

Issued Date: Oct. 26, 2009 Model No.: V370H3-PH3 Approval

TFT LCD Approval Specification MODEL NO.:V370H3-PH3

Customer:
Approved by:
Note:

Approved Dv	TV Head Division				
Approved By	Chao-Chun Chung				
Reviewed By	QA Dept.	Product Development Div.			
Troviowed by	Hsin-Nan Chen	WT Lin			
Prepared By	LCD TV Marketing and	Product Management Div.			
	Josh Chi Chloe Chen				

Approval

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 CHARACTERISTICS 1.3 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL) 2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD OPEN CELL	 7
4. BLOCK DIAGRAM 4.1 TFT LCD OPEN CELL	9
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 LVDS INTERFACE 5.3COLOR DATA INPUT ASSIGNMENT	10
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	 15
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 19
8. DEFINITION OF LABELS 8.1 OPEN CELL LABEL 8.2 CARTON LABEL	 22
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD	 23
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS	 25
11. MECHANICAL DRAWING	 26

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 2.0	Nov.16, 2009	All	All	Approval Specification was first issued.

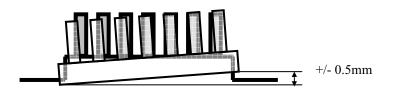
Approval

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V370H3-PH3 is a 37" TFT Liquid Crystal Display module. This module supports 1920* 1080 FHDTV format and can display 1.073G colors (8bit+Hi-FRC/color).

1.2 CHARACTERISTICS


CHARACTERISTICS ITEMS	SPECIFICATIONS
Screen Diagonal [in]	37
Pixels [lines]	1920*1080
Active Area [mm]	819.36 (H) x 460.89 (V) (37.01" diagonal)
Sub -Pixel Pitch [mm]	0.14225 (H) x 0.42675 (V)
Pixel Arrangement	RGB vertical stripe
Weight [g]	TYP. 1648
Physical Size [mm]	Reference 2D Drawing
Display Mode	Transmissive mode / Normally black
Contrast Ratio	4500:1 Typ. (Typical value measured at CMO's module)
Glass thickness (Array/CF) [mm]	0.7 / 0.7
Viewing Angle (CR≥20)	+88/-88(H),+88/-88(V) Typ. (Typical value measured at CMO's module)
Color Chromaticity	R=(0.643, 0.324) G=(0.292, 0.602) B=(0.147, 0.058) W=(0.280, 0.290) (Typical value measured at CMO's module)
Cell Transparency [%]	4.2%Typ. (Typical value measured at CMO's module)
Polarizer (CF side)	Super Wide View Glare & Hard coating (3H) 834.2(W) x 475.8(H)
Polarizer (TFT side)	Super Wide View, 834.2(W) x 475.8(H)

1.3 MECHANICAL SPECIFICATIONS

Item	Min. Typ. Ma		Max.	Unit	Note
Weight	-	1630	-	g	-
I/F connector mounting position	The mounting in the screen center		(2)		

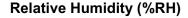
Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

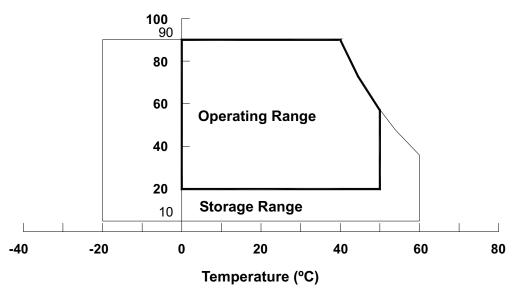
(2) Connector mounting position

4

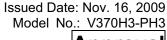
Issued Date: Nov. 16, 2009 Model No.: V370H3-PH3

Approval


2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMO MODULE V370H3-LH1)

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Storage Temperature	TST	-20	+60	°C	(1)	
Operating Ambient Temperature	TOP	0	50	°C	(1), (2)	
Shock (Non-Operating)	SNOP	-	30	G	(3), (5)	
Vibration (Non-Operating)	VNOP	-	1.0	G	(4), (5)	


Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

Storage Condition: With shipping package.

Storage temperature range : 25±5 $^{\circ}$ C Storage humidity range: 50±10%RH

Shelf life: a month

2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

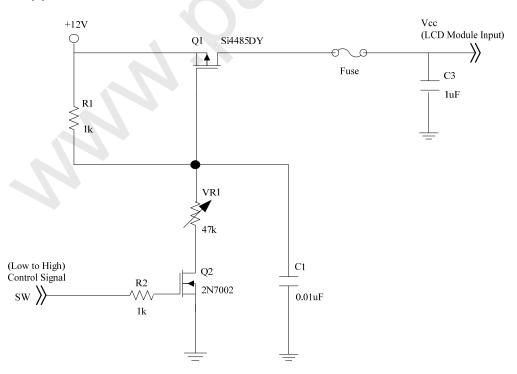
2.3.1 ELECTRICAL ABSOLUTE RATINGS

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Power Supply Voltage	VCC	-0.3	13.5	V	(1)
Logic Input Voltage	VIN	-0.3	3.6	V	(1)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Approval

3. ELECTRICAL CHARACTERISTICS

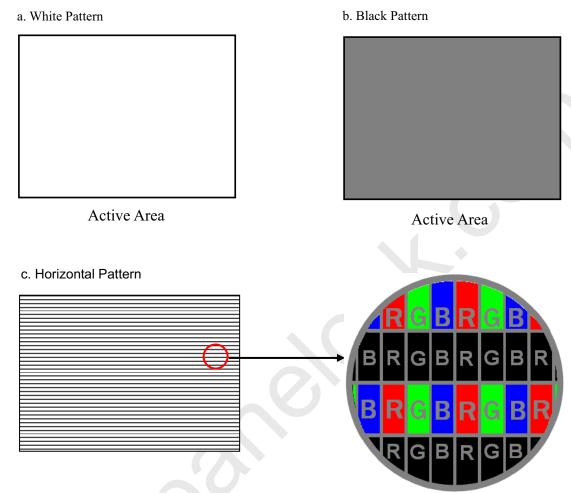

3.1 TFT LCD MODULE

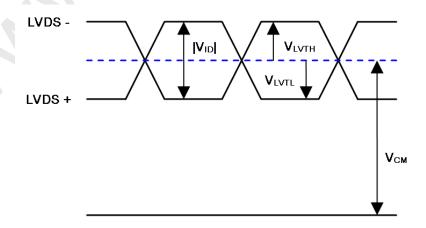
Ta = 25 ± 2 °C

Parameter		Symbol	Value			Unit	Note	
	Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage			V _{CC}	10.8	12	13.2	V	(1)
Rush Curr	ent		I _{RUSH}	-	-	5.08	Α	(2)
		White Pattern	-	-	1.013	-	Α	
Power Sup	oply Current	Horizontal Stripe	-	-	1.046	1.36	А	(3)
		Black Pattern	-	-	0.47		Α	
	Differential In Threshold Vo		V_{LVTH}	+100	-	-	mV	
	Differential Input Low Threshold Voltage		V _{LVTL}	-	-	-100	mV	
LVDS interface	Common Inp	Common Input Voltage		1.0	1.2	1.4	V	(4)
	Differential in	Differential input voltage		200	-	600	mV	
	Terminating Resistor		R _T		100	-	ohm	
CMOS	Input High T	hreshold Voltage	V _{IH}	2.7	-	3.3	V	
interface	Input Low Threshold Voltage		V _{IL}	0	-	0.7	V	

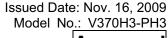
Note (1) The module should be always operated within the above ranges.

Note (2) Measurement condition:

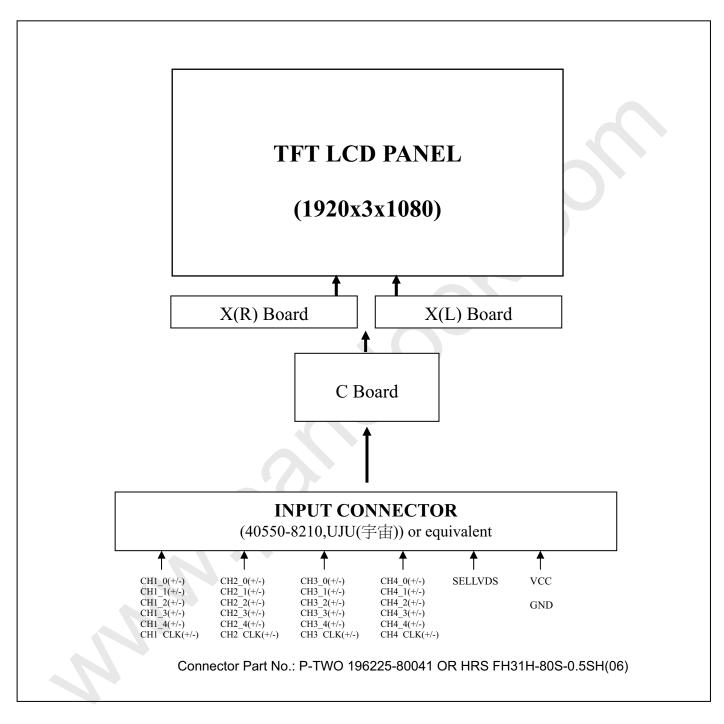



Issued Date: Nov. 16, 2009 Model No.: V370H3-PH3

Approval


Note (3) The specified power supply current is under the conditions at Vcc = 12 V, Ta = 25 ± 2 °C, f_v = 120 Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The LVDS input characteristics are as follows:



4. BLOCK DIAGRAM

4.1 TFT LCD OPEN CELL

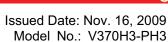
Approval

5. INPUT TERMINAL PIN ASSIGNMENT **5.1 TFT LCD MODULE**

Pin assignment

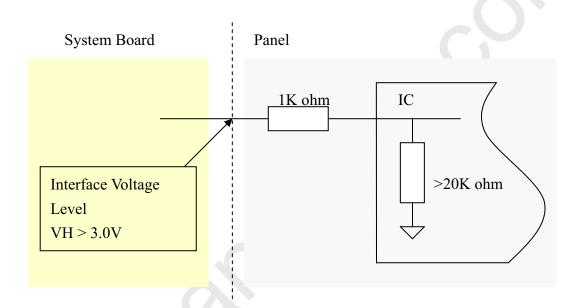
CNF1 Connector Pin Assignment (40550-8210,UJU(宇宙) or equivalent)

	Name	Description	Note
1	VCC	+12V power supply	
2	VCC	+12V power supply	
3	VCC	+12V power supply	
4	VCC	+12V power supply	
5	VCC	+12V power supply	
6	N.C.	No Connection	(1)
7	GND	Ground	
8	GND	Ground	
9	GND	Ground	
10	CH1[0]-	First pixel Negative LVDS differential data input. Pair 0	
11	CH1[0]+	First pixel Positive LVDS differential data input. Pair 0	
12	CH1[1]-	First pixel Negative LVDS differential data input. Pair 1	
13	CH1[1]+	First pixel Positive LVDS differential data input. Pair 1	
14	CH1[2]-	First pixel Negative LVDS differential data input. Pair 2	
15	CH1[2]+	First pixel Positive LVDS differential data input. Pair 2	
16	GND	Ground	
17	CH1CLK-	First pixel Negative LVDS differential clock input.	
18	CH1CLK+	First pixel Positive LVDS differential clock input.	
19	GND	Ground	
20	CH1[3]-	First pixel Negative LVDS differential data input. Pair 3	
21	CH1[3]+	First pixel Positive LVDS differential data input. Pair 3	
22	CH1[4]-	First pixel Negative LVDS differential data input. Pair 4	
23	CH1[4]+	First pixel Positive LVDS differential data input. Pair 4	
24	GND	Ground	
25	CH3[0]-	Third pixel Negative LVDS differential data input. Pair 0	
26	CH3[0]+	Third pixel Positive LVDS differential data input. Pair 0	
27	CH3[1]-	Third pixel Negative LVDS differential data input. Pair 1	
28	CH3[1]+	Third pixel Positive LVDS differential data input. Pair 1	
29	CH3[2]-	Third pixel Negative LVDS differential data input. Pair 2	
30	CH3[2]+	Third pixel Positive LVDS differential data input. Pair 2	
31	GND	Ground	
32	CH3CLK-	Third pixel Negative LVDS differential clock input.	
33	CH3CLK+	Third pixel Positive LVDS differential clock input.	
34	GND	Ground	
35	CH3[3]-	Third pixel Negative LVDS differential data input. Pair 3	
36	CH3[3]+	Third pixel Positive LVDS differential data input. Pair 3	



Approval

37	CH3[4]-	Third pixel Negative LVDS differential data input. Pair 4	
38	CH3[4]+	Third pixel Positive LVDS differential data input. Pair 4	
39	GND	Ground	
40	SCL	I2C Bus	
41	N.C.	No Connection	(1)
42	N.C.	No Connection	(1)
43	WP	Write Protection for EEPROM	
44	SDA	I2C Bus	
45	LVDS_SEL	LVDS Data Format Selection	(2)
46	N.C.	No Connection	(1)
47	N.C.	No Connection	(1)
48	N.C.	No Connection	(1)
49	N.C.	No Connection	(1)
50	N.C.	No Connection	(1)
51	N.C.	No Connection	(1)
52	GND	Ground	
53	CH4[4]+	Fourth pixel Positive LVDS differential data input. Pair 4	
54	CH4[4]-	Fourth pixel Negative LVDS differential data input. Pair 4	
55	CH4[3]+	Fourth pixel Positive LVDS differential data input. Pair 3	
56	CH4[3]-	Fourth pixel Negative LVDS differential data input. Pair 3	
57	GND	Ground	
58	CH4CLK+	Fourth pixel Positive LVDS differential clock input.	
59	CH4CLK-	Fourth pixel Negative LVDS differential clock input.	
60	GND	Ground	
61	CH4[2]+	Fourth pixel Positive LVDS differential data input. Pair 2	
62	CH4[2]-	Fourth pixel Negative LVDS differential data input. Pair 2	
63	CH4[1]+	Fourth pixel Positive LVDS differential data input. Pair 1	
64	CH4[1]-	Fourth pixel Negative LVDS differential data input. Pair 1	
65	CH4[0]+	Fourth pixel Positive LVDS differential data input. Pair 0	
66	CH4[0]-	Fourth pixel Negative LVDS differential data input. Pair 0	
67	GND	Ground	
68	CH2[4]+	Second pixel Positive LVDS differential data input. Pair 4	
69	CH2[4]-	Second pixel Negative LVDS differential data input. Pair 4	
70	CH2[3]+	Second pixel Positive LVDS differential data input. Pair 3	
71	CH2[3]-	Second pixel Negative LVDS differential data input. Pair 3	
72	GND	Ground	
73	CH2CLK+	Second pixel Positive LVDS differential clock input.	
74	CH2CLK-	Second pixel Negative LVDS differential clock input.	
75	GND	Ground	
76	CH2[2]+	Second pixel Positive LVDS differential data input. Pair 2	
77	CH2[2]-	Second pixel Negative LVDS differential data input. Pair 2	


m		HI	M	EI
	OPTO	ereci	RONIC	5 CORP.

78	CH2[1]+	Second pixel Positive LVDS differential data input. Pair 1	
79	CH2[1]-	Second pixel Negative LVDS differential data input. Pair 1	
80	CH2[0]+	Second pixel Positive LVDS differential data input. Pair 0	
81	CH2[0]-	Second pixel Negative LVDS differential data input. Pair 0	
82	GND	Ground	

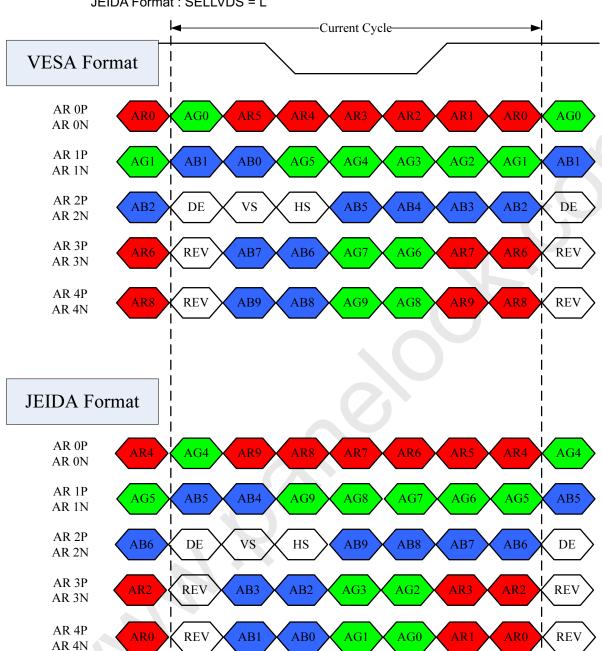
Note (1) Reserved for internal use. Please leave it open.

Note (2) High=connect to +3.3V or Open: VESA Format ; Low= connect to GND: JEIDA Format.

Note (3) Interface optional pin has internal scheme as following diagram. Customer should keep the interface voltage level requirement as below.

Note (4) LVDS 4-port Data Mapping

Port	Channel of LVDS	Data Stream
1st Port	First Pixel	1, 5, 9,1913, 1917
2nd Port	Second Pixel	2, 6, 10,1914, 1918
3rd Port	Third Pixel	3, 7, 11,1915, 1919
4th Port	Fourth Pixel	4, 8, 12,1916, 1920



Approval

5.2 LVDS INTERFACE

VESA Format : SELLVDS = H or Open

JEIDA Format : SELLVDS = L

AR0~AR9: First Pixel R Data (9; MSB, 0; LSB) AG0~AG9: First Pixel G Data (9; MSB, 0; LSB) AB0~AB9: First Pixel B Data (9; MSB, 0; LSB)

DE: Data enable signal DCLK: Data clock signal

RSV: Reserved

Approval

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

	Color	Data Signal																													
					Re						Green						Blue														
		R9	R8	R7	R6	R5			R2		R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	B9	B8	B7	B6		B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:			·		:	:	:	:	:
	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:		:	:	:	:	:	:
Of Red	Red (1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rea	Red (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Gray	\ `:'	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:				:	:	:	:	:	:	:	:	:	:	1 :
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:		:	:	:	:	:	:	:	:	:	:	:	1 :
Of	Green (1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
Green	Green (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray	':			:	:	:			:	:	:		:	P		•		l :	l :	:	:	:	:	:	:	:	:	:		:	1 :
Scale	:	:		:	:	:	:	:	:	:	:					:		l :	:	:	:	:	:	:	:	:	:	:	:	:	l : l
Of	Blue (1021)	0	Ó	0	0	Ó	0	0	0	0	0	0	0	0	0	0	Ó	0	0	0	0	1	1	1	1	1	1	1	1	0	1
Blue	Blue (1022)	Ö	0	Ö	Ö	Ö	0	Ö	0	0	0	0	0	0	0	0	0	Ö	0	0	0	1	1	1	1	1	1	1	1	1	0
	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Issued Date: Nov. 16, 2009 Model No.: V370H3-PH3

Approval

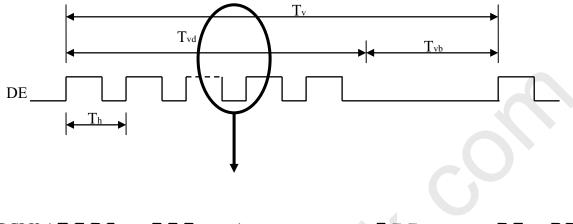
6. INTERFACE TIMING

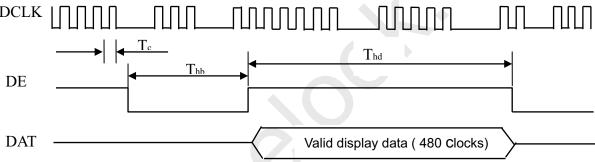
6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

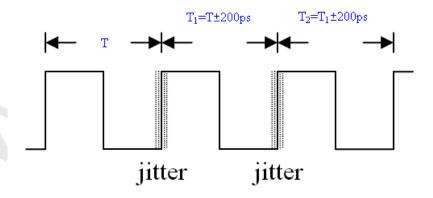
							_	
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz		
LVDS	Input cycle to cycle jitter	T _{rcl}	-	-	200	ps	(3)	
Receiver Clock	Spread spectrum modulation range	Fclkin_mo	F _{clkin} -2%	-	F _{clkin} +2%	MHz		
	Spread spectrum modulation frequency	F _{SSM}	ı	ı	200	KHz	(4)	
LVDS Receiver	Setup Time	Tlvsu	600	-	-	ps	(5)	
Data	Hold Time	Tlvhd	600	-	-	ps	(3)	
	Frame Rate	F _{r5}	TBD	100	TBD	Hz	(6)	
Vertical	Traine rate	F _{r6}	TBD	120	TBD	Hz	(0)	
Active Display	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tvb	
Term	Display	Tvd	1080	1080	1080	Th	_	
	Blank	Tvb	35	45	55	Th	_	
Horizontal	Total	Th	540	550	575	Тс	Th=Thd+Thb	
Active Display	Display	Thd	480	480	480	Тс	_	
Term	Blank	Thb	60	70	95	Тс	_	

Note (1) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

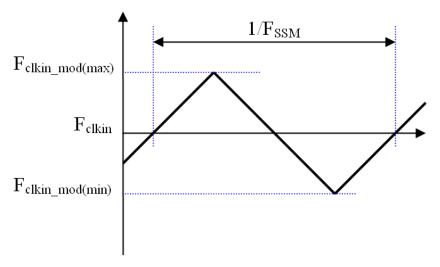

Note (2) Please make sure the range of pixel clock has follow the below equation:

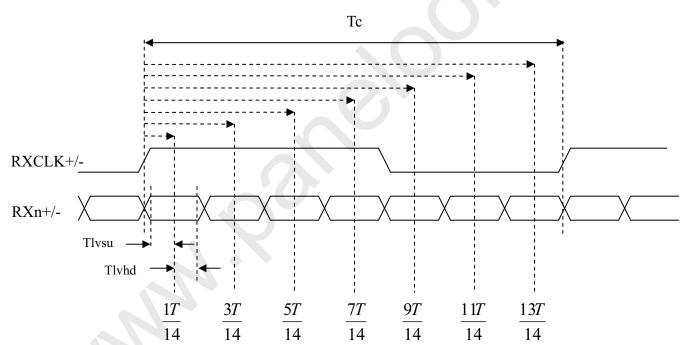

$$Fclkin(max) \ge Fr_6 \times Tv \times Th$$

$$Fr_5 \times Tv \times Th \ge Fclkin(min)$$



Approval


Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I $T_1 - TI$

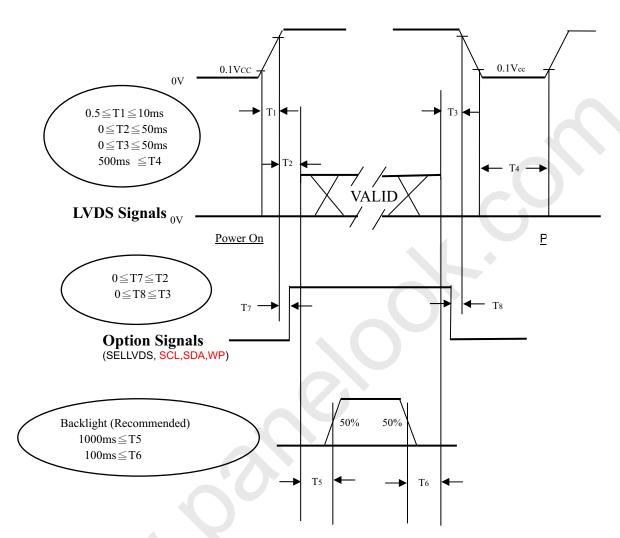

Approval

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Note (6): (ODSEL) = H/L or open for 100/120Hz frame rate. Please refer to 5.1 for detail information



Approval

6.2 POWER ON/OFF SEQUENCE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0, that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

Issued Date: Nov. 16, 2009 Model No.: V370H3-PH3

Approval

7. OPTICAL CHARACTERISTICS

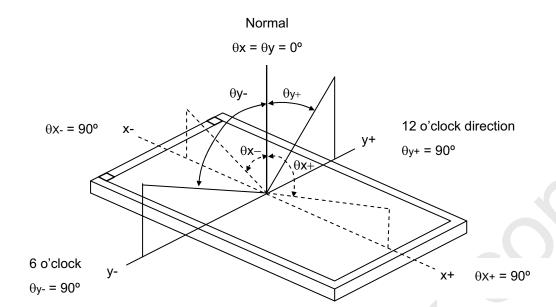
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Та	25±2	оС			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	VCC	12	V			
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"					
Lamp Current(HV)	IL	12.0 ± 0.5	mA			
Oscillating Frequency (Balance Board)	F _W	63±3	KHz			
Frame rate		120	Hz			

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

Item	Item		Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx			0.643		ı	
	Neu	Ry			0.324		ı	
Green Gx $\theta_x = 0^\circ, \theta_Y = 0^\circ$	Green	Gx	$\theta_x=0^\circ, \ \theta_Y=0^\circ$		0.292		ı	
	Typ0.03	0.602	Tvn+0 03	ı	(1) (5)			
	Rlug	Bx		Typ0.03	0.147	Typ+0.03	ı	(1),(5)
	טומט	Ву	With CMO module		0.058		ı	
	\//hita	Wx			0.28		ı	
	VVIIILO	Wy			0.29		ı	
Center Trans	mittance	Т%	$\theta_x = 0^\circ$, $\theta_Y = 0^\circ$	-	4.2		%	(1), (7)
Contrast	Ratio	CR	With CMO Module	3000	4000		-	(1), (3)
Response	Time	Gray to gray average	θ_x =0°, θ_Y =0° With CMO Module@120Hz	-	4.5	9	ms	(4)
White Var	iation	δW	θ_x =0°, θ_Y =0° With CMO Module			1.3	ı	(1), (6)
Viewing Angle	Horizontal	θ_{x} +		80	88	-		
	Tionzontal	θ_{x} -	CR≥20	80	88	-	Dog	(1) (2)
	Vertical	θ_{Y} +	With CMO Module	80	88	-	Deg.	(1), (2)
	vertical	θ_{Y} -		80	88	-		


Note (1) Light source is CMO's V370H3-LH1 BLU and driving voltages are based on suitable gamma voltages.

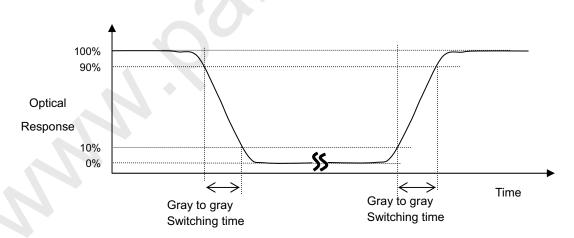
Definition of Viewing Angle (θx , θy): Note (2)

Viewing angles are measured by Autronic Conoscope Cono-80.

Issued Date: Nov. 16, 2009 Model No.: V370H3-PH3

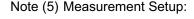
Note (3) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

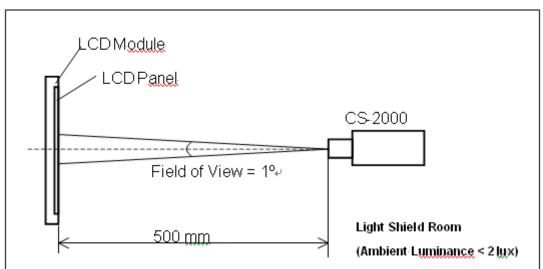

Contrast Ratio (CR) = L1023 / L0

L1023: Luminance of gray level 1023

L 0: Luminance of gray level 0

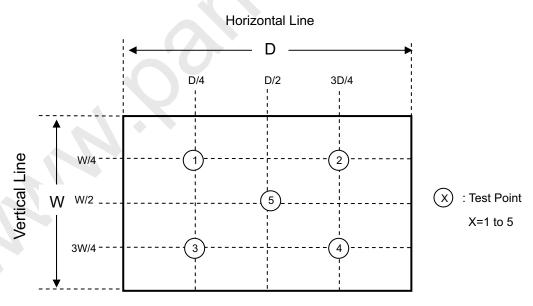

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (4) Definition of Gray-to-Gray Switching Time:



The driving signal means the signal of gray level 0, 252, 508, 764, and 1023. Gray to gray average time means the average switching time of gray level 0, 252,508,764,1023 to each other.

The LCD module should be stabilized at given temperature for 60 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 60 minutes in a windless room.



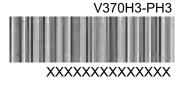
Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 1023 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

where L (X) is corresponding to the luminance of the point X at the figure below.

Note (7) Definition of Transmittance(T%): **Active Area** Module is without signal input.


Issued Date: Nov. 16, 2009 Model No.: V370H3-PH3

8. DEFINITION OF LABELS

8.1 OPEN CELL LABEL

The barcode nameplate is pasted on each open cell as illustration for CMO internal control.

8.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation

- (a) Model Name: V370H3-PH3
- (b) Carton ID: CMO internal control
- (c) Quantities:15

Approval

9. PACKAGING

9.1 PACKING SPECIFICATIONS

(1) 15PCS LCD TV Panels / 1 Box

(2) Box dimensions: 982 (L) X 642 (W) X 268 (H)

(3) Weight: approximately 36 Kg

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

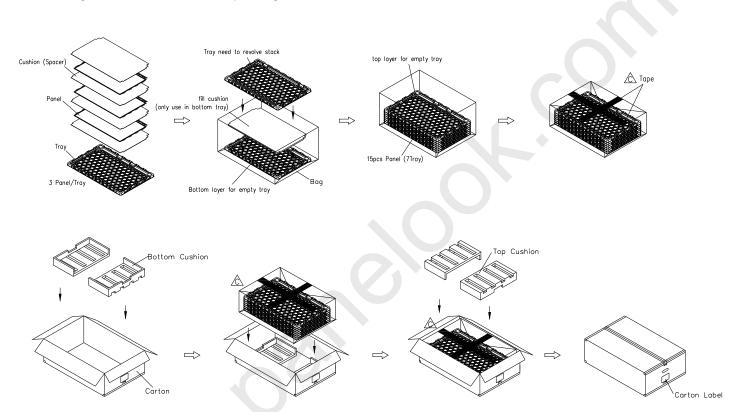
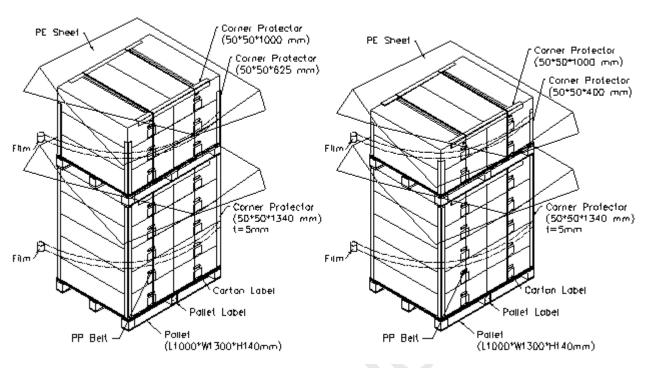


Figure.9-1 packing method



Issued Date: Nov. 16, 2009 Model No.: V370H3-PH3

Approval

Sea / Land Transportation (40ft HQ Container)

Sea / Land Transportation (40ft Container)

Air Transportation

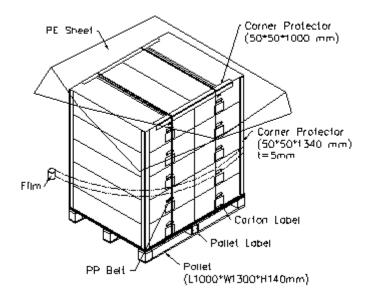


Figure.9-2 packing method

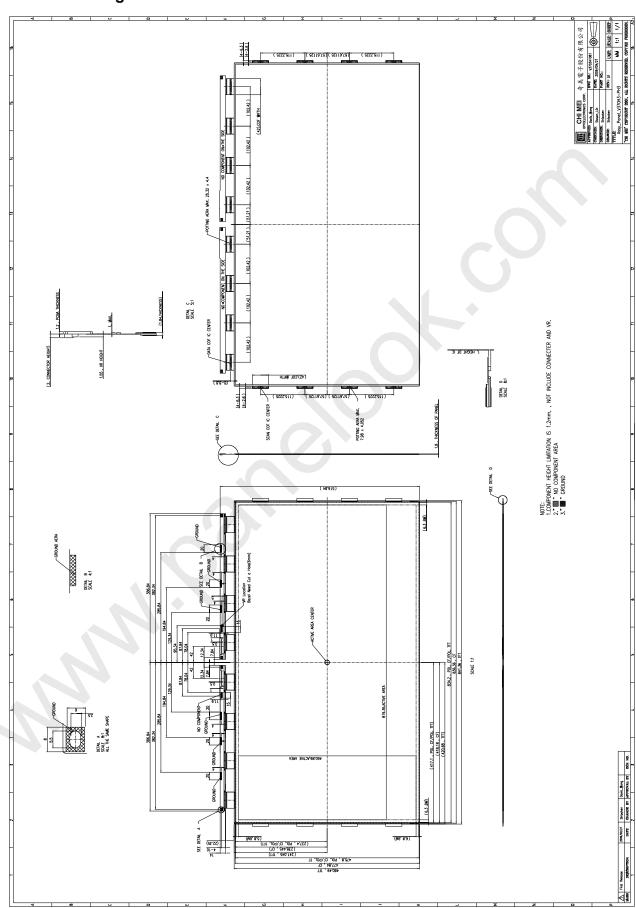
24

Issued Date: Nov. 16, 2009 Model No.: V370H3-PH3 Approval

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble backlight or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture come into or contacted the product, because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.


10.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.

Approval

11. Mechanical Drawing

