | -     | Α     |      |
| Power Sup                                    | oply Current                             | Horizontal Stripe | -                 | -     | 1.72 | 2.236 | Α     | (3)  |
| 1                                            |                                          | Black Pattern     | -                 | -     | 0.44 | -     | Α     |      |
| Differential Input High<br>Threshold Voltage |                                          | $V_{LVTH}$        | +100              | -     | -    | mV    |       |      |
| LVDS                                         | Differential Input Low Threshold Voltage |                   | V <sub>LVTL</sub> | -     | - 1  | -100  | mV    | (4)  |
| interface                                    |                                          |                   | V <sub>CM</sub>   | 1.0   | 1.2  | 1.4   | V     | (4)  |
| Differential i<br>Terminating                |                                          | nput voltage      | V <sub>ID</sub>   | 200   | - \  | 600   | mV    |      |
|                                              |                                          | minating Resistor |                   | -     | 100  | -     | ohm   |      |
| CMOS                                         | Input High T                             | hreshold Voltage  | V <sub>IH</sub>   | 2.7   | -    | 3.3   | V     |      |
| interface                                    | Input Low Th                             | nreshold Voltage  | V <sub>IL</sub>   | 0     | -    | 0.7   | V     |      |


Note (1) The module should be always operated within the above ranges.

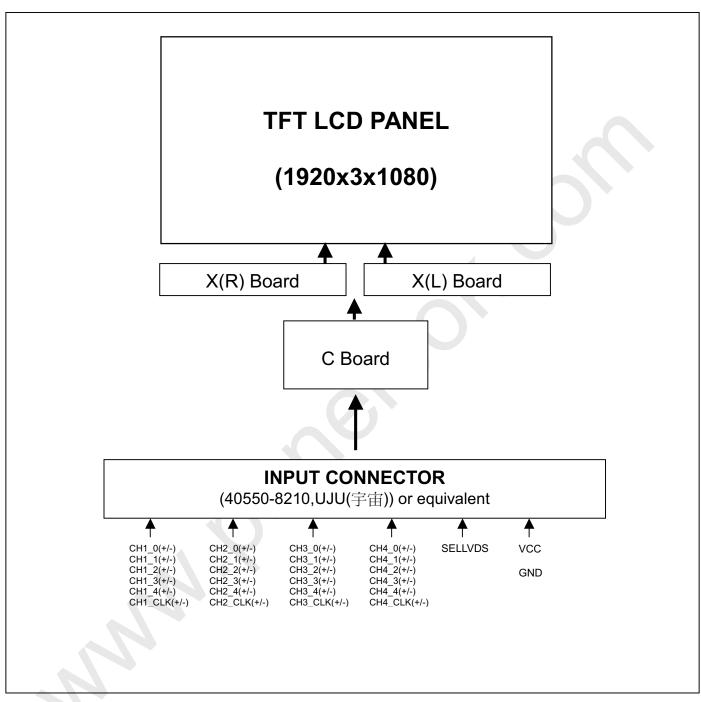
Note (2) Measurement condition:




# Vcc rising time is 470us




Note (3) The specified power supply current is under the conditions at Vcc = 12 V,  $Ta = 25 \pm 2 \,^{\circ}\text{C}$ , fv = 120 Hz, whereas a power dissipation check pattern below is displayed.





## 4. BLOCK DIAGRAM

#### 4.1 TFT LCD OPEN CELL





# **5. INPUT TERMINAL PIN ASSIGNMENT**

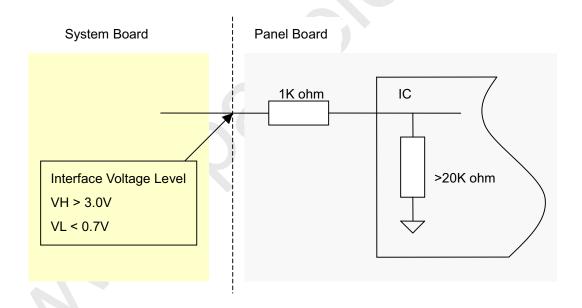
#### **5.1 TFT LCD Module**

CNF1 Connector Pin Assignment (40550-8210,UJU(宇宙) or equivalent)

| Pin | Name    | Description                                               | Note |
|-----|---------|-----------------------------------------------------------|------|
| 1   | VCC     | +12V power supply                                         |      |
| 2   | VCC     | +12V power supply                                         |      |
| 3   | VCC     | +12V power supply                                         |      |
| 4   | VCC     | +12V power supply                                         |      |
| 5   | VCC     | +12V power supply                                         |      |
| 6   | N.C.    | No Connection                                             | (1)  |
| 7   | GND     | Ground                                                    |      |
| 8   | GND     | Ground                                                    |      |
| 9   | GND     | Ground                                                    |      |
| 10  | CH1[0]- | First pixel Negative LVDS differential data input. Pair 0 |      |
| 11  | CH1[0]+ | First pixel Positive LVDS differential data input. Pair 0 |      |
| 12  | CH1[1]- | First pixel Negative LVDS differential data input. Pair 1 |      |
| 13  | CH1[1]+ | First pixel Positive LVDS differential data input. Pair 1 |      |
| 14  | CH1[2]- | First pixel Negative LVDS differential data input. Pair 2 |      |
| 15  | CH1[2]+ | First pixel Positive LVDS differential data input. Pair 2 |      |
| 16  | GND     | Ground                                                    |      |
| 17  | CH1CLK- | First pixel Negative LVDS differential clock input.       |      |
| 18  | CH1CLK+ | First pixel Positive LVDS differential clock input.       |      |
| 19  | GND     | Ground                                                    |      |
| 20  | CH1[3]- | First pixel Negative LVDS differential data input. Pair 3 |      |
| 21  | CH1[3]+ | First pixel Positive LVDS differential data input. Pair 3 |      |
| 22  | CH1[4]- | First pixel Negative LVDS differential data input. Pair 4 |      |
| 23  | CH1[4]+ | First pixel Positive LVDS differential data input. Pair 4 |      |
| 24  | GND     | Ground                                                    |      |
| 25  | CH3[0]- | Third pixel Negative LVDS differential data input. Pair 0 |      |
| 26  | CH3[0]+ | Third pixel Positive LVDS differential data input. Pair 0 |      |
| 27  | CH3[1]- | Third pixel Negative LVDS differential data input. Pair 1 |      |
| 28  | CH3[1]+ | Third pixel Positive LVDS differential data input. Pair 1 |      |
| 29  | CH3[2]- | Third pixel Negative LVDS differential data input. Pair 2 |      |
| 30  | CH3[2]+ | Third pixel Positive LVDS differential data input. Pair 2 |      |
| 31  | GND     | Ground                                                    |      |
| 32  | CH3CLK- | Third pixel Negative LVDS differential clock input.       |      |
| 33  | CH3CLK+ | Third pixel Positive LVDS differential clock input.       |      |



Issued Date: Nov. 19, 2009 Model No.: V4<u>00H1 - PH2</u>


Approval

| 34 | GND      | Ground                                                     |     |
|----|----------|------------------------------------------------------------|-----|
| 35 | CH3[3]-  | Third pixel Negative LVDS differential data input. Pair 3  |     |
| 36 | CH3[3]+  | Third pixel Positive LVDS differential data input. Pair 3  |     |
| 37 | CH3[4]-  | Third pixel Negative LVDS differential data input. Pair 4  |     |
| 38 | CH3[4]+  | Third pixel Positive LVDS differential data input. Pair 4  |     |
| 39 | GND      | Ground                                                     |     |
| 40 | SCL      | I2C Bus                                                    |     |
| 41 | N.C.     | No Connection                                              | (1) |
| 42 | N.C.     | No Connection                                              | (1) |
| 43 | WP       | Write Protection for EEPROM                                |     |
| 44 | SDA      | I2C Bus                                                    |     |
| 45 | LVDS_SEL | LVDS Data Format Selection                                 | (2) |
| 46 | N.C.     | No Connection                                              | (1) |
| 47 | N.C.     | No Connection                                              | (1) |
| 48 | N.C.     | No Connection                                              | (1) |
| 49 | N.C.     | No Connection                                              | (1) |
| 50 | N.C.     | No Connection                                              | (1) |
| 51 | N.C.     | No Connection                                              | (1) |
| 52 | GND      | Ground                                                     |     |
| 53 | CH4[4]+  | Fourth pixel Positive LVDS differential data input. Pair 4 |     |
| 54 | CH4[4]-  | Fourth pixel Negative LVDS differential data input. Pair 4 |     |
| 55 | CH4[3]+  | Fourth pixel Positive LVDS differential data input. Pair 3 |     |
| 56 | CH4[3]-  | Fourth pixel Negative LVDS differential data input. Pair 3 |     |
| 57 | GND      | Ground                                                     |     |
| 58 | CH4CLK+  | Fourth pixel Positive LVDS differential clock input.       |     |
| 59 | CH4CLK-  | Fourth pixel Negative LVDS differential clock input.       |     |
| 60 | GND      | Ground                                                     |     |
| 61 | CH4[2]+  | Fourth pixel Positive LVDS differential data input. Pair 2 |     |
| 62 | CH4[2]-  | Fourth pixel Negative LVDS differential data input. Pair 2 |     |
| 63 | CH4[1]+  | Fourth pixel Positive LVDS differential data input. Pair 1 |     |
| 64 | CH4[1]-  | Fourth pixel Negative LVDS differential data input. Pair 1 |     |
| 65 | CH4[0]+  | Fourth pixel Positive LVDS differential data input. Pair 0 |     |
| 66 | CH4[0]-  | Fourth pixel Negative LVDS differential data input. Pair 0 |     |
| 67 | GND      | Ground                                                     |     |
| 68 | CH2[4]+  | Second pixel Positive LVDS differential data input. Pair 4 |     |
| 69 | CH2[4]-  | Second pixel Negative LVDS differential data input. Pair 4 |     |



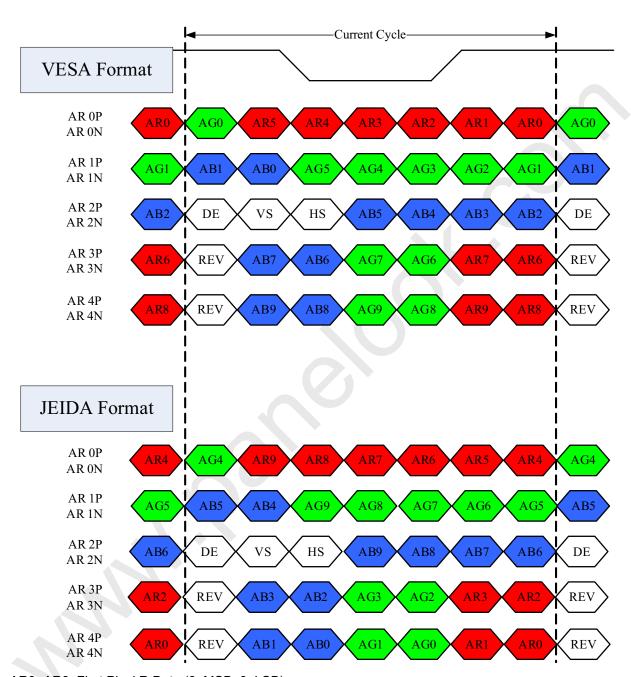
| 70 CH2[3]+ Second pixel Positive LVDS differential data input. Pair 3  71 CH2[3]- Second pixel Negative LVDS differential data input. Pair 3  72 GND Ground  73 CH2CLK+ Second pixel Positive LVDS differential clock input.  74 CH2CLK- Second pixel Negative LVDS differential clock input.  75 GND Ground  76 CH2[2]+ Second pixel Positive LVDS differential data input. Pair 2  77 CH2[2]- Second pixel Negative LVDS differential data input. Pair 2  78 CH2[1]+ Second pixel Positive LVDS differential data input. Pair 1 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 72 GND Ground  73 CH2CLK+ Second pixel Positive LVDS differential clock input.  74 CH2CLK- Second pixel Negative LVDS differential clock input.  75 GND Ground  76 CH2[2]+ Second pixel Positive LVDS differential data input. Pair 2  77 CH2[2]- Second pixel Negative LVDS differential data input. Pair 2                                                                                                                                                                                                                      |
| 73 CH2CLK+ Second pixel Positive LVDS differential clock input.  74 CH2CLK- Second pixel Negative LVDS differential clock input.  75 GND Ground  76 CH2[2]+ Second pixel Positive LVDS differential data input. Pair 2  77 CH2[2]- Second pixel Negative LVDS differential data input. Pair 2                                                                                                                                                                                                                                     |
| 74 CH2CLK- Second pixel Negative LVDS differential clock input.  75 GND Ground  76 CH2[2]+ Second pixel Positive LVDS differential data input. Pair 2  77 CH2[2]- Second pixel Negative LVDS differential data input. Pair 2                                                                                                                                                                                                                                                                                                      |
| 75 GND Ground  76 CH2[2]+ Second pixel Positive LVDS differential data input. Pair 2  77 CH2[2]- Second pixel Negative LVDS differential data input. Pair 2                                                                                                                                                                                                                                                                                                                                                                       |
| 76 CH2[2]+ Second pixel Positive LVDS differential data input. Pair 2  77 CH2[2]- Second pixel Negative LVDS differential data input. Pair 2                                                                                                                                                                                                                                                                                                                                                                                      |
| 77 CH2[2]- Second pixel Negative LVDS differential data input. Pair 2                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 78 CH2[1]+ Second pixel Positive LVDS differential data input. Pair 1                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 79 CH2[1]- Second pixel Negative LVDS differential data input. Pair 1                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 80 CH2[0]+ Second pixel Positive LVDS differential data input. Pair 0                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 81 CH2[0]- Second pixel Negative LVDS differential data input. Pair 0                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 82 GND Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

- Note (1) Reserved for internal use. Please leave it open.
- Note (2) High=connect to +3.3V or Open: VESA Format ; Low= connect to GND: JEIDA Format.
- Note (3) Interface optional pin has internal scheme as following diagram. Customer should keep the interface voltage level requirement as below.



Note (4) LVDS 4-port Data Mapping

| Port     | Channel of LVDS | Data Stream         |
|----------|-----------------|---------------------|
| 1st Port | First Pixel     | 1, 5, 9,1913, 1917  |
| 2nd Port | Second Pixel    | 2, 6, 10,1914, 1918 |
| 3rd Port | Third Pixel     | 3, 7, 11,1915, 1919 |
| 4th Port | Fourth Pixel    | 4, 8, 12,1916, 1920 |




Approval

## **5.2 LVDS INTERFACE**

VESA Format : SELLVDS = H or Open

JEIDA Format : SELLVDS = L



AR0~AR9: First Pixel R Data (9; MSB, 0; LSB) AG0~AG9: First Pixel G Data (9; MSB, 0; LSB) AB0~AB9: First Pixel B Data (9; MSB, 0; LSB)

DE: Data enable signal DCLK: Data clock signal

**RSV: Reserved** 



Issued Date: Nov. 19, 2009 Model No.: V400H1 - PH2

Approval

## **5.3 COLOR DATA INPUT ASSIGNMENT**

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

|               |                  |     |    |    |    |    |       |   |   |    |    |      |     |            |    | )ata |   | nal |            |    |     |    |     |    |    |   |    |    |                                                                                                  |   |    |
|---------------|------------------|-----|----|----|----|----|-------|---|---|----|----|------|-----|------------|----|------|---|-----|------------|----|-----|----|-----|----|----|---|----|----|--------------------------------------------------------------------------------------------------|---|----|
|               | Color            | Red |    |    |    |    | Green |   |   |    |    | Blue |     |            |    |      |   |     |            |    |     |    |     |    |    |   |    |    |                                                                                                  |   |    |
|               |                  | R9  | R8 | R7 | R6 | R5 | R4    |   |   | R1 | R0 | G9   |     | G7         | G6 |      |   |     | G2         | G1 | G0  | B9 | B8  | B7 | B6 |   | B4 | B3 | B2                                                                                               |   | BC |
|               | Black            | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 0  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 0   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | 0                                                                                                | 0 | 0  |
|               | Red              | 1   | 1  | 1  | 1  | 1  | 1     | 1 | 1 | 1  | 1  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 0   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | _                                                                                                | 0 | 0  |
|               | Green            | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 0  | 1    | 1   | 1          | 1  | 1    | 1 | 1   | 1          | 1  | 1   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | 0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 | 0  |
| Basic         | Blue             | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 0  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 0   | 1  | 1   | 1  | 1  | 1 | 1  | 1  | 1                                                                                                | 1 | 1  |
| Colors        | Cyan             | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 0  | 1    | 1   | 1          | 1  | 1    | 1 | 1   | 1          | 1  | 1   | 1  | 1   | 1  | 1  | 1 | 1  | 1  | 1                                                                                                | 1 | 1  |
|               | Magenta          | 1   | 1  | 1  | 1  | 1  | 1     | 1 | 1 | 1  | 1  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 0   | 1  | 1   | 1  | 1  | 1 | 1  | 1  | 1                                                                                                | 1 | 1  |
|               | Yellow           | 1   | 1  | 1  | 1  | 1  | 1     | 1 | 1 | 1  | 1  | 1    | 1   | 1          | 1  | 1    | 1 | 1   | 1          | 1  | 1   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | 0                                                                                                | 0 | 0  |
|               | White            | 1   | 1  | 1  | 1  | 1  | 1     | 1 | 1 | 1  | 1  | 1    | 1   | 1          | 1  | 1    | 1 | 1   | 1          | 1  | 1   | 1  | 1   | 1  | 1  | 1 | 1  | 1  |                                                                                                  | 1 | 1  |
|               | Red (0) / Dark   | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 0  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 0   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | _                                                                                                | 0 | 0  |
|               | Red (1)          | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 1  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 0   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | -                                                                                                | 0 | 0  |
| Gray          | Red (2)          | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 1  | 0  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 0   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | 0                                                                                                | 0 | 0  |
| Scale         | :                |     |    | :  | :  | :  | :     | : | : | :  | :  | :    | :   | :          | :  | :    | : | :   | :          | :  | - 1 | :  | 1:  |    |    | : | :  | :  | :                                                                                                | : | :  |
| Of            | :                |     |    | :  | :  | :  | :     | : | : | :  | :  | :    | :   | :          | :  | :    | : | :   | :          | :  | -   | ;  | : \ | 1  | :  | : | :  | :  | :                                                                                                | : | :  |
| Red           | Red (1021)       | 1   | 1  | 1  | 1  | 1  | 1     | 1 | 1 | 0  | 1  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 0   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | _                                                                                                | 0 | 0  |
| 1100          | Red (1022)       | 1   | 1  | 1  | 1  | 1  | 1     | 1 | 1 | 1  | 0  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 0   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | _                                                                                                | 0 | 0  |
|               | Red (1023)       | 1   | 1  | 1  | 1  | 1  | 1     | 1 | 1 | 1  | 1  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 0   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | _                                                                                                | 0 | 0  |
|               | Green (0) / Dark | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 0  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 0   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | -                                                                                                | 0 | 0  |
|               | Green (1)        | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 0  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 1   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | 0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 | 0  |
| Gray          | Green (2)        | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 0  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 1  | 0   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | 0                                                                                                | 0 | 0  |
| Scale         | :                | :   | :  | :  | :  | :  | :     | : | : | :  | :  | :    | :   | :          | :  | :    | : | :   | : '        | -  | :   | :  | :   | :  | :  | : | :  | :  | :                                                                                                | : | :  |
| Of            | i                | :   | :  | :  | :  | :  | :     | : | : | :  | :  | :    | :   | :          | :  | -    | ÷ | : ) | <i>)</i> : | :  | :   | :  | :   | :  | :  | : | :  | :  | :                                                                                                | : | :  |
| Green         | Green (1021)     | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 0  | 1    | 1   | 1          | 1  | 1    | 1 | 1   | 1          | 0  | 1   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | _                                                                                                | 0 | 0  |
| Orecii        | Green (1022)     | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 0  | 1    | 1   | 1          | 1  | 1    | 1 | 1   | 1          | 1  | 0   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | -                                                                                                | 0 | 0  |
|               | Green (1023)     | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 0  | 1    | 1   | 1          | 1  | 1    | 1 | 1   | 1          | 1  | 1   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | 0                                                                                                | 0 | 0  |
|               | Blue (0) / Dark  | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 0  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 0   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | 0                                                                                                | 0 | 0  |
|               | Blue (1)         | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 0  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 0   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | 0                                                                                                | 0 | 1  |
| Gray          | Blue (2)         | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 0  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 0   | 0  | 0   | 0  | 0  | 0 | 0  | 0  | 0                                                                                                | 1 | 0  |
| Gray<br>Scale |                  | :   | :  | :  | :  | :  | :     | : | : | :  |    | :4   | : 1 | 1:         | :  | :    | : | :   | :          | :  | :   | :  | :   | :  | :  | : | :  | :  | :                                                                                                | : | :  |
| Of Of         | :                | :   | :  | :  | :  | :  | :     | : | : |    | :\ |      | : / | <b>/</b> : | :  | :    | : | :   | :          | :  | :   | :  | :   | :  | :  | : | :  | :  | :                                                                                                | : | :  |
| Blue          | Blue (1021)      | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 0  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 0   | 1  | 1   | 1  | 1  | 1 | 1  | 1  | 1                                                                                                | 0 | 1  |
| Diue          | Blue (1022)      | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 0  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 0   | 1  | 1   | 1  | 1  | 1 | 1  | 1  | 1                                                                                                | 1 | 0  |
|               | Blue (1023)      | 0   | 0  | 0  | 0  | 0  | 0     | 0 | 0 | 0  | 0  | 0    | 0   | 0          | 0  | 0    | 0 | 0   | 0          | 0  | 0   | 1  | 1   | 1  | 1  | 1 | 1  | 1  | 1                                                                                                | 1 | 1  |

Note (1) 0: Low Level Voltage, 1: High Level Voltage



## **6. INTERFACE TIMING**

#### **6.1 INPUT SIGNAL TIMING SPECIFICATIONS**

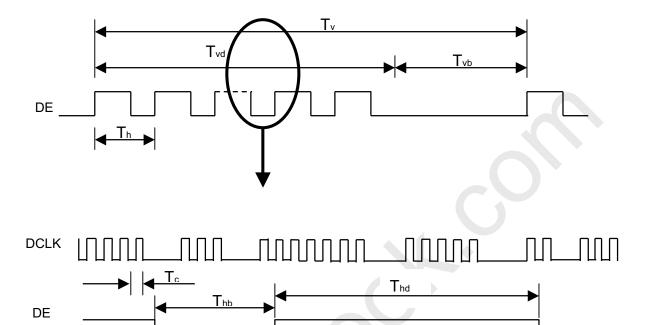
The input signal timing specifications are shown as the following table and timing diagram.

|                   | • .                                  |                            |                        | •     | •                      | •     |            |  |  |
|-------------------|--------------------------------------|----------------------------|------------------------|-------|------------------------|-------|------------|--|--|
| Signal            | Item                                 | Symbol                     | Min.                   | Тур.  | Max.                   | Unit  | Note       |  |  |
| LVDS              | Frequency                            | F <sub>clkin</sub> (=1/TC) | 60                     | 74.25 | 80                     | MHz   |            |  |  |
|                   | Input cycle to cycle jitter          | $T_{rcl}$                  | -                      | -     | 200                    | ps    | (3)        |  |  |
| Receiver<br>Clock | Spread spectrum modulation range     | Fclkin_mod                 | F <sub>clkin</sub> -2% | -     | F <sub>clkin</sub> +2% | MHz   | (4)        |  |  |
|                   | Spread spectrum modulation frequency | F <sub>SSM</sub>           | -                      | -     | 200                    | KHz   | (4)        |  |  |
| LVDS              | Setup Time                           | Tlvsu                      | 600                    | -     | -                      | ps    | (5)        |  |  |
| Receiver<br>Data  | Hold Time                            | Tlvhd                      | 600                    | -     | -                      | ps    | (5)        |  |  |
|                   | Frame Rate                           | F <sub>r5</sub>            | 97                     | 100   | 103                    | Hz    | (6)        |  |  |
| Vertical          | Frame Rate                           | F <sub>r6</sub>            | 117                    | 120   | 123                    | Hz    |            |  |  |
| Active<br>Display | Total                                | Tv                         | 1115                   | 1125  | 1135                   | Th    | Tv=Tvd+Tvb |  |  |
| Term              | Display                              | Tvd                        | 1080                   | 1080  | 1080                   | Th    | _          |  |  |
|                   | Blank                                | Tvb                        | 35                     | 45    | 55                     | 55 Th |            |  |  |
| Horizontal        | Total                                | Th                         | 540                    | 550   | 575                    | Тс    | Th=Thd+Thb |  |  |
| Active<br>Display | Display                              | Thd                        | 480                    | 480   | 480                    | Тс    | _          |  |  |
| Term              | Blank                                | Thb                        | 60                     | 70    | 95                     | Тс    | _          |  |  |

Note (1) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

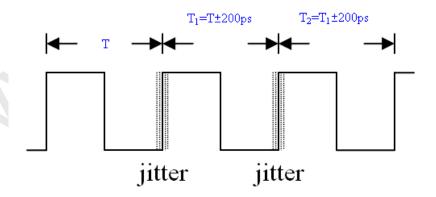
Note (2) Please make sure the range of pixel clock has follow the below equation:

$$Fclkin(max) \ge Fr6 \times Tv \times Th$$

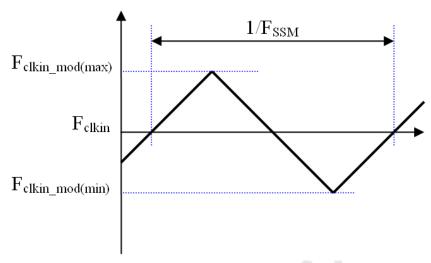

$$Fr5 \times Tv \times Th \ge Fclkin(min)$$





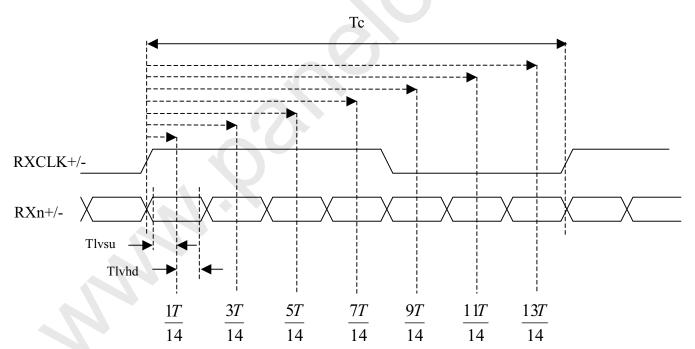



# **INPUT SIGNAL TIMING DIAGRAM**






Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I T1 – TI




Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

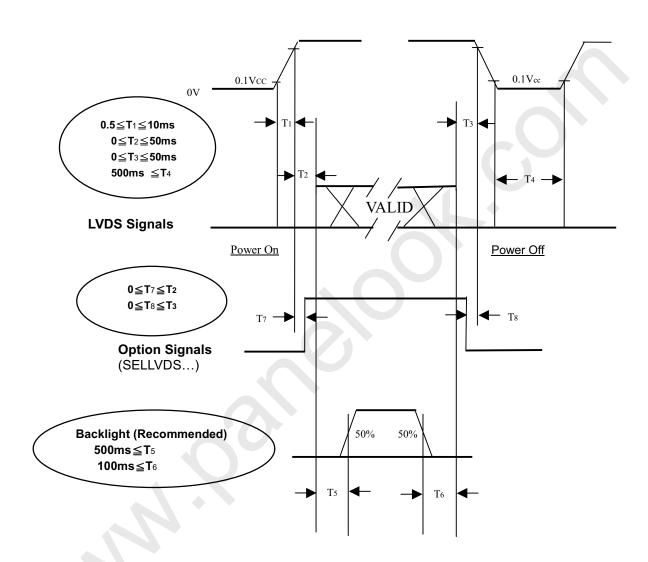


Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

# LVDS RECEIVER INTERFACE TIMING DIAGRAM



Note (6) (ODSEL) = H/L or open for 100/120Hz frame rate. Please refer to 5.1 for detail information.






## **6.2 POWER ON/OFF SEQUENCE**

 $(Ta = 25 \pm 2 \, ^{\circ}C)$ 

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram



- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0, that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.



Approval

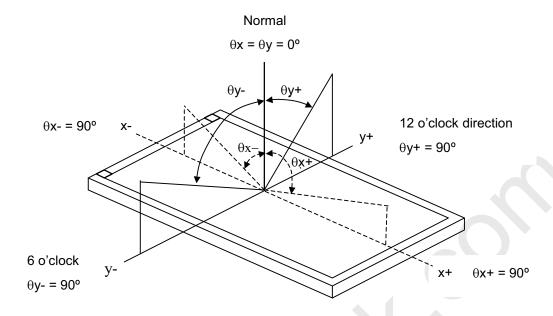
## 7. OPTICAL CHARACTERISTICS

#### 7.1 TEST CONDITIONS

| Item                | Symbol                 | Value                    | Unit             |
|---------------------|------------------------|--------------------------|------------------|
| Ambient Temperature | Та                     | 25±2                     | °C               |
| Ambient Humidity    | На                     | 50±10                    | %RH              |
| Supply Voltage      | V <sub>CC</sub>        | 12                       | V                |
| Input Signal        | According to typical v | alue in "3. ELECTRICAL ( | CHARACTERISTICS" |
| Vertical Frame Rate | Fr                     | 120                      | Hz               |

## 7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (7).


| illeasureu uriuei | the test condit | ions desci       | ibed in 7.1 and stable envir               | OHIHEHI | SHOWITH | NOLE (1)      |      |          |  |
|-------------------|-----------------|------------------|--------------------------------------------|---------|---------|---------------|------|----------|--|
| Iten              | n               | Symbol           | Condition                                  | Min.    | Тур.    | Max.          | Unit | Note     |  |
| Contrast Ratio    |                 | CR               |                                            | 4600    | 6500    | -             | ı    | (2), (4) |  |
| Response Time     |                 | Gray to gray     | θ <sub>x</sub> =0°, θ <sub>Y</sub> =0°     | -       | 4.5     | 9             | ms   | (5)      |  |
| Center Transmit   | tance           | Т%               | With CMO Module                            | -       | 4.6     | -             | %    | (2)      |  |
| White Variation   |                 | δW               |                                            | 1       | /       | 1.3           | ı    | (2), (7) |  |
|                   | Red             | Rcx              |                                            |         | 0.647   | Typ +<br>0.03 | -    |          |  |
|                   | Neu             | Rcy              |                                            |         | 0.327   |               | -    |          |  |
|                   | Green           | Gcx              |                                            |         | 0.296   |               | -    |          |  |
| Color             | Green           | Gcy              | $\theta_x = 0^\circ, \ \theta_Y = 0^\circ$ | Тур -   | 0.600   |               | -    | (1),(6)  |  |
| Chromaticity      | Blue            | Всх              | CS-1000T<br>Standard light source "C"      | 0.03    | 0.144   |               | 1    |          |  |
|                   | Diue            | Всу              |                                            |         | 0.083   |               | -    |          |  |
|                   | White           | Wcx              |                                            |         | 0.335   |               | -    |          |  |
|                   | vviille         | Wcy              |                                            |         | 0.379   |               | -    |          |  |
| Viewing Angle     | Harizantal      | $\theta_x$ +     |                                            | 80      | 88      | -             |      |          |  |
|                   | Horizontal      | θ <sub>x</sub> - | CR≥20                                      | 80      | 88      | -             | Dog  | (2) (2)  |  |
|                   | Vertical        | θ <sub>Y</sub> + | With CMO Module                            | 80      | 88      | -             | Deg. | (2), (3) |  |
|                   | Vertical        | θ <sub>Y</sub> - |                                            | 80      | 88      | -             |      |          |  |

- Note (1) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages. The calculating method is as following:
  - 1. Measure Module's and BLU's spectrums. W, R, G, B are with signal input. BLU (for V400H1-LH9) is supplied by CMO.
  - 2. Calculate cell's spectrum.
  - 3. Calculate cell's chromaticity by using the spectrum of standard light source "C"
- Note (2) Light source is the BLU which is supplied by CMO and driving voltages are based on suitable gamma voltages.
- Note (3) Definition of Viewing Angle ( $\theta x$ ,  $\theta y$ ):
  - Viewing angles are measured by Autronic Conoscope Cono-80

19

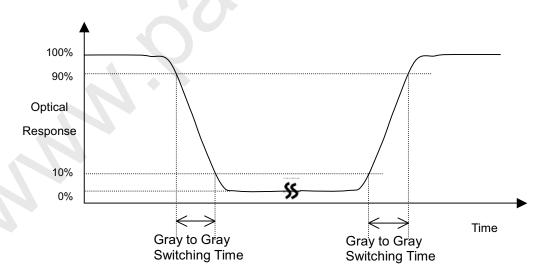


Issued Date: Nov. 19, 2009 Model No.: V400H1 Approval



Note (4) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

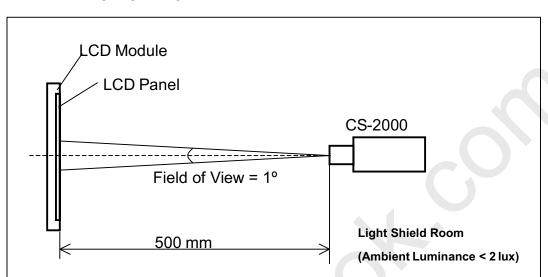
L1023: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (1), where CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (7).

Note (5) Definition of Gray to Gray Switching Time:

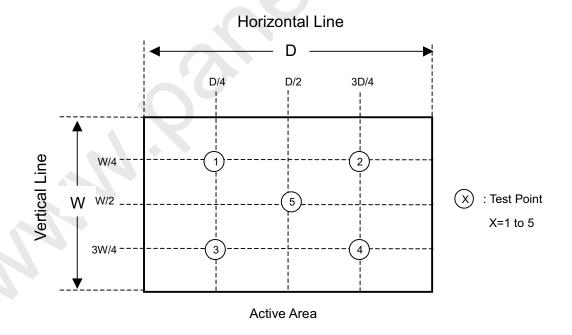



The driving signal means the signal of gray level 0, 63, 127, 191, 255.

Gray to gray average time means the average switching time of gray level 0, 63, 127, 191, 255 to each other.



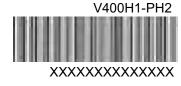
## Note (6) Measurement Setup:


The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.



Note (7) Definition of White Variation ( $\delta W$ ):

Measure the luminance of gray level 255 at 5 points


 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$ 



# 8. DEFINITION OF LABELS

#### 8.1 OPEN CELL LABEL

The barcode nameplate is pasted on each open cell as illustration for CMO internal control.



#### **8.2 CARTON LABEL**

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation



- (a) Model Name: V400H1– PH2
- (b) Carton ID: CMO internal control
- (c) Quantities: 12



## 9. PACKAGING

#### 9.1 PACKING SPECIFICATIONS

(1) 12pcs LCD TV Panels / 1 Box

(2) Box dimensions: 1108 (L) X 738 (W) X 252 (H)

(3) Weight: approximately 36 Kg

#### 9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

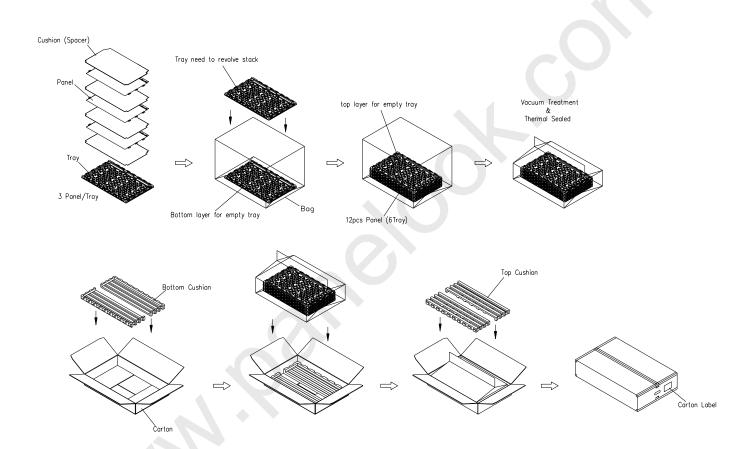
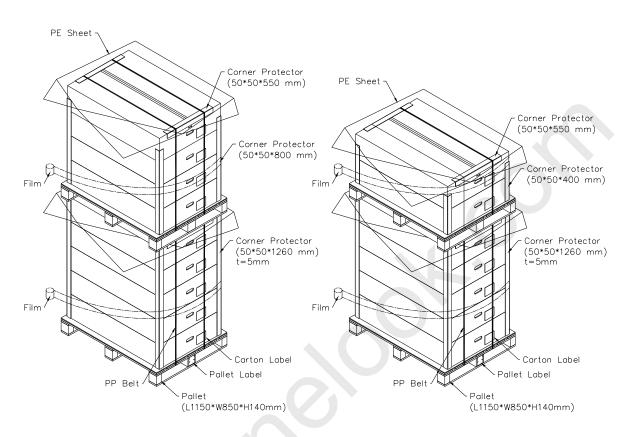




Figure.9-1 packing method



Sea / Land Transportation (40ft HQ Container)

Sea / Land Transportation



Transportation

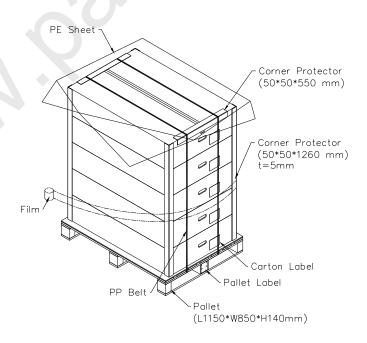
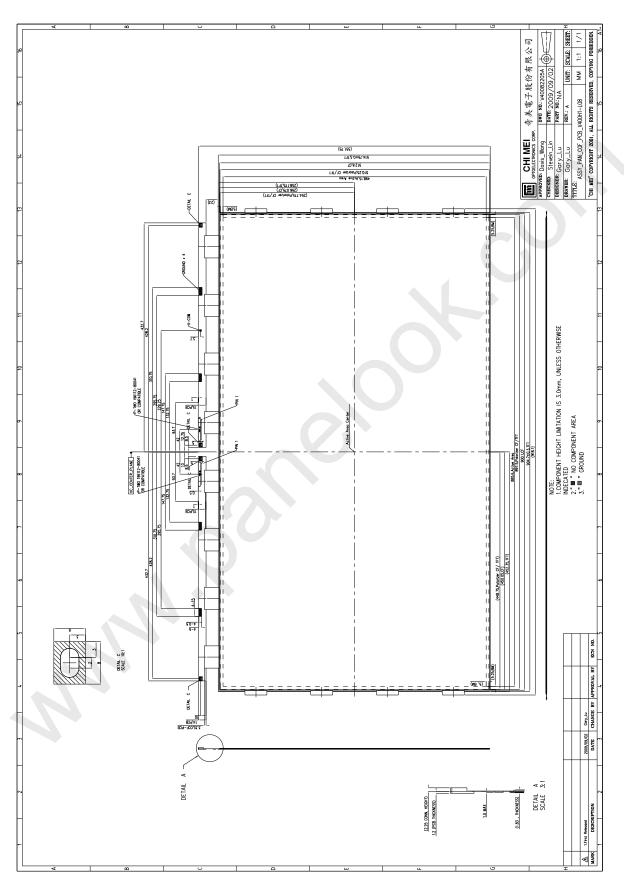



Figure. 9-2 Packing method

## 10. PRECAUTIONS

#### 10.1 ASSEMBLY AND HANDLING PRECAUTIONS

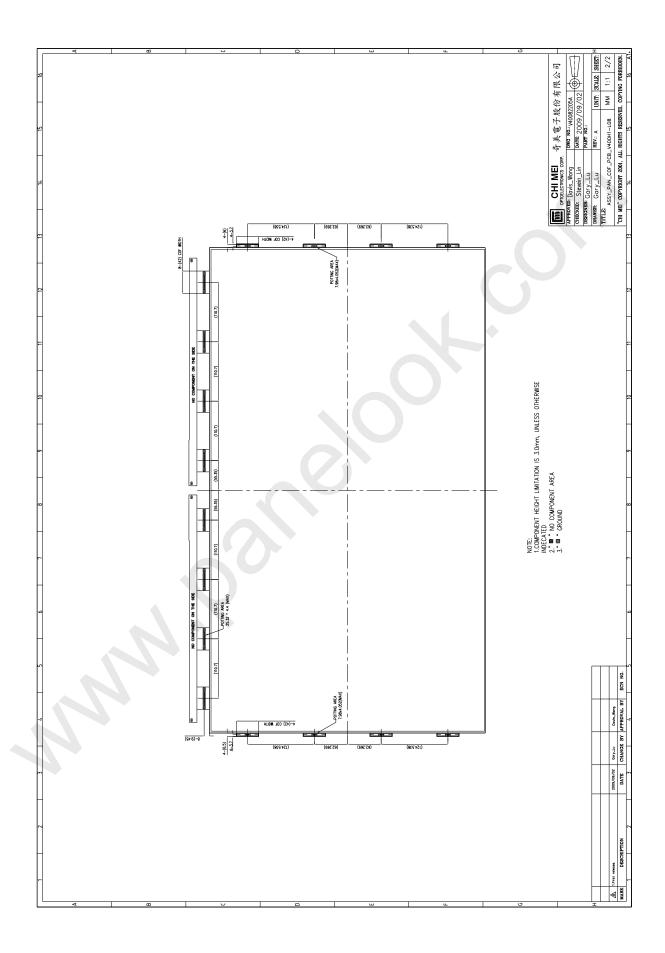
- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble backlight or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture come into or contacted the product, because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.


#### **10.2 SAFETY PRECAUTIONS**

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.



Issued Date: Nov. 19, 2009 Model No.: V400H1 - PH2 Approval


## 11. MECHANICAL CHARACTERISTICS





Issued Date: Nov. 19, 2009 Model No.: V400H1 - PH2

Approval

