

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

- □ Tentative Specification
- □ Preliminary Specification
- Approval Specification

MODEL NO.: V400H1 **SUFFIX: LH9**

Customer: SEC							
APPROVED BY	SIGNATURE						
Name / Title Note							
Please return 1 copy for your confirmation with your signature and comments.							

Approved By	Checked By	Prepared By
Chao-Chun Chung	Josh Chi	Joanne Chung

Version 2.1 Date: 19 Jan 2011

- CONTENTS -

REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 PACKAGE STORAGE 2.3 ELECTRICAL ABSOLUTE RATINGS 2.3.1 TFT LCD MODULE 2.3.2 BACKLIGHT UNIT		5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACT 3.2.2 BALANCE BOARD CHARACTERISTICS	TERISTICS	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE		12
5. INTERFACE PIN CONNECTION 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 BALANCE BOARD UNIT 5.4 BLOCK DIAGRAM OF INTERFACE 5.5 LVDS INTERFACE 5.6 COLOR DATA INPUT ASSIGNMENT		13
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		22
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		26
8. DEFINITION OF LABELS 8.1 CMO MODULE LABEL		30
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		31
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS 10.3 SAFETY STANDARDS		33
11. MECHANICAL CHARACTERISTICS		34

Version 2.1 Date: 19 Jan 2011

REVISION HISTORY

Ver 2.0 Nov. 19,'09 All All Approval Specification was first issued.		Date	Page (New)	Section	Description
ver 2.1 Jan. 19, 11 31 9.2 Modify Figure 9-1 packing method (add 2pcs drier)	Ver 2.0	Nov. 19,'09	All		
	Ver 2.1	Nov. 19,'09	All 31	9.2	

Version 2.1 3 Date: 19 Jan 2011

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V400H1- LH9 is a 40" TFT Liquid Crystal Display module with 12-CCFL Backlight unit and 4ch-LVDS interface. This module supports 1920 x 1080 FHD format and can display true 1.07G (8-bit+Hi-FRC) colors. The Balance Board module for backlight is built-in.

1.2 FEATURES

- High brightness (500 nits)
- Ultra-high contrast ratio (6500:1)
- Faster response time (Gray to gray average 4.5ms)
- High color saturation NTSC 72%
- Ultra wide viewing angle: 176(H)/176(V) (CR>20) with Super MVA technology
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Color reproduction (nature color)
- Optimized response time for 100/120 Hz frame rate
- Low color shift function
- RoHS compliance

1.3 APPLICATION

- TFT LCD TVs
- Multi-Media Display

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	885.6(H) x 498.15 (V) (40" diagonal)	mm	(1)
Bezel Opening Area	891.7 (H) x 504.8 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	
Pixel Number	1920 x R.G.B. x 1080	pixel	
Pixel Pitch (Sub Pixel)	0.15375 (H) x 0.46125 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Display Colors	1.07G	color	
Display Operation Mode	Transmissive mode / Normally black	-	
Surface Treatment	Glare coating (Super Clear), Hard coating (3H)	-	

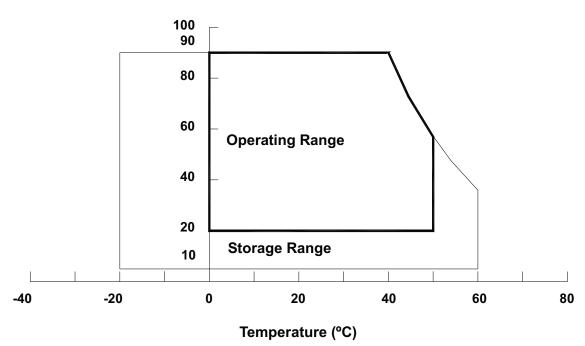
1.5 MECHANICAL SPECIFICATIONS

It	Item		Тур.	Max.	Unit	Note
	Horizontal(H)	951	952	953	mm	(1)
Module Size	Vertical(V)	550	551	552	mm	(1)
iviodule Size	Depth(D)	34	35	36	mm	To Rear
	Depth(D)	52.8	53.8	54.8	mm	To Inv Cover
Weight		-	9360	-	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Version 2.1 Date: 19 Jan 2011

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for \pm X, \pm Y, \pm Z.
- Note (4) $10 \sim 200$ Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Version 2.1 5 Date: 19 Jan 2011

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35 °C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic		
Power Supply Voltage	Vcc	-0.3	13.5	V	(1)	
Logic Input Voltage	VIN	-0.3	3.6	V	(1)	

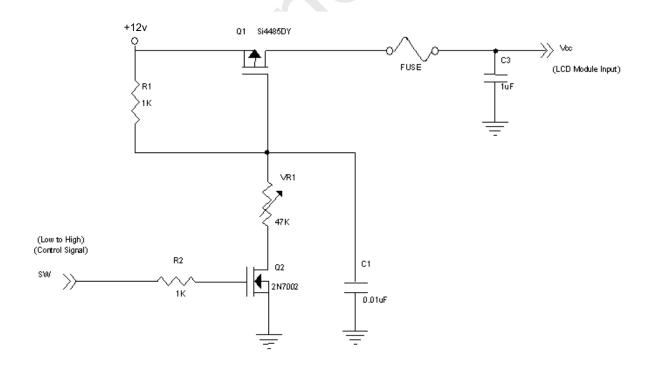
2.3.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note	
item	Syllibol	Min. Max.		Offic	Note	
Lamp Voltage	V_W	1	3000	V_{RMS}		
•						

Note (1) No moisture condensation or freezing.

Version 2.1 Date: 19 Jan 2011 The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

3. ELECTRICAL CHARACTERISTICS

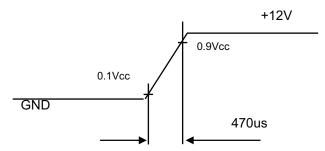

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

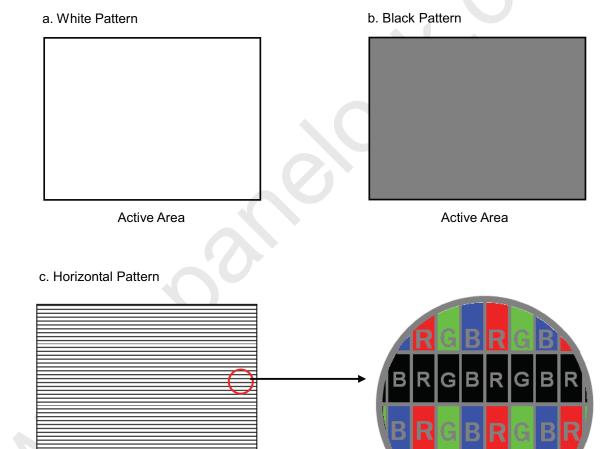
Parameter		Symbol		Value	Unit	Note		
Parameter			Symbol	Min.	Тур.	Max.	Offic	Note
Power Su	pply Voltage		V _{CC}	10.8	12	13.2	Vrms	(1)
Rush Curi	rent		I _{RUSH}	-	-	4.48	Α	(2)
		White Pattern		-	0.97	-	Α	
Power Su	pply Current	Black Pattern	I _{cc}	-	0.44	-	Α	(3)
		Horizontal Stripe		-	1.11	-	Α	
	Differential Input High Threshold Voltage		V_{LVTH}	+100	-	-	mV	
LVDS Interface	Differential In Threshold Vo		V _{LVTL}	ı	-	-100	mV	(4)
IIICIIacc	Common Inpu	ıt Voltage	V _{CM}	1.0	1.2	1.4	V	(1)
	Differential in	Differential input voltage		200		600	ohm	
	Terminating Resistor		R _T	-	100			
CMOS	Input High Th	reshold Voltage	V _{IH}	2.7	-	3.3	V	
interface	Input Low Thr	eshold Voltage	V _{IL}	0	-)	0.7	V	

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:

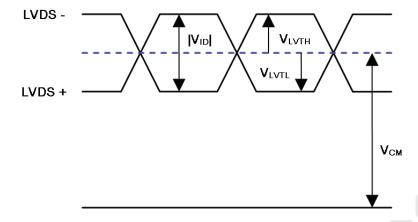


Version 2.1 Date: 19 Jan 2011



Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 12 V, Ta = 25 \pm 2 °C, f_v = 120 Hz, whereas a power dissipation check pattern below is displayed.



Version 2.1 8 **Date: 19 Jan 2011**

Note (4) The LVDS input characteristics are as follows:

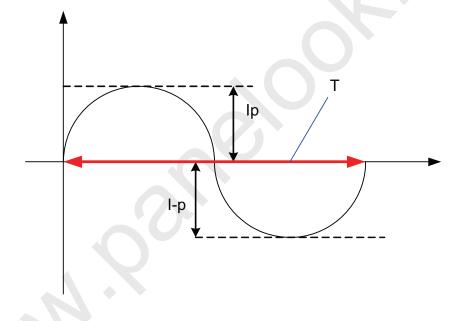
3.2 BACKLIGHT UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

•		. ,		,	,		
Parameter	Symbol		Value	Unit	Note		
Farameter	Syllibol	Min.	. Typ. Max.		Offic	Note	
Lamp Voltage	V_W	-	910	-	V_{RMS}	lh = 14.5mA	
Lamp Current	Ι _L	14.0	14.5	15.0	mA_{RMS}	(1)	
Lamp Ctarting \/altage	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	-	1500	V_{RMS}	(2), Ta = 0 °C	
Lamp Starting Voltage	Vs	-	-	1300	V_{RMS}	(2), Ta = 25 °C	
Operating Frequency	Fo	30	-	80	KHz	(3)	
Lamp Life Time	L_BL	50,000	-	-	Hrs	(4), at 14.5mA	

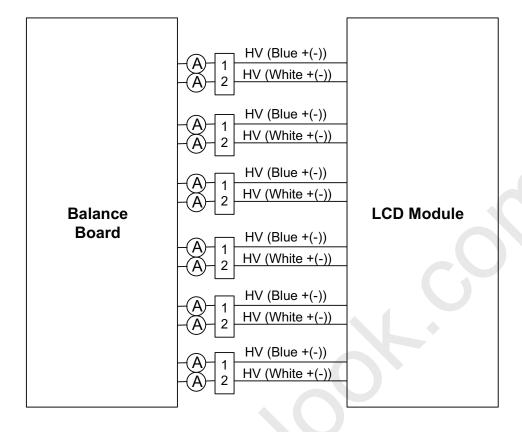
- Note (1) Lamp current is measured by utilizing AC current probe and its value is average by measuring master and slave board.:
- Note (2) The lamp starting voltage V_s should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = $25 \pm 2^{\circ}$ C and IL = $14.0 \sim 15.0$ mArms.

Version 2.1 9 Date: 19 Jan 2011

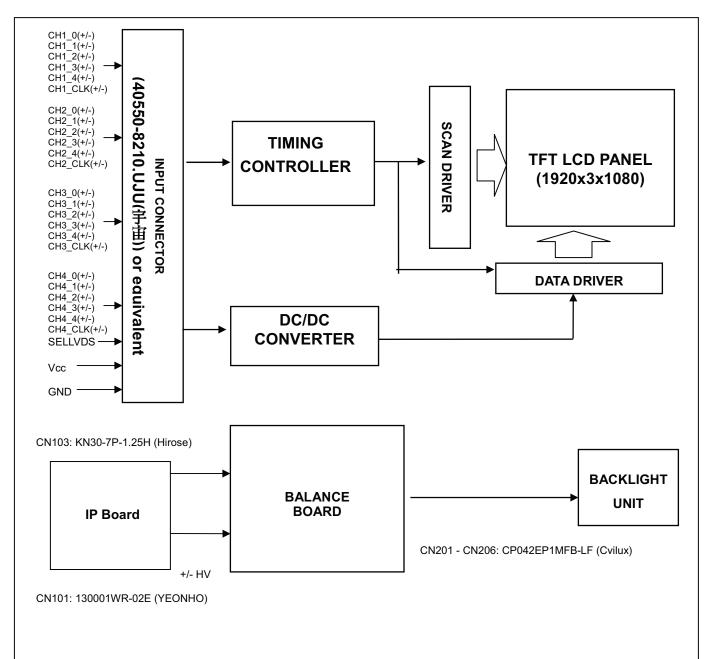

3.2.2 BALANCE BOARD CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter		Symbol	Value			Unit	Note
Faiaii	ietei	Syllibol	Min.	Тур.	Max.	Offic	Note
Input High	Voltage	V _{(HV1/HV}	-	910	-	Vrms	(2)
Input C	urrent	I _{BL(HV)}		174		mArms	No Dimming
Oscillating F	requency	F _W	45	47	49	kHz	
Individual La	mp Current	IL	14.0	14.5	15.0	mA	H.V
Lamp Detection	High (LD)	LD	5			V	Normal Operation
Lamp Detection	Low (LD)	LD			1.5	V	Lamp Connector Open
Dimming frequency		F _B	135	150	165	Hz	
Minimum D	uty Ratio	D _{MIN}	-	15	-	%	

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:


Note (2) Input High Voltage Hv based on spec. +-7% tolerance.

Note (3) Asymmetric ratio must be from 90% to 110% (0.9<Ip/ $I_{\rm rms@T/2X^{/}2}$ <1.1)



4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

5. INTERFACE PIN CONNECTION

5.1 TFT LCD MODULE

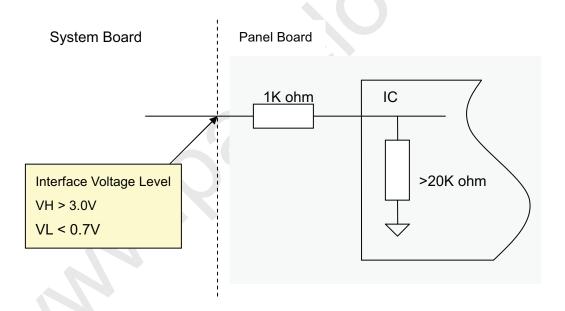
CNF1 Connector Pin Assignment (40550-8210.UJU(宇宙) or equivalent)

Pin	Name	Description	Note
1	VCC	+12V power supply	
2	VCC	+12V power supply	
3	VCC	+12V power supply	
4	VCC	+12V power supply	
5	VCC	+12V power supply	
6	N.C.	No Connection	(1)
7	GND	Ground	
8	GND	Ground	
9	GND	Ground	
10	CH1[0]-	First pixel Negative LVDS differential data input. Pair 0	
11	CH1[0]+	First pixel Positive LVDS differential data input. Pair 0	
12	CH1[1]-	First pixel Negative LVDS differential data input. Pair 1	
13	CH1[1]+	First pixel Positive LVDS differential data input. Pair 1	
14	CH1[2]-	First pixel Negative LVDS differential data input. Pair 2	
15	CH1[2]+	First pixel Positive LVDS differential data input. Pair 2	
16	GND	Ground	
17	CH1CLK-	First pixel Negative LVDS differential clock input.	
18	CH1CLK+	First pixel Positive LVDS differential clock input.	
19	GND	Ground	
20	CH1[3]-	First pixel Negative LVDS differential data input. Pair 3	
21	CH1[3]+	First pixel Positive LVDS differential data input. Pair 3	
22	CH1[4]-	First pixel Negative LVDS differential data input. Pair 4	
23	CH1[4]+	First pixel Positive LVDS differential data input. Pair 4	
24	GND	Ground	
25	CH3[0]-	Third pixel Negative LVDS differential data input. Pair 0	
26	CH3[0]+	Third pixel Positive LVDS differential data input. Pair 0	
27	CH3[1]-	Third pixel Negative LVDS differential data input. Pair 1	
28	CH3[1]+	Third pixel Positive LVDS differential data input. Pair 1	
29	CH3[2]-	Third pixel Negative LVDS differential data input. Pair 2	
30	CH3[2]+	Third pixel Positive LVDS differential data input. Pair 2	
31	GND	Ground	
32	CH3CLK-	Third pixel Negative LVDS differential clock input.	
33	CH3CLK+	Third pixel Positive LVDS differential clock input.	

Version 2.1 13 Date: 19 Jan 2011

34	GND	Ground	
35	CH3[3]-	Third pixel Negative LVDS differential data input. Pair 3	
36	CH3[3]+	Third pixel Positive LVDS differential data input. Pair 3	
37	CH3[4]-	Third pixel Negative LVDS differential data input. Pair 4	
38	CH3[4]+	Third pixel Positive LVDS differential data input. Pair 4	
39	GND	Ground	
40	SCL	I2C Bus	
41	N.C.	No Connection	(1)
42	N.C.	No Connection	(1)
43	WP	Write Protection for EEPROM	
44	SDA	I2C Bus	
45	LVDS_SEL	LVDS Data Format Selection	(2)
46	N.C.	No Connection	(1)
47	N.C.	No Connection	(1)
48	N.C.	No Connection	(1)
49	N.C.	No Connection	(1)
50	N.C.	No Connection	(1)
51	N.C.	No Connection	(1)
52	GND	Ground	
53	CH4[4]+	Fourth pixel Positive LVDS differential data input. Pair 4	
54	CH4[4]-	Fourth pixel Negative LVDS differential data input. Pair 4	
55	CH4[3]+	Fourth pixel Positive LVDS differential data input. Pair 3	
56	CH4[3]-	Fourth pixel Negative LVDS differential data input. Pair 3	
57	GND	Ground	
58	CH4CLK+	Fourth pixel Positive LVDS differential clock input.	
59	CH4CLK-	Fourth pixel Negative LVDS differential clock input.	
60	GND	Ground	
61	CH4[2]+	Fourth pixel Positive LVDS differential data input. Pair 2	
62	CH4[2]-	Fourth pixel Negative LVDS differential data input. Pair 2	
63	CH4[1]+	Fourth pixel Positive LVDS differential data input. Pair 1	
64	CH4[1]-	Fourth pixel Negative LVDS differential data input. Pair 1	
65	CH4[0]+	Fourth pixel Positive LVDS differential data input. Pair 0	
66	CH4[0]-	Fourth pixel Negative LVDS differential data input. Pair 0	
67	GND	Ground	
68	CH2[4]+	Second pixel Positive LVDS differential data input. Pair 4	
69	CH2[4]-	Second pixel Negative LVDS differential data input. Pair 4	
70	CH2[3]+	Second pixel Positive LVDS differential data input. Pair 3	

Version 2.1 Date: 19 Jan 2011 14



71	CH2[3]-	Second pixel Negative LVDS differential data input. Pair 3	
72	GND	Ground	
73	CH2CLK+	Second pixel Positive LVDS differential clock input.	
74	CH2CLK-	Second pixel Negative LVDS differential clock input.	
75	GND	Ground	
76	CH2[2]+	Second pixel Positive LVDS differential data input. Pair 2	
77	CH2[2]-	Second pixel Negative LVDS differential data input. Pair 2	
78	CH2[1]+	Second pixel Positive LVDS differential data input. Pair 1	
79	CH2[1]-	Second pixel Negative LVDS differential data input. Pair 1	
80	CH2[0]+	Second pixel Positive LVDS differential data input. Pair 0	
81	CH2[0]-	Second pixel Negative LVDS differential data input. Pair 0	
82	GND	Ground	

Note (1) Reserved for internal use. Please leave it open.

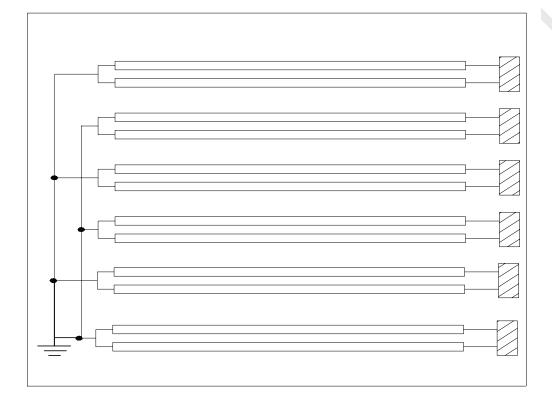
Note (2) High=connect to +3.3V or Open: VESA Format; Low= connect to GND: JEIDA Format.

Note (3) Interface optional pin has internal scheme as following diagram. Customer should keep the interface voltage level requirement as below.

Note (4) LVDS 4-port Data Mapping

, ,	•	
Port	Channel of LVDS	Data Stream
1st Port	First Pixel	1, 5, 9,1913, 1917
2nd Port	Second Pixel	2, 6, 10,1914, 1918
3rd Port	Third Pixel	3, 7, 11,1915, 1919
4th Port	Fourth Pixel	4, 8, 12,1916, 1920

Version 2.1 15 Date: 19 Jan 2011


5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

CN201-CN210 (Housing): BDAMR-02VAS-3 (JST)

Pin No.	Symbol	Description	Wire Color
1	HV	High Voltage	Blue
2	HV	High Voltage	White

Note (1) The backlight interface housing for high voltage side is a model CP042ESFA00 (Cvilux), manufactured by Cvilux. The mating header on inverter part number is CP042EP1MFB-LF (Cvilux).

5.3 BALANCE BOARD UNIT

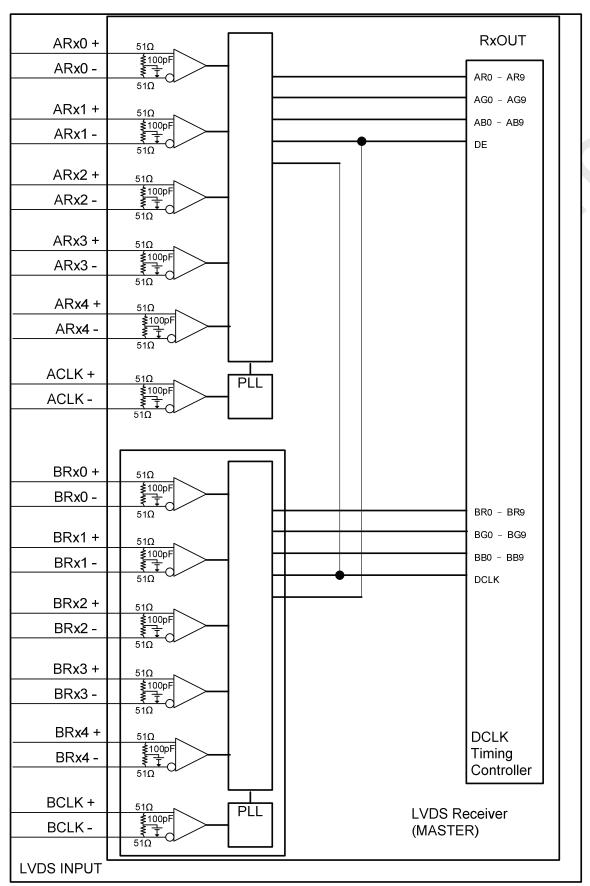
CN127 (Header): 130001WR-02E (YEONHO)

Pin No.	Symbol	Description
1	HV+(-)	High Voltage Input
2	HV+(-)	High Voltage Input

CN101-CN106 (Header): CP042EP1MFB-LF (Cvilux)

	Pin No.	Symbol	Description
ĺ	1	HV	CCFL High Voltage
	2	HV	CCFL High Voltage

CN125 (Header): KN30-7P-1.25H (Hirose)


Pin No.	Symbol	Description
1	VCC	Power Supply for Protection Circuit
2	FB	Lamp Current Detected Voltage
3	FB	Lamp Current Detected Voltage
4	GND	Signal Ground
5	GND	Signal Ground
6	LD	CCFL Connector Open & Non-lighting signal
7	LD	CCFL Connector Open & Non-lighting signal

Version 2.1 17 Date: 19 Jan 2011

5.4 BLOCK DIAGRAM OF INTERFACE

Version 2.1 18 Date: 19 Jan 2011

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

AR0~AR9: First pixel R data AG0~AG9: First pixel G data AB0~AB9: First pixel B data BR0~BR9: Second pixel R data

BG0~BG9: Second pixel G data BB0~BB9: Second pixel B data

DE: Data enable signal DCLK: Data clock signal

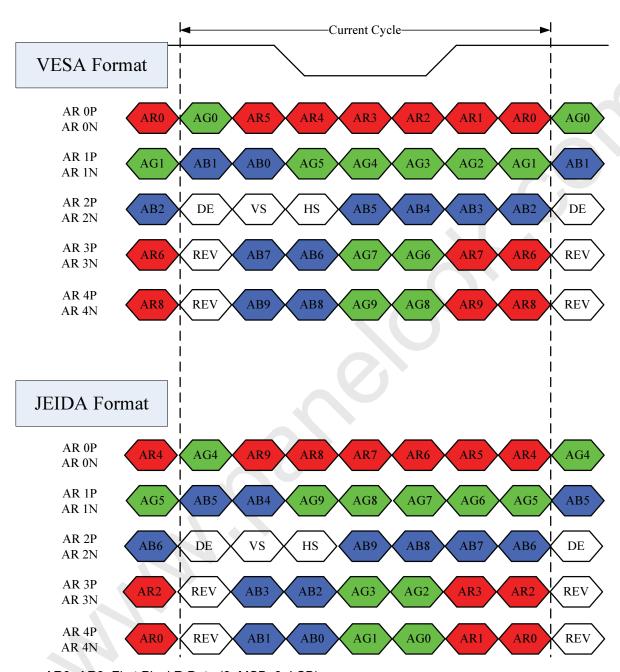
The third and fourth pixel are followed the same rules.

CR0~CR9: Third pixel R data CG0~CG9: Third pixel G data CB0~CB9: Third pixel B data DR0~DR9: Fourth pixel R data DG0~DG9: Fourth pixel G data DB0~DB9: Fourth pixel B data

Note (1) A ~ D channel are first, second, third and fourth pixel respectively.

Note (2) The system must have the transmitter to drive the module.

Note (3) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.



5.5 LVDS INTERFACE

VESA Format : SELLVDS = H or Open

JEIDA Format : SELLVDS = L

AR0~AR9: First Pixel R Data (9; MSB, 0; LSB)

AG0~AG9: First Pixel G Data (9; MSB, 0; LSB)

AB0~AB9: First Pixel B Data (9; MSB, 0; LSB)

DE: Data enable signal DCLK: Data clock signal

RSV: Reserved

Version 2.1 20 Date: 19 Jan 2011

5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

			Data Signal																												
	Color					R	ed						Green					Blue													
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	В9	В8	В7	В6	B5	В4	ВЗ	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	:			:	:	:	:	:	:	:	:	:	:	:	÷	:\	l.	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:	:
Red	Red (1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
rtou	Red (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:		:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
0.00	Green (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	÷		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1
	Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Version 2.1 21 Date: 19 Jan 2011

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

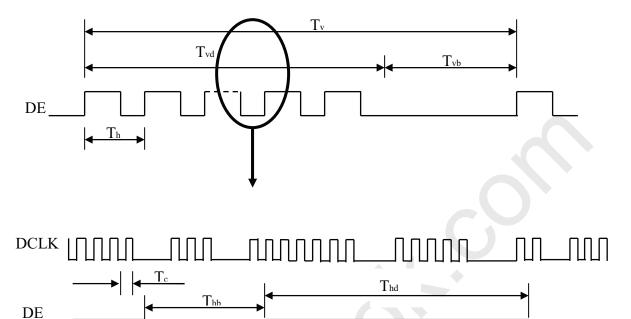
6. INTERFACE TIMING

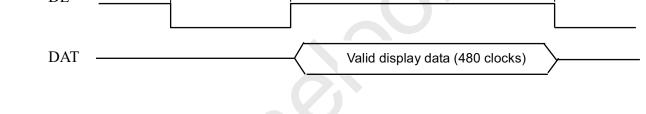
6.1 INPUT SIGNAL TIMING SPECIFICATIONS

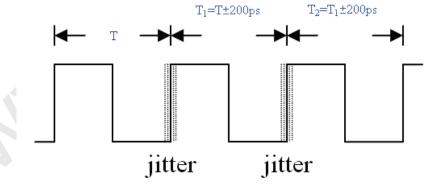
The input signal timing specifications are shown as the following table and timing diagram.

				_	_	_		
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz		
LVDS Receiver	Input cycle to cycle jitter	T _{rcl}	-	-	200	ps	(3)	
Clock	Spread spectrum modulation range	Fclkin_mo	F _{clkin} -2%	-	F _{clkin} +2%	MHz	(4)	
	Spread spectrum modulation frequency	F _{SSM}	ı	ı	200	KHz	(4)	
LVDS	Setup Time	Tlvsu	600	-	-	ps		
Receiver Data	Hold Time	Tlvhd	600	-	-	ps	(5)	
	Frame Rate	F _{r5}	97	100	103	Hz	(6)	
Vertical	Traine rate	F _{r6}	117	120	123	Hz	(0)	
Active Display	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tv b	
Term	Display	Tvd	1080	1080	1080	Th	_	
	Blank	Tvb	35	45	55	Th	_	
Horizontal Active	Total	Th	540	550	575	Tc	Th=Thd+T hb	
Display	Display	Thd	480	480	480	Тс	_	
Term	Blank	Thb	60	70	95	Тс	_	

Note (1) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

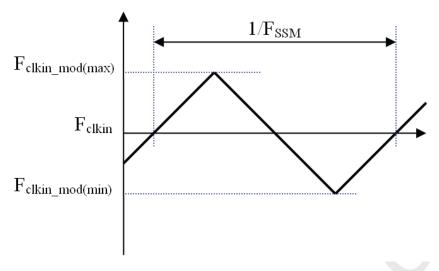

Note (2) Please make sure the range of pixel clock has follow the below equation:


Fclkin(max)
$$\geq$$
 Fr6 \times Tv \times Th
Fr5 \times Tv \times Th \geq Fclkin(min)

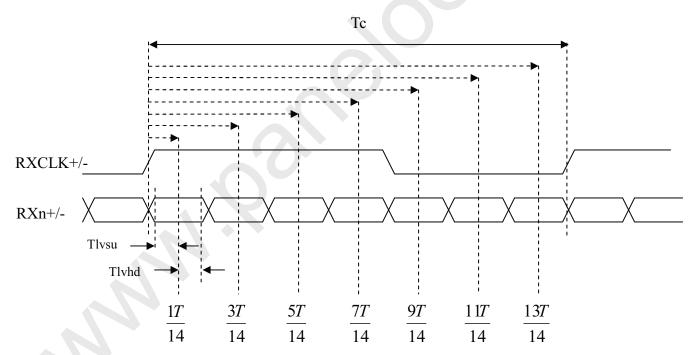


INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I T1 - TI



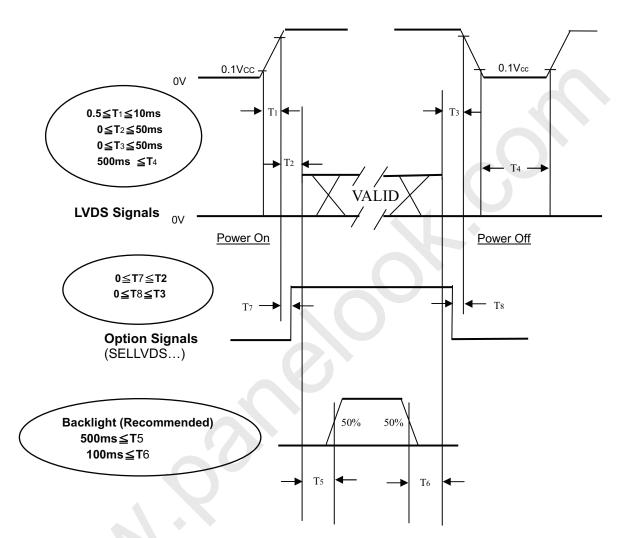
Global LCD Panel Exchange Center


PRODUCT SPECIFICATION

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM


Note (6) (ODSEL) = H/L or open for 100/120Hz frame rate. Please refer to 5.1 for detail information

6.2 POWER ON/OFF SEQUENCE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

Version 2.1 25 Date: 19 Jan 2011

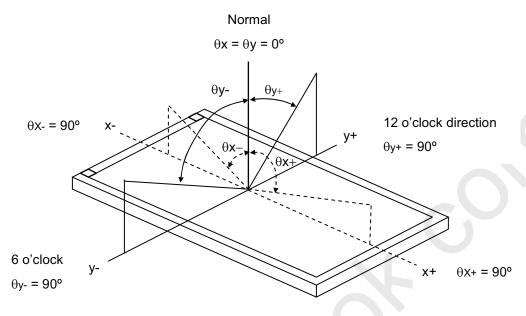
7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Та	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V _{CC}	12	V			
Input Signal	According to typical v	According to typical value in "3. ELECTRICAL CHARACTERIST				
Lamp Current(HV)	ال	14.5 ± 0.5	mA			
Oscillating Frequency (Balance Board)	F _W	47±2	KHz			
Frame rate		120	Hz			

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

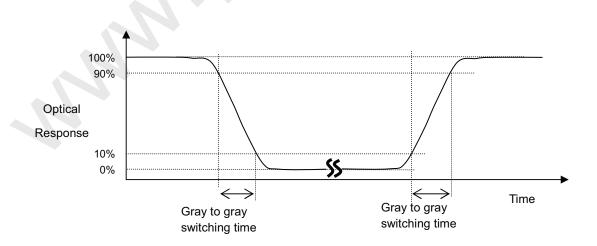

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note				
Contrast Ratio		CR		4600	6500	-	-	(2)				
Response Time		Gray to gray average		-	4.5	9	ms	(3)				
Center Lumina	nce of White	L _C		400	500	-	cd/	(4)				
White Variation	1	δW		-	-	1.3	-	(7)				
Cross Talk		CT	0 00 0 00	-	-	4.0	%	(5)				
	Red	Rx	$\theta_{x}=0^{\circ}, \ \theta_{Y}=0^{\circ}$		0.630		-					
	Reu	Ry	Viewing angle at	Typ. – _	0.323		-	(6)				
	Green	Gx	Normal direction		0.290		-					
Calar	Green	Gy	Nomial direction		0.597	Typ. +	-					
Color	Dive	Bx			0.148	0.03	-					
Chromaticity	Blue	Ву			0.049		-					
	\//bita	Wx			0.280		-					
	White	Wy			0.290		-					
	Color Gamut	CG		-	72	-	%	NTSC				
	Horizontal	θ_{x} +		80	88	-						
Viewing	HUHZUHAI	θ_{x} -	CB>20	80	88	-	Deg	(1)				
Angle	Vertical	θ _Y +	CR≥20	80	88	-		(1)				
	vertical	θ_{Y} -		80	88	-						

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Gray to Gray Switching Time:

Version 2.1 27 Date: 19 Jan 2011

The driving signal means the signal of gray level 0, 63, 127, 191, 255.

Gray to gray average time means the average switching time of gray level 0, 63, 127, 191, 255 to each other.

Note (4) Definition of Luminance of White (L_C , L_{AVE}):

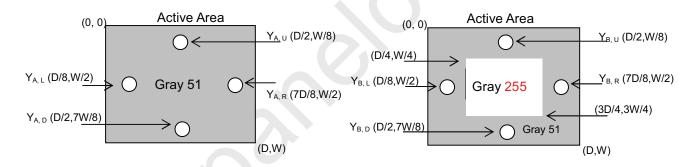
Measure the luminance of gray level 255 at center point and 5 points

$$L_{C} = L(5)$$

$$L_{AVE} = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5$$

where L (x) is corresponding to the luminance of the point X at the figure in Note (7).

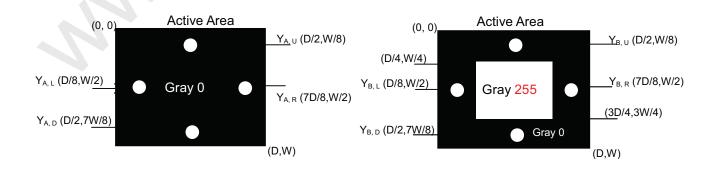
Note (5) Definition of Cross Talk (CT):


$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

(a)

Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)

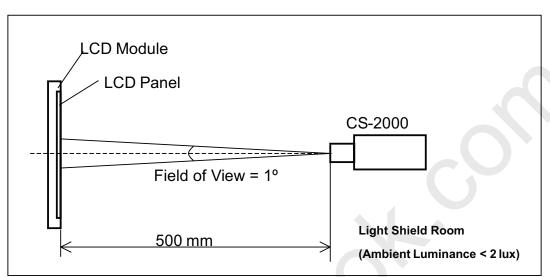

Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)

(b)

Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)

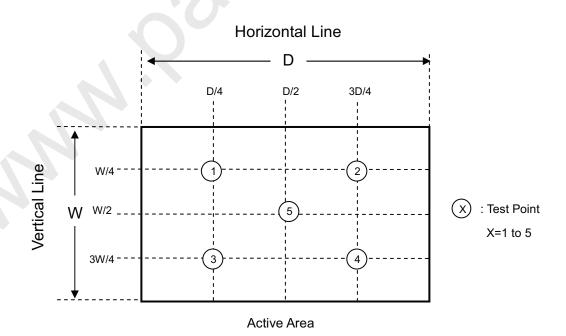
Version 2.1 28 Date: 19 Jan 2011



Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

Note (6) Measurement Setup:

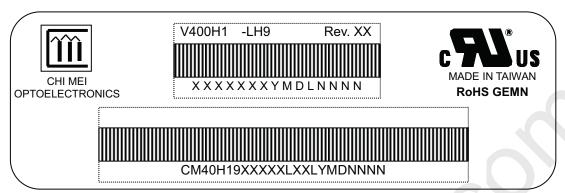

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Version 2.1 29 Date: 19 Jan 2011



8. DEFINITION OF LABELS

8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V400H1-LH9
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.
- (c) Production Locations / Factory ID: IN TAIWAN (GEMN) or IN CHINA (LEOO or CAPG or CANO)
- (d) CMO barcode definition:

Serial ID: XX-XX-XX-YMD-L-NNNN

Code	Meaning	Description	
XX	CMO internal use	-	
XX	Revision	Cover all the change	
X-XX	CMO internal use	-	
YMD	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4 Month: Jan. ~ Dec.=1, 2, 3, ~, 9, A, B, C Day: 1 st to 31 st =1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U	
L	Product line #	Line 1=1, Line 2=2, Line 3=3,	
NNNN	Serial number	Manufacturing sequence of product	

(e) Customer's barcode definition:

Serial ID: CM-40H19-X-X-X-XX-L-XX-L-YMD-NNNN

Code	Meaning	Description			
CM	Supplier code	CMO=CM			
40H19	Model number	V400H1-LH9=40H19			
Х	Revision code	C1=A, C2=B,C9=I			
X	Source driver IC code	Century=1, CLL=2, Demos=3, Epson=4, Fujitsu=5, Himax=6,			
		Hitachi=7, Hynix=8, LDI=9, Matsushita=A, NEC=B, Novatec=C,			
X	Gate driver IC code	driver IC code OKI=D, Philips=E, Renasas=F, Samsung=G, Sanyo=H, Sharp=I,			
		TI=J, Topro=K, Toshiba=L, Windbond=M			
XX	Cell location	Tainan, Taiwan=TN			
L	Cell line #	1~12=0~C			
XX	Module location	Tainan, Taiwan=TN			
L	Module line #	1~12=0~C			
YMD	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4			
		Month: Jan. ~ Dec.=1, 2, 3, ~, 9, A, B, C			
		Day: 1 st to 31 st =1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U			
NNNN	Serial number	By LCD supplier			

Version 2.1 30 Date: 19 Jan 2011

9. PACKAGING

9.1 PACKING SPECIFICATIONS

(1) 5 LCD TV modules / 1 Box

(2) Box dimensions: 1060(L)x378(W)x650(H)mm(3) Weight: Approx. 51.88Kg(5 modules per carton)

9.2 PACKING METHOD

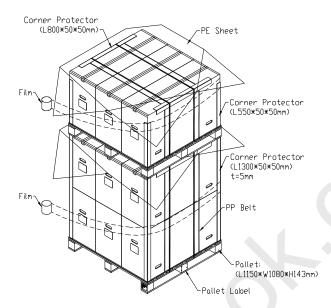

Figures 9-1 and 9-2 are the packing method

Figure.9-1 packing method

Sea / Land Transportation (40ft Container)

Air Transportation

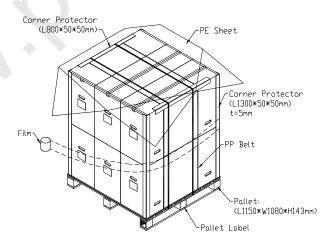


Figure. 9-2 Packing method

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

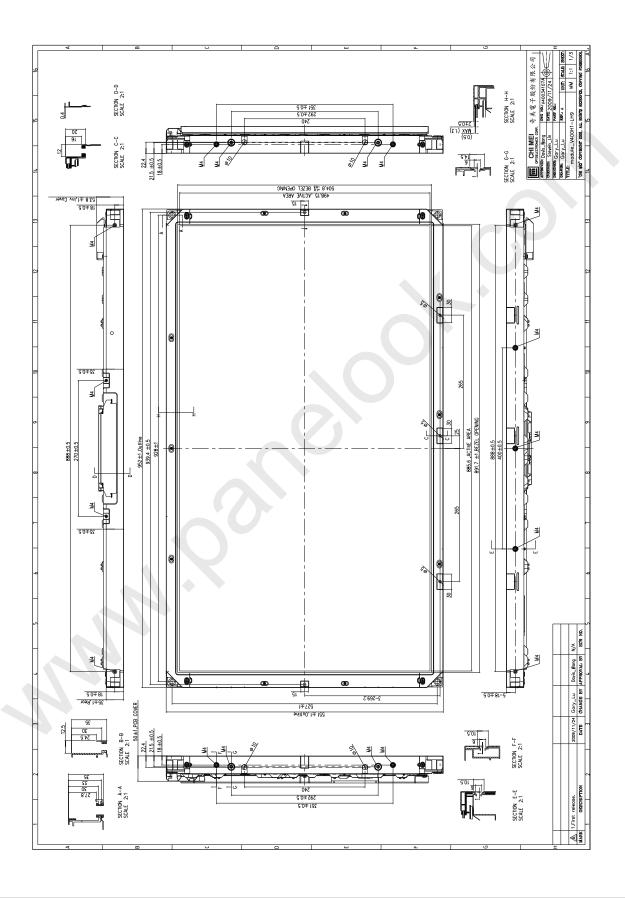
- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

10.2 SAFETY PRECAUTIONS

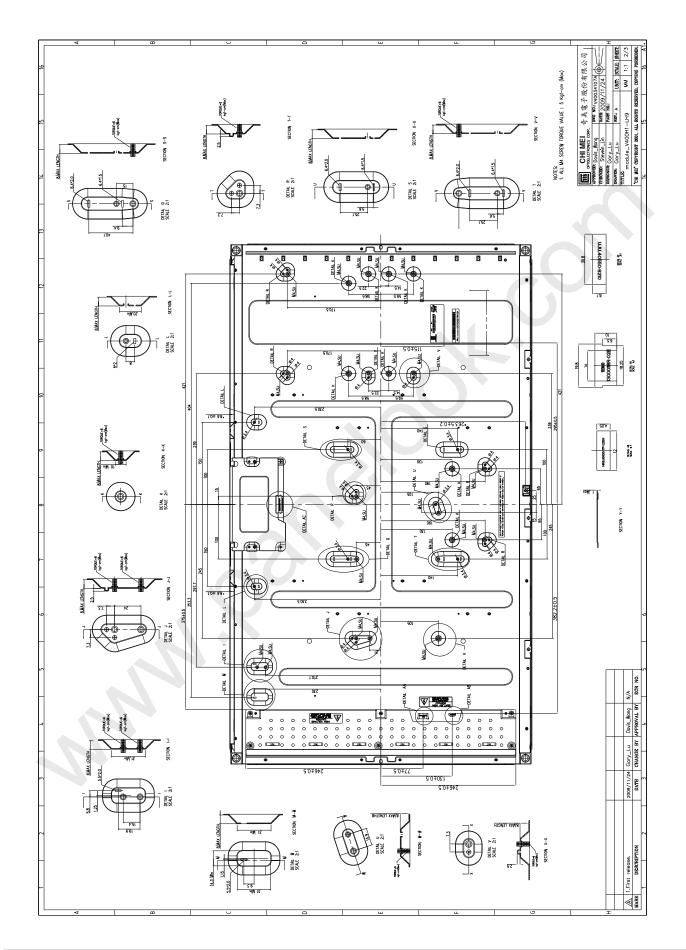
- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

10.3 SAFETY STANDARDS

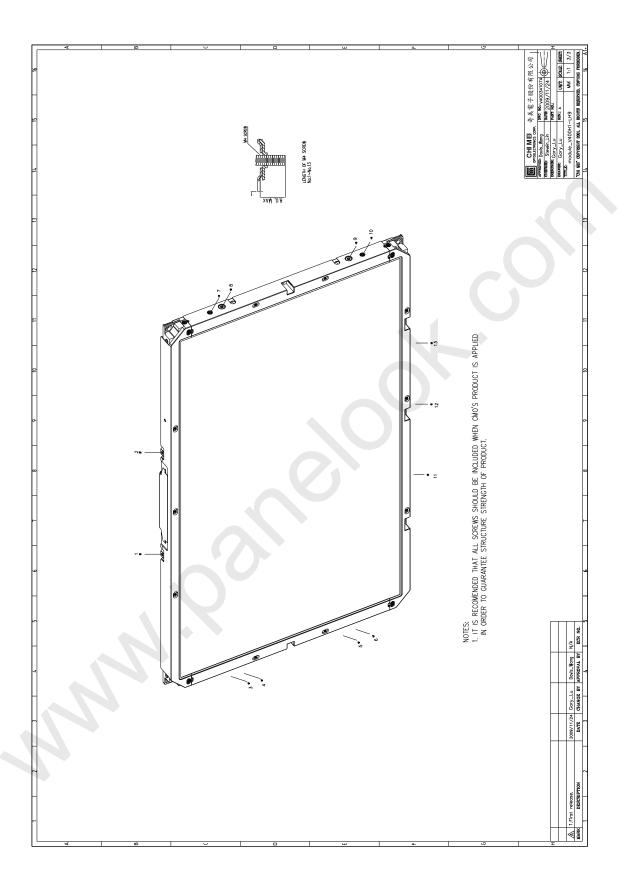
The LCD module should be certified with safety regulations as follows:


Regulatory	Item	Standard
	UL	UL 60950-1: 2007
Information Technology aguinment	cUL	CAN/CSA C22.2 No.60950-1-03: 2007
Information Technology equipment	СВ	IEC 60950 -1: 2005
		EN60950-1: 2009
	UL	UL 60065: 2007
Audio Vidoo Apparatus	cUL	CAN/CSA C22.2 No.60065-03: 2006
Audio/Video Apparatus	СВ	IEC 60065: 2005
		EN 60065: 2008

Version 2.1 33 Date: 19 Jan 2011


11. MECHANICAL CHARACTERISTICS

Version 2.1 34 Date: 19 Jan 2011



Version 2.1 35 Date: 19 Jan 2011

Version 2.1 36 Date: 19 Jan 2011