

Approval

TFT LCD Approval Specification

MODEL NO.: V260B1 – PN3

Customer:
Approved by:
Note:

Approved By	TV Head Division
	LY Chen

Reviewed By	QA Dept.	Product Development Div.
Noviowed By	Hsin-Nan Chen	WT Lin

Dropored By	LCD TV Marketing and	d Product Management Div.
Prepared By	CY Chang	Chloe Chen

Approval

CONTENTS -

REVISION HISTORY	3	}
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 CHARACTERISTICS 1.3 MECHANICAL SPECIFICATIONS	4	ļ
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON 2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL 2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)		;
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 RSDS CHARACTERISTICS		,
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE		,
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 COLOR DATA INPUT ASSIGNMENT	8	}
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.1.1 TIMING SPECIFICATIONS 6.1.2 HORIZONTAL TIMING CHART 6.1.3 VERTICAL TIMING CHART 6.2 POWER ON/OFF SEQUENCE	1	10
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	1	4
8. PRECAUTIONS 8.1 ASSEMBLY AND HANDLING PRECAUTIONS 8.2 SAFETY PRECAUTIONS	1	8
9. PACKING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD	1	9
10. REGULATORY STANDARD 10.1 SAFETY	2	21
11. DEFINITION OF LABELS 11.1 OPEN CELL LABEL 11.2 CARTON LABEL	2	22
12. MECHANICAL DRAWING	2	23

Approval

REVISION HISTORY

	REVISION HISTORY						
Version	Date	Page (New)	Section	Description			
Ver 2.0	Jun. 19,'09	All	All	Approval Specification was first issued.			

Approval

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V260B1- PN3 is a 26-inch TFT LCD cell with driver ICs and RSDS interface. This module supports 1366 x 768 WXGA format and can display 16.7M colors (6-bit+High FRC colors). The backlight unit is not built in.

1.2 CHARACTERISTICS

CHARACTERISTICS ITEMS	SPECIFICATIONS
Screen Diagonal [in]	26.0
Pixels [lines]	1366×768
Active Area [mm]	575.769×323.712
Sub -Pixel Pitch [mm]	0.1405(H)×0.4215(V)
Pixel Arrangement	RGB vertical stripe
Weight [g]	TYP. 1000
Physical Size [mm]	592(W) x 339.8(H) x 1.84(D) Typ.
Display Mode	TN, Normally White
Contrast Ratio	800:1 Typ.
	(Typical value measured at CMO's module)
Glass thickness (Array/CF) [mm]	0.6/0.6
Viewing Angle (CR>10)	+80/-80(H), +70/-60(V) Typ.
	(Typical value measured at CMO's module)
Color Chromaticity	R=(0.649, 0.328)
	G=(0.269,0.583)
	B=(0.150,0.088)
	W=(0.308,0.321)
	*Please refer to "color chromaticity" on p.12
Cell Transparency [%]	6.2%Typ.
	(Typical value measured at CMO's module)
Polarizer (CF side)	Anti-Glare coating,
	587.4(H) x 335.2(w). Hardness: 3H
Polarizer (TFT side)	587.4(H) x 335.2(w),
	Hardness: 3H

1.3 MECHANICAL SPECIFICATIONS

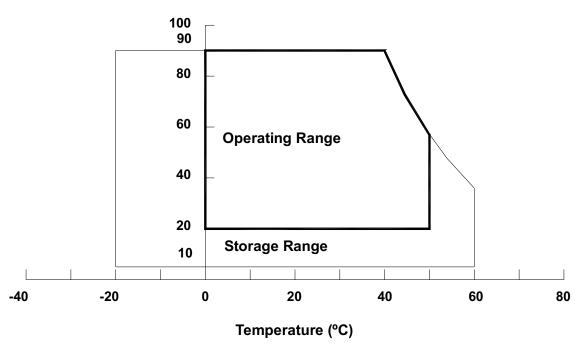
Item	Item Min. Typ.		Max.	Unit	Note
Weight	-	737	-	g	
I/F connector mounting position	The mounting inclination of the connector makes				
in connector mounting position	the screen cente		(2)		

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) Connector mounting position

Approval

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note	
Item	Syllibol	Min.	Max.	Offic	NOLE
Storage Temperature	T _{ST}	-20	+60	°C	(1), (3)
Operating Ambient Temperature	T _{OP}	0	50	°C	(1), (2), (3)
Altitude Operating	A _{OP}	0	5000	М	(3)
Altitude Storage	A _{ST}	0	12000	М	(3)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Relative Humidity (%RH)

- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.
- Note (3) The rating of environment is base on LCD module. Leave LCD cell alone, this environment condition can't be guaranteed. Except LCD cell, the customer has to consider the ability of other parts of LCD module and LCD module process.

Approval

2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

Storage Condition : With shipping package.

Storage temperature range : 25±5 $\,^{\circ}\mathbb{C}$ Storage humidity range : 50±10%RH

Shelf life : a month

2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

Item	Value			Unit	Note
Item	Symbol	Min	Max	Offic	
Power Supply Voltage	VIN5	4.5	5.5	V	(1)
Logic Input Voltage	VDD	-0.3	3.6	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Appr<u>oval</u>

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $Ta = 25 \pm 2 \, ^{\circ}C$

Parameter		Symbol	Value			Unit	Note
	Farantetei		Min.	Тур.	Max.	Offic	NOLE
Power Supply Voltage		VIN5	4.5	5.0	5.5	V	
			3.1	3.3	3.5	V	
Power Supply Current		I5V	-	1000	-	mA	
		13.3V	-	50	-	mA	
CMOS	Input High Threshold Voltage	V_{IH}	2.7	-	3.3	V	
interface	Input Low Threshold Voltage	V_{IL}	0	-	0.7	V	

3.2 RSDS CHARACTERISTICS

Ta = 25 ± 2 °C

Itam	Cymphol	Condition	,	- Unit			
Item	Symbol Condition		Min	Тур	Max	Offic	
RSDS high input Voltage	V_{DIFFRSDS}	$V_{CMRSDS} = +1.2 V (1)$	100	200	-	mV	
RSDS low input Voltage	V _{DIFFRSDS}	$V_{CMRSDS} = +1.2 V (1)$	-	-200	-100	mV	
RSDS common mode	V _{CMRSDS}	V _{DIFFRSDS} = 200mV (2)	0.1	1.2	VDD-1.2	V	
input voltage range	CIVIRSUS	V DIFFRSDS 200111 (2)			VDD 11.2		
RSDS Input leakage	I _{DL}	D _{xx} P, D _{xx} N ,CLKO ,CLPN	-10	_	10	μΑ	
current	UL	DXXII, DXXIII, OERIO, OERIII	- 10	-	10	μι	

Note (1) $V_{CMRSDS} = (VCLKP + VCLKN)/2$ or $V_{CMRSDS} = (VD_{XX}P + VD_{XX}N)/2$

Note (2) $V_{DIFFRSDS} = VCLKP - VCLKN$ or $V_{DIFFRSDS} = VD_{XX}P - VD_{XX}N$

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

TFT LCD PANEL

(1366x3x768)

X BOARD

RSDS SIGNAL INPUT

Connector Part No.: Starconn 089H45-000000-G2-C (55) or Compatible

Ap<u>proval</u>

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

CN2(X) Connector Pin Assignment

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	GND	Ground	29	TP1	RSDS data latch
2	NC	No connection	30	POL	polarity invert
3	NC	No connection	31	GND	Ground
4	GND	Ground	32	NC	No connection
5	B2P	RSDS data signal (Blue2)	33	VDD	Logic Power supply: +3.3V
6	B2N	RSDS data signal (Blue2)	34	VDD	Logic Power supply: +3.3V
7	B1P	RSDS data signal (Blue1)	35	VIN5	Power supply: +5V
8	B1N	RSDS data signal (Blue1)	36	VIN5	Power supply: +5V
9	B0P	RSDS data signal (Blue0)	37	VIN5	Power supply: +5V
10	B0N	RSDS data signal (Blue0)	38	STV	Scan driver start pulse
11	G2P	RSDS data signal (Green2)	39	CKV	Scan driver clock
12	G2N	RSDS data signal (Green2)	40	OE	Scan driver output enable
13	G1P	RSDS data signal (Green1)	41	NC	No connection
14	G1N	RSDS data signal (Green1)	42	NC	No connection
15	G0P	RSDS data signal (Green0)	43	GVOFF	3-level power control signal
16	G0N	RSDS data signal (Green0)	44	NC	No connection
17	CLKP	Data driver clock	45	GND	Ground
18	CLKN	Data driver clock			
19	R2P	RSDS data signal (Red2)			
20	R2N	RSDS data signal (Red2)			
21	R1P	RSDS data signal (Red1)			
22	R1N	RSDS data signal (Red1)			
23	R0P	RSDS data signal (Red0)			
24	R0N	RSDS data signal (Red0)			
25	GND	Ground			
26	NC	No connection			-
27	NC	No connection			-
28	STH	source driver start pulse			

Note (1) CN2 Connector Part No.: HIROSE FH12-45S-0.5SH (55) or Compatible.

Approval

5.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

versus	data input.									\	0:								
Calaa					_				L		Sig	naı							
Color		Red				Green				Blue									
	T	R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	В0
Basic Colors	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	-	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	3	:	:):)	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:					:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:		:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
Oreen	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Gray Scale Of Blue	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

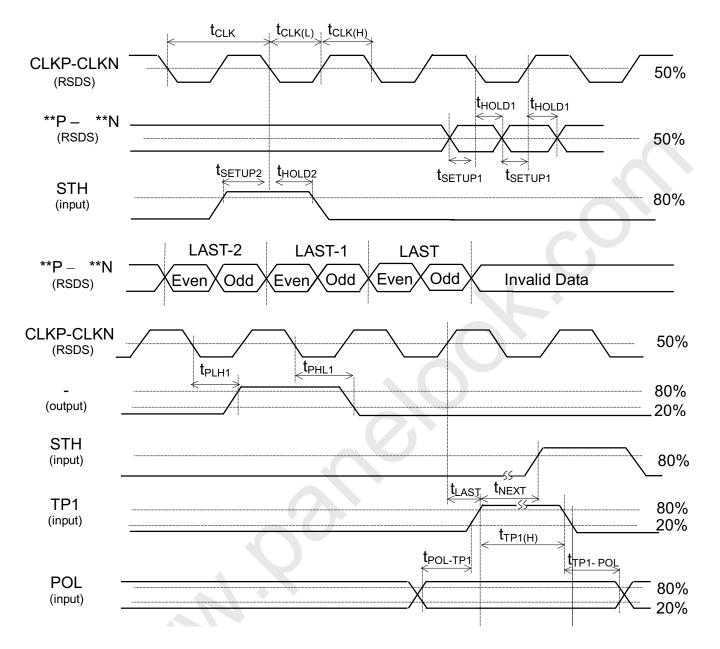
Note (1) 0: Low Level Voltage, 1: High Level Voltage

Approval

6. INTERFACE TIMING

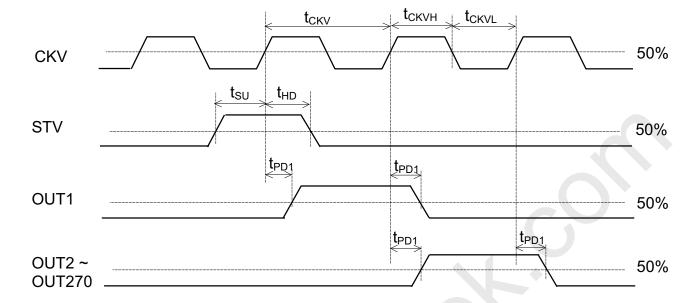
6.1 INPUT SIGNAL TIMING SPECIFICATIONS

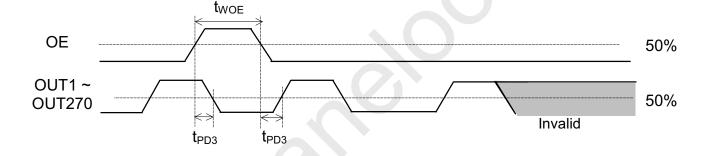
(a) Timing Spec


	Davamatav	Cymphal	Condition	Spec			Unit
	Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	Clock pulse width	tclk	-	12.5	-	-	ns
	Clock pulse low period	tclk(L)	-	5		-	ns
	Clock pulse high period	tclk(H)	-	5	-	\ <u>-</u>	ns
	Data setup time	t SETUP1	-	4	-	-	ns
LID (4)	Data hold time	t HOLD1	-	1	_	-	ns
HD (1)	Start pulse setup time	tsetup2	-	2	-	-	ns
	Start pulse hold time	t HOLD2	-	2	-	-	ns
	TP1 high period	t TP1(H)	4-1	15	-	-	CLKP
	Last data CLK to TP1 high	t last		1	-	-	CLKP
	TP1 high to STH high	t NEXT		6	-	-	CLKP
	POL to TP1 setup time	t POL-TP1	POL toggle to TP1 rising	3	-	-	ns
	TP1 to POL hold time	tTP1-POL	TP1 falling to POL toggle	2	-	-	ns
	CKV period	tckv	-	5	-		μs
	CKV pulse width	тскун, тскуг	50% duty cycle	2	-		μ s
	OE pulse width	twoE	-	1	-		μ s
VD	Data setup time	tsu	-	0.5	-		μ s
	Data hold time	thD	-	0.5	-		μs
	CKV to output delay time	tPD1	CL=300pF	-	-	1	μs
	OE to output delay time	tpD3	CL=300pF	-	-	0.8	μs

App<u>roval</u>

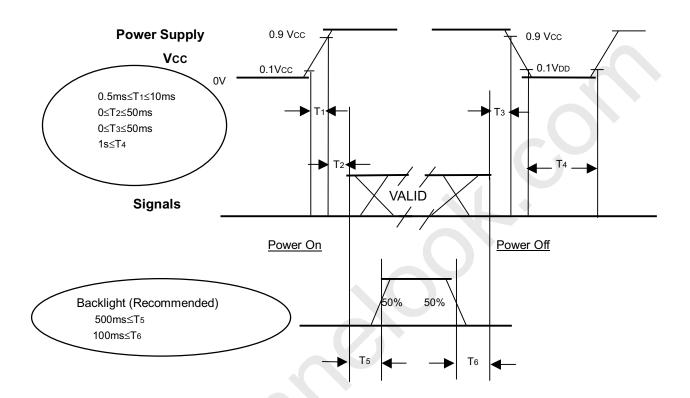
(b) Horizontal Timing Chart





Approval

(c) Vertical Timing Chart


Global LCD Panel Exchange Center

Issued Date: 19, Jun 2009 Model No.: V260B1 - PN3

Approval

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the conditions shown in the following diagram.

Power ON/OFF Sequence

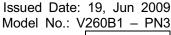
Note:

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Please apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off, the display may, instantly, function abnormally.
- (3) In case of vcc = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power on/off periods.
- (5) Interface signal shall not be kept at high impedance when the power is on.

Approval

7. OPTICAL CHARACTERISTICS

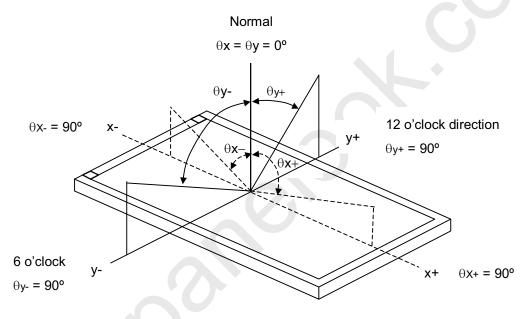
7.1 TEST CONDITIONS


Item	Symbol	Value	Unit
Ambient Temperature	Та	25±2	°C
Ambient Humidity	Ha	50±10	%RH
Supply Voltage	V _{CC}	5.0	V
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERIS		
Lamp Current (High side)	Ι _L	$7.5\text{mA}\pm0.5$	mA
Oscillating Frequency (Inverter)	F _W	58±3	KHz
Frame rate		60	Hz

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Dad	Rcx			0.649		-		
	Red	Rcy			0.328		-		
		Gcx			0.269		-		
Color	Green	Gcy	θ_x =0°, θ_Y =0° Viewing Angle at Normal		0.583		-	(O) (E)	
Chromaticity		Всх	Direction	-	0.150	-	-	(0),(5)	
	Blue	Всу	Standard light source "C"		0.088		-		
	\\/\bita	Wcx			0.308		-		
	White	Wcy			0.321		-		
Center Transmittance		Т%	θ _x =0°, θ _Y =0°	-	6.2	-	%	(1),(7)	
Contras	Contrast Ratio		with CMO module	600	800	-		(1),(3)	
Daanan	Response Time		θ _x =0°, θ _Y =0°	-	3	5	ms	(4)	
Respon			with CMO Module@60Hz	-	5	8	ms	(4)	
White Variation		δW	θ_x =0°, θ_Y =0° with CMO module	-	-	1.3	-	(1),(6)	
Viewing Angle	Horizontol	θ_{x} +		70	80	-			
	Horizontal	θ _x -	CR≥10	70	80	-	Dog	(4) (0)	
	Vantiasi	θ _Y +	With CMO module	70	80	-	Deg.	(1),(2)	
	Vertical	θ _Y -		60	70	_			



- Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltage are based on suitable gamma voltages. The calculating method is as following:
 - 1. Measure Module's and BLU's spectrum. White is without signal input and R,G,B are with signal input. BLU(for V260B1-LN1) is supplied by CMO.
 - 2. Calculate cell's spectrum.
 - 3. Calculate cell's chromaticity by using the spectrum of standard light source "C".
- Note (1) Light source is the BLU which is supplied by CMO and driving voltage are based on suitable gamma voltages.
- Note (2) Definition of Viewing Angle (θx , θy):

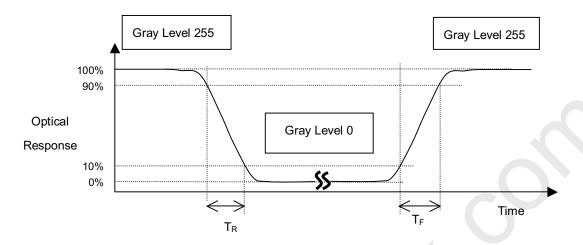
Viewing angles are measured by EZ-Contrast 160R (Eldim)

Note (3) Definition of Contrast Ratio (CR):

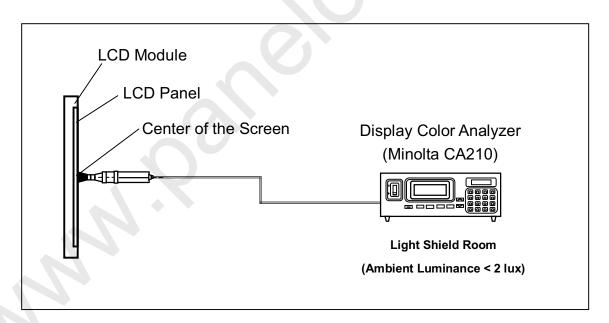
The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255


L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

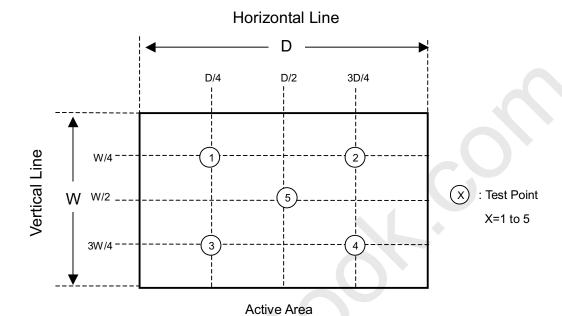

Issued Date: 19, Jun 2009 Model No.: V260B1 - PN3 Appr<u>oval</u>

Note (4) Definition of Response Time (T_R, T_F):

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

Global LCD Panel Exchange Center


Issued Date: 19, Jun 2009 Model No.: V260B1 - PN3

App<u>roval</u>

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Note (7) Definition of Transmittance (T%):

Module is without signal input.

Global LCD Panel Exchange Center

Issued Date: 19. Jun 2009 Model No.: V260B1 - PN3

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble backlight or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture come into or contacted the product, because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.

8.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.

9. PACKAGING

9. Packing

9.1 PACKING SPECIFICATIONS

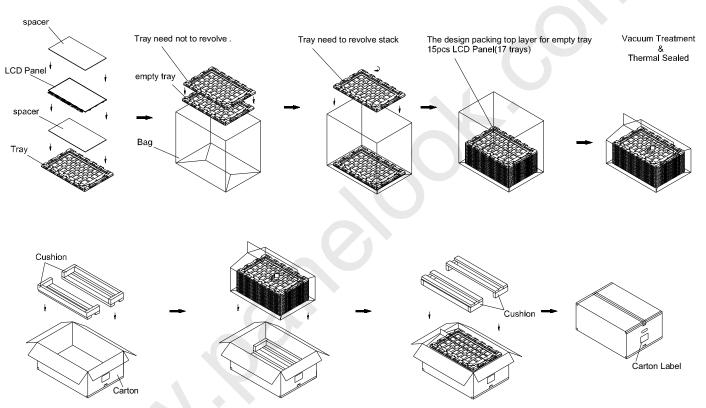
(1) 15 LCD TV Panels / 1 Box

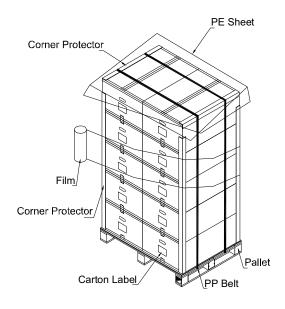
(2) Box dimensions: 804 (L) X 565 (W) X 363 (H)

(3) Weight: approximately 23.5 Kg (15 panels per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method




Figure.9-1 Packing Method

Approval

Sea Transportation

Corner Protector:L1650*50*50mm L800*50*50mm Pallet:L1150*W840*H140mm Pallet Stack:L1150*W840*H1960mm Gross:265kg

Air Transportation

Corner Protector:L1250*50*50mm L800*50*50mm Pallet:L1150*W840*H140mm Pallet Stack:L1150*W840*H1597mm Gross:215kg

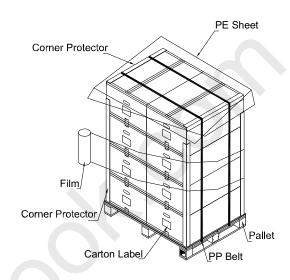


Figure.9-2 Packing Method

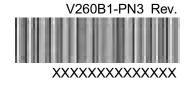
Approval

10. REGULATORY STANDARDS

10.1 SAFETY

Regulatory	Item	Standard				
	UL	UL 60950-1: 2003				
Information Technology equipment	cUL	CAN/CSA C22.2 No.60950-1-03				
	СВ	IEC 60950-1:2001				
	UL	UL 60065: 2003				
Audio/Video Apparatus	cUL	CAN/CSA C22.2 No.60065-03				
	СВ	IEC 60065:2001				

21


Approval

11. DEFINITION OF LABELS

11.1 OPEN CELL LABEL

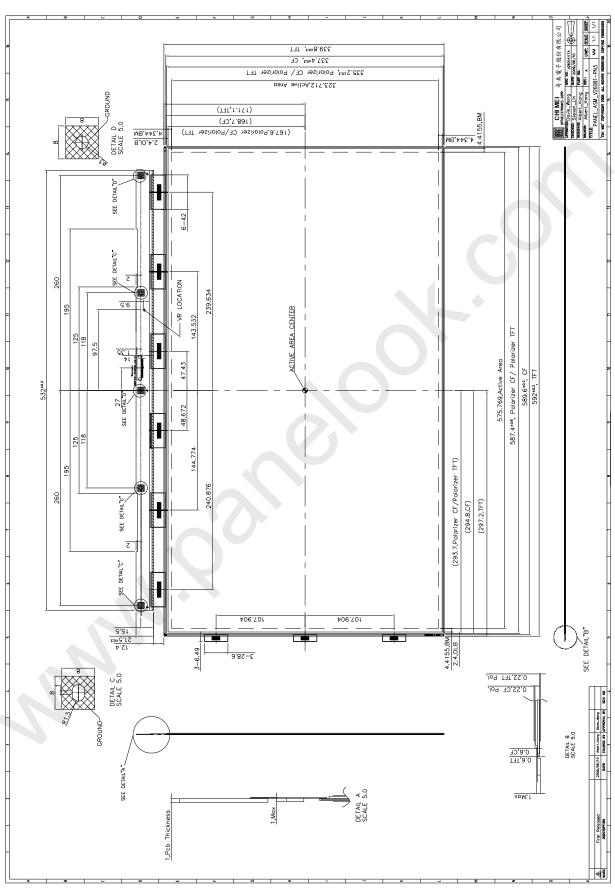
The barcode nameplate is pasted on each open cell as illustration for CMO internal control.

11.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation

(a) Model Name: V260B1- PN3

(b) Carton ID: CMO internal control


(c) Quantities: 15

Approval

②

12. MECHANICAL DRAWING

