

TFT LCD Approval Specification

MODEL NO.: V260B1 – LN1

Approved Dy	TV Head Division
Approved By	LY Chen

	QA Dept.	Product Development Div.
Reviewed By	Tomy Chen	WT Lin

Prepared By	LCD TV Marketing and Product Management	Product Management Div.
гтератей бу	WY Li	Delia Lin

- CONTENTS -

R	EVISION HISTORY		3
1.	GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2.	ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 PACKAGE STORAGE 2.3 ELECTRICAL ABSOLUTE RATINGS 2.3.1 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL) 2.3.2 BACKLIGHT UNIT		5
3.	ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 RSDS CHARACTERISTICS 3.3 BACKLIGHT INVERTER UNIT 3.3.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTER	ERISTICS	7
4.	BLOCK DIAGRAM 4.1 TFT LCD MODULE		10
5.	PIN CONNECTION 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 COLOR DATA INPUT ASSIGNMENT		11
6.	INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		14
7.	OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		18
8.	DEFINITION OF LABELS 8.1 CMO MODULE LABEL		22
9.	PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		23
1(D. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS 10.3 STORAGE PRECAUTIONS		26
11	. MECHANICAL CHARACTERISTICS		27

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 1.0	15, Jan '08	All	All	Preliminary Specification was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V260B1- LN1 is a 26" TFT Liquid Crystal Display module with 4U-CCFL Backlight unit and RSDS interface. This module supports 1366 x 768 WXGA format and can display 16.2M colors (6-bit+FRC colors).

1.2 FEATURES

- -Brightness 450 nits
- Contrast ratio 800:1
- Fast response time 8ms
- Color saturation NTSC 72%
- Viewing angle: 160(H)/150(V) (CR>10) TN technology
- RSDS (Reduced Swing Differential Signaling) interface
- Color reproduction (Nature color)
- RoHS compliance

1.3 APPLICATION

- TFT LCD TVs
- Multi-Media Display

1.4 GENERAL SPECIFICATIONS

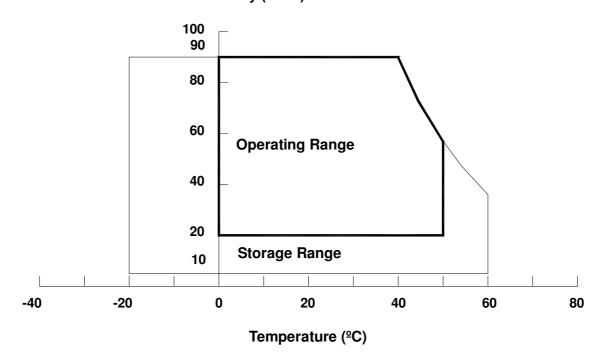
Item	Specification	Unit	Note
Active Area	575.769 (H) x 323.712 (V) (26" diagonal)	mm	(1)
Bezel Opening Area	580.8 (H) x 328.8 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	
Pixel Number	1366 x R.G.B. x 768	pixel	
Pixel Pitch (Sub Pixel)	0.1405 (H) x 0.4215 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Display Colors	16.2M	color	
Display Operation Mode	Transmissive mode / Normally White	-	
Surface Treatment	Anti-Glare coating (Haze 25%) Hard coating (3H)	-	

1.5 MECHANICAL SPECIFICATIONS

Ite	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	625	626	627	mm	(1)
Module Size	Vertical(V)	372	373	374	mm	(1)
	Depth(D)	41.44	42.44	43.44	mm	To rear
We	eight		4200		g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note		
item	Syllibol	Min.	Max.	Offit	INOLE	
Storage Temperature	T _{ST}	-20	+60	ōC	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	ōC	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	1	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 ${}^{\circ}$ C).
- (b) Wet-bulb temperature should be 39 $^{\circ}$ C Max. (Ta > 40 $^{\circ}$ C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

Itom	Symbol	Value)	Unit	Note
Item	Symbol	Min	Max	Offic	
Power Supply Voltage	VIN5	4.5	5.5	V	(4)
Logic Input Voltage	VDD	-0.3	3.6	V	(1)

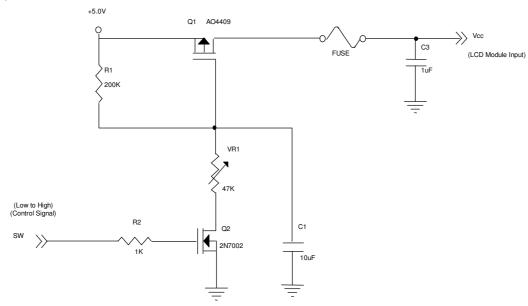
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

2.3.2 BACKLIGHT UNIT

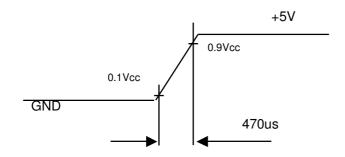
Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Lamp Voltage	V _w	_	3000	V_{RMS}		
Power Supply Voltage	V_{RI}	0	30	V	(1)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

Note (2) No moisture condensation or freezing.



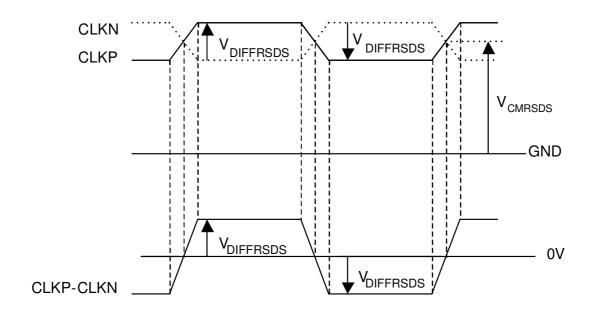
3. ELECTRICAL CHARACTERISTICS


3.1 TFT LCD MODULE

	Parameter	Symbol	Value			Unit	Note
	Faiametei	Symbol	Min.	Тур.	Max.	Offic	Note
Power Supply Voltage		VIN5	4.5	5.0	5.5	V	
	117	VDD	3.1	3.3	3.5	V	
Rush current		IRUSH	_	_	2.0	Α	(1)
Power Supply Current		I5V	_	1000	_	mA	
		I3.3V	_	50	_	mA	
CMOS	Input High Threshold Voltage	V _{IH}	2.7	_	3.3	V	
interface	Input Low Threshold Voltage	V _{IL}	0	_	0.7	V	

Note (1) Measurement Conditions:

Vcc rising time is 470us

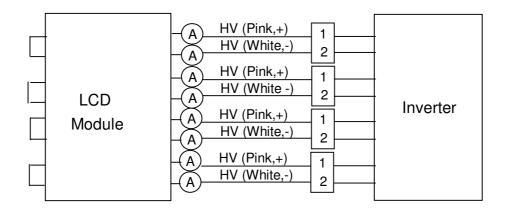


3.2 RSDS CHARACTERISTICS

Item	Symbol	Condition	,	Unit		
Item	Symbol	Condition	Min	Тур	Max	Offic
RSDS high input Voltage	$V_{DIFFRSDS}$	$V_{CMRSDS} = +1.2 V (1)$	100	200		mV
RSDS low input Voltage	V_{DIFFRSDS}	$V_{CMRSDS} = +1.2 V (1)$		-200	-100	mV
RSDS common mode	V	$V_{DIFFRSDS} = 200 \text{mV} (2)$	0.1	1.2	VDD-1.2	V
input voltage range	V _{CMRSDS}	V DIFFRSDS = 200111V (2)	0.1	1.2	VDD-1.2	V
RSDS Input leakage	l ₌ .	D _{xx} P, D _{xx} N ,CLKP ,CLPN	-10		10	μ A
current	I _{DL}	DXXI, DXXIV, OLIVI ,OLI IV	-10		10	μ Α

Note (1) $V_{CMRSDS} = (VCLKP + VCLKN)/2$ or $V_{CMRSDS} = (VD_{XX}P + VD_{XX}N)/2$

Note (2) $V_{DIFFRSDS} = VCLKP - VCLKN$ or $V_{DIFFRSDS} = VD_{XX}P - VD_{XX}N$


3.3 BACKLIGHT INVERTER UNIT

3.3.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note	
i arameter	Symbol	Min. Typ. Ma		Max.	Offic	NOLE
Lamp Voltage	V_W		1960		V_{RMS}	$I_L = 7.5 \text{mA}$
Lamp Current(HI-Side)	ΙL	7	7.5	8	mA_{RMS}	(1)
Lawrence Otanitia a Malta a a	\ /	_		3090	V_{RMS}	(2), Ta = 0 ^o C
Lamp Starting Voltage	Vs	_		2900	V_{RMS}	(2), Ta = 25 ^o C
Operating Frequency	Fo	40	_	80	KHz	(3)
Lamp Life Time	L_{BL}	50,000	_		Hrs	(4)

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:

- Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second under starting up duration. Otherwise the lamp could not be lighted on completed.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = 25 $\pm 2^{\circ}$ C and I_L = 7.0 ~ 8.0 mA_{RMS}.

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

TFT LCD PANEL

(1366x3x768)

X BOARD

RSDS SIGNAL INPUT

Connector Part No.: HIROSE FH12-45S-0.5SH (55) or Compatible

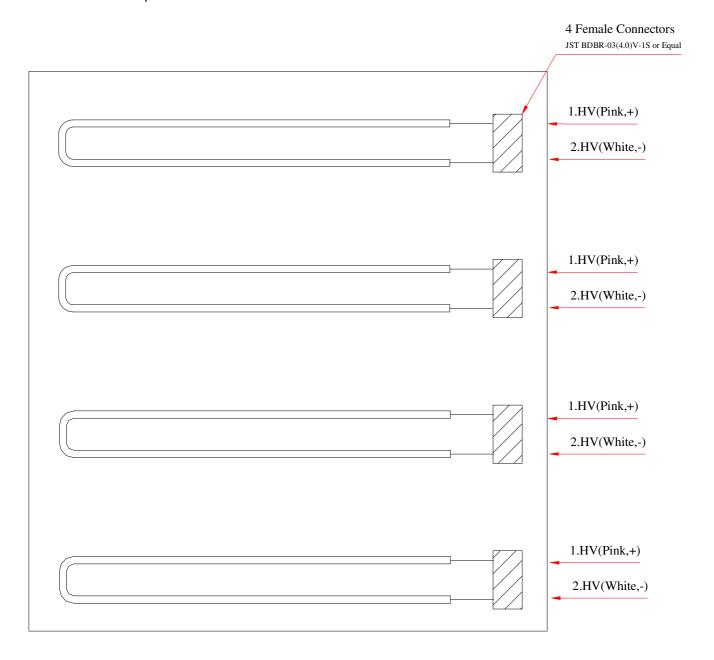
5. PIN CONNECTION

5.1 TFT LCD MODULE

CN2(X) Connector Pin Assignment

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	GND	Ground	29	TP1	RSDS data latch
2	NC	No connection	30	POL	polarity invert
3	NC	No connection	31	GND	Ground
4	GND	Ground	32	NC	No connection
5	B2P	RSDS data signal (Blue2)	33	VDD	Logic Power supply: +3.3V
6	B2N	RSDS data signal (Blue2)	34	VDD	Logic Power supply: +3.3V
7	B1P	RSDS data signal (Blue1)	35	VIN5	Power supply: +5V
8	B1N	RSDS data signal (Blue1)	36	VIN5	Power supply: +5V
9	B0P	RSDS data signal (Blue0)	37	VIN5	Power supply: +5V
10	B0N	RSDS data signal (Blue0)	38	STV	Scan driver start pulse
11	G2P	RSDS data signal (Green2)	39	CKV	Scan driver clock
12	G2N	RSDS data signal (Green2)	40	OE	Scan driver output enable
13	G1P	RSDS data signal (Green1)	41	NC	No connection
14	G1N	RSDS data signal (Green1)	42	NC	No connection
15	G0P	RSDS data signal (Green0)	43	GVOFF	3-level power control signal
16	G0N	RSDS data signal (Green0)	44	NC	No connection
17	CLKP	Data driver clock	45	GND	Ground
18	CLKN	Data driver clock			
19	R2P	RSDS data signal (Red2)			
20	R2N	RSDS data signal (Red2)			
21	R1P	RSDS data signal (Red1)			
22	R1N	RSDS data signal (Red1)			
23	R0P	RSDS data signal (Red0)			
24	R0N	RSDS data signal (Red0)			
25	GND	Ground			
26	NC	No connection			
27	NC	No connection			
28	STH	source driver start pulse			

Note (1) CN2 Connector Part No.: HIROSE FH12-45S-0.5SH (55) or Compatible.


5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

CN3-CN6 (Housing): BDBR-03(4.0)V-1S(JST) or equivalent

Pin No.	Symbol	Description	Wire Color
1	HV	High Voltage	Pink
2	HV	High Voltage	White

Note (1) The backlight interface housing for high voltage side is a model BDBR-03(4.0)V-1S, manufactured by JST or equivalent.

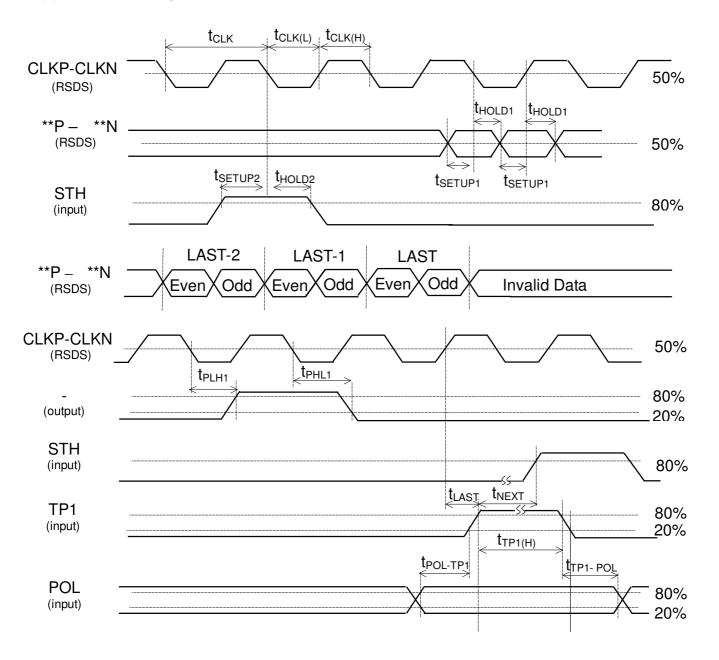
5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

VEISUS	data input.	ı																	
	Data Signal																		
	Color	Red				Green				Blue									
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	ВЗ	B2	В1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	: Dive(C4)	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

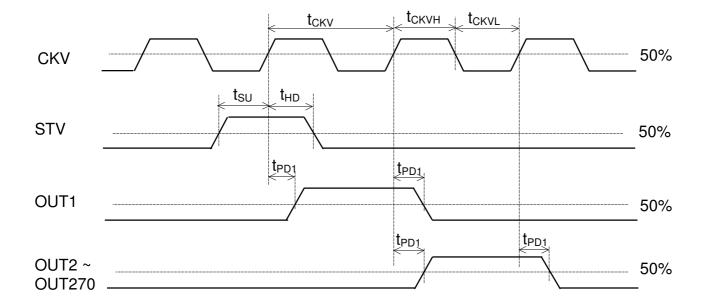
Note (1) 0: Low Level Voltage, 1: High Level Voltage

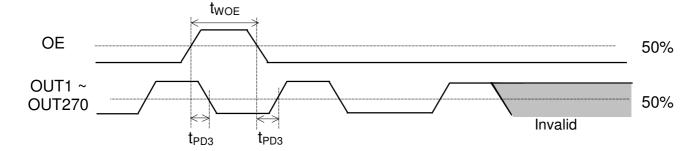
6. INTERFACE TIMING


6.1 INPUT SIGNAL TIMING SPECIFICATIONS

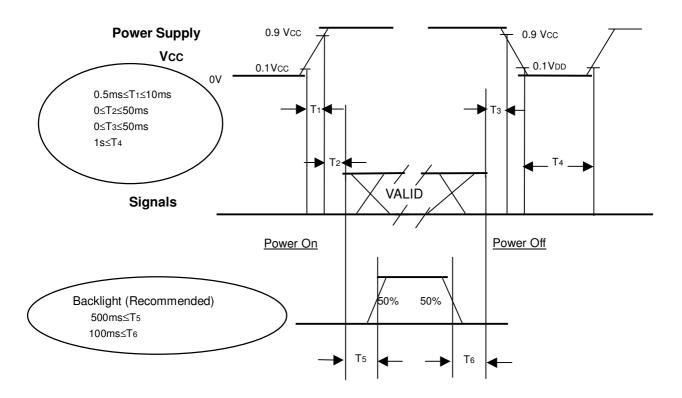
(a) Timing Spec

	Parameter	Cymbol	Condition		Unit		
	Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	Clock pulse width	tclk	-	12.5	-	-	ns
	Clock pulse low period	tclk(L)	-	5	-	-	ns
	Clock pulse high period	tclk(H)	-	5	-	-	ns
	Data setup time	tsetup1	-	4	-	-	ns
HD (1)	Data hold time	tHOLD1	-	1	-	-	ns
HD (1)	Start pulse setup time	tsetup2	-	2	-	-	ns
	Start pulse hold time	tHOLD2	-	2	-	-	ns
	TP1 high period	t TP1(H)	-	15	-	-	CLKP
	Last data CLK to TP1 high	t LAST	-	1	-	-	CLKP
	TP1 high to STH high	t NEXT	-	6	-	-	CLKP
	POL to TP1 setup time	tPOL-TP1	POL toggle to TP1 rising	3	-	-	ns
	TP1 to POL hold time	tTP1-POL	TP1 falling to POL toggle	2	-	-	ns
	CKV period	tckv	-	5	-		μ s
	CKV pulse width	tckvh, tckvl	50% duty cycle	2	-		μ s
	OE pulse width	twoE	-	1	-		μ s
VD	Data setup time	t su	-	0.5	-		μ s
	Data hold time	t _{HD}	-	0.5	-		μ s
	CKV to output delay time	tPD1	CL=300pF	-	-	1	μ s
	OE to output delay time	tPD3	CL=300pF	-	_	0.8	μ s




(b) Horizontal Timing Chart

(c) Vertical Timing Chart



6.3 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the conditions shown in the following diagram.

Power ON/OFF Sequence

Note:

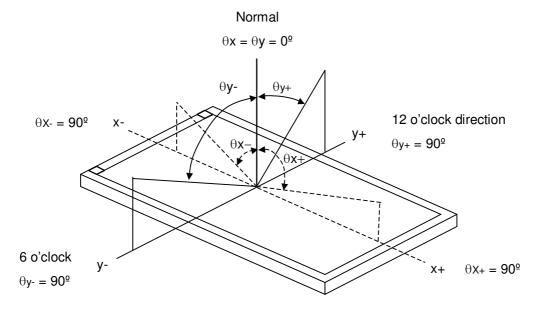
- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Please apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off, the display may, instantly, function abnormally.
- (3) In case of vcc = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power on/off periods.
- (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V_{CC}	5.0	V
Input Signal	According to typical v	alue in "3. ELECTRICAL (CHARACTERISTICS"
Lamp Current (High side)	I _L	7.5 mA \pm 0.5	mA
Oscillating Frequency (Inverter)	F _W	58±3	KHz
Frame rate		60	Hz

7.2 OPTICAL SPECIFICATIONS


The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

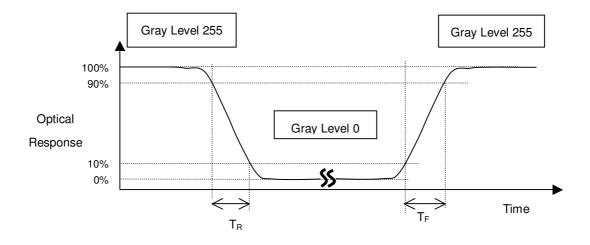
Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio		CR		600	800		_	(2)	
		T₀		_	3	5		(0)	
Response Tim	е	T _F		_	5	8	ms	(3)	
Center Lumina	nce of White	L _C		350	450			(4)	
White Variation	า	δW		_	_	1.3	-	(7)	
Cross Talk		CT	$\theta_x=0^\circ, \theta_Y=0^\circ$	_	_	4	%	(5)	
	Red	Rx	·		(0.636)		_	(6)	
	rieu	Ry	Viewing Angle at		(0.326)	Typ. +0.03	_		
	Green	Gx	Normal Direction	Typ. -0.03	(0.272)		_		
Color		Gy			(0.596)		_		
Chromaticity	Blue	Bx			(0.149)		_		
Cilionalicity		Ву			(0.060)		_		
	White	Wx			(0.280)		_		
	vvriite	Wy			(0.285)		_		
	Color Gamut	CG		68	72	_	%	NTSC	
	Horizontal	θ_{x} +		70	80				
Viewing Angle	nonzoniai	θ_{x} -	CR≥10	70	80		Dog	(1)	
	Vertical	θ_{Y} +	Un≥10	70	80		Deg.	(1)	
	vertical	θ_{Y} -		60	70				

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by EZ-Contrast 160R (Eldim)

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

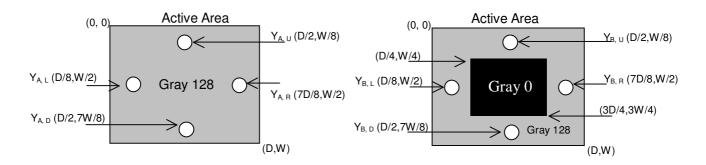
CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):

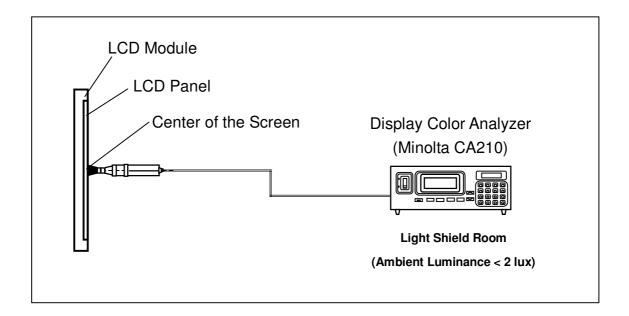
Measure the luminance of gray level 255 at center point and 5 points

 $L_C = L(5)$, where L(X) is corresponding to the luminance of the point X at the figure in Note (7).


Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

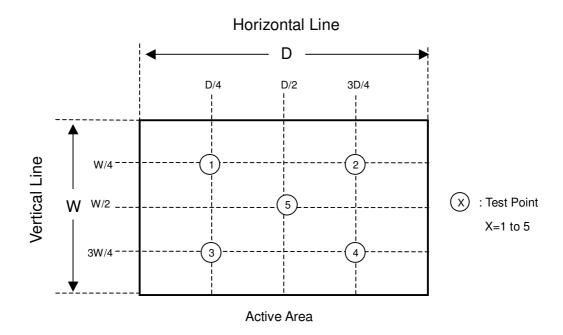
Where:


Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

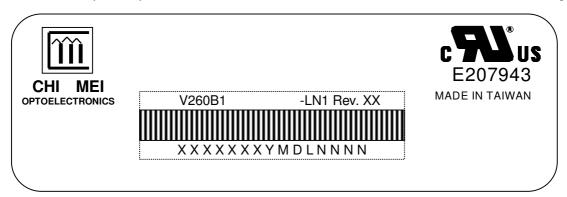
The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

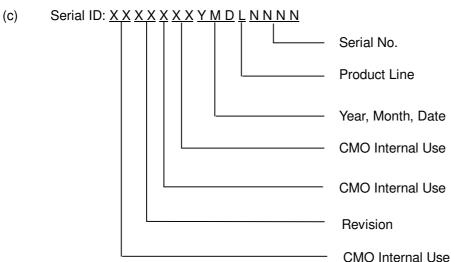


Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$




8. DEFINITION OF LABELS

8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V260B1-LN1
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2001~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

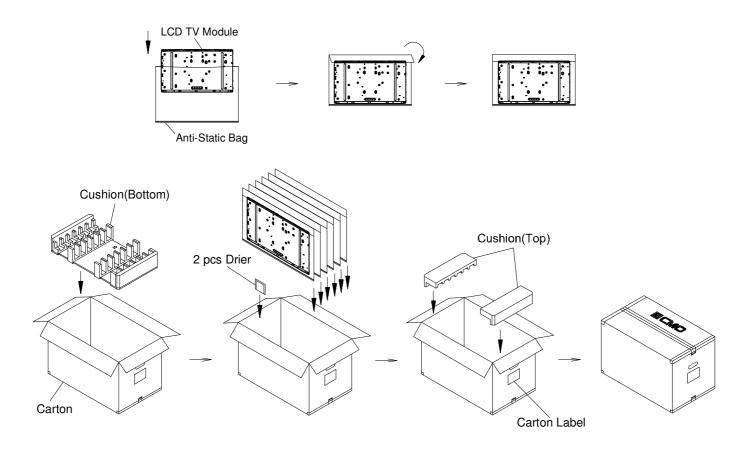
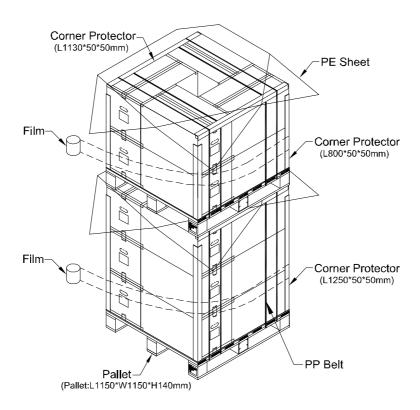
9. PACKAGING

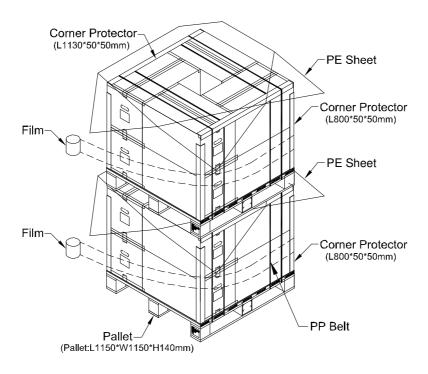
9.1 PACKING SPECIFICATIONS

- (1). 6 LCD TV Modules / Carton
- (2). Carton Dimensions: 713(L) X 429(W) X 453(H)
- (3). Weight: Approximately 28 Kg (6 Modules Per Carton)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method


Figure.9-1 packing method

Sea / Land Transportation (40ft HQ Container)

Sea / Land Transportation (40ft Container)

Air Transportation

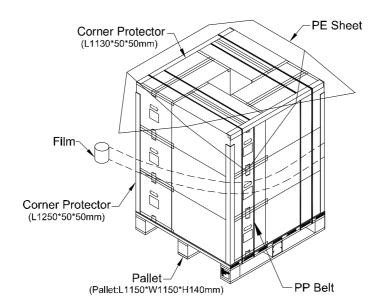


Figure. 9-2 packing method

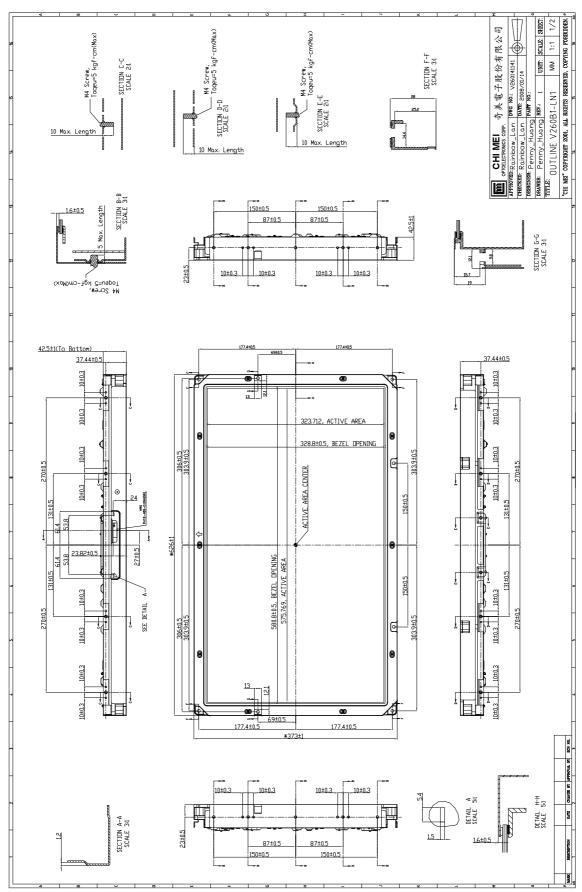
10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.


10.3 STORAGE PRECAUTIONS

When storing modules as spares for a long time, the following precaution is necessary.

- (1) Do not leave the module in high temperature, and high humidity for a long time.
 It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
- (2) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

11. MECHANICAL CHARACTERISTICS

Issued Date: 15, Jan 2008 Model No.: V260B1 - LN1

Preliminary