

Issued Date: Aug. 13, 2009 Model No.: V315H1 – L03 Approval

TFT LCD Approval Specification

MODEL NO.: V315H1 – L03

Customer:
Approved by:
Note:

	TV Product Marketing & Management Div
Approved By	Chao-Chun Chung

Reviewed By	QA Dept.	Product Development Div.
	Hsin-nan Chen	WT Lin

Prepared By	LCD TV Marketing and Product Management Div.				
	Josh Chi	Cindy Yang			

l

Approval

- CONTENTS -

REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2PACKAGE STORAGE 2.3ELECTRICAL ABSOLUTE RATINGS 2.3.1 TFT LCD MODULE 2.3.2 BACKLIGHT UNIT		5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT INVERTER UNIT 3.2.1 CCFL(Cold Cathode Fluorescent Lamp) CHARACTI 3.2.2 INVERTER CHARACTERISTICS 3.2.3 INVERTER INTERFACE CHARACTERISTICS	ERISTICS	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE		9
5. INTERFACE PIN CONNECTION 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 INVERTER UNIT 5.4 BLOCK DIAGRAM OF INTERFACE 5.5 LVDS INTERFACE 5.6 COLOR DATA INPUT ASSIGNMENT		10
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		17
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		20
8. DEFINITION OF LABELS 8.1 CMO MODULE LABEL		24
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		25
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS 10.3 SAFETY STANDARDS		27
11. MECHANICAL CHARACTERISTICS		28

Issued Date: Aug. 13, 2009 Model No.: <u>V315H1 – L03</u> Approval **②**

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 2.0	Aug 13,08'	All	All	Approval Specification was first issued.

Issued Date: Aug. 13, 2009 Model No.: V315H1 – L03 Approval

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V315H1- L01 s a 31.5" TFT Liquid Crystal Display module with 4U-type CCFL Backlight unit and 2-LVDS interface. This module supports 1920 x 1080 HDTV format and can display 16.7M colors (8-bit/color). The inverter module for backlight isn't built-in.

1.2 FEATURES

- -High brightness (500 nits)
- Ultra-high contrast ratio (4500:1)
- Fast response time (gray to gray average 6.5ms)
- High color saturation NTSC 72%
- Ultra wide viewing angle : 176(H)/176(V) (CR≥20) with Super MVA technology
- -DE (Data Enable) only mode
- -Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- LVDS (Low Voltage Differential Signaling) interface
- Color reproduction (nature color)
- Low color shift function

1.3 APPLICATION

- TFT LCD TVs
- Multi-Media Display

1.4 GENERAL SPECIFICATIONS

Item	Unit	Note	
Active Area	698.4(H) x 392.85 (V)	mm	
Bezel Opening Area	703.8 (H) x 398.4 (V)	mm	
Driver Element	a-si TFT active matrix	-	
Pixel Number	1920 x R.G.B. x 1080	pixel	
Pixel Pitch (Sub Pixel)	0.12125 (H) x 0.36375 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Display Colors	16.7M	color	
Display Operation Mode	Transmissive mode / Normally black	-	
Surface Treatment	Anti-Glare coating (Haze 11%), Hard coating (3H)	-	

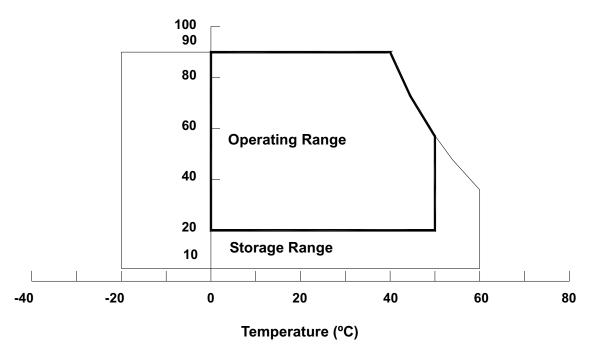
1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	759	760	761	mm	
	Vertical(V)	449	450	451	mm	
Module Size	Depth(D)	46.5	47.5	48.5	mm	To PCB cover
	Depth(D)	53.2	54.2	55.2	mm	To Inverter Cover
	Depth(D)	31.5	32.5	33.5	mm	To Rear
Weight		-	5680		g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Approval

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Issued Date: Aug. 13, 2009 Model No.: V315H1 - L03

pprova

2.2 Package storage

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note
	Cynnoon =	Min.	Max.	0	110.0
Power Supply Voltage	V _{cc}	-0.3	13.5	V	(1)
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)

2.3.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note	
iteiii	Symbol	Min.	Max.	o iii		
Lamp Voltage	V_{W}		3000	V_{RMS}		
Power Supply Voltage	V_{BL}	0	30	V	(1)	
Control Signal Level	_	-0.3	7	V	(1), (3)	

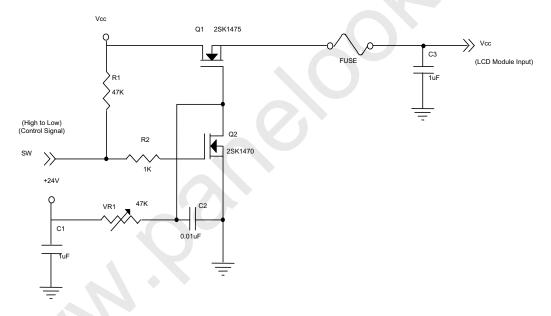
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

Note (2) No moisture condensation or freezing.

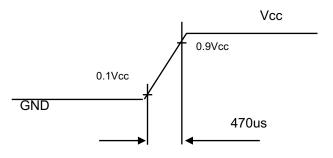
Note (3) The control signals includes Backlight On/Off Control, I_PWM Control, E_PWM Control and ERR signal for inverter status output.

Issued Date: Aug. 13, 2009 Model No.: V315H1 – L03 Approval

3. ELECTRICAL CHARACTERISTICS

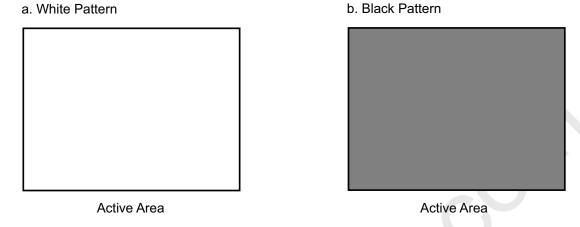

3.1 TFT LCD MODULE

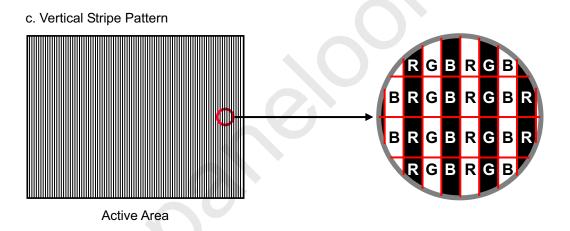
Ta = 25 ± 2 °C


Parameter		Cymbol	Value			Unit	Note	
		Symbol	Min.	Тур.	Max.	Ullit	note	
Power Su	pply Voltage		V_{CC}	10.8	12	13.2	V	(1)
Rush Curi	rent		I _{RUSH}	-	-	4.6	Α	(2)
		White		-	1.0	1.2	Α	
Power Su	pply Current	Black	I _{cc}	-	0.6	-	Α	(3)
		Vertical Stripe		-	0.9	-	Α	
L) (DO	Differential Input High Threshold Voltage		V_{LVTH}	-	-	+100	mV	
LVDS Interface	Differential Inp		V_{LVTL}	-100	-	-	mV	
Common Inj		it Voltage	V_{LVC}	1.125	1.25	1.375	V	>
Terminating Resistor		R _T	-	100	-	ohm		
CMOS	Input High Threshold Voltage		V _{IH}	2.7	-	3.3	V	
interface	Input Low Thr	eshold Voltage	V _{IL}	0	-	0.7	V	

Note (1) The module should be always operated within the above ranges.

Note (2) Measurement condition:


Vcc rising time is 470us



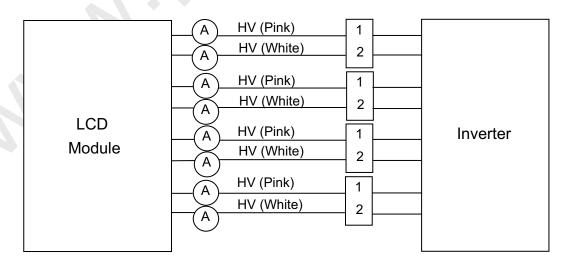
Issued Date: Aug. 13, 2009 Model No.: <u>V315H1 – L03</u> Approval

Note (3) The specified power supply current is under the conditions at Vcc =12V, Ta = 25 \pm 2 °C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

3.2 BACKLIGHT UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Doromotor	Symbol		Value	Unit	Note	
Parameter	Syllibol	Min.	Тур.	Max.	Offic	Note
Lamp Voltage	V_W	-	1470	-	V_{RMS}	
Lamp Current	Ι _L	11.8	12.3	12.8	mA_{RMS}	(1)
Laman Ctantina Valtaga	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	-	2760	V_{RMS}	(2), Ta = 0 °C
Lamp Starting Voltage	Vs	-	-	2300	V_{RMS}	(2), Ta = 25 °C
Operating Frequency	Fo	40	-	80	KHz	
Lamp Life Time	L_BL	50,000		-	Hrs	(4)


Issued Date: Aug. 13, 2009 Model No.: V315H1 - L03

Approval

3.2.2 INVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note	
Farameter	Syllibol	Min.	Тур.	Max.	Offic	Note
Power Consumption	P_{BL}	-	79	81	W	$(5),(6), I_L = 12.3mA$
Input Voltage	V_{BL}	22.8	24	25.2	V_{DC}	
Input Current	I_{BL}	ī	3.29	3.38	Α	Non Dimming
Input Ripple Noise	-	ı	-	912	mV_{P-P}	V _{BL} =22.8V
Oscillating Frequency	F_W	60	63	66	kHz	(3)
Dimming frequency	F _B	150	160	170	Hz	
Minimum Duty Ratio	D_{MIN}	-	20	-	%	

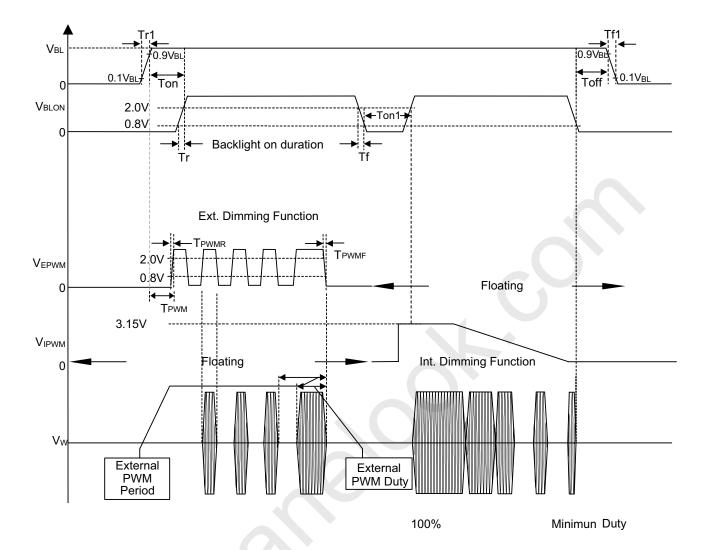
- Note (1) Lamp current is measured by utilizing AC current probe Tektronix P6022 as shown below:
- Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = 25 ± 2 $^{\circ}$ C and I_L = 11.8~ 12.8mArms.
- Note (5) The power supply capacity should be higher than the total inverter power consumption P_{BL}. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.
- Note (6) The measurement condition of Max. value is based on 31.5" backlight unit under input voltage 24V, average lamp current 12.6 mA and lighting 30 minutes later.

Approval

3.2.3 INVERTER INTERFACE CHARACTERISTICS

5 ,			Test		Value			Nata		
Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Note		
On/Off Control Voltage	ON	V_{BLON}		2.0		5.0	V			
On/On Control voltage	OFF	V BLON	_	0	_	0.8	V			
Internal PWM Control	MAX	V_{IPWM}	_	2.85	3.0	3.15	V	Maximum duty ratio		
Voltage	MIN	V IPWM		_	0	_	V	Minimum duty ratio		
External PWM Control	HI	V_{EPWM}	_	2.0	_	5.0	V	Duty on		
Voltage	LO	V EPWM		0	_	0.8	V	Duty off		
Error Signal		ERR		_		_	V			
VBL Rising Time		Tr1		30		_	ms	10%-90%V _{BL}		
VBL Falling Time		Tf1	_	30	_	_	ms	10 %-90 % V _{BL}		
Control Signal Rising Tin	ne	Tr				100	ms			
Control Signal Falling Tir	ne	Tf				100	ms			
PWM Signal Rising Time)	T_{PWMR}		_		50	us			
PWM Signal Falling Time	Э	T_{PWMF}		_		50	us			
Input impedance		R_{IN}		1			ΜΩ			
PWM Delay Time		T_PWM	_	100			ms			
BLON Delay Time		Ton	_	300			ms			
DECIN Delay Tillle		T _{on1}	_	300	(–) –	ms			
BLON Off Time		T_{off}	_	300		_	ms			

- Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM signal during backlight turn on period.
- Note (2) The power sequence and control signal timing are shown in the following figure. For a certain reason, the inverter has a possibility to be damaged with wrong power sequence and control signal timing.
- Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions: $\frac{1}{2}$

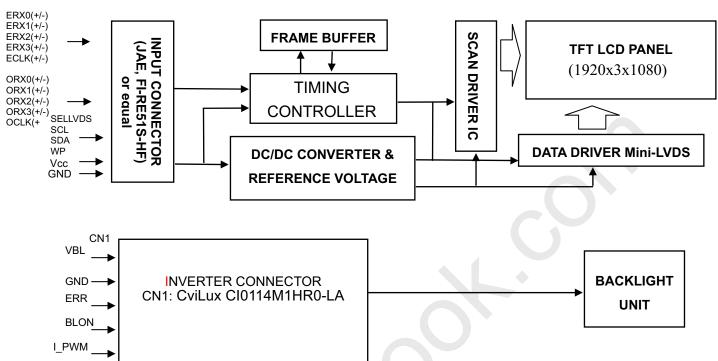

Turn ON sequence: VBL ightarrow PWM signal ightarrow BLON

Turn OFF sequence: BLOFF ightarrow PWM signal ightarrow VBL

Note (4) When inverter protective function is triggered, ERR will output open collector status; In normal operation, the signal of ERR will output a low level voltage.

Approval

Issued Date: Aug. 13, 2009 Model No.: V315H1 - L03


Approval

②

4. BLOCK DIAGRAM

E PWN-

4.1 TFT LCD MODULE

www.panelook.com

Approval

5. INTERFACE PIN CONNECTION

5.1 TFT LCD MODULE

CNF1 Connector Pin Assignment

Pin	Name	Description	Note
1	VCC	+12V power supply	
2	VCC	+12V power supply	
3	VCC	+12V power supply	
4	VCC	+12V power supply	
5	VCC	+12V power supply	
6	GND	Ground	
7	GND	Ground	
8	GND	Ground	
9	GND	Ground	
10	ORX0-	Odd pixel Negative LVDS differential data input. Channel 0	
11	ORX0+	Odd pixel Positive LVDS differential data input. Channel 0	
12	ORX1-	Odd pixel Negative LVDS differential data input. Channel 1	
13	ORX1+	Odd pixel Positive LVDS differential data input. Channel 1	
14	ORX2-	Odd pixel Negative LVDS differential data input. Channel 2	
15	ORX2+	Odd pixel Positive LVDS differential data input. Channel 2	
16	GND	Ground	
17	OCLK-	Odd pixel Negative LVDS differential clock input.	
18	OCLK+	Odd pixel Positive LVDS differential clock input.	
19	GND	Ground	
20	ORX3-	Odd pixel Negative LVDS differential data input. Channel 3	
21	ORX3+	Odd pixel Positive LVDS differential data input. Channel 3	
22	N.C.	No Connection	(2)
23	N.C.	No Connection	(2)
24	GND	Ground	
25	ERX0-	Even pixel, Negative LVDS differential data input. Channel 0	
26	ERX0+	Even pixel, Positive LVDS differential data input. Channel 0	
27	ERX1-	Even pixel, Negative LVDS differential data input. Channel 1	
28	ERX1+	Even pixel, Positive LVDS differential data input. Channel 1	
29	ERX2-	Even pixel, Negative LVDS differential data input. Channel 2	
30	ERX2+	Even pixel, Positive LVDS differential data input. Channel 2	
31	GND	Ground	
32	ECLK-	Even pixel, Negative LVDS differential clock input	
33	ECLK+	Even pixel, Positive LVDS differential clock input.	
34	GND	Ground	
35	ERX3-	Even pixel, Negative LVDS differential data input. Channel 3	
36	ERX3+	Even pixel, Positive LVDS differential data input. Channel 3	
37	N.C.	No Connection	(0)
38	N.C.	No Connection	(2)
39	GND	Ground	
40	SCL	EEPROM Serial Clock (SCL)	
41	N.C.	No Connection	(2)
42	N.C.	No Connection	(2)
43	WP.	EEPROM Write Protection (WP)	_/

Approval

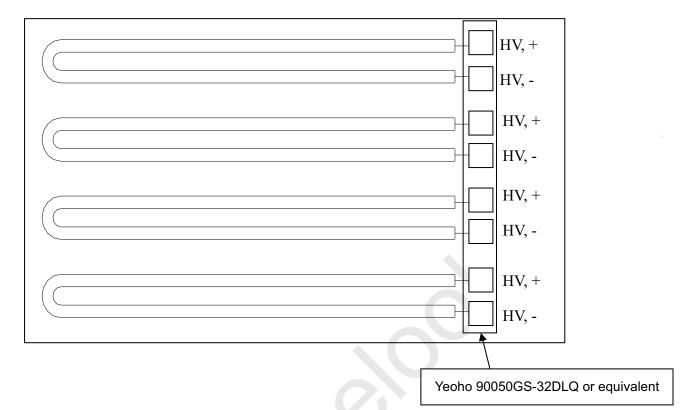
44	SDA	EEPROM Serial Data (SDA)	
45	SELLVDS	LVDS Data Format Selection	(3)
46	N.C.	No Connection	
47	N.C.	No Connection	(2)
48	N.C.	No Connection	
49	N.C.	No Connection	
50	N.C.	No Connection	(1)
51	N.C.	No Connection	

Note (1) Connector part no.: (JAE)FI-RE51S-HF or equivalent

Note (2) HIGH or OPEN: VESA, LOW: JEIDA LVDS format

Please refer to 5.5 LVDS INTERFACE

Note (3) Reserved for internal use. Left it open.



Approval

5.2 BACKLIGHT UNIT

The backlight interface for high voltage side is Yeoho 90050GS-32DLQ or equivalent

Issued Date: Aug. 13, 2009 Model No.: V315H1 - L03

Approval

5.3 INVERTER UNIT

CN1(Header): CviLux CI0114M1HR0-LA

Pin No.	Symbol	Description
1		
2		
3	VBL	+24V Power input
4		
5		
6		
7		
8	GND	Ground
9		
10		
11	ERR	Normal (GND)
		Abnormal (open collector)
12	BLON	Backlight on/off control
13	I_PWM	Internal PWM control signal
14	E PWM	External PWM control signal

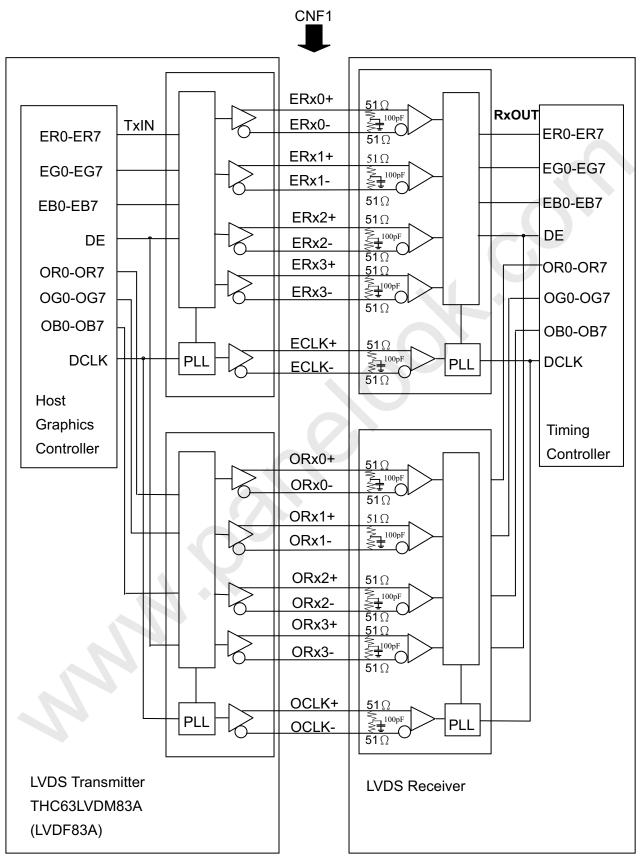
Notice:

#PIN 13: Internal PWM control (Use Pin 13): Pin 14 must open.

#PIN 14: External PWM control (Use Pin 14): Pin 13 must open.

#Pin 13(I_PWM) and Pin 14(E_PWM) can not open in same period.

CN2-CN5: CviLux CP042EP1MFB-LF


Pin No	o. Symbol	Description
1	CCFL HOT	CCFL high voltage
2	CCFL HOT	CCFL high voltage

Approval

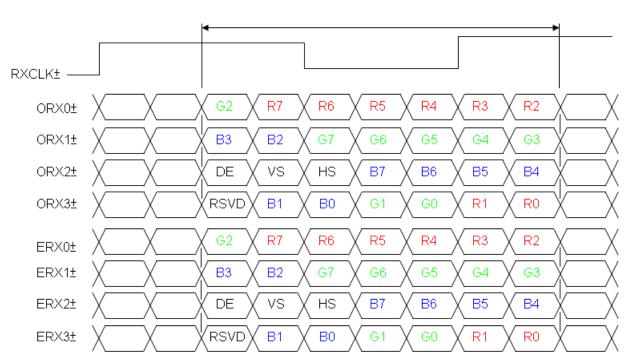
5.3 BLOCK DIAGRAM OF INTERFACE

Issued Date: Aug. 13, 2009 Model No.: V315H1 - L03 **Approva**l

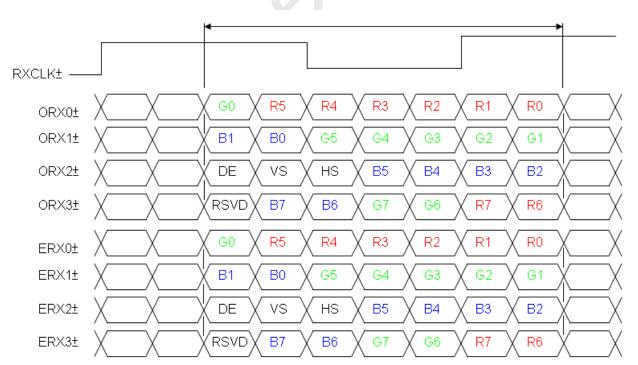
ER0~ER7: Even pixel R data EG0~EG7: Even pixel G data EB0~EB7: Even pixel B data OR0~OR7: Odd pixel R data OG0~OG7: Odd pixel G data OB0~OB7: Odd pixel B data DE : Data enable signal **DCLK** : Data clock signal

Notes:

- (1) The system must have the transmitter to drive the module.
- (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.
- (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.


Issued Date: Aug. 13, 2009 Model No.: V315H1 - L03

Approval


②

5.4 LVDS INTERFACE

JEDIA Format : SELLVDS=L

VESA Format: SELLVDS=H or OPEN

Approval

5.5 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

versus	data input.																								
												Da	ata	Sigr	nal										
	Color				Re	ed							G	reer	1						Bl	ue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	В4	В3	B2	В1	В
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:		÷		:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:		÷	·	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red (253)	1	1	1	1	1	1	0	, 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
rtou	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	;		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Orccii	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	C
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	C
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Gray	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Scale	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	C
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Diac	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1

Issued Date: Aug. 13, 2009 Model No.: V315H1 - L03

Approval

Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

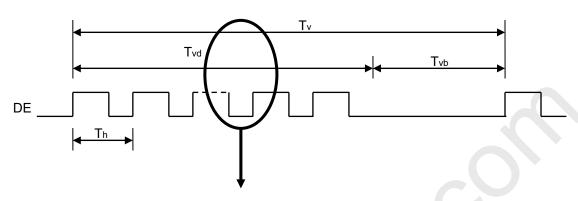
The input signal timing specifications are shown as the following table and timing diagram.

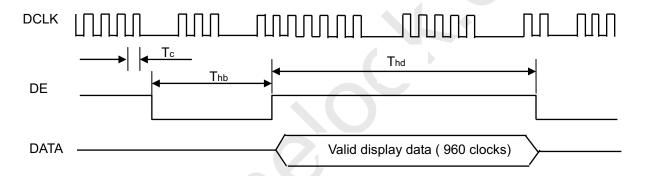
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	1/Tc	(60)	74	(80)	MHz	-
LVDS Receiver Clock	Input cycle to cycle jitter	Trcl	-	-	200	ps	-
LVDC Desciver Deta	Setup Time	Tlvsu	600	-1		ps	-
LVDS Receiver Data	Hold Time	Tlvhd	600	-	-	ps	-
	Frame Rate	Fr6	57	60	63	Hz	(1)
Vertical Active Diamley Terre	Total	Tv	1115	1125	1410	Th	Tv=Tvd+Tvb
Vertical Active Display Term	Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	35	45	330	Th	-
	Total	Th	1050	1100	1325	Тс	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	960	960	960	Тс	-
	Blank	Thb	90	140	365	Тс	-

Note (1) LVDS clock should not over 80MHz even if H-total or V-total is in SPEC. and the frequency follows the equation below:

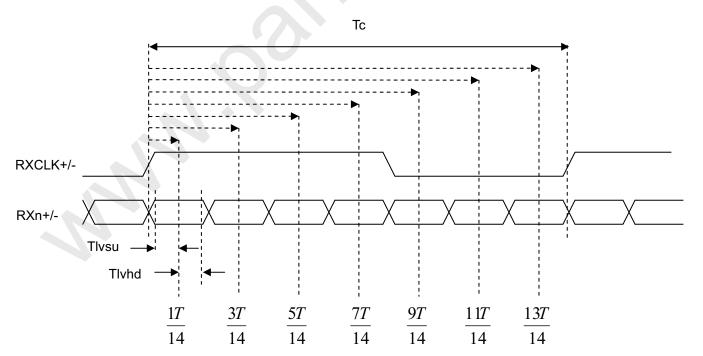
LVDS CLK = Frame rate * H-total * V-total.

Note (2) The timing diagram show the one channel LVDS signal timing required at the input of the LVDS transmitter. It's a two channel LVDS signal input for this model.



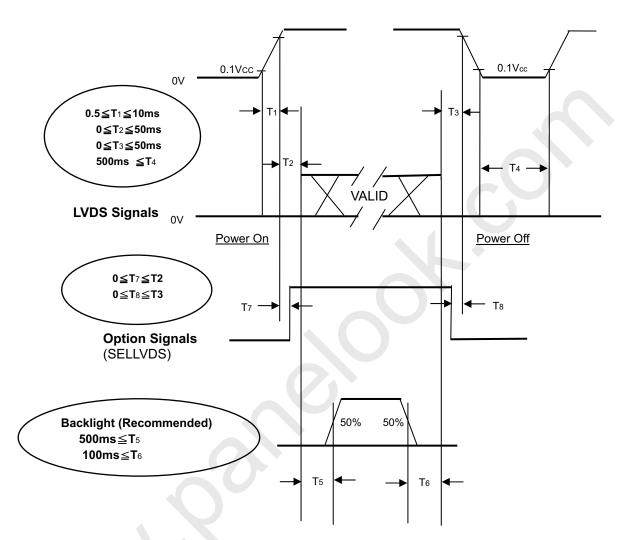

Approval

②


INPUT SIGNAL TIMING DIAGRAM

www.panelook.com

LVDS RECEIVER INTERFACE TIMING DIAGRAM



Issued Date: Aug. 13, 2009 Model No.: V315H1 - L03

 ${f Approval}$

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

Note.

- (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen. There is no reliability issue when the T5, T6 timing missing the range.
- (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

Approval

7. OPTICAL CHARACTERISTICS

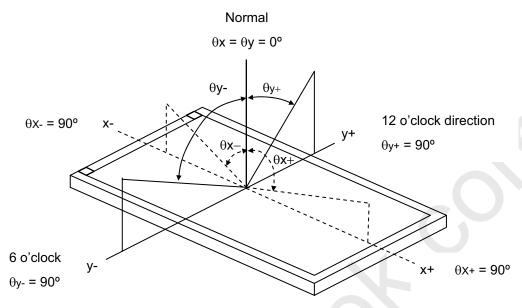
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V_{CC}	5.0	V
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"
Lamp Current	IL	12.3 ± 0.5	mA
Oscillating Frequency (Inverter)	F _W	63±3	KHz
Frame rate	Fr	60	Hz

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		3500	4500		-	(2)
Response Tim	е	Gray to gray average			6.5	12	ms	(3)
Center Lumina	nce of White	L _C		450	500	•	cd/m ²	(4)
White Variation	า	δW		-	-	1.3	-	(7)
Cross Talk		СТ	0 -00 0 -00	-	-	4.0	%	(5)
	Red	Rx	$\theta_x=0^\circ$, $\theta_Y=0^\circ$		0.633		-	
	Reu	Ry	Viewing Angle at		0.322		-	
	Green	Gx	Normal Direction		0.280		-	
Color	Green	Gy	1401111al Bil Collott	Тур	0.607	Тур	-	(G)
Color	Dlue	Bx		-0.03	0.146	+0.03	-	(6)
Chromaticity	Blue	Ву			0.055		-	
	White	Wx			0.280		-	
	vviiite	Wy			0.290		-	
	Color Gamut	CG		68	72		%	NTSC
	Horizontal	θ_{x} +		80	88	•		
Viewing	TIONZONIAI	θ_{x} -	CR≥20	80	88	-	Deg.	(1)
Angle	Vertical	θ_{Y} +	UR≥20	80	88	-	Deg.	(1)
	vertical	θ_{Y} -		80	88	-		



Issued Date: Aug. 13, 2009 Model No.: V315H1 - L03

Approval

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by EZ-Contrast 160R (Eldim)

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Gray to Gray Switching Time:

The driving signal means the signal of luminance 0%, 20%, 40%, 60%, 80%, 100%. Gray to gray average time means the average switching time of luminance 0%,20%, 40%, 60%, 80%, 100% to each other.

Approval

Note (4) Definition of Luminance of White (L_C , L_{AVE}):

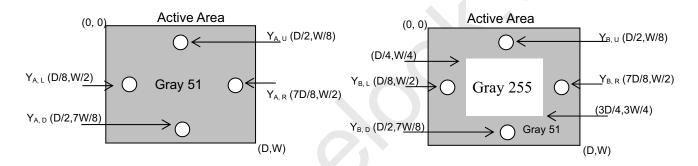
Measure the luminance of gray level 255 at center point and 5 points

$$L_C = L(5)$$

$$L_{AVE} = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$$

where L (x) is corresponding to the luminance of the point X at the figure in Note (7).

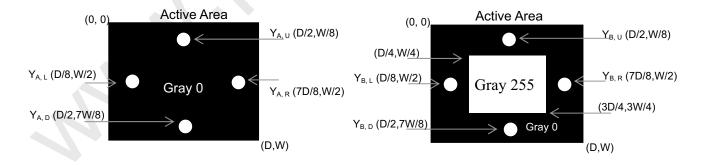
Note (5) Definition of Cross Talk (CT):


$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

(a)

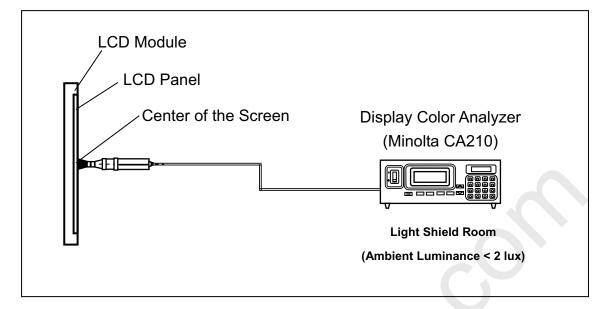
Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)


Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)

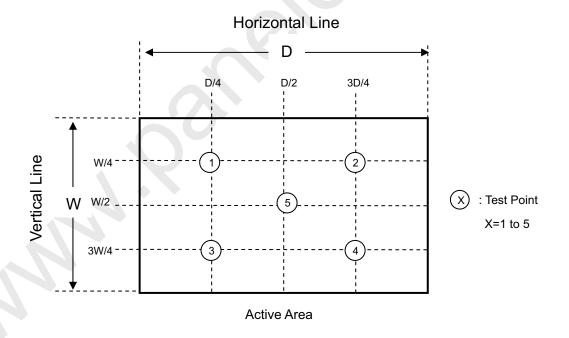
(b)

Y_A = Luminance of measured location without gray level 255 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 255 pattern (cd/m²)


Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

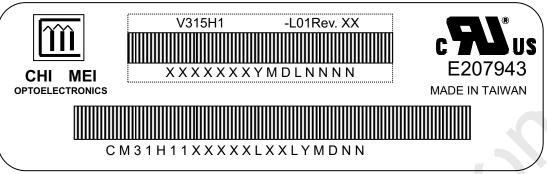

Issued Date: Aug. 13, 2009 Model No.: V315H1 – L03 Approval

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Issued Date: Aug. 13, 2009 Model No.: V315H1 - L03


Approval

8. DEFINITION OF LABELS

8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

L

- (a) Model Name: V315H1-L01
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.
- (c) Serial ID: XXXXXXXYMDLNNNN

Code	Meaning	Description		
XX	CMO internal use	-		
XX	Revision	Cover all the change		
X-XX	CMO internal use	-		
YMD	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4 Month: Jan. ~ Dec.=1, 2, 3, ~, 9, A, B, C Day: 1 st to 31 st =1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U		
L	Product line #	Line 1=1, Line 2=2, Line 3=3,		
NNNN	Serial number	Manufacturing sequence of product		

- (d) Production Location:XXXX, for example:TAIWAN or CHINA.
- (e) Customer's barcode definition:

Serial ID: C M 3 1 H 1 1 X X X X X X L X X L Y M D N N N N

Code	Meaning	Description		
CM	Supplier code	CMO=CM		
31H11	Model number	V315H1-L01=31H11		
Х	Revision code	C1=1,C2=2,C3=3		
Х	Source driver IC code	Century=1, CLL=2, Demos=3, Epson=4, Fujitsu=5, Himax=6,		
		Hitachi=7, Hynix=8, LDI=9, Matsushita=A, NEC=B, Novatec=C,		
Х	Gate driver IC code	OKI=D, Philips=E, Renasas=F, Samsung=G, Sanyo=H, Sharp=I,		
		TI=J, Topro=K, Toshiba=L, Windbond=M		
XX	Cell location Tainan, Taiwan=TN			
L	Cell line #	1~12=0~C		
XX	Module location	Tainan, Taiwan=TN		
L	Module line #	1~12=0~C		
YMD	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4		
		Month: Jan. ~ Dec.=1, 2, 3, ~, 9, A, B, C		
		Day: 1 st to 31 st =1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U		
NNNN	Serial number	By LCD supplier		

Issued Date: Aug. 13, 2009 Model No.: <u>V315H1 – L03</u>

Approval

9. PACKAGING

9.1 PACKING SPECIFICATIONS

(1) 5 LCD TV modules / 1 Box

(2) Box dimensions: 826(L) X 376 (W) X 540 (H)

(3) Weight: approximately 30Kg (5 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

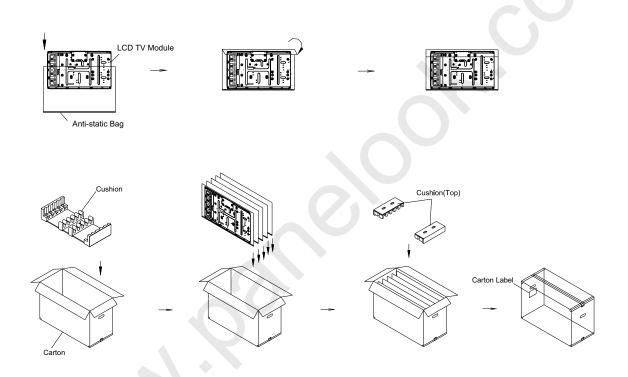


Figure.9-1 packing method

Issued Date: Aug. 13, 2009

Model No.: <u>V315H1 – L03</u>

Approval

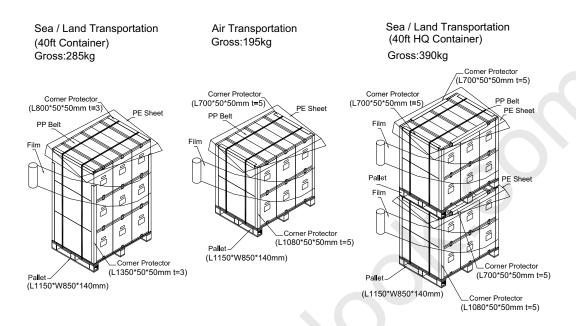


Figure.9-2 packing method

Issued Date: Aug. 13, 2009 Model No.: V315H1 - L03

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

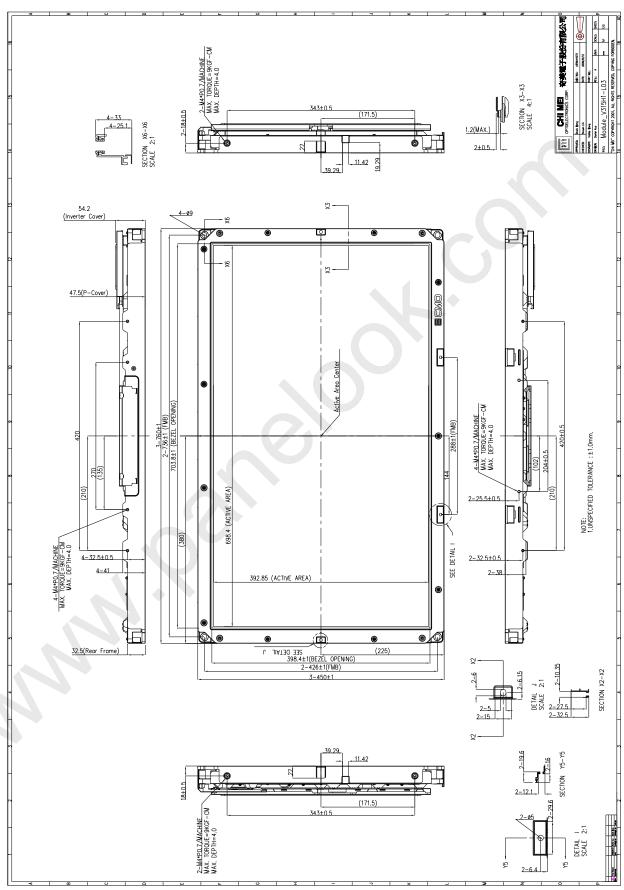
10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

10.3 SAFETY STANDARDS

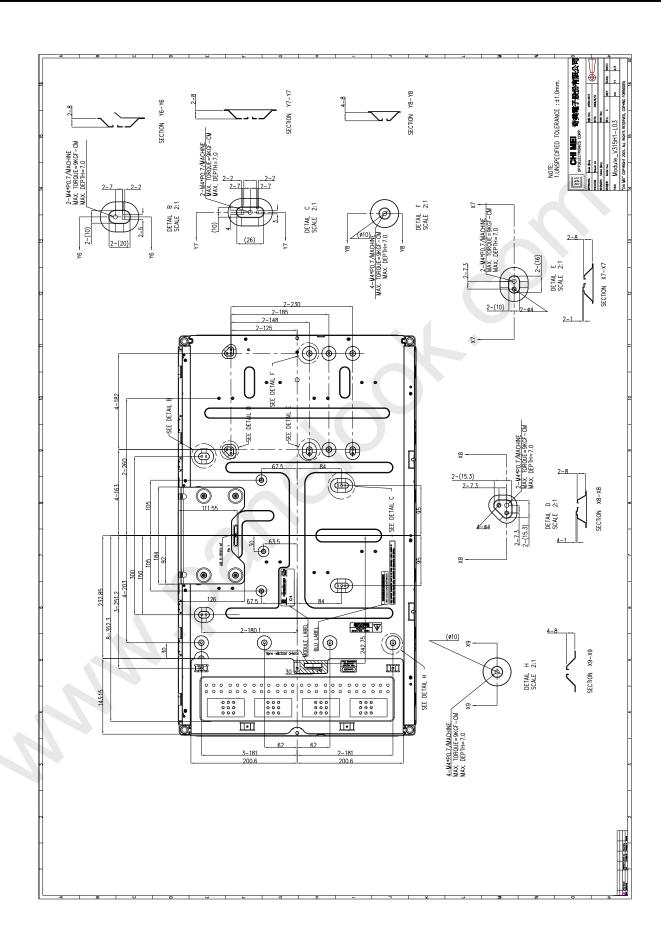
The LCD module should be certified with safety regulations as follows:

Regulatory	Item	Standard
Information Technology equipment	UL	UL 60950-1: 2 nd Edition
	cUL	CAN/CSA C22.2 No.60950-1-07
	СВ	IEC 60950-1:2005
Audio/Video Apparatus	UL	UL 60065:7 th Edition
	cUL	CAN/CSA C22.2 No.60065-03
	СВ	IEC 60065:2001

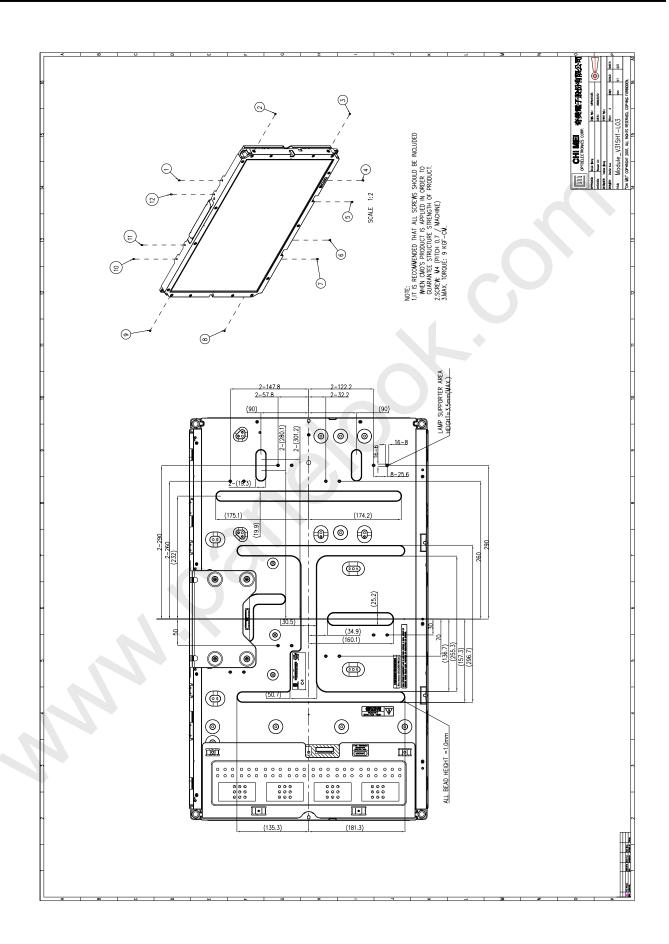

If the module displays the same pattern for a long period of time, the phenomenon of image sticking may be occurred.

Approval

②


11. MECHANICAL CHARACTERISTICS

Approval


②

Approval

②

www.panelook.com