

Approval

TFT LCD Approval Specification

MODEL NO.:V315B3-P04

Customer:	
Approved by:	
Note:	

Approved By	TVHD
	LY Chen

Reviewed By	QRA Dept.	Product Development Div.
nonous sy	Kc Ko	WT Lin

Prepared By	LCD TV Marketing and Product Management Div.				
	Ken Wu	Peter Liu			

Approval

- CONTENTS -

REVISION HISTORY	3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 CHARACTERISTICS 1.3 MECHANICAL SPECIFICATIONS	
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED OF 2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CEL 2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)	
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD OPEN CELL 3.2 RSDS CHARACTERISTICS	
4. BLOCK DIAGRAM 4.1 TFT LCD OPEN CELL	
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 COLOR DATA INPUT ASSIGNMENT	9
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	1
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	1
8. DEFINITION OF LABELS 8.1 OPEN CELL LABEL 8.2 CARTON LABEL	1
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD	1
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS 10.3 SAFETY STNADARDS	
11. MECHANICAL DRAWING	2

Approval

REVISION HISTORY

Version	Date	Page (New)	Section	Description
	Dec.23, 2008		All	Approval Specification was first issued.

Approval

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V315B3- P04 is a 31.5" TFT Liquid Crystal Display module. This module supports 1366 x 768 WXGA format and can display true 16.7M colors (8-bit colors).

1.2 CHARACTERISTICS

CHARACTERISTICS ITEMS	SPECIFICATIONS
Screen Diagonal [in]	31.51
Pixels [lines]	1366×768
Active Area [mm]	697.6845 (H) x 392.256 (V) (31.51" diagonal)
Sub -Pixel Pitch [mm]	0.17025 (H) x 0.51075 (V)
Pixel Arrangement	RGB vertical stripe
Weight [g]	TYP. 1200
Physical Size [mm]	716(W) x 410.8(H) x 2(D) Typ.
Display Mode	Transmissive mode / Normally black
Contrast Ratio	2500:1 Typ. (Typical value measured at CMO's module)
Glass thickness (Array/CF) [mm]	0.7 / 0.7
Viewing Angle (CR>20)	+88/-88(H),+88/-88(V) Typ. (Typical value measured at CMO's module)
Color Chromaticity	R=(0.641, 0.331) G=(0.273, 0.599) B=(0.146, 0.068) W=(0.280, 0.290) (Typical value measured at CMO's module)
Cell Transparency [%]	4.4%Typ. (Typical value measured at CMO's module)
Polarizer (CF side)	Super Wide View Anti-glare coating, 710.8(H) x 406.6(w) Hardness: 3H
Polarizer (TFT side)	Super Wide View, 710.8(H) x 406.6(w).

1.3 MECHANICAL SPECIFICATIONS

Item	Min. Typ. Max.		Max.	Unit	Note
Weight	1100	1200	1300	g	-
		The mounting inclination of the connector makes the screen center within ±0.5mm as the horizontal.			

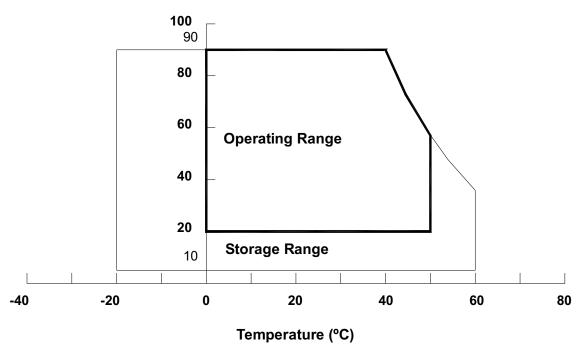
Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) Connector mounting position

4

Approval

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMO MODULE V315B1-L01)

Item	Symbol	Va	Unit	Note		
item	Syllibol	Min.	Max.	Offic	Note	
Storage Temperature	T _{ST}	-20	+60	°C	(1), (3)	
Operating Ambient Temperature	T _{OP}	0	50	°C	(1), (2), (3)	
Altitude Operating	A _{OP}	0	5000	М	(3)	
Altitude Storage	A _{ST}	0	12000	М	(3)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation..

Relative Humidity (%RH)

- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.
- Note (3) The rating of environment is base on LCD module. Leave LCD cell alone, this environment condition can't be guaranteed. Except LCD cell, the customer has to consider the ability of other parts of LCD module and LCD module process.

Approval

2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

Storage Condition: With shipping package.

Storage temperature range : 25±5 $\,^{\circ}$ C Storage humidity range: 50±10%RH

Shelf life: a month

2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

Item	Symbol Value		Unit	Note	
Item	Syllibol	Min	Max	Offic	
Power Supply Voltage	VAA	-0.5	+14.0	V	(1)
Power Supply Voltage	VGH	-0.3	+30.0	٧	
Power Supply Voltage	VGL	-10.0	-0.3	٧	
Logic Input Voltage	V_{IN}	-0.3	+4.1	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Approval

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

Parameter	Symbol	Value			Unit	Note
raidilletei	Symbol	Min.	Тур.	Max.	Offic	Note
	VGH	22	23	24	V	
	VGL	-6.0	-5.5	-5.0	٧	
Power Supply Voltage	VAA	13.20	13.50	13.80	V	
	V25V	2.4	2.5	2.6	V	
	VREF	12.65	12.8	12.95	٧	
	IGH	-	10	-	mA	
Power Supply Current	IGL	-	3	-	mA	
l ower dappry durient	IAA	-	260	-	mA	
	12.5V	-	225	-	mA	
CMOS Input High Threshold Voltage	V _{IH}	2.7	-	3.3	V	
interface Input Low Threshold Voltage	V_{IL}	0	-	0.7	V	

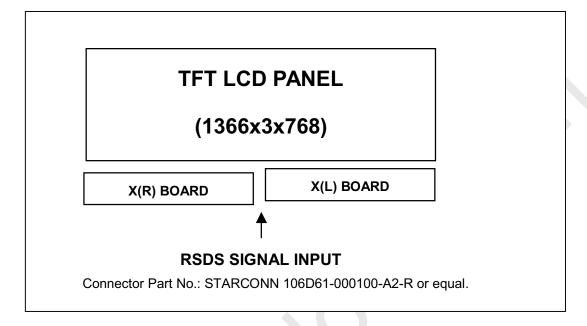
3.2 RSDS CHARACTERISTICS

Ta = -10~+85 °C

Item	Symbol	Condition		Unit		
Item	Symbol	Condition	Min	Тур	Max	Offic
RSDS high input Voltage	$V_{DIFFRSDS}$	$V_{CMRSDS} = +1.2 V (1)$	100	200	1	mV
RSDS low input Voltage	V _{DIFFRSDS}	$V_{CMRSDS} = +1.2 V (1)$	-	-200	-100	mV
RSDS common mode input voltage range	V_{CMRSDS}	$V_{DIFFRSDS} = 200 \text{ mV } (2)$	VSSD+0.1	Note(3)	VDDD-1.2	V
RSDS Input leakage current	I _{DL}	D _{xx} P, D _{xx} N ,CLKO ,CLPN	-10		10	μ A

Note (1) $V_{CMRSDS} = (VCLKP + VCLKN)/2 \text{ or } V_{CMRSDS} = (VD_{XX}P + VD_{XX}N)/2$

Note (2) $V_{DIFFRSDS} = VCLKP - VCLKN \text{ or } V_{DIFFRSDS} = VD_{XX}P - VD_{XX}N$


Note (3) $V_{CMRSDS} = 1.2V(VDDD = 3.3V)$

Approval

4. BLOCK DIAGRAM

4.1 TFT LCD OPEN CELL

Approval

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin assignment

CN1(XL) Connector Pin Assignment

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	TR2	trace2	32	B1P	RSDS data signal (Blue 1)
2	TR1	trace1	33	B1N	RSDS data signal (Blue 1)
3	GND	Ground	34	B0P	RSDS data signal (Blue 0)
4	GM14	Gamma Power supply	35	B0N	RSDS data signal (Blue 0)
5	GM13	Gamma Power supply	36	CLKP	Data driver clock
6	GM12	Gamma Power supply	37	CLKN	Data driver clock
7	GM11	Gamma Power supply	38	G3P	RSDS data signal (Green 3)
8	GM10	Gamma Power supply	39	G3N	RSDS data signal (Green 3)
9	GM9	Gamma Power supply	40	G2P	RSDS data signal (Green 2)
10	GM8	Gamma Power supply	41	G2N	RSDS data signal (Green 2)
11	GM7	Gamma Power supply	42	G1P	RSDS data signal (Green 1)
12	GM6	Gamma Power supply	43	G1N	RSDS data signal (Green 1)
13	GM5	Gamma Power supply	44	G0P	RSDS data signal (Green 0)
14	GM4	Gamma Power supply	45	G0N	RSDS data signal (Green 0)
15	GM3	Gamma Power supply	46	R3P	RSDS data signal (Red 3)
16	GM2	Gamma Power supply	47	R3N	RSDS data signal (Red 3)
17	GM1	Gamma Power supply	48	R2P	RSDS data signal (Red 2)
18	VCM	VCM Power supply	49	R2N	RSDS data signal (Red 2)
19	VDA	Driver Power supply	50	R1P	RSDS data signal (Red 1)
20	VDA	Driver Power supply	51	R1N	RSDS data signal (Red 1)
21	DRL	Control the direction of start pulse	52	R0P	RSDS data signal (Red 0)
22	VDD	Logic Power supply	53	R0N	RSDS data signal (Red 0)
23	EIO4	source driver start pulse (4)	54	GND	Ground
24	STH	source driver start pulse	55	STV_R	Scan driver start pulse 2
25	TP1	RSDS data latch	56	STV	Scan driver start pulse 1
26	POL	polarity invert	57	CKV	Scan driver clock
27	GND	Ground	58	OE	Scan driver output enable
28	B3P	RSDS data signal (Blue 3)	59	VGL	Driver Power supply
29	B3N	RSDS data signal (Blue 3)	60	VGH	Driver Power supply
30	B2P	RSDS data signal (Blue 2)	61	GND	Ground
31	B2N	RSDS data signal (Blue 2)			

Approval

CN2(XR) Connector Pin Assignment

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	TR2	trace2	32	B1P	RSDS data signal (Blue 1)
2	TR1	trace1	33	B1N	RSDS data signal (Blue 1)
3	GND	Ground	34	B0P	RSDS data signal (Blue 0)
4	GM14	Gamma Power supply	35	B0N	RSDS data signal (Blue 0)
5	GM13	Gamma Power supply	36	CLKP	Data driver clock
6	GM12	Gamma Power supply	37	CLKN	Data driver clock
7	GM11	Gamma Power supply	38	G3P	RSDS data signal (Green 3)
8	GM10	Gamma Power supply	39	G3N	RSDS data signal (Green 3)
9	GM9	Gamma Power supply	40	G2P	RSDS data signal (Green 2)
10	GM8	Gamma Power supply	41	G2N	RSDS data signal (Green 2)
11	GM7	Gamma Power supply	42	G1P	RSDS data signal (Green 1)
12	GM6	Gamma Power supply	43	G1N	RSDS data signal (Green 1)
13	GM5	Gamma Power supply	44	G0P	RSDS data signal (Green 0)
14	GM4	Gamma Power supply	45	G0N	RSDS data signal (Green 0)
15	GM3	Gamma Power supply	46	R3P	RSDS data signal (Red 3)
16	GM2	Gamma Power supply	47	R3N	RSDS data signal (Red 3)
17	GM1	Gamma Power supply	48	R2P	RSDS data signal (Red 2)
18	VCM	VCM Power supply	49	R2N	RSDS data signal (Red 2)
19	VDA	Driver Power supply	50	R1P	RSDS data signal (Red 1)
20	VDA	Driver Power supply	51	R1N	RSDS data signal (Red 1)
21	DRL	Control the direction of start pulse	52	R0P	RSDS data signal (Red 0)
22	VDD	Logic Power supply	53	R0N	RSDS data signal (Red 0)
23	EIO4	source driver start pulse (4)	54	GND	Ground
24	STH	source driver start pulse	55	STV_R	Scan driver start pulse 2
25	TP1	RSDS data latch	56	STV	Scan driver start pulse 1
26	POL	polarity invert	57	CKV	Scan driver clock
27	GND	Ground	58	OE	Scan driver output enable
28	B3P	RSDS data signal (Blue 3)	59	VGL	Driver Power supply
29	B3N	RSDS data signal (Blue 3)	60	VGH	Driver Power supply
30	B2P	RSDS data signal (Blue 2)	61	GND	Ground
31	B2N	RSDS data signal (Blue 2)			

Note (1) CN1 · CN2 Connector Part No.: STARCONN 106D61-000100-A2-R or equal.

Note (2) The TR1 must be connected to the TR4.

Note (3) The TR2 must be connected to the TR3.

Approval

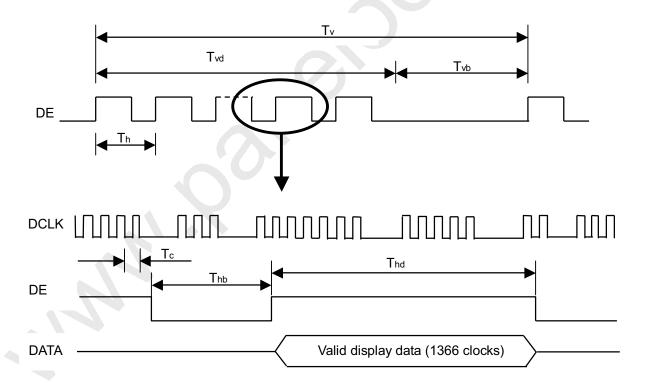
5.2 COLOR DATA INPUT ASSIGNMENT

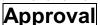
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

					Data Signal					ı															
Color		Red				Green					Blue														
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	B4	ВЗ	B2	В1	ВС
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	C
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	C
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
C man /	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Gray	:	:	:	:	:	:	:	:	:	•	: (:	:):	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:	:	:	:	:	:	:	:	·		:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of David	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	C
_	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	C
Gray	:	:	:	:	:):	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	C
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	C
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	C
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray Scale	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	C
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	١.
Of 	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	-
Blue	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	(
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	

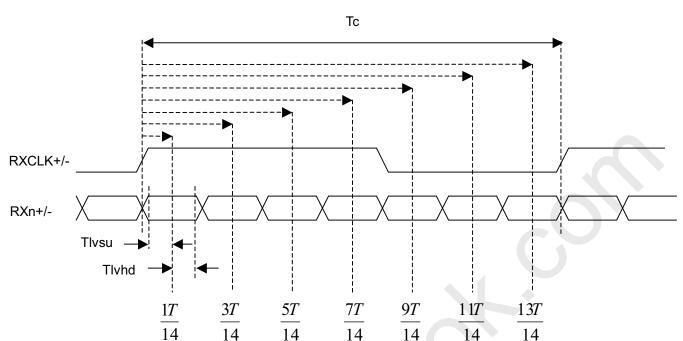
Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

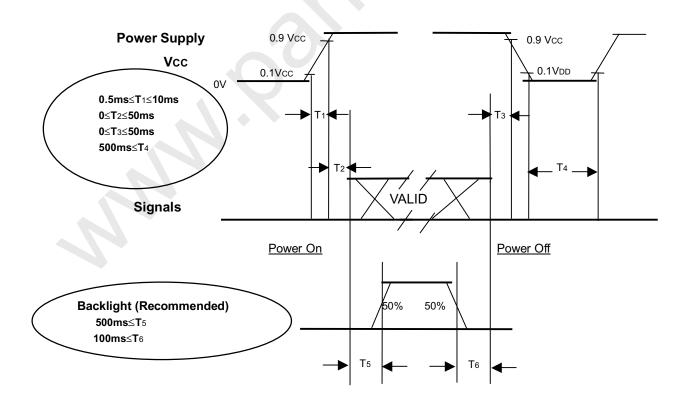

6.1 INPUT SIGNAL TIMING SPECIFICATIONS


The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frame Rate	Fr5	47	50	53	Hz	
	Traine Nate	Fr6	57	60	63	Hz	
Vertical Active Display Term	Total	Τv	778	806	888	Th	Tv=Tvd+Tvb
	Display	Tvd	768	768	768	Th	-
	Blank	Tvb	10	38	120	Th	-
	Total	Th	1442	1560	1936	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1366	1366	1366	Tc	-
	Blank	Thb	76	194	570	Tc	-


Note: Since this module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM



LVDS RECEIVER INTERFACE TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the conditions shown in the following diagram.

Power ON/OFF Sequence

Global LCD Panel Exchange Center

Issued Date: Dec. 23, 2008 Model No.: V315B3-P04

- Note (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- Note (2) Please apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off, the display may, instantly, function abnormally.
- Note (3) In case of vcc = off level, please keep the level of input signals on the low or keep a high impedance.
- Note (4) T4 should be measured after the module has been fully discharged between power on/off periods.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

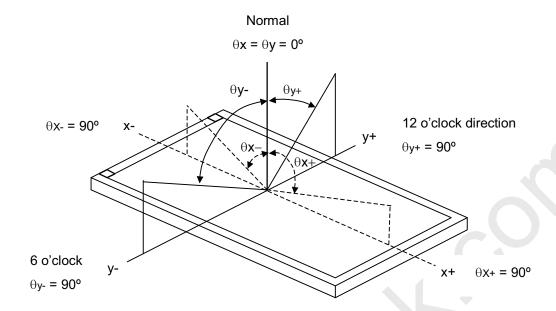
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Та	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V_{cc}	5.0	V
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"
Inverter Current	l _L	5.2±0.5	mA
Inverter Driving Frequency	F _L	58±3	KHz

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Red	Rx			(0.641)		-		
	Neu	Ry			(0.331)		-		
	Green	Gx	$\theta_x=0^\circ$, $\theta_Y=0^\circ$		(0.273)		-		
Color	010011	Gy	Viewing angle at normal	Typ0.03	(0.599)	Typ+0.03	-	(1) (5)	
Chromaticity	Blue	Bx	direction	тур0.03	(0.146)	1 yp 1 0.03	-	(1),(5)	
	Бійс	Ву	With CMO module		(0.068)	_	-		
	White	Wx			(0.28)		-		
		Wy			(0.29)		-		
Center Transmittance		Т%	θ _x =0°, θ _Y =0°	-	4.4	-	%	(1), (7)	
Contrast	Contrast Ratio		With CMO Module	1500	2500		-	(1), (3)	
Response Time		Gray to gray average	$_{ extsf{x}}$ =0°, $_{ extsf{Y}}$ =0° With CMO Module@60Hz	-	6.5	12	ms	(4)	
White Variation		δW	θ_x =0°, θ_Y =0° With CMO Module			1.3	-	(1), (6)	
	Horizontal	θ_{x} +		80	88	-			
Viewing Angle	rionzontal	$\theta_{x^{-}}$	CR≥20	80	88	-	Dom	(1) (2)	
	Vertical	θ_{Y} +	With CMO Module	80	88	-	Deg.	(1), (2)	
	vertical	θ_{Y} -		80	88	-			

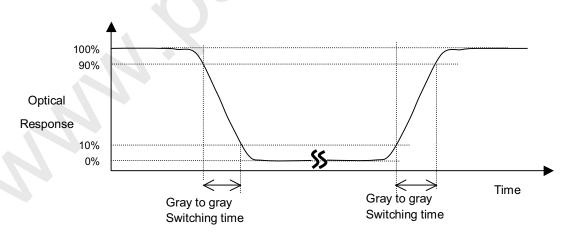

Note (1) Light source is CMO's BLU and driving voltages are based on suitable gamma voltages.

Note (2) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by EZ-Contrast 160R (Eldim)

Note (3) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

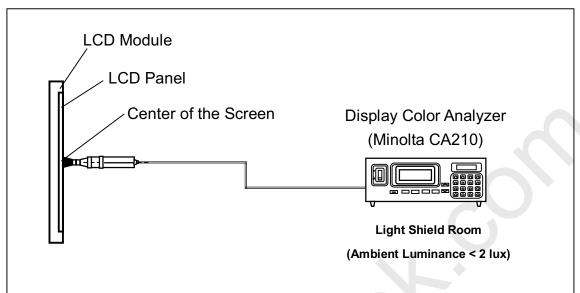
Note (4) Definition of Gray-to-Gray Switching Time:

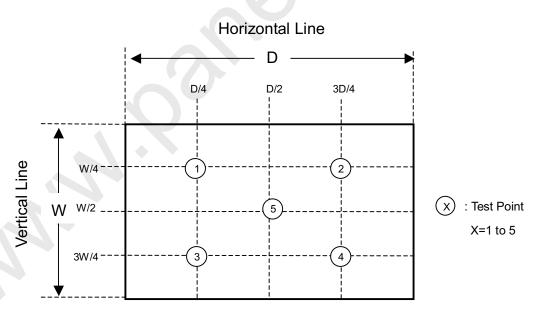
The driving signal means the signal of luminance 0%, 20%, 40%, 60%, 80%, 100%.

Gray to gray average time means the average switching time of luminance 0%,20%,

40%, 60%, 80%, 100% to each other.

Note (5) Measurement Setup:


The LCD module should be stabilized at given temperature for 60 minutes to avoid abrupt temperature


Approval

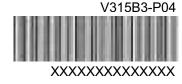
change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 60 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points $\delta W = \text{Maximum } [L\ (1), L\ (2), L\ (3), L\ (4), L\ (5)] \ / \ \text{Minimum } [L\ (1), L\ (2), L\ (3), L\ (4), L\ (5)]$ where L (X) is corresponding to the luminance of the point X at the figure below.

Note (7) Definition of Transmittance(T%): Active Area Module is without signal input.

Global LCD Panel Exchange Center


Issued Date: Dec. 23, 2008 Model No.: V315B3-P04

Approval

8. DEFINITION OF LABELS

8.1 OPEN CELL LABEL

The barcode nameplate is pasted on each open cell as illustration for CMO internal control.

8.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation

(a) Model Name: V315B3- P04

(b) Carton ID: CMO internal control

(c) Quantities: 12

Approval

9. PACKAGING

9.1 PACKING SPECIFICATIONS

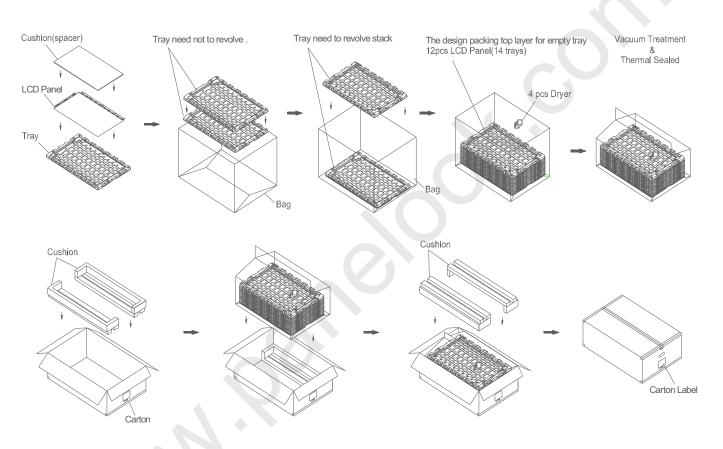
(1) 12 LCD TV Panels / 1 Box

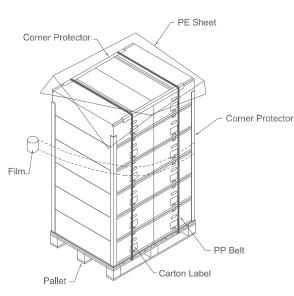
(2) Box dimensions : 970 (L) X 640 (W) X 319 (H)

Weight: approximately 28Kg (12 panels per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method




Figure.9-1 packing method

Approval

Sea Transportation

Corner Protector:L1850*50*50mm L1130*50*50mm Pallet:L1300*W1000*H140mm Pallet Stack:L1300*W1000*H2054mm Gross: 352kg

Air Transportation

Corner Protector:L1250*50*50mm L1130*50*50mm Pallet:L1300*W1000*H140mm Pallet Stack:L1300*W1000*H1416mm Gross:240kg

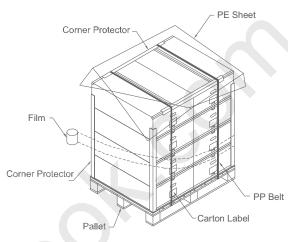


Figure.9-2 packing method

Global LCD Panel Exchange Center

Issued Date: Dec. 23, 2008 Model No.: V315B3-P04

10. PRECAUTIONS

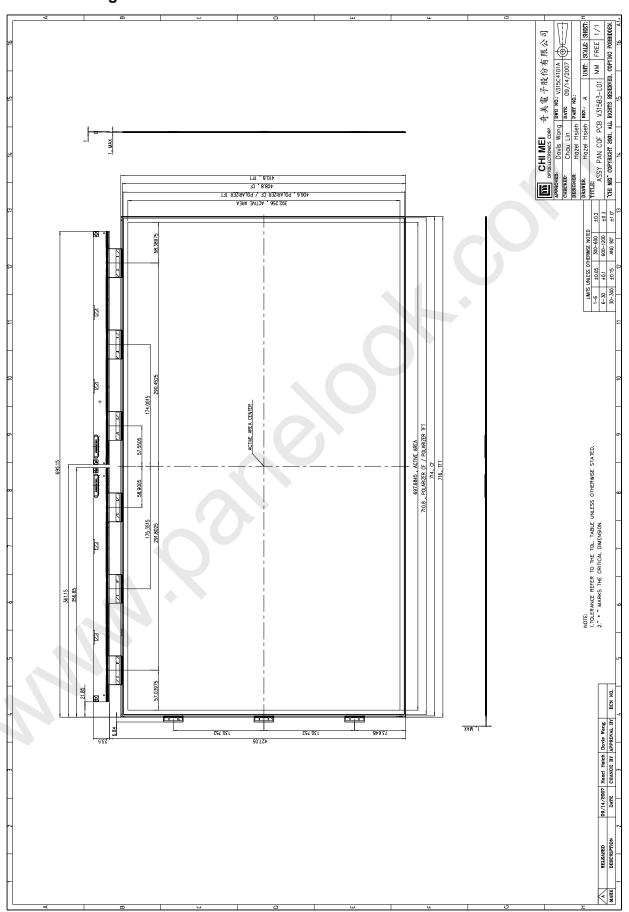
10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble backlight or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture come into or contacted the product, because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.

10.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.

10.3 SAFETY STANDARDS


Regulatory	Item	Standard
	UL	UL 60950-1:2006
Information Technology equipment	cUL	CAN/CSA C22.2 No.60950-1-03: 2006
	СВ	IEC 60950 -1:2005
	UL	UL 60065:2006
Audio/Video Apparatus	cUL	CAN/CSA C22.2 No.60065-03: 2006
	СВ	IEC 60065:2006

Approval

11. Mechanical Drawing

21