

TFT LCD Evaluation Specification

MODEL NO.: V400H1

Approved By	TVHD	
	CC Chung	

Reviewed By	QA Dept.	Product Development Div.
Noviewed By	Hsin-nan Chen	WT Lin
Dropared Py	LCD TV Marketing and	Product Management Div.
Prepared By	Josh Chi	Karen Liao

Issued Date: Jan. 15, 2010 Model No.: V400H1 - L10

- CONTENTS -

REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 PACKAGE STORAGE 2.3 ELECTRICAL ABSOLUTE RATINGS 2.3.1 TFT LCD MODULE 2.3.2 BACKLIGHT UNIT		5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACT 3.2.2 INVERTER CHARACTERISTICS 3.2.3 INVERTER INTERFACE CHARACTERISTICS	ERISTICS	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE		15
5. INTERFACE PIN CONNECTION 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 INVERTER UNIT 5.4 BLOCK DIAGRAM OF INTERFACE 5.5 LVDS INTERFACE 5.6 COLOR DATA INPUT ASSIGNMENT		16
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		25
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		29
8. DEFINITION OF LABELS 8.1 CMO MODULE LABEL		33
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		34
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS 10.3 SAFETY STANDARDS		36
11. MECHANICAL CHARACTERISTICS	:	37

Issued Date: Jan. 15, 2010 Model No.: V400H1 - L10 **Under Evaluation**

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 1.0	Jan. 15,'09	All	All	Evaluation Specification was first issued.
		,		

Issued Date: Jan. 15, 2010 Model No.: V400H1 - L10

Under Evaluation

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V400H1- L10 is a 40" TFT Liquid Crystal Display module with 12-CCFL Backlight unit and 2ch-LVDS interface. This module supports 1920 x 1080 FHD format and can display true 16.7M colors (8-bit colors). The Inverter module for backlight is built-in.

1.2 FEATURES

- -High brightness (450 nits)
- Ultra-high contrast ratio (6000:1)
- Faster response time (Gray to gray average 6.5ms)
- High color saturation NTSC 72%
- Ultra wide viewing angle: 176(H)/176(V) (CR>20) with Super MVA technology
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Color reproduction (nature color)
- Optimized response time for both 50/60Hz Frame rate
- Low color shift function
- RoHS compliance

1.3 APPLICATION

- TFT LCD TVs
- Multi-Media Display

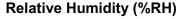
1.4 GENERAL SPECIFICATIONS

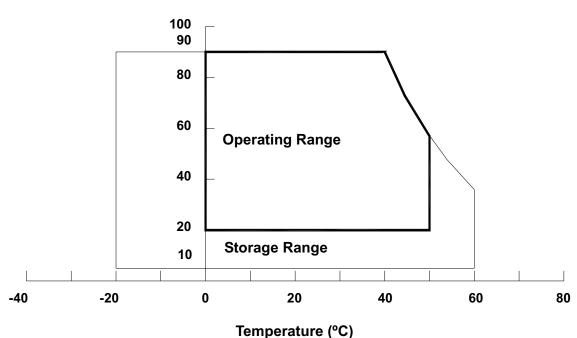
Item	Specification	Unit	Note
Active Area	885.6(H) x 498.15 (V) (40" diagonal)	mm	(1)
Bezel Opening Area	891.7 (H) x 504.8 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	
Pixel Number	1920 x R.G.B. x 1080	pixel	
Pixel Pitch (Sub Pixel)	0.15375 (H) x 0.46125 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Display Colors	16.7M	color	
Display Operation Mode	Transmissive mode / Normally black	-	
Surface Treatment	Anti-Glare coating (Haze 11%), Hard coating (3H)	-	

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	951	952	953	mm	(1)
Modulo Sizo	Vertical(V)	550	551	552	mm	(1)
Module Size	Depth(D)	34	35	36	mm	To Rear
	Depth(D)	52.8	53.8	54.8	mm	To Inv Cover
Weight		-	9310	-	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.


2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note	
item	Syllibol	Min. Max.		Offic	Note
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Issued Date: Jan. 15, 2010 Model No.: V400H1 - L10

Under Evaluation

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35 °C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Itam	Symbol	Va	lue	Unit	Note
Item	Symbol	Min.	Max.	Ullit	Note
Power Supply Voltage	Vcc	-0.3	13.5	V	(1)
Input Signal Voltage	VIN	-0.3	3.6	V	(1)

2.3.2 BACKLIGHT UNIT

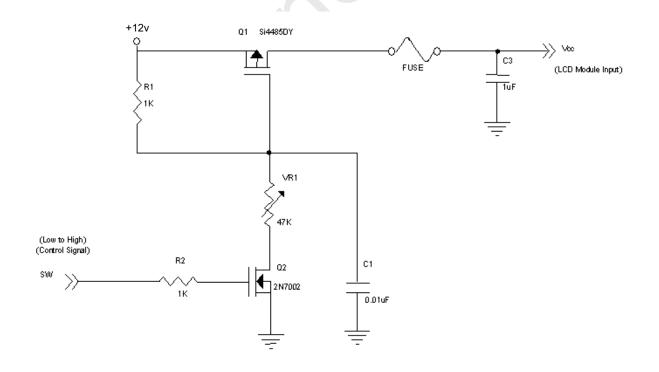
Min. Max.	Item	Svmbol	mbol Value		Unit	Note
	item	Symbol	Min.	Max.	Offic	Note
Lamp Voltage V_W $-$ 3000 V_{RMS}	Lamp Voltage	V_{W}		3000	V_{RMS}	

Note (1) No moisture condensation or freezing.

Issued Date: Jan. 15, 2010 Model No.: V400H1 - L10

Under Evaluation

3. ELECTRICAL CHARACTERISTICS

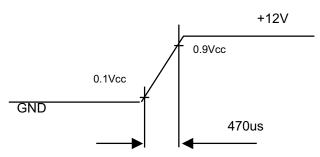

3.1 TFT LCD MODULE

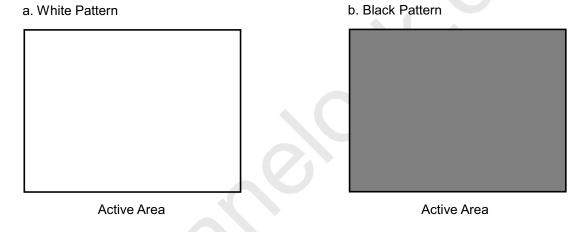
Ta = 25 ± 2 °C

Parameter		Symbol		Value	Unit	Note			
		Symbol	Min.	Тур.	Max.	Offic	Note		
Power Su	pply Voltage		V _{cc}	10.8	12	13.2	Vrms	(1)	
Rush Cur	rent		I _{RUSH}	-	-	2.4	Α	(2)	
		White Pattern		-	0.8	-	Α		
Power Su	pply Current	Black Pattern	I _{cc}	-	0.4	-	Α	(3)	
,		Horizontal Stripe		-	1.0	1.3	Α		
Differential Inpu Threshold Volta			V_{LVTH}	+100	-	-	mV	>	
LVDS Interface	Differential Input Low Threshold Voltage		V _{LVTL}	-	-	-100	mV	(4)	
	Common Input Voltage		V _{CM}	1.0	1.2	1.4	V	(4)	
	Differential input voltage		V _{ID}	200		600	ohm		
	Terminating F	Resistor	R _T	-	100				
CMOS	Input High Th	reshold Voltage	V_{IH}	2.7	-	3.3	V	_	
interface	Input Low Thi	reshold Voltage	V _{IL}	0	-//	0.7	V		

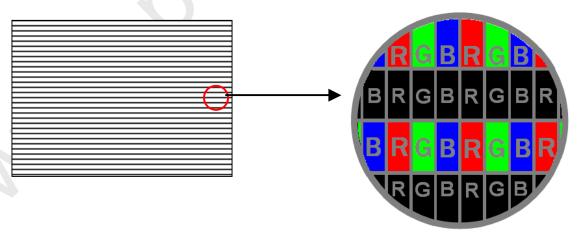
Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:

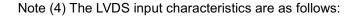


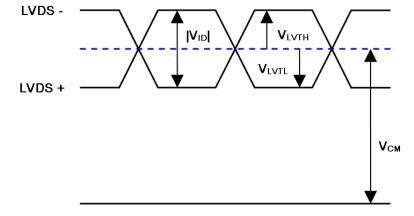

Issued Date: Jan. 15, 2010 Model No.: V400H1 - L10

Under Evaluation


Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 12 V, Ta = 25 \pm 2 °C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.




c. Horizontal Pattern

Issued Date: Jan. 15, 2010 Model No.: V400H1 - L10

Under Evaluation

Issued Date: Jan. 15, 2010 Model No.: V400H1 - L10

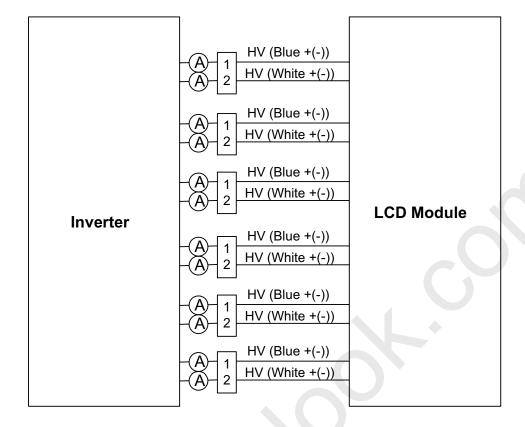
Under Evaluation

3.2 BACKLIGHT UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note	
Parameter	Symbol	Min.	Тур.	Max.	Offic	Note
Lamp Input Voltage	V_L	-	TBD	-	V_{RMS}	
Lamp Current	ΙL	TBD	8.5	TBD	mA_{RMS}	(1)
Lamp Turn On Voltage	Vs	ı	-	TBD	V_{RMS}	Ta = 0 °C (2)
Lamp rum On voitage	VS	-	-	TBD	V_{RMS}	Ta = 25 °C (2)
Operating Frequency	F_L	40	-	70	KHz	(3)
Lamp Life Time	L_BL	50,000	-	-	Hrs	(4)

3.2.2 INVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)


		(- /			
Parameter	Symbol		Value	Unit	Note	
Farameter	Symbol	Min.	Тур.	Max.	Offic	Note
Total Power Consumption	P ₂₅₅	-	140	TBD	W	(5), (6), I _L =TBDmA
Power Supply Voltage	V_{BL}	22.8	24	25.2	V_{DC}	
Power Supply Current	I _{BL}	-	5.83	TBD	Α	Non Dimming
Input Ripple Noise	-	-	-	912	mV _{P-P}	V _{BL} =22.8V
Oscillating Frequency	F _W	TBD	TBD	TBD	kHz	(3)
Dimming frequency	F _B	150	160	170	Hz	
Minimum Duty Ratio	D _{MIN}	-	20	-	%	

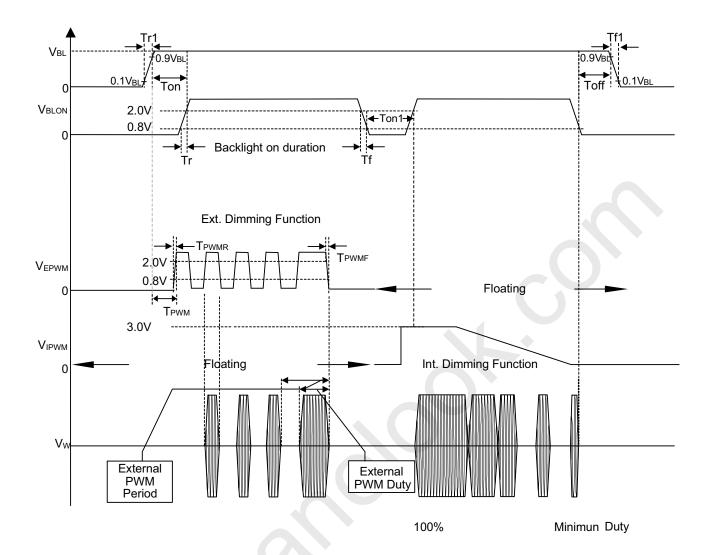
- Note (1) Lamp current is measured by utilizing AC current probe and its value is average by measuring master and slave board.
- Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = 25 $\pm 2^{\circ}$ C and I_L = TBD~ TBDmArms.
- Note (5) The power supply capacity should be higher than the total inverter power consumption P_{BL}. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.
- Note (6) The measurement condition of Max. value is based on 40" backlight unit under input voltage 24V, average lamp current TBD mA and lighting 30 minutes later.

Issued Date: Jan. 15, 2010 Model No.: V400H1 - L10

Under Evaluation

3.2.3 INVERTER INTERFACE CHARACTERISTICS

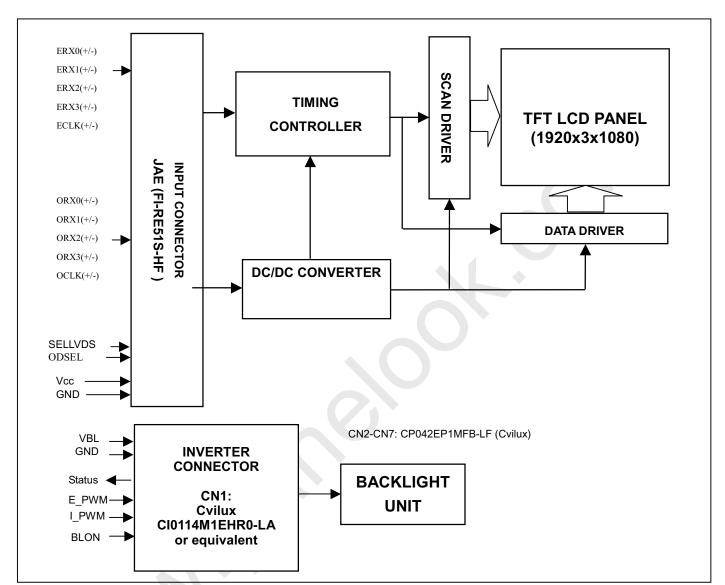
Daramatar		0	Test		Value			Noto	
Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
On/Off Control Voltage	ON	V	_	2.0	_	5.0	V		
On/Off Control Voltage	OFF	V_{BLON}	_	0	_	8.0	V		
Internal PWM Control	MAX	V_{IPWM}		2.85	3.0	3.15	V	Maximum duty ratio	
Voltage	MIN	V IPWM			0		V	Minimum duty ratio	
External PWM Control	H	V_{EPWM}	_	2.0	_	5.0	V	Duty on	
Voltage	LO	▼ EPWM		0	_	0.8	V	Duty off	
Status Signal	HI	Status	_	3.0	3.3	3.6	V	Normal	
Status Signal	LO	Status		0		0.8	V	Abnormal	
VBL Rising Time		Tr1	ı	30			ms	10%-90%V _{BL}	
VBL Falling Time		Tf1		30			ms	10 /0-90 /0 VBL	
Control Signal Rising Tin	ne	Tr	_			100	ms		
Control Signal Falling Tir	ne	Tf	_			100	ms		
PWM Signal Rising Time)	T_{PWMR}	_			50	us		
PWM Signal Falling Time	Э	T_{PWMF}		_	_	50	us		
Input impedance		R _{IN}		1			ΜΩ		
PWM Delay Time	T _{PWM}		100			ms			
BLON Delay Time		T _{on}	_	300		_	ms		
DEON Delay Tillle	T _{on1}	-	300	1		ms			
BLON Off Time		T _{off}	-	300		_	ms		


- Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM signal during backlight turn on period.
- Note (2) The power sequence and control signal timing are shown in the following figure. For a certain reason, the inverter has a possibility to be damaged with wrong power sequence and control signal timing.
- Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: VBL \rightarrow PWM signal \rightarrow BLON Turn OFF sequence: BLOFF → PWM signal → VBL

Issued Date: Jan. 15, 2010 Model No.: V400H1 - L10

Under Evaluation



4. BLOCK DIAGRAM

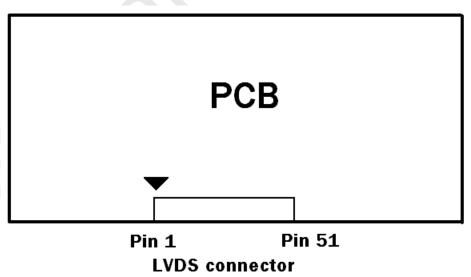
4.1 TFT LCD MODULE

5. INTERFACE PIN CONNECTION

5.1 TFT LCD MODULE

CNF1 Connector Pin Assignment

Pin	Name	Description	Note						
1 \	/CC	+12V power supply							
2 \	/CC	+12V power supply							
3 \	/CC	+12V power supply							
4 V	/CC	+12V power supply							
5 V	/CC	+12V power supply							
6 0	GND	Ground							
7 0	GND	Ground							
8 0	GND	Ground							
9 0	GND	Ground							
10 C	DRX0-	Odd pixel Negative LVDS differential data input. Channel 0							
11 (DRX0+	Odd pixel Positive LVDS differential data input. Channel 0							
12 (DRX1-	Odd pixel Negative LVDS differential data input. Channel 1	(4)						
13	DRX1+	Odd pixel Positive LVDS differential data input. Channel 1	(1)						
14	DRX2-	Odd pixel Negative LVDS differential data input. Channel 2							
15 C	DRX2+	Odd pixel Positive LVDS differential data input. Channel 2							
16	GND	Ground							
17 (OCLK-	Odd pixel Negative LVDS differential clock input	(4)						
18 C	OCLK+	Odd pixel Positive LVDS differential clock input.	(1)						
19 (GND	Ground							
20 (DRX3-	Odd pixel Negative LVDS differential data input. Channel 3	(4)						
21 (DRX3+	Odd pixel Positive LVDS differential data input. Channel 3	(1)						
22 N	N.C.	No Connection	(0)						
23 N	N.C.	No Connection	(3)						
24	GND	Ground							
25 E	ERX0-	Even pixel Negative LVDS differential data input. Channel 0							
26 E	RX0+	Even pixel Positive LVDS differential data input. Channel 0							
27 E	RX1-	Even pixel Negative LVDS differential data input. Channel 1	(4)						
28 E	ERX1+	Even pixel Positive LVDS differential data input. Channel 1	(1)						
29 E	ERX2-	Even pixel Negative LVDS differential data input. Channel 2							
30 E	ERX2+	Even pixel Positive LVDS differential data input. Channel 2							
31	GND	Ground							
32 E	ECLK-	Even pixel Negative LVDS differential clock input.	(4)						
33 E	ECLK+	Even pixel Positive LVDS differential clock input.	(1)						

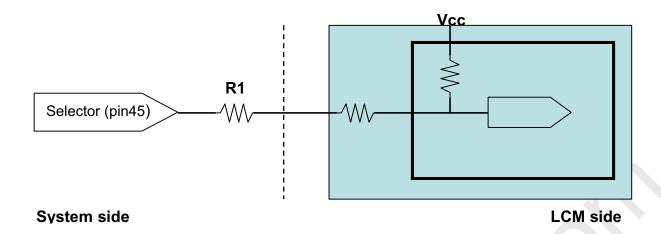


34	GND	Ground				
35	ERX3-	Even pixel Negative LVDS differential data input. Channel 3	(1)			
36	ERX3+	Even pixel Positive LVDS differential data input. Channel 3	(1)			
37	N.C.	No Connection	(2)			
38	N.C.	No Connection	(3)			
39	GND	Ground				
40	N.C.	No Connection				
41	N.C.	No Connection				
42	N.C.	No Connection	(3)			
43	N.C.	No Connection				
44	N.C.	No Connection				
45	LVDS_SEL	High(3.3V) or open for VESA, Low (GND) for JEIDA	(4)			
46	N.C.	No Connection				
47	N.C.	No Connection				
48	N.C.	No Connection	(2)			
49	N.C.	No Connection	(3)			
50	N.C.	No Connection				
51	N.C.	No Connection				

Note (1) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel

Note (2) LVDS connector pin order defined as follows

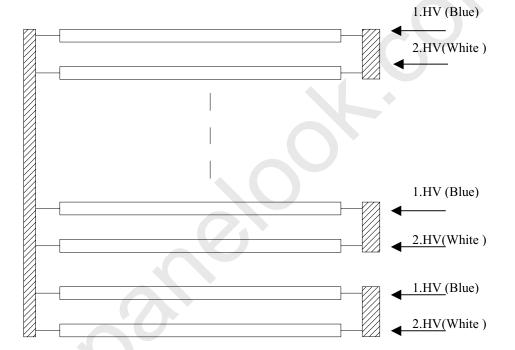
Note (3) Reserved for internal use. Please leave it open.


Note (4) Low: JEIDA LVDS Format (Connect to GND), High or open: VESA Format. (Connect to +3.3V)

Note (5) LVDS signal pin connected to the LCM side has the following diagram.

R1 in the system side should be less than 1K Ohm. (R1 < 1K Ohm)

System side R1 < 1K


5.2 BACKLIGHT UNIT

The pin configuration for the housing and the leader wire is shown in the table below.

CN2-CN7: CP042EP1MFB-LF (Cvilux)

Pin	Name	Description	Wire Color
1	HV	High Voltage	Blue
2	HV	High Voltage	White

Note (1) The backlight interface housing for high voltage side is a model CP042EP1MFB-LF, manufactured by Cvilux. The mating header on inverter part number is CP042EP1MFB-LF (Cvilux)

5.3 INVERTER UNIT

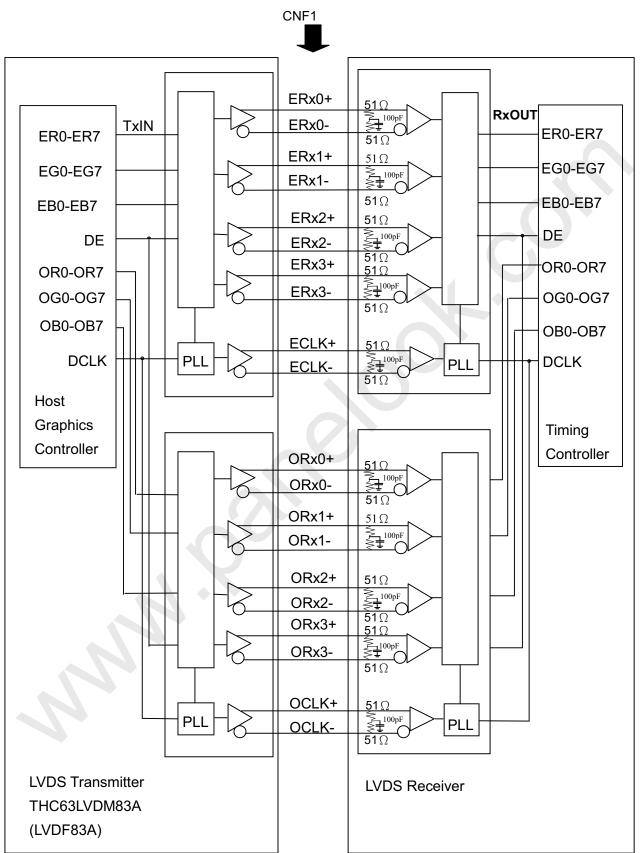
CN1: CI0114M1ER0-LA (Cvilux) or equivalent

Pin №	Symbol	Feature						
1								
2								
3	VBL	+24V						
4								
5								
6								
7								
8	GND	GND						
9								
10								
11	CTATUC	Normal (3.3V)						
11	STATUS	Abnormal(GND)						
12	E_PWM	External PWM Control Signal						
13	I_PWM	Internal PWM Control Signal						
14	BLON	BL ON/OFF						

Note (1) Pin 12: External PWM control (use pin 12): Pin 13 must open.

Note (2) Pin 13: Internal PWM control (use pin 13): Pin 12 must open.

Note (3) Pin 12 and Pin 13 can't open in the same period.

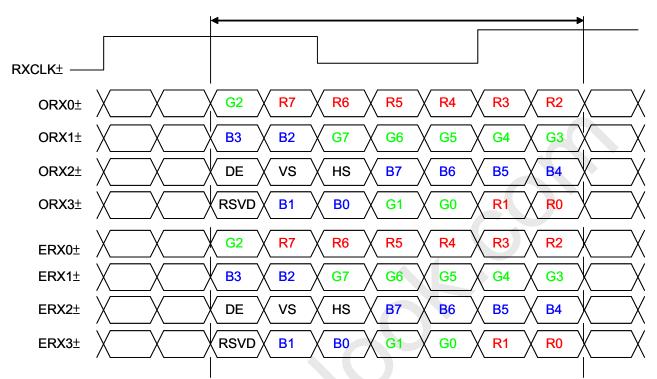

CN2~CN7: CP042EP1MFB-LF (Cvilux)

	Pin №	Symbol	Description				
	1	CCFL HOT	CCFL high voltage				
ĺ	2	CCFL HOT	CCFL high voltage				

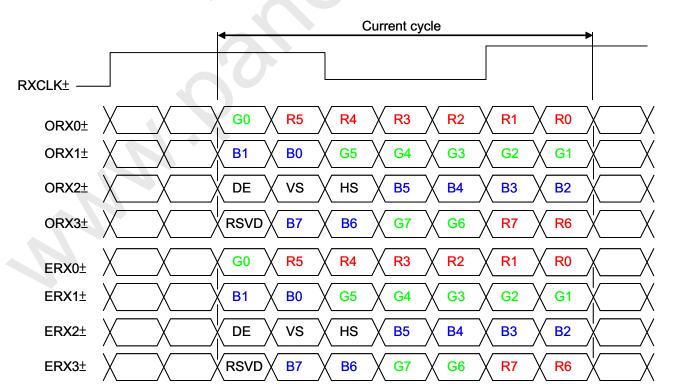
5.4 BLOCK DIAGRAM OF INTERFACE

ER0~ER7: Even pixel R data EG0~EG7: Even pixel G data EB0~EB7: Even pixel B data OR0~OR7: Odd pixel R data OG0~OG7: Odd pixel G data OB0~OB7: Odd pixel B data DE : Data enable signal **DCLK** : Data clock signal

Note (1) The system must have the transmitter to drive the module.


Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

Note (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.


5.5 LVDS INTERFACE

JEDIA Format: SELLVDS=L

www.panelook.com

VESA Format: SELLVDS=H or Open

R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal DCLK: Data clock signal

Notes (1) RSVD (reserved) pins on the transmitter shall be "H" or "L".

5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

												Da	ata	Sigr	nal										
	Color				Re	ed	1	ı	1		1		G	reer	1		1			1	Bli	ue	ı		1
	Color	R7	R6	R5	R4	R3	R2	R1	R0	G 7	G 6	G 5	G 4	G3	G2	G1	G0	B 7	В6	В5	В4	ВЗ	В2	B 1	B 0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:			:		:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	÷		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
rteu	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:		:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

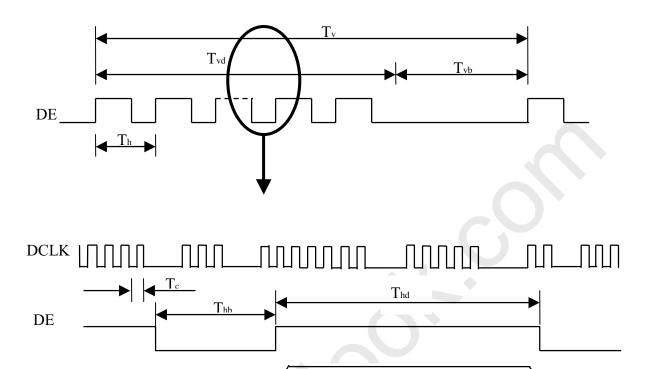
The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	1/Tc	(60)	74.25	(80)	MHZ	-
	Input cycle to cycle jitter	Trcl	-	-	200	ps	(3)
LVDS Receiver Clock	Spread spectrum modulation range	Felkin_mod	F _{clkin} -2%	_	F _{clkin} +2%	MHz	(4)
	Spread spectrum modulation frequency	F _{SSM}		1	200	KHz	(4)
11/D0 D : D (Setup Time	Tlvsu	600	<u>-</u>	-	ps	-
LVDS Receiver Data	Hold Time	Tlvhd	600	-	-	ps	(5)
		Fr6	57	60	63	Hz	(6)
	Frame Rate	Fr5	47	50	53		
Vertical Active Display Term	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tvb
	Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	35	45	55	Th	-
	Total	Th	1050	1100	1150	Тс	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	960	960	960	Тс	-
	Blank	Thb	90	140	190	Тс	-

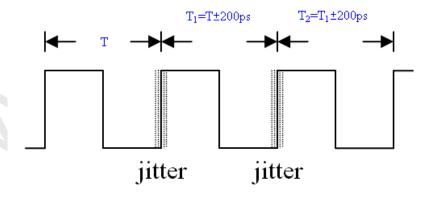
Note (1) Please make sure the range of pixel clock has follow the below equation:

 $Fclkin(max) \ge Fr6 \times Tv \times Th$

 $Fr5 \times Tv \times Th \ge Fclkin(min)$


Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below:

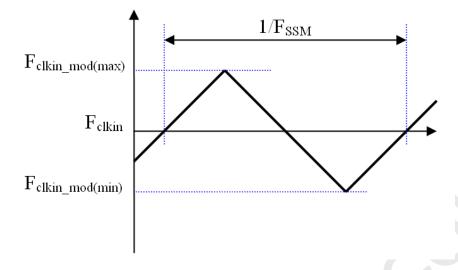
DAT


Issued Date: Jan. 15, 2010 Model No.: V400H1 - L10 **Under Evaluation**

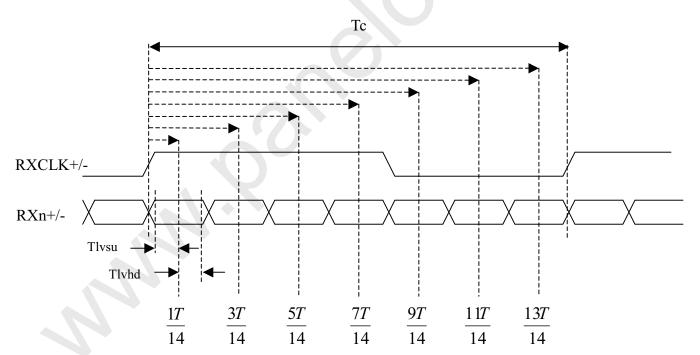
INPUT SIGNAL TIMING DIAGRAM

Valid display data (960 clocks)

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I T1 – TI



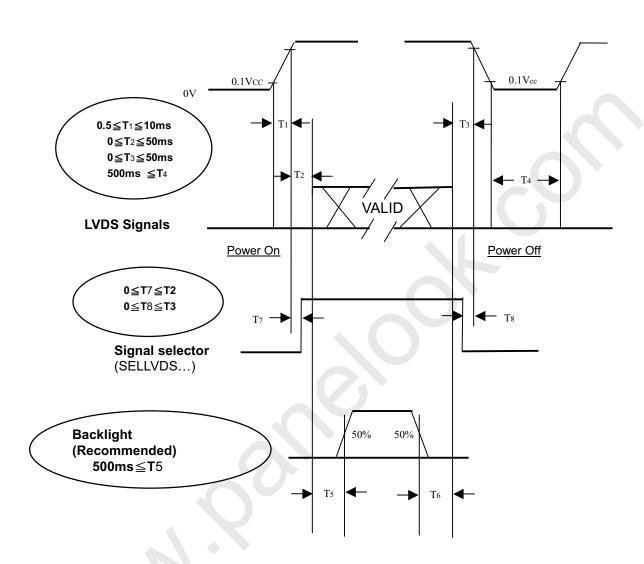
Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.



Issued Date: Jan. 15, 2010 Model No.: V400H1 - L10 **Under Evaluation**

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM



Note (6) (ODSEL) = H/L or open for 50/60Hz frame rate. Please refer to 5.1 for detail information

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

Note:

- (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

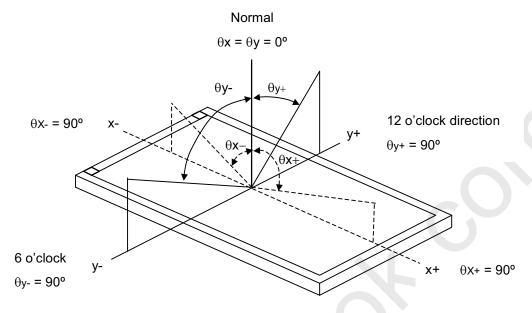
7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	°C		
Ambient Humidity	Ha	50±10	%RH		
Supply Voltage	V _{CC}	12	V		
Input Signal	According to typical v	alue in "3. ELECTRICAL	CHARACTERISTICS"		
Lamp Current(HV)	IL	TBD	mA		
Oscillating Frequency (Inverter)	F _W	TBD	KHz		
Frame rate		60	Hz		

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

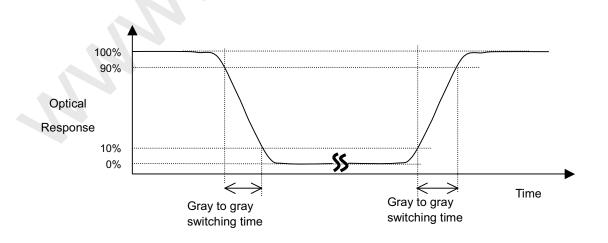

Ite	Item		Condition	Min.	Typ.	Max.	Unit	Note
Contrast Ratio	ast Ratio CR			4000	6000	•	-	(2)
Response Tim	е	Gray to gray average		-	6.5	12	ms	(3)
Center Lumina	nce of White	L _C		350	450	•	cd/	(4)
White Variation	า	δW		-	-	1.3	-	(7)
Cross Talk		CT	0 -00 0 -00	-	-	4.0	%	(5)
	Red	Rx	$\theta_x = 0^\circ$, $\theta_Y = 0^\circ$		0.630		-	(6)
	Neu	Ry	Viewing angle at	Typ. – 0.03	0.323		-	
	Green	Gx	Normal direction		0.290		-	
Color		Gy	Normal difection		0.597	Typ. +	-	
Chromaticity	Blue	Bx			0.148	0.03	-	
Chilomaticity		Ву			0.049		-	
	White	Wx			0.280		-	
	vviille	Wy			0.290		-	
	Color Gamut	CG		-	72	-	%	NTSC
	Horizontal	θ_{x} +		80	88	-		
Viewing	TIONZONIAI	θ_{x} -	OD> 20	80	88	-	Deg	(1)
Angle	Vertical	θ_{Y} +	CR≥20	80	88	-		(1)
	vertical	θ_{Y} -		80	88	-		

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Gray to Gray Switching Time:

Issued Date: Jan. 15, 2010 Model No.: V400H1 - L10 **Under Evaluation**

The driving signal means the signal of gray level 0, 63, 127, 191, 255.

Gray to gray average time means the average switching time of gray level 0, 63, 127, 191, 255 to each other.

Note (4) Definition of Luminance of White (L_C, L_{AVE}):

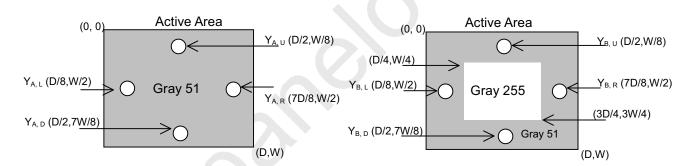
Measure the luminance of gray level 255 at center point and 5 points

$$L_{C} = L(5)$$

$$L_{AVE} = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5$$

where L (x) is corresponding to the luminance of the point X at the figure in Note (7)

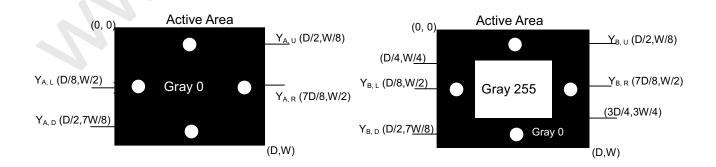
Note (5) Definition of Cross Talk (CT):


$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

Where:

(a)

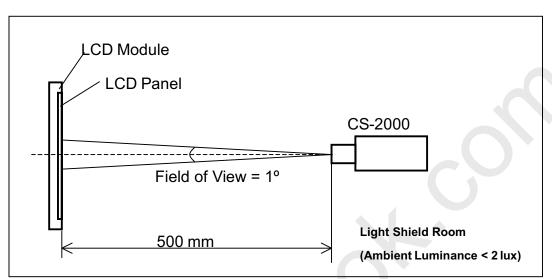
Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)


Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)

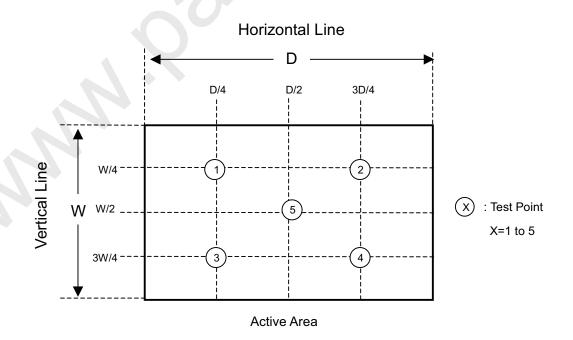
(b)

Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)



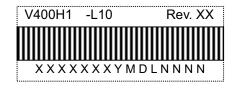
Note (6) Measurement Setup:


The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$



8. DEFINITION OF LABELS

8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V400H1-L10
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.
- (c) Production Locations / Factory ID: IN TAIWAN (GEMN) or IN CHINA (LEOO or CAPG or CANO)
- (d) CMO barcode definition:

Serial ID: XX-XX-XX-YMD-L-NNNN

Code	Meaning	Description
XX	CMO internal use	-
XX	Revision	Cover all the change
X-XX	CMO internal use	-
YMD	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4 Month: Jan. ~ Dec.=1, 2, 3, ~, 9, A, B, C Day: 1 st to 31 st =1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

9. PACKAGING

9.1 PACKING SPECIFICATIONS

(1) 5 LCD TV modules / 1 Box

(2) Box dimensions: 1060(L)x378(W)x650(H)mm

(3) Weight: Approx. 51.88Kg(5 modules per carton)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

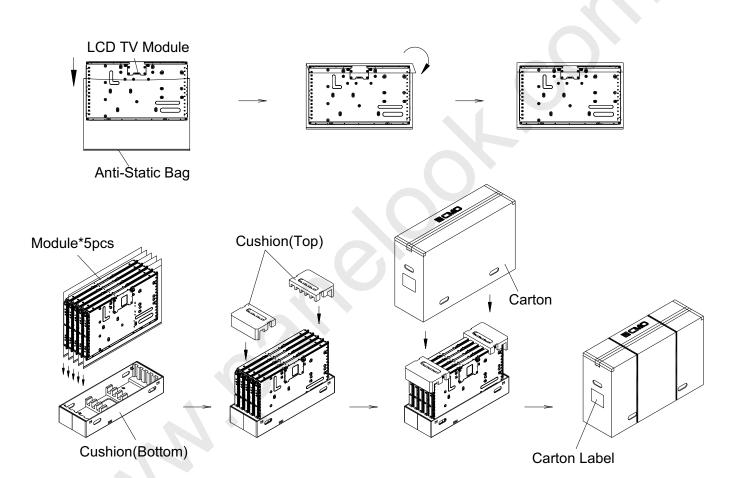
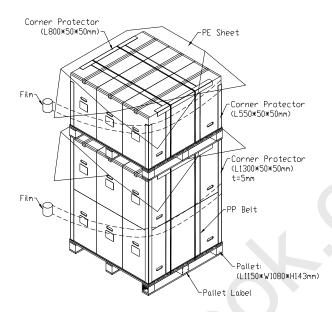



Figure.9-1 packing method

Issued Date: Jan. 15, 2010 Model No.: V400H1 - L10 **Under Evaluation**

Sea / Land Transportation (40ft Container)

Air Transportation

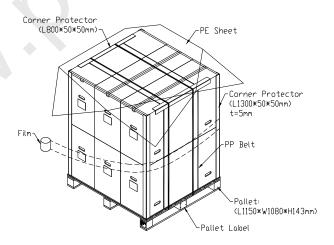


Figure. 9-2 Packing method

10. PRECAUTIONS

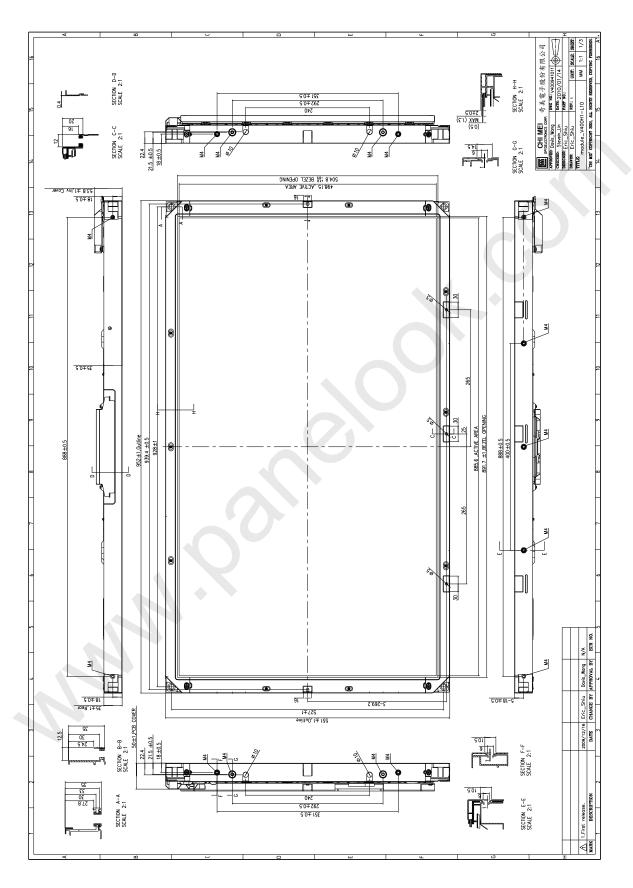
10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

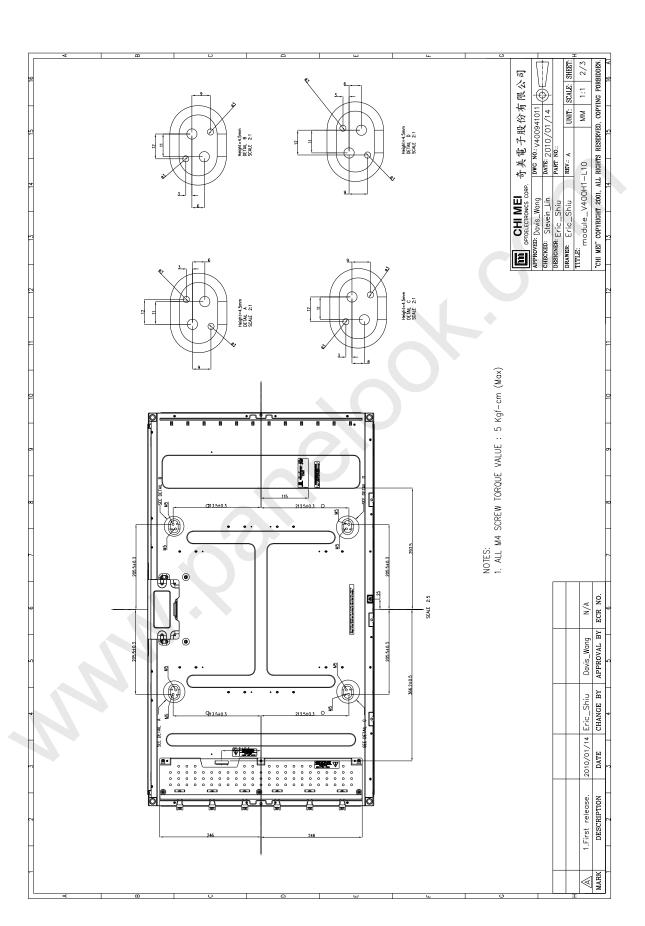
10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

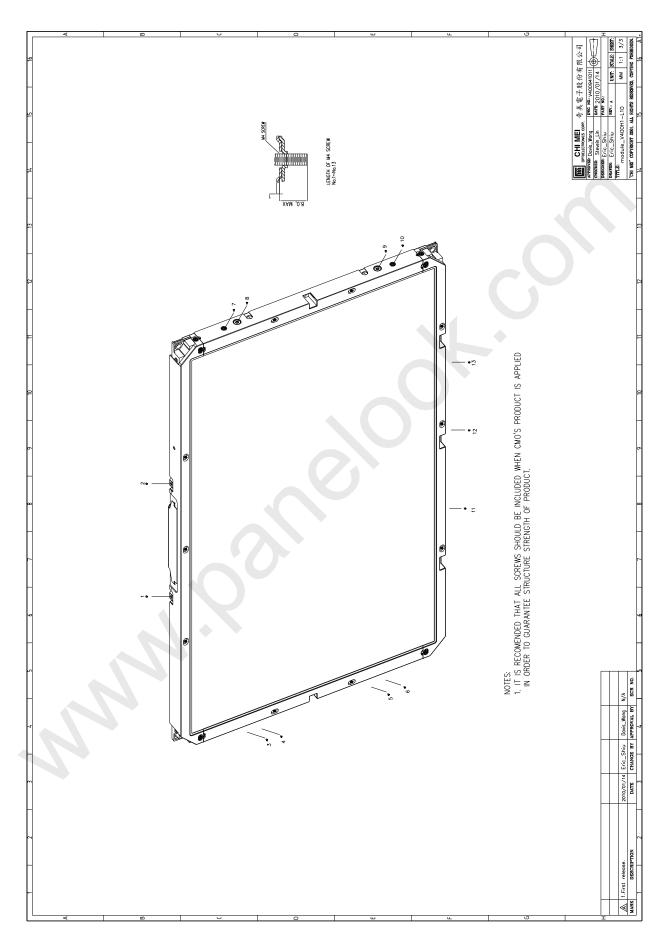
10.3 SAFETY STANDARDS


The LCD module should be certified with safety regulations as follows:

Regulatory	Item	Standard
	UL	UL 60950-1: 2007
Information Technology equipment	cUL	CAN/CSA C22.2 No.60950-1-03: 2007
Information reciniology equipment	CB	IEC 60950 -1: 2005
	СВ	EN60950-1: 2009
	UL	UL 60065: 2007
Audio/Video Apparatus	cUL	CAN/CSA C22.2 No.60065-03: 2006
Audio/Video Apparatus	CB	IEC 60065: 2005
	СВ	EN 60065: 2008



11. MECHANICAL CHARACTERISTICS



Issued Date: Jan. 15, 2010 Model No.: V400H1 - L10 **Under Evaluation**

Issued Date: Jan. 15, 2010 Model No.: V400H1 - L10 **Under Evaluation**

39

The information described in this technical specification is tentative and it is possible to be changed without prior notice. Version 1.0 Please contact CMO 's representative while your product design is based on this specification.