

TFT LCD Preliminary Specification

MODEL NO.: V370H1 - L0A

LCD TV Division			
AVP	郭振隆		

Liquid Crystal Display Division						
QRA Dept.	ORA Dept TVHD/PDD					
DDIII DDII DDI						
Approval	Approval	Approval	Approval			
陳永一	李汪洋	藍文錦	林文聰			

LCD TV Marketing and Project Management Dept.				
Product Manager	吳文村			

Preliminary

_	CO	N٦	ΓF	N٦	TS.	_
	\sim	IV			_	

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT INVERTER UNIT	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 3.2.1 CCFL CHARACTERISTICS 3.2.2 INVERTER CHARACTERISTICS 3.2.3 INVERTER INTERTFACE CHARACTERISTIC	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE	12
5. INTERFACE PIN CONNECTION 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 INVERTER UNIT 5.4 BLOCK DIAGRAM OF INTERFACE 5.5 LVDS INTERFACE 5.6 COLOR DATA INPUT ASSIGNMENT	13
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	 21
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 24
8. DEFINITION OF LABELS 8.1 CMO MODULE LABEL	 28
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD	 29
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS	 31
11. MECHANICAL CHARACTERISTIC	 32

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 1.0	Oct 03,'05	All	All	Preliminary Specification was first issued.

Preliminary

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V370H1-L03 is a 37" thin-film-transistor liquid-crystal (TFT-LCD) module with 20-CCFL Backlight unit and 2ch-LVDS interface. This module supports 1920 x 1080 HDTV format and can display true 16.7M colors (8-bit/color). The inverter module for backlight is built-in.

1.2 FEATURES

- Ultra wide viewing angle Super MVA technology
- High brightness (500 nits)
- High contrast ratio > 1000:1
- Fast response time < 8 ms
- High color saturation (NTSC 75%)
- HD (1920 x 1080 pixels) resolution
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface

1.3 APPLICATION

- Standard Living Room TVs.
- Public Display Application.
- Home Theater Application.
- MFM Application.

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	820.8 (H) x 461.7 (V) (37.07" diagonal)	mm	(1)
Bezel Opening Area	828.8 (H) x 470.9 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920x R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.1425 (H) x 0.4275 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti-Glare coating Hard coating (3H)	-	(2)

Note (1) Please refer to the attached drawings in chapter 9 for more information about the front and back outlines.

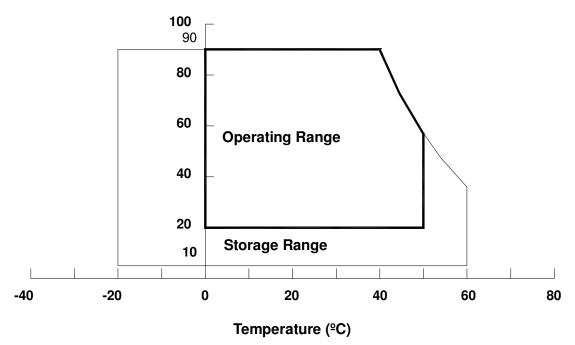
Note (2) The spec of the surface treatment is temporarily for this phase. CMO reserves the rights to change this feature.

1.5 MECHANICAL SPECIFICATIONS

li li	Item		Тур.	Max.	Unit	Note
	Horizontal(H)	873.3	874	874.7	mm	
Module Size	Vertical(V)	514	514.6	515.2	mm	
iviodule Size	Depth(D)	43.34	44.34	45.34	mm	To PCB cover
	Depth(D)	50.34	51.84	53.34	mm	To inverter cover
W	eight	9800	10000	10200	g	

Issued Date: Oct.03, 2005 Model No.: V370H1-L0A Preliminary

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Itom	Symbol	Va	Unit	Note		
Item	Symbol	Min.	Max.	Offic	Note	
Storage Temperature	T _{ST}	-20	+60	ōC	(1)	
Operating Ambient Temperature	T _{OP}	0	50	ōC	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 $^{\circ}$ C).
- (b) Wet-bulb temperature should be 39 $^{\circ}$ C Max. (Ta > 40 $^{\circ}$ C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 60 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 60 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture. The module would not be twisted or bent by the fixture.

Preliminary

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Value		Unit	Note	
1.6	Gy50.	Min.	Max.	0	11010	
Power Supply Voltage	V _{cc}	-0.3	20	V	(1)	
Logic Input Voltage	V_{IN}	-0.3	3.6	V	(1)	

Note: (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

2.2.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note	
Item	Symbol	Min.	Max.	Offic	Note	
Lamp Voltage	V_W	_	5000	V_{RMS}		
Power Supply Voltage	V_{BL}	0	30	V	(1)	
Control Signal Level	_	-0.3	7	V	(1), (3)	

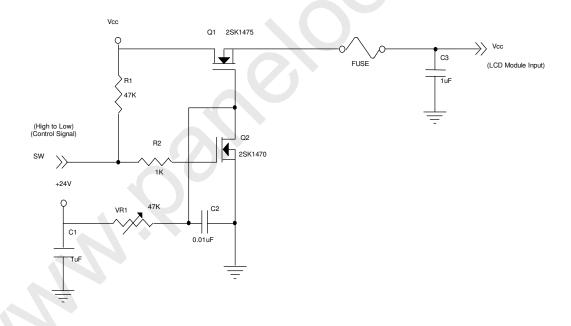
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) No moisture condensation or freezing.

Note (3) The control signals includes On/Off Control, Internal PWM Control

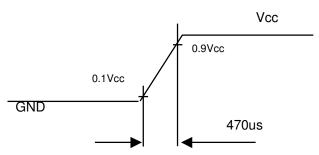
Preliminary

3. ELECTRICAL CHARACTERISTICS

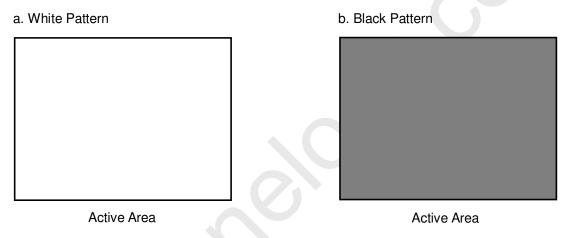

3.1 TFT LCD MODULE

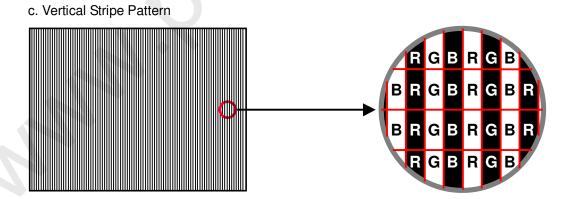
Ta = 25 ± 2 °C

	Parameter		Cumbal	Value			Unit	Note
	Paramei	er	Symbol	Min.	Тур.	Max.	Utill	Note
Dower Su	only Voltage		V _{CC}	10.8	12	13.2	V	(1)
Power Supply Voltage		V CC	16.2	18	19.8	V	(1)	
Power Su	pply Ripple Vo	Itage	V_{RP}	-	-	200	mV	
Rush Curi	rent		I _{RUSH}	-	-	4.5	Α	(2)
		White		-	1.5	-	Α	
Power Supply Current Black		I _{CC}	-	0.7	-	Α	(3)	
		Vertical Stripe		-	TBD	-	Α	
	Differential In	out High	V	V _{LVTH} -	-	+100	mV	
LVDS	Threshold Vol		V LVTH					
Interface	Differential In		V_{LVTL}	/ _{LVTI} -100			mV	
interrace	Threshold Vol	Threshold Voltage		LVTL -100	_		1117	
		Common Input Voltage		1.125	1.25	1.375	\	
	Terminating Resistor		R_T	-	100	-	ohm	
CMOS	Input High Th	reshold Voltage	V_{IH}	2.7	-	3.3	V	
interface	Input Low Thr	eshold Voltage	V_{IL}	0	-	0.7	٧	


Note: (1) The module should be always operated within the above ranges.

(2) Measurement condition:





Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 18/12V, $Ta = 25 \pm 2$ ${}^{\circ}C$, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

Active Area

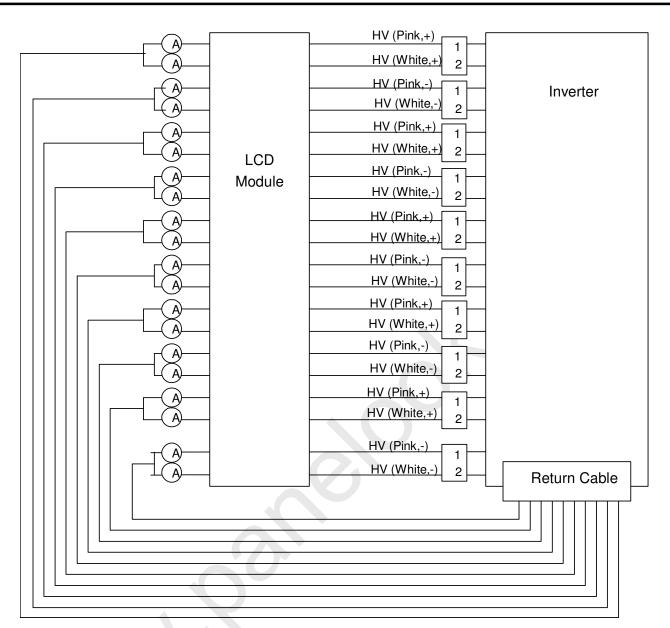
Preliminary

3.2 BACKLIGHT UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta=25±2℃)

Parameter	Symbol		Value	Unit	Note		
Farameter	Symbol	Min.	Min. Typ.		Ullit	inole	
Lamp Voltage	V _W	-	1320	-	V_{RMS}	$I_L = 4.8 \text{mA}$	
Lamp Current	ΙL	4.3	4.8	5.3	mA _{RMS}	(1)	
Lawan Otantina Maltana	M	-	-	2780	V_{RMS}	(2), Ta = 0 ^o C	
Lamp Starting Voltage	Vs	-	-	2440	V_{RMS}	(2), Ta = 25 ^o C	
Operating Frequency	Fo	40	-	70	KHz	(3)	
Lamp Life Time	L_BL	50,000	60,000	-	Hrs	(4)	

3.2.2 INVERTER CHARACTERISTICS (Ta =25 \pm 2°C)


		•	•,				
Parameter	Symbol		Value	Unit	Note		
Parameter	Symbol	Min.	Тур.	Max.	Uffill	Note	
Power consumption	P _{BL}	-	144	-	W	$(5), I_L = 4.8 \text{mA}$	
Power Supply Voltage	V_{BL}	22.8	24	25.2	V_{DC}		
Power Supply Current	I _{BL}	-	6.0	7	Α	Non Dimming	
Input Ripple Noise	-	-	-	500	mVp-p	V _{BL} =22.8V	
	V_{BS}	2780	-	-	V_{RMS}	Ta = 0 ºC	
Backlight Turn on Voltage	-	2440		-	V_{RMS}	Ta = 25 ^o C	
Oscillating Frequency	F _W	51	50	49	kHz		
Dimming frequency	F _B	150	160	170	Hz		
Minimum Duty Ratio	D_{MIN}	-	20	-	%		

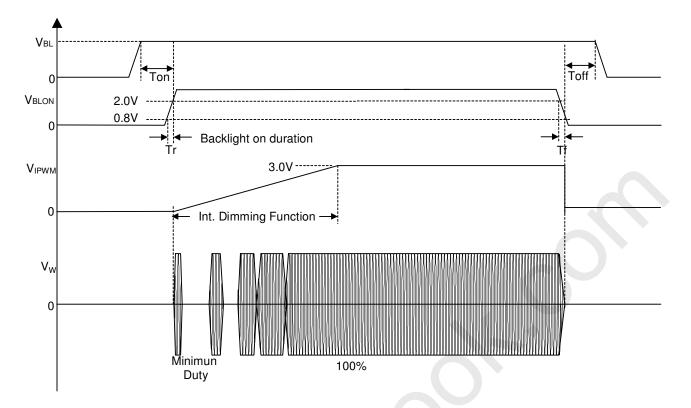
Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:

- Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second under starting up duration. Otherwise the lamp could not be lighted on completely.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point.) as the time in which it continues to operate under the condition $Ta = 25 \pm 2^{\circ}C \quad \text{and } I_L = 4.3 \sim 5.3 \text{mA}_{RMS}.$

Issued Date: Oct.03, 2005 Model No.: V370H1-L0A Preliminary

Note (5) The power supply capacity should be higher than the total inverter power consumption P_{BL}. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of the power supply should be considered for the changing loading when inverter dimming.

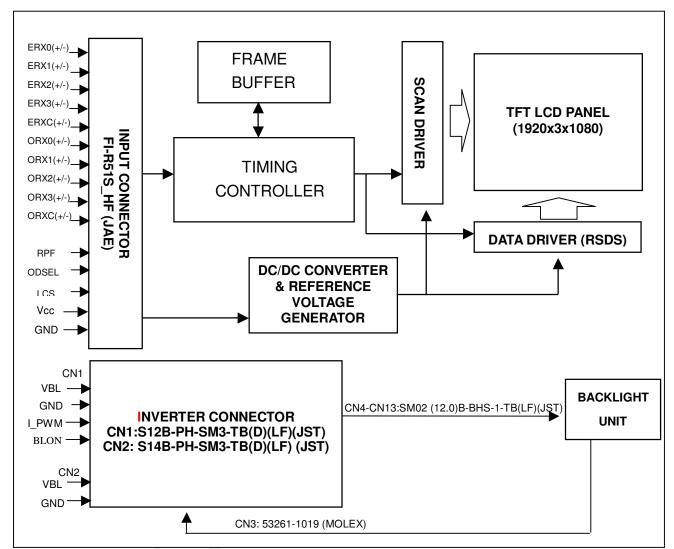
3.2.3 INVERTER INTERTFACE CHARACTERISTICS


Parameter			Test	Value				V
		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
On/Off Control Voltage ON		V_{BLON}	_	2.0	_	5.0	V	
On/On Control voitage	OFF	V BLON	_	0	_	0.8	٧	
Internal PWM Control	MAX	V _{IPWM}	_	_	_	3.0	٧	maximum duty ratio
Voltage	MIN	V IPWM		_	0	_	٧	minimum duty ratio
Control Signal Rising Tin	ne	Tr	_	_	_	100	ms	
Control Signal Falling Time		Tf	_	_	_	100	ms	
Input impedance		R _{IN}	_	1		-	$M\Omega$	
BLON Delay Time1		T _{on1}	_	1	_		ms	
BLON Off Time1		T _{off1}	_	1	_		ms	

Note (1) The power sequence and control signal timing are shown in the following figure.

Note (2) The power sequence and control signal timing must follow the figure below. For a certain reason, the inverter has a possibility to be damaged with wrong power sequence and control signal timing.

Issued Date: Oct.03, 2005 Model No.: V370H1-L0A **Preliminary**



Issued Date: Oct.03, 2005 Model No.: V370H1-L0A **Preliminary**

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

5. V370H1-L03 LCD INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE LVDS input

CNF1 Connector Pin Assignment :FI-R51S-HF (JAE)

Pin	Name	Description	Note
1	GND	Ground	
2	N.C.	No Connection	
3	N.C.	No Connection	
4	N.C.	No Connection	(1)
5	N.C.	No Connection	
6	N.C.	No Connection	
7	NC	No Connection	
8	RPF	Display Rotation	(2)
9	ODSEL	Overdrive Lookup Table Selection	(3)
10	LCS	Low Color Shift	(4)
11	GND	Ground	
12	ORX0-	Odd pixel, Negative LVDS differential data input. Channel 0	
13	ORX0+	Odd pixel, Positive LVDS differential data input. Channel 0	
14	ORX1-	Odd pixel, Negative LVDS differential data input. Channel 1	
15	ORX1+	Odd pixel, Positive LVDS differential data input. Channel 1	
16	ORX2-	Odd pixel, Negative LVDS differential data input. Channel 2	
17	ORX2+	Odd pixel, Positive LVDS differential data input. Channel 2	
18	GND	Ground	
19	OCLK-	Odd pixel, Negative LVDS differential clock input.	
20	OCLK+	Odd pixel, Positive LVDS differential clock input.	
21	GND	Ground	
22	ORX3-	Odd pixel, Negative LVDS differential data input. Channel 3	
23	ORX3+	Odd pixel, Positive LVDS differential data input. Channel 3	
24	N.C.	No Connection	
25	N.C.	No Connection	(1)
26	N.C.	No Connection	
27	N.C.	No Connection	
28	ERX0-	Even pixel, Negative LVDS differential data input. Channel 0	
29	ERX0+	Even pixel, Positive LVDS differential data input. Channel 0	
30	ERX1-	Even pixel, Negative LVDS differential data input. Channel 1	
31	ERX1+	Even pixel, Positive LVDS differential data input. Channel 1	
32	ERX2-	Even pixel, Negative LVDS differential data input. Channel 2	

Issued Date: Oct.03, 2005 Model No.: V370H1-L0A **Preliminary**

33	ERX2+	Even pixel, Positive LVDS differential data input. Channel 2	
34	GND	Ground	
35	ECLK-	Even pixel, Negative LVDS differential clock input.	
36	ECLK+	Even pixel, Positive LVDS differential clock input.	
37	GND	Ground	
38	ERX3-	Even pixel, Negative LVDS differential data input. Channel 3	
39	ERX3+	Even pixel, Positive LVDS differential data input. Channel 3	
40	N.C.	No Connection	
41	N.C.	No Connection	(1)
42	N.C.	No Connection	
43	N.C.	No Connection	
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	GND	Ground	
48	VCC	Power input (+12V or +18.0V)	
49	VCC	Power input (+12V or +18.0V)	
50	VCC	Power input (+12V or +18.0V)	
51	VCC	Power input (+12V or +18.0V)	

- Note (1) N.C.: Reserved for internal use. Please leave it open.
- Note (2) Low: normal display (default), High: display with 180 degree rotation
- Note (3) Overdrive lookup table selection. The overdrive lookup table should be selected in accordance to the frame rate to optimize image quality.

ODSEL	Note
L	Lookup table was optimized for 60 Hz frame rate.
Н	Lookup table was optimized for 50 Hz frame rate.

Note (4) Low: normal display (default), High: Low Color Shift function enable.

5.3 BACKLIGHT UNIT

The pin configuration for the housing and the leader wire is shown in the table below.

CN12-CN43 (Housing): BHR-03VS-1

Pin	Name	Description	Wire Color
1	HV	High Voltage	Pink
2	HV	High Voltage	White

Note (1) The backlight interface housing for high voltage side is a model BHR-03VS-1, manufactured by JST. The mating header on inverter part number is SM02(12.0)B-BHS-1-TB.

5.4 INVERTER UNIT

CN1 (Header):S14B-PH-SM3-TB (D)(LF)(JST) or equivalent

<u>CN1 (Header</u>):S14B-PH-SN	//3-TB (D)(LF)(JST) or equivalent.
Pin No.	Symbol	Description
1		
2		
3	VBL	+24V _{DC} power input
4		
5		
6		
7		
8	GND	GND
9		
10		
		Internal/external PWM selection
11	SEL	High: external dimming
		Low: internal dimming
40	E D\4/14	External PWM control signal
12	E_PWM	E_PWM should be connected to ground when internal PWM was selected (SEL =
10	1 D\A/\A	Internal DWM Control Circuit
13	I_PWM	Internal PWM Control Signal
14	BI ON	Backlight on/off control

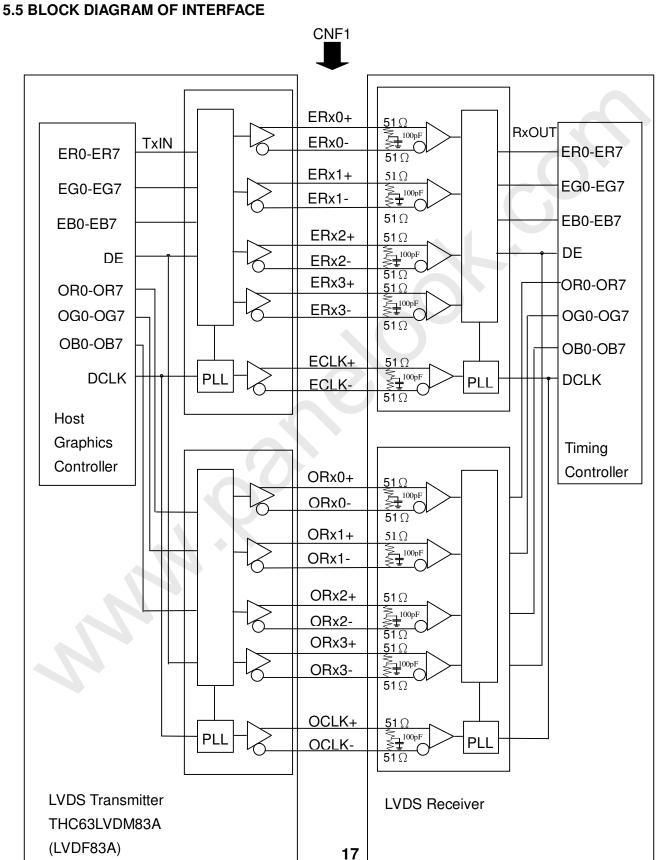
CN2 (Header): S12B-PH-SM3-TB (D)(LF)(JST) or equivalent.

Pin No.	Symbol	Description
1		
2]	
3	VBL	+24V _{DC} power input
4		
5		
6		
7		
8	GND	GND
9		
10		
11	NC	NC
12	NC \	NC

CN3 (Header): 53261-1019 (Molex) or equivalent

Pin No.	Symbol	Description
1	CCFL Cold	CFL Low voltage
2	CCFL Cold	CFL Low voltage

CN4-CN13 (Header): SM02(12.0)B-BHS-1-TB (LF)(JST) or equivalent


Pin No.	Symbol	Description
1	CCFL HOT	CCFL high voltage
2	CCFL HOT	CCFL high voltage

Note (1) Floating of any control signal is not allowed.

Preliminary

The information described in this technical specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification. Version1.0

ER0~ER7: Even pixel R data
EG0~EG7: Even pixel G data
EB0~EB7: Even pixel B data
OR0~OR7: Odd pixel R data
OG0~OG7: Odd pixel G data
OB0~OB7: Odd pixel B data
DE: Data enable signal
DCLK: Data clock signal

Notes: (1) The system must have the transmitter to drive the module.

- (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.
- (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is even pixel and the second pixel is odd pixel.

Preliminary

5.6 LVDS INTERFACE

			SMITTER	INTERFACE CO	ONNECTOR		RECEIVER	TFT CONTROL
	SIGNAL	THC63	BLVDM83A			THC63LVDF84A		INPUT
		PIN	INPUT	Host	TFT-LCD	PIN	OUTPUT	
	R0	51	TxIN0			27	Rx OUT0	R0
	R1	52	TxIN1			29	Rx OUT1	R1
	R2	54	TxIN2	TA OUT0+	Rx 0+	30	Rx OUT2	R2
	R3	55	TxIN3	TA 0010+	HX 0+	32	Rx OUT3	R3
	R4	56	TxIN4			33	Rx OUT4	R4
	R5	3	TxIN6	TA OUT0-	Rx 0-	35	Rx OUT6	R5
	G0	4	TxIN7	TA 0010-	MX U-	37	Rx OUT7	G0
	G1	6	TxIN8			38	Rx OUT8	G1
	G2	7	TxIN9			39	Rx OUT9	G2
	G3	11	TxIN12	TA OUT1+	D. 4	43	Rx OUT12	G3
	G4	12	TxIN13		Rx 1+	45	Rx OUT13	G4
	G5	14	TxIN14			46	Rx OUT14	G5
	В0	15	TxIN15		Rx 1-	47	Rx OUT15	В0
	B1	19	TxIN18			51	Rx OUT18	B1
0.41-11	B2	20	TxIN19			53	Rx OUT19	B2
24bit	В3	22	TxIN20			54	Rx OUT20	В3
	В4	23	TxIN21	TA OLUTO	D 0	55	Rx OUT21	B4
	B5	24	TxIN22	TA OUT2+	Rx 2+	1	Rx OUT22	B5
	DE	30	TxIN26			6	Rx OUT26	DE
	R6	50	TxIN27	TA OLITO	D. O	7	Rx OUT27	R6
	R7	2	TxIN5	TA OUT2-	Rx 2-	34	Rx OUT5	R7
	G6	8	TxIN10			41	Rx OUT10	G6
	G7	10	TxIN11			42	Rx OUT11	G7
	В6	16	TxIN16	TA OLUTO	Dv 0	49	Rx OUT16	B6
	В7	18	TxIN17	TA OUT3+	Rx 3+	50	Rx OUT17	B7
	RSVD 1	25	TxIN23			2	Rx OUT23	Not connect
	RSVD 2	27	TxIN24	TA OLITO	Dv 0	3	Rx OUT24	Not connect
	RSVD 3	28	TxIN25	TA OUT3-	Rx 3-	5	Rx OUT25	Not connect
	DCLK	31	TxCLK IN	TxCLK OUT+ TxCLK OUT-	RxCLK IN+ RxCLK IN-	26	RxCLK OUT	DCLK

R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

: Data enable signal DCLK: Data clock signal

19

Preliminary

Notes: (1) RSVD (reserved) pins on the transmitter shall be "H" or "L".

5.7 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the

color ve	ersus data input.																								
												Da	ata	Sigr	nal										
	Color		Red				Green					Blue													
			R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	B6	B5	B4	ВЗ	B2	B1	В0
Basic	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:		:):	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	÷		:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
i ieu	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0)	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
arcen	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray Scale Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
שומל	Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

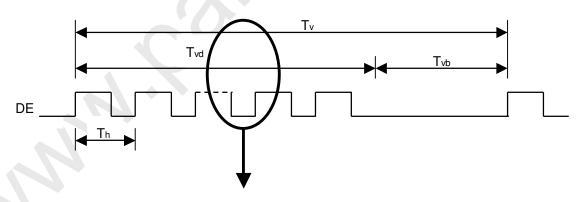
20

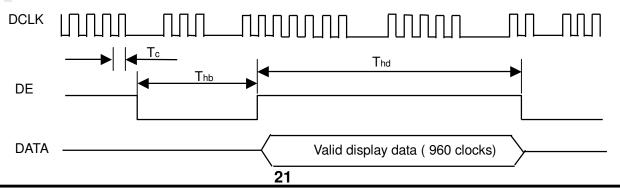
Preliminary

Note: (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

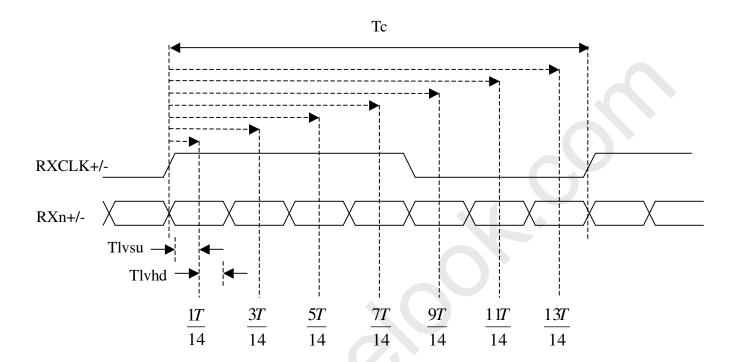

The input signal timing specifications are shown as the following table and timing diagram.


Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
<u> </u>	Frequency	1/Tc	(60)	74	(80)	MHz		
LVDS Receiver Clock	Input cycle to cycle jitter	Trcl	-	-	200	ps	0	
LVDS Receiver Data	Setup Time	Tlvsu	600	-	-	ps		
EVBO NEGENVEN Bala	Hold Time	Tlvhd	600	-	-	ps		
	Frame Rate	Fr5	47	50	53	Hz	(2)	
	Tamo nato	Fr6	57	60	63	Hz	os	
Vertical Active Display Term	Total	Tv	(1115)	1125	(1135)	Th	Tv=Tvd+Tvb	
	Display	Tvd	1080	1080	1080	Th	-	
	Blank	Tvb	(35)	45	(55)	Th	-	
	Total	Th	(2100)	2200	(2300)	Tc	Th=Thd+Thb	
Horizontal Active Display Term	Display	Thd	1920	1920	1920	Tc	-	
	Blank	Thb	(180)	280	(380)	Tc	-	

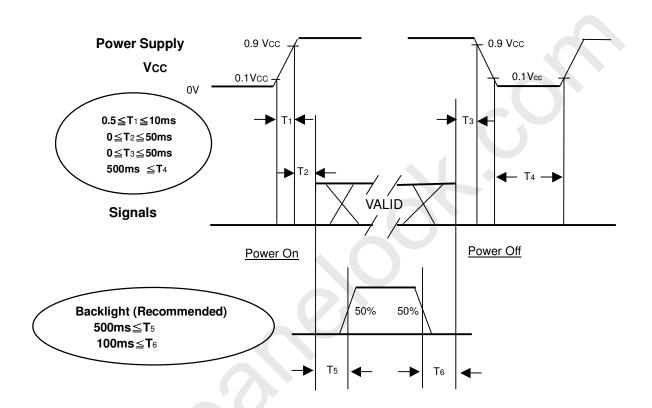
Note: (1) Since this module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

- (2) ODSEL = H. Please refer to 5.1 for detail information.
- (3) ODSEL = L. Please refer to 5.1 for detail information.

INPUT SIGNAL TIMING DIAGRAM



The information described in this technical specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification. Version1.0


LVDS INPUT INTERFACE TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the diagram below.

Power ON/OFF Sequence

Note: (1) The supply voltage of the external system for the module input should follow the definition of Vcc.

- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

Preliminary

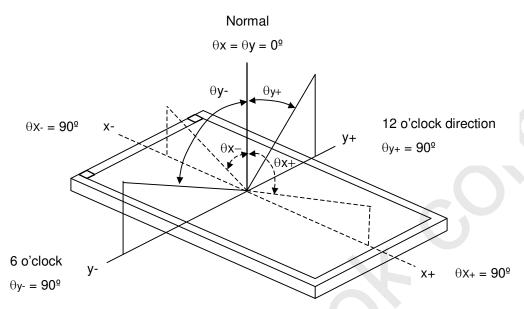
7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Ta	25±2	°C		
Ambient Humidity	На	50±10	%RH		
Supply Voltage	V_{CC}	5.0	V		
Input Signal	According to typical v	alue in "3. ELECTRICAL (CHARACTERISTICS"		
Lamp Current	l _L	5.2±0.5	mA		
Oscillating Frequency (Inverter)	F _L	54±3	KHz		
Frame Rate	F _r	60	Hz		

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).


Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio		CR		TBD	(1100)	-	-	Note (2)	
		Gray to							
Response Time		gray		-)	(8)	TBD	ms	Note (3)	
		average							
Center Luminand	e of White	L _C		TBD	(500)	-	cd/m ²	d/m ² Note (4)	
Average Luminance of White		L _{AVE}		TBD	(450)	1	cd/m ²	cd/m ² Note (4)	
White Variation		δ W		1	-	1.3	-	Note (7)	
Cross Talk		CT	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$	1	-	4.0	%	Note (5)	
	Red	Rx	Viewing Normal Angle	TBD	(0.650)	TBD	-		
	neu	Ry			(0.331)				
	Green	Gx			(0.270)				
Color		Gy			(0.590)			Note (6)	
Chromaticity	Blue	Bx			(0.142)			Note (6)	
		Ву			(0.068)				
	VA/In:the	Wx			0.285				
	White	Wy			0.293				
	Hori-ontal	θ_x +		(80)	(88)	-			
Marriaga Argalis	Horizontal	θ_{x} -	00.00	(80)	(88)	-	D	Niata (d)	
Viewing Angle) (autia al	θ_{Y} +	CR≥20	(80)	(88)	-	Deg.	Note(1)	
	Vertical	θ _Y -		(80)	(88)	-			

Issued Date: Oct.03, 2005 Model No.: V370H1-L0A Preliminary

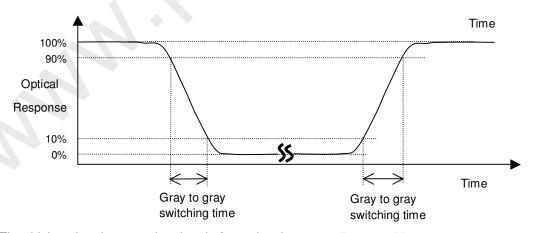
Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Eldim EZ-Contrast 160R

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Gray to Gray Switching Time:

The driving signal means the signal of gray level 0, 63, 127, 191, 255.

Gray to gray average time means the average switching time of gray level 0,63,127,191,255 to each other.

Issued Date: Oct.03, 2005 Model No.: V370H1-L0A Preliminary

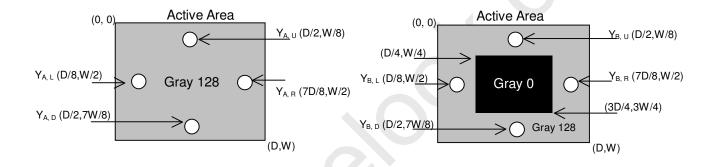
Note (4) Definition of Luminance of White (L_C, L_{AVE}):

Measure the luminance of gray level 255 at center point and 5 points

$$L_C = L(5)$$

$$L_{AVE} = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5$$

L (x) is corresponding to the luminance of the point X at the figure in Note (7).

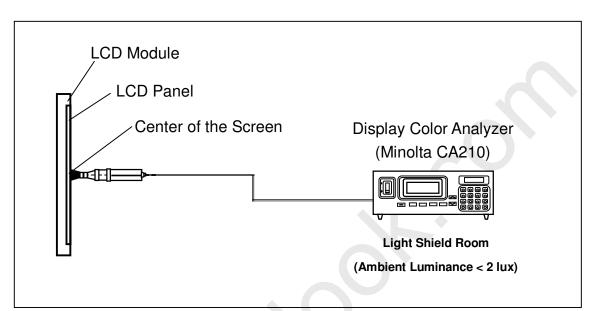

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100$$
(%)

Where:

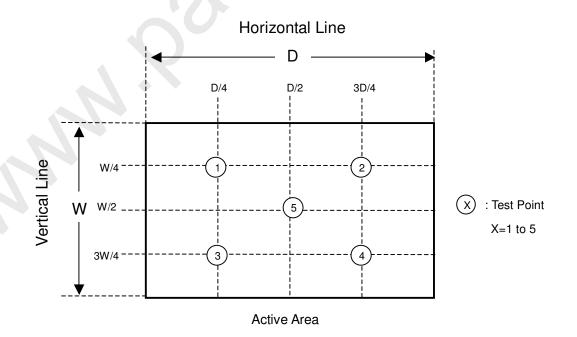
 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)



Issued Date: Oct.03, 2005 Model No.: V370H1-L0A Preliminary

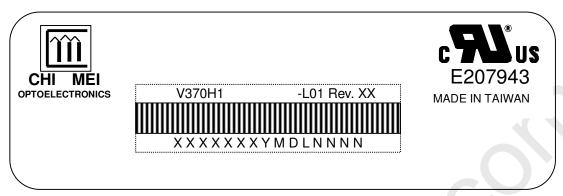
Note (6) Measurement Setup:


The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

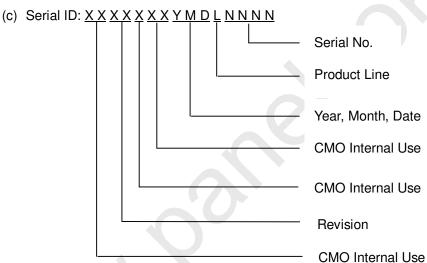
Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$



Preliminary

8. DEFINITION OF LABELS


8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: V370H1-L01

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2000~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

(b) Revision Code: Cover all the change

(c) Serial No.: Manufacturing sequence of product

(d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

Issued Date: Oct.03, 2005 Model No.: V370H1-L0A **Preliminary**

9. PACKAGING

9.1 PACKING SPECIFICATIONS

(1) 3 LCD TV modules / 1 Box

(2) Box dimensions: 1048(L) X 345 (W) X 676 (H)

(3) Weight: approximately 33Kg (3 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

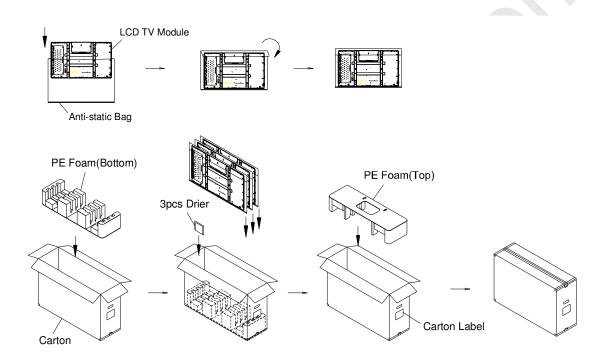
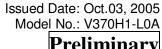



Figure.9-1 packing method

Preliminary

Corner Protector:L1350*50mm*50mm L1000*50mm*50mm Pallet:L1100*W1100*H140mm Corrugated Fiberboard:L1100*W1100mm Pallet Stack:L1100*W1100*H1500mm Gross:218kg

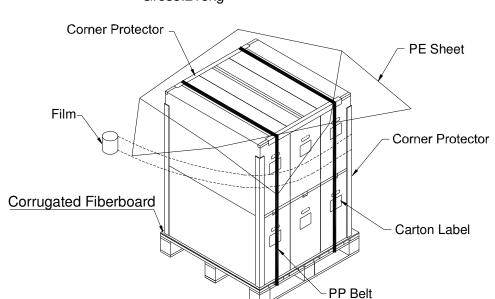
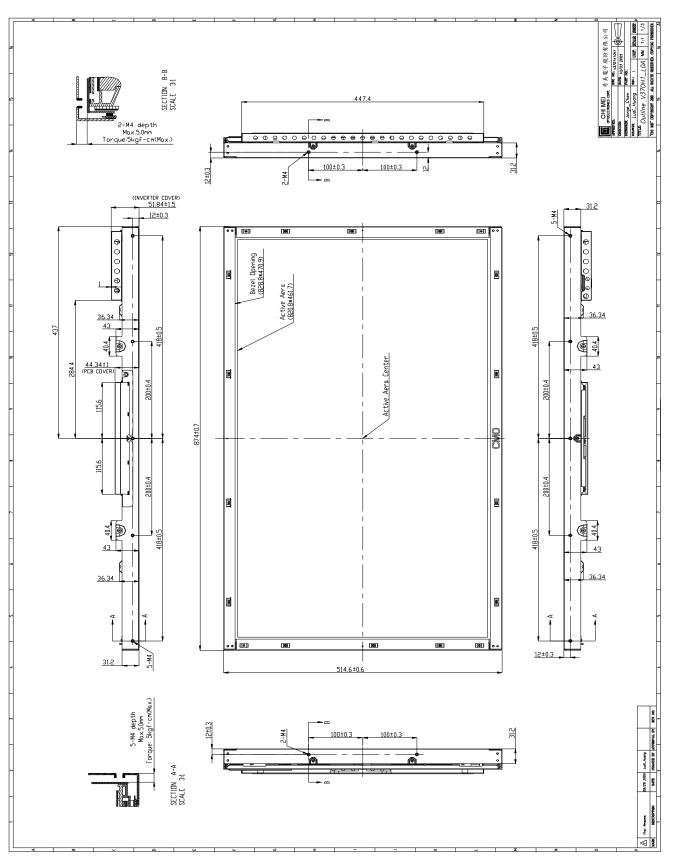


Figure. 9-2 Packing method

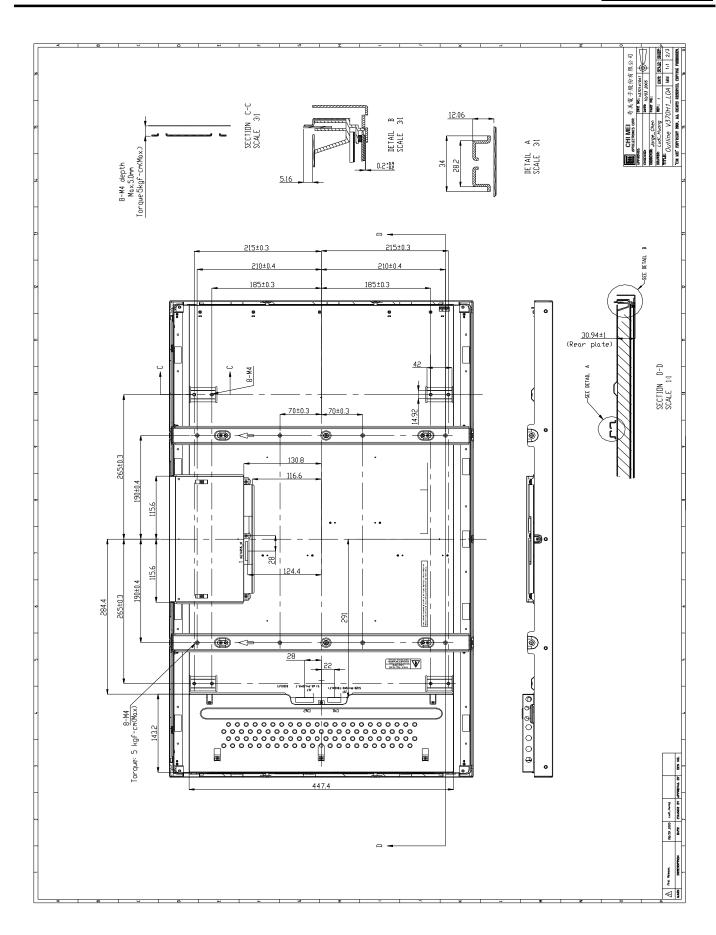
10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

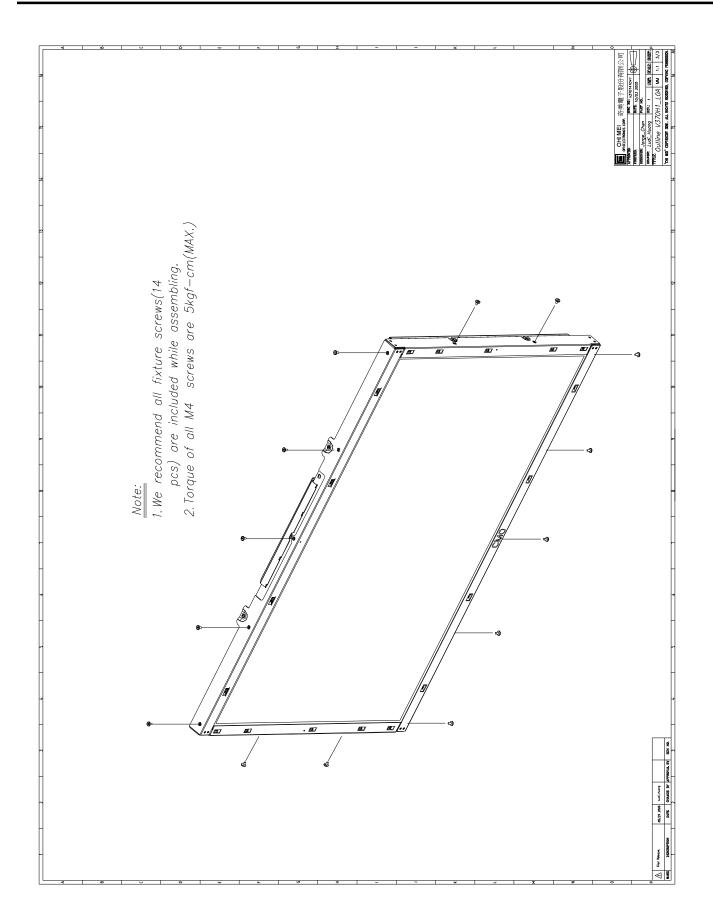

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.


11. MECHANICAL CHARACTERISTIC

32



Issued Date: Oct.03, 2005 Model No.: V370H1-L0A **Preliminary**

