

TFT LCD Preliminary Specification

MODEL NO.: V230W1 - L01

LCD TV Head Division					
AVP	郭振隆				

OPA Dont	TVHD / PDD					
QRA Dept.	DDIII	DDII	DDI			
Approval	Approval	Approval	Approval			
陳永一	李汪洋	藍文錦	林文聰			

LCD TV Marketing and Product Management Division							
Product Manager	徐子祥 陳立宜						

Preliminary

- CONTENTS -

REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT INVERTER UNIT		5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 3.2.1 CCFL(Cold Cathode Fluorescent Lamp) CHARAC 3.2.2 INVERTER CHARACTERISTICS 3.2.3 INVERTER INTERTFACE CHARACTERISTICS	TERISTICS	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE		12
5. INTERFACE PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 INVERTER UNIT 5.4 LVDS INTERFACE 5.5 COLOR DATA INPUT ASSIGNMENT		13
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		18
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		21
8. PACKAGING 8.1 PACKING SPECIFICATIONS 8.2 PACKING METHOD		25
9. DEFINITION OF LABELS 9.1 CMO MODULE LABEL		27
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS		28
11. MECHANICAL CHARACTERISTICS		29

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 1.0	June 15,'04	All	All	Preliminary Specification was first issued.

Preliminary

1. GENERAL DESCRIPTION

Global LCD Panel Exchange Center

1.1 OVERVIEW

V230W1-L01 is a 23" TFT Liquid Crystal Display module with 12-CCFL Backlight unit and 1ch-LVDS interface. This module supports 1280 x 720 WXGA format and can display true 16.7M colors (8-bit/color). The inverter module for backlight is built-in.

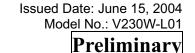
1.2 FEATURES

- High brightness (500 nits)
- High contrast ratio (600:1)
- Fast response time
- High color saturation NTSC 75%
- WXGA (1280 x 720 pixels) resolution
- DE (Data Enable) only mode
- LVDS Interface
- Optimized response time for 50/60 Hz option
- Ultra wide viewing angle: 176(H)/176(V) (CR>20)
- 180 degree rotation display option

1.3 APPLICATION

- TFT LCD TVs

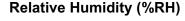
1.4 GENERAL SPECIFICATIONS

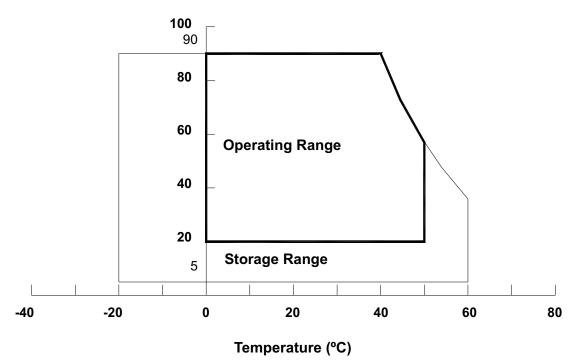

Item Specification		Unit	Note
Active Area	510.72 (H) x 287.28 (V)	mm	(1)
Bezel Opening Area	516.8 (H) x 293.3 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1280 x R.G.B. x 720	pixel	-
Pixel Pitch(Sub Pixel)	0.1330 (H) x 0.3990 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Hardness : 3H, Haze : 40% Anti-reflective coating < 2% reflection	-	-

1.5 MECHANICAL SPECIFICATIONS

It	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	536.1	536.8	537.5	mm	Module Size
Module Size	Vertical(V)	312.1	312.8	313.5	mm	Module Size
iviodule Size	Depth(D)	33.3	33.8	34.3	mm	To PCB cover
	Depth(D)	38	39	40	mm	With inverter
We	Weight		2500	2700		-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.


2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic		
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 60 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 60 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 500 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that

Preliminary

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	V	'alue	Linit	Note
	Symbol	Min.	Max.	Unit	
Power Supply Voltage	Vcc	(-0.3)	(6.0)	V	

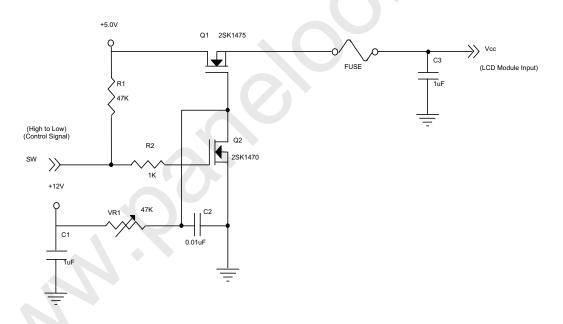
2.2.2 BACKLIGHT INVERTER UNIT

Item	Symbol	Test Condition	Min.	Туре	Max.	Unit	Note
Lamp Voltage	V _W	Ta = 25 °C	-	_	3000	V_{RMS}	
Input Voltage	V_{BL}		0	_	(26.4)	V	(1), (2), $I_L = 4.8 \text{ mA}$
Control Signal Level	_		-0.3	_	7	V	(1), (2), (4)

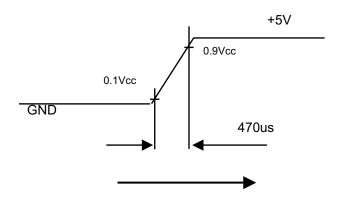
- Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.
- Note (2) Specified values are for lamp and inverter (Refer to 3.2 for further information).
- Note (3) Protect inverters from moisture condensation and freezing.
- Note (4) The control signals includes On/Off Control, Internal PWM Control, External PWM Control and Internal/External PWM Selection.

Preliminary

3. ELECTRICAL CHARACTERISTICS

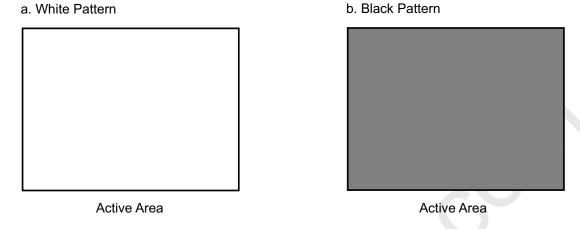

3.1 TFT LCD MODULE

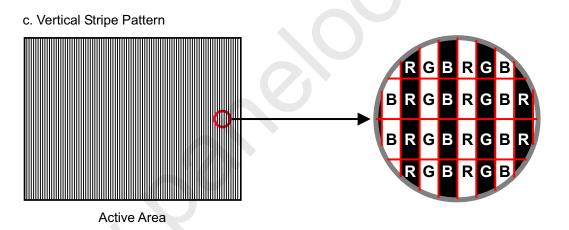
Ta = 25 ± 2 °C


Parameter		Cymbol		Value	Unit	Note		
		Symbol	Min.	Тур.	Max.	Unit	note	
Power Su	pply Voltage		V _{cc}	4.5	5.0	5.5	V	(1)
Ripple Vo	ltage		V_{RP}	-	-	100	mV	
Rush Curi	rent		I _{RUSH}	-	1.8	TBD	Α	(2)
		White		-	1.2	•	Α	
Power Su	pply Current	Black	I _{CC}	-	0.7	-	Α	(3)
		Vertical Stripe		-	TBD	•	Α	
LVDC	Differential Inp		V_{LVTH}	-	-	+100	mV	
LVDS Interface	Differential Inp		V_{LVTL}	-100	-	-	mV	
Common	Common Inpu	ıt Voltage	V_{LVC}	1.125	1.25	1.375	V	
	Terminating R	Terminating Resistor		-	100	-	ohm	
CMOS	Input High Threshold Voltage		V_{IH}	2.7	-	3.3	V	
interface	Input Low Thr	eshold Voltage	V_{IL}	0	-	0.7	V	

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:


Vcc rising time is 470us



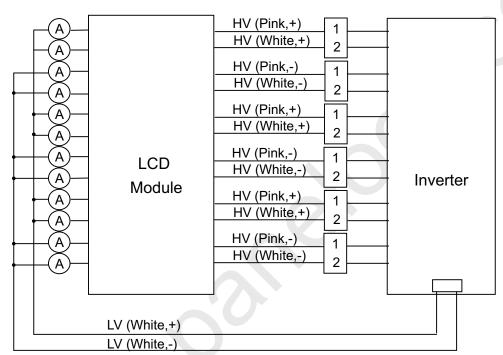
Issued Date: June 15, 2004 Model No.: V230W-L01 **Preliminary**

Note (3) The specified power supply current is under the conditions at Vcc = 5 V, Ta = 25 \pm 2 °C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

3.2 BACKLIGHT UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Doromotor	Symbol		Value	Unit	Note	
Parameter	Symbol	Min.	Тур.	Max.	Offic	Note
Lamp Voltage	V_W	-	1030	-	V_{RMS}	$I_{L} = 4.8 \text{mA}$
Lamp Current	IL	4.5	4.8	5.1	mA_{RMS}	(1)
Lawan Chartina Valtaga	Vs	ı	2070	ı	V_{RMS}	(2), Ta = 0 °C
Lamp Starting Voltage		ı	1870	ı	V_{RMS}	(2), Ta = 25 °C
Operating Frequency	Fo	50	1	70	KHz	(3)
Lamp Life Time	L_BL	50K	60K	-	Hrs	(4)


Issued Date: June 15, 2004 Model No.: V230W-L01

Preliminary

3.2.2 INVERTER CHARACTERISTICS(Ta = 25 ± 2 °C)

Parameter	Symbol		Value		Unit	Note		
Farameter	Symbol	Min.	Тур.	Typ. Max.		NOLE		
Power Consumption	P_{BL}	-	60	-	W	$(5),(6), I_L = 4.8 \text{mA}$		
Input Voltage	V_{BL}	21.6	24	26.4	V_{DC}			
Input Current	I _{BL}	•	2.5	-	Α	Non Dimming		
Input Ripple Noise	-	-	-	500	mV_{P-P}	VBL=21.6V		
Backlight Turn on	V_{BS}	2070	-	-	V_{RMS}	(7),Ta = 0 °C		
Voltage	v _{BS}	1870	ı	-	V_{RMS}	(7),Ta = 25 °C		
Oscillating Frequency	F _W	54	56	58	kHz			
Dimming frequency	F _B	150	160	170	Hz			
Minimum Duty Ratio	D _{MIN}	ı	10	-	%			

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:

- Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second under starting up duration. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point.) as the time in which it continues to operate under the condition Ta = 25 $\pm 2^{\circ}$ C and I_L = 4.5 ~ 5.1 mA_{RMS}.
- Note (5) The power supply capacity should be higher than the total inverter power consumption PBL. Since

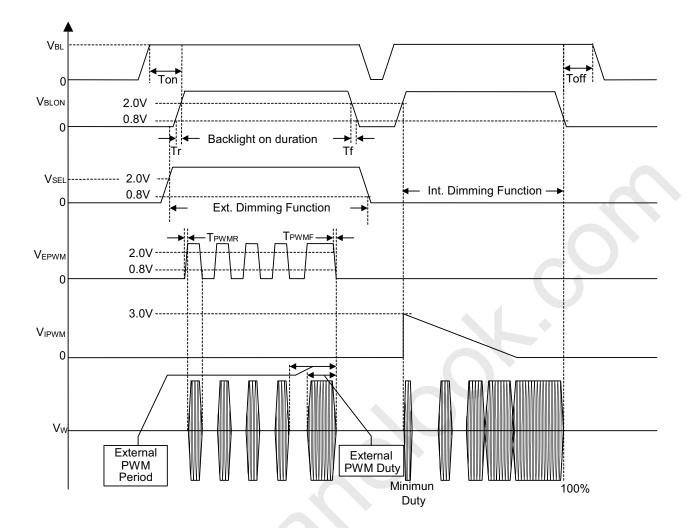
Preliminary

the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.

Note (6) For enhancing the performance of display in power on initial status, the power consumption will be increased to 1.5 times and 20 seconds later it will be return to typical value. Thus, the power source capacity for inverter should be considered to supply the initial power consumption at power on duration.

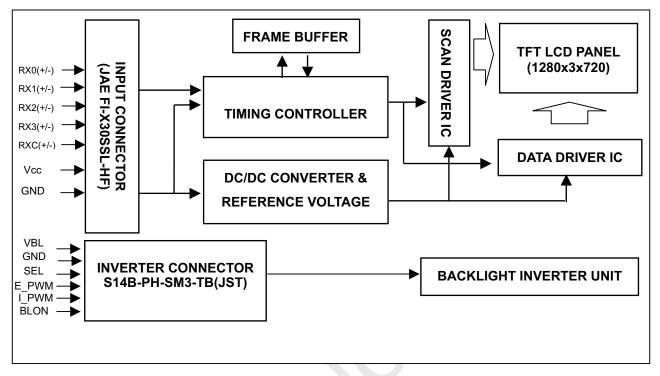
Note (7) The backlight turn on voltage should be under the rated withstanding voltage of transformer.

3.2.3 INVERTER INTERTFACE CHARACTERISTICS


O.Z.O IIIVEIXIEIX III		/ .	, =					
Item		Symbol	Test Condition	Min.	Тур.	Max.	Unit	Note
On/Off Control	ON	V	_	2.0	_	5.0	V	
Voltage	OFF	V_{BLON}	_	0	-	0.8	V	
Internal/External	HI	V	_	2.0	_	5.0	V	
PWM Select Voltage	LO	V_{SEL}	_	0		0.8	V	
Internal PWM	MAX	V	\/ -I	-		3.0	V	minimum duty ratio
Control Voltage	MIN	V_{IPWM}	V _{SEL} = L	1-1	0	_	V	maximum duty ratio
External PWM	HI	1/	\/ - H	2.0	_	5.0	V	duty on
Control Voltage	LO	V_{EPWM}	$V_{SEL} = H$	0	_	0.8	V	duty off
Control Signal Rising	g Time	T _r	-	_	_	100	ms	
Control Signal Falling	g Time	T _f		_	_	100	ms	
PWM Signal Rising	Time	T_{PWMR}	_	_	_	50	us	
PWM Signal Falling	Time	T _{PWMF}	_	_	_	50	us	
Input impedanc	R _{IN}	_	1	-	-	ΜΩ		
BLON Delay Tim	T _{on}		300	ı	500	ms		
BLON Off Time		T _{off}	_	300	_	500	ms	

Note (1) The SEL signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM selection (SEL) during backlight turn on period.

Note (2) The power sequence and control signal timing are shown as the following figure.



Preliminary

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

Issued Date: June 15, 2004 Model No.: V230W-L01 Preliminary

5. INTERFACE PIN CONNECTION

5.1 TFT LCD MODULE

CNF1 Connector Pin Assignment

Pin No.	Symbol	Description	Note
1	ĞND	Ground	
2	RPF	Display Rotation	(3)
3	NC	No Connection	
4	NC	No Connection	(2)
5	NC	No Connection	
6	ODSEL1	Overdrive Lookup Table Selection	(4)
7	ODSEL2	Overdrive Lookup Table Selection	
8	GND	Ground	
9	RX0-	Negative transmission data of pixel 0	
10	RX0+	Positive transmission data of pixel 0	
11	RX1-	Negative transmission data of pixel 1	
12	RX1+	Positive transmission data of pixel 1	
13	RX2-	Negative transmission data of pixel 2	
14	RX2+	Positive transmission data of pixel 2	
15	RXCLK-	Negative of clock	
16	RXCLK+	Positive of clock	
17	RX3-	Negative transmission data of pixel 3	
18	RX3+	Positive transmission data of pixel 3	
19	GND	Ground	
20	NC	No Connection	
21	NC	No Connection	(2)
22	NC	No Connection	
23	GND	Ground	
24	GND	Ground	
25	GND	Ground	
26	GND	Ground	
27	VCC	Power supply: +5V	
28	VCC	Power supply: +5V	
29	VCC	Power supply: +5V	
30	VCC	Power supply: +5V	

Note (1) Connector Part No.: FI-X30SSL-HF(JAE) or compatible

Note (2) Reserved for internal use. Left it open.

Note (3) Low: normal display (default), High: display with 180 degree rotation

Note (4) Overdrive lookup table selection. The Overdrive lookup table should be selected in accordance with the frame rate to optimize image quality.

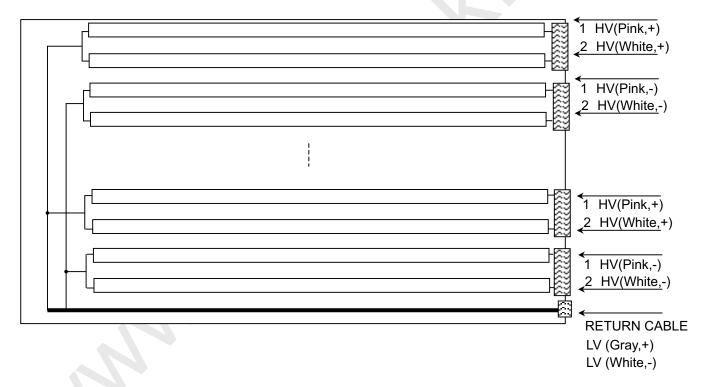
ODSEL2	ODSEL1	Remark
L	L	Lookup table was optimized for 60 Hz frame rate.
L	Н	Lookup table was optimized for 50 Hz frame rate.
Н	L	Reserved. Do not use.
Н	Н	Reserved. Do not use.
	DDSEL2 L L H	L L L H H L

Issued Date: June 15, 2004 Model No.: V230W-L01 Preliminary

5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

CN2-CN7(Housing): BHR-03VS-1


Pin №	Signal name	Feature	Wire Color
1	HV	High Voltage	Pink
2	HV	High Voltage	White

Note (1) The backlight interface housing for high voltage side is a model BHR-03VS-1, manufactured by JST. The mating header on inverter part number is SM02(8.0)B-BHS-1-TB.

CN8(Housing): ZHR-2 or equivalent

Pin №	Signal name	Feature	Wire Color
1	LV	Low Voltage (+)	Gray
2	LV	Low Voltage (-)	White

Note (2) The backlight interface housing and return cable for low voltage side is a model ZHR-2, manufactured by JST or equivalent. The mating header on inverter part number is S2B-ZR-SM3A-TF or equivalent.

5.3 INVERTER UNIT

CN1(Header): S14B-PH-SM3-TB(JST) or equivalent

CN1(Heade	<u> </u>	SM3-1B(JS1) or equivalent						
Pin	Name	Description						
1								
2								
3	VBL	+24V Power input						
4								
5								
6								
7								
8	GND	Ground						
9								
10								
		Internal/external PWM selection						
11	SEL	High : external dimming						
		Low : internal dimming						
		External PWM control signal						
12	E_PWM	E_PWM should be connected to low when internal						
		PWM was selected (SEL = low).						
		Internal PWM control signal						
13	I_PWM	I_PWM should be connected to ground when						
		external PWM was selected (SEL = high).						
14	BI ON	Backlight on/off control						

CN2-CN7(Header):SM02(8.0)B-BHS-1-TB (JST)

Pin	Náme	Description
1	CCFL HOT	CCFL high voltage
2	CCFL HOT	CCFL high voltage

CN8(Header):S2B-ZR-SM3A-TF(JST) or equivalent

ľ	Pin	Name	Description
Ī	1	CCFL COLD	CCFL low voltage (+)
	2	CCFL COLD	CCFL low voltage (-)

Note (1) Floating of any control signal is not allowed.

5.4 LVDS INTERFACE

	SIGNAL		TRANSMITTER THC63LVDM83A INTERFACE CONNECTOR THC63LVDF84A					
	OIOIVAL	PIN	INPUT	Host	TFT-LCD	PIN	OUTPUT	CONTROL INPUT
	R0 R1 R2 R3 R4 R5 G0 G1 G2 G3 G4 G5 B0	51 52 54 55 56 3 4 6 7 11 12 14	TxIN0 TxIN1 TxIN2 TxIN3 TxIN4 TxIN6 TxIN7 TxIN8 TxIN9 TxIN12 TxIN13 TxIN14 TxIN15	TA OUT0+ TA OUT0- TA OUT1+ TA OUT1-	Rx 0+ Rx 0- Rx 1+ Rx 1-	27 29 30 32 33 35 37 38 39 43 45 46 47	Rx OUT0 Rx OUT1 Rx OUT2 Rx OUT3 Rx OUT4 Rx OUT6 Rx OUT7 Rx OUT8 Rx OUT9 Rx OUT12 Rx OUT13 Rx OUT14 Rx OUT14 Rx OUT15	R0 R1 R2 R3 R4 R5 G0 G1 G2 G3 G4 G5 B0
24bit	B1 B2 B3 B4 B5 DE R6 R7 G6 G7 B6 B7 RSVD 1 RSVD 2 RSVD 3	19 20 22 23 24 30 50 2 8 10 16 18 25 27 28	TXIN18 TXIN19 TXIN20 TXIN21 TXIN22 TXIN26 TXIN27 TXIN5 TXIN10 TXIN11 TXIN16 TXIN17 TXIN17 TXIN23 TXIN24 TXIN25	TA OUT2+ TA OUT2- TA OUT3+ TA OUT3-	Rx 2+ Rx 2- Rx 3+ Rx 3-	51 53 54 55 1 6 7 34 41 42 49 50 2 3 5	Rx OUT18 Rx OUT19 Rx OUT20 Rx OUT21 Rx OUT22 Rx OUT26 Rx OUT27 Rx OUT5 Rx OUT10 Rx OUT11 Rx OUT11 Rx OUT16 Rx OUT17 Rx OUT23 Rx OUT24 Rx OUT25	B1 B2 B3 B4 B5 DE R6 R7 G6 G7 B6 B7 Not connect Not connect
	DCLK	31	TxCLK IN	TxCLK OUT+ TxCLK OUT-	RxCLK IN+ RxCLK IN-	26	RxCLK OUT	DCLK

R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Display timing signal

Notes(1) RSVD(reserved)pins on the transmitter shall be "H" or "L".

Preliminary

5.5 COLOR DATA INPUT ASSIGNMENT

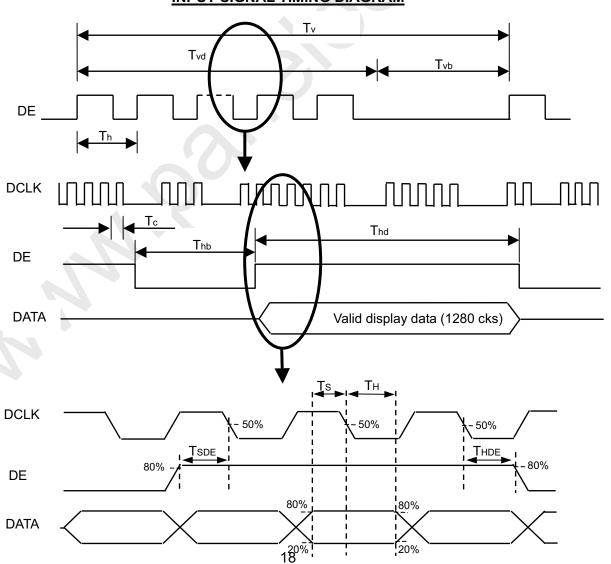
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

										1		Da		Sigr											
	Color				Re									reer							Bl				
	T	R7	R6	R5	R4	R3	R2	R1	R0	R7	R6	G5	G4	G3	G2	G1	G0	R7	R6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:			:		:	:	:	:	:	:	:	:
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	-:			:	:	:	:	:	:	:	:	:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:					:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
GICCII	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:			?	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	\:	: ,		÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Did0	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Preliminary

6. INTERFACE TIMING

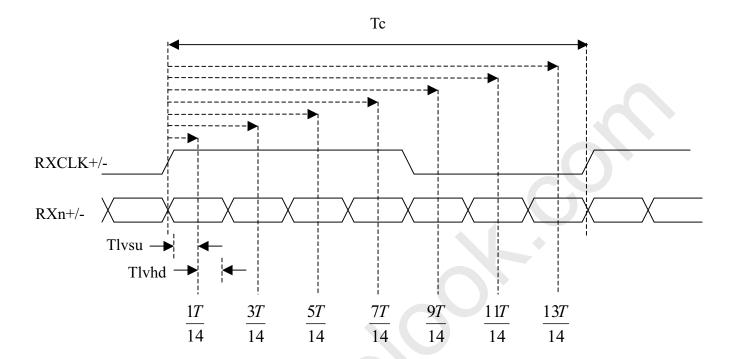

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

			•				
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	1/Tc	50	75	85	MHz	-
LVDS Interface	Setup Time	Tlvsu	600	-	-	ps	
	Hold Time	1/Tc 50 75 85 Tlvsu 600 Tlvhd 600	ps				
	Frame Rate	Fr	47	60	63	Hz	-
Vertical Active Display Torm	Total	Tv	730	746	840	Th	Tv=Tvd+Tvb
Vertical Active Display Term	Display	Tvd	720	720	720	Th	-
	Blank	Tvb	10	26	120	Th	-
	Total	Th	1350	1664	1850	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1280	1280	1280	Tc	-
	Blank	Thb	70	384	570	Tc	-
Input data Term	Setup time	Ts	7		-	ns	
input data Term	Hold time	Тн	7			ns	
DE Term	Setup time	TSDE	7			ns	
DE IEIIII	Hold time	THDE	7		-	ns	

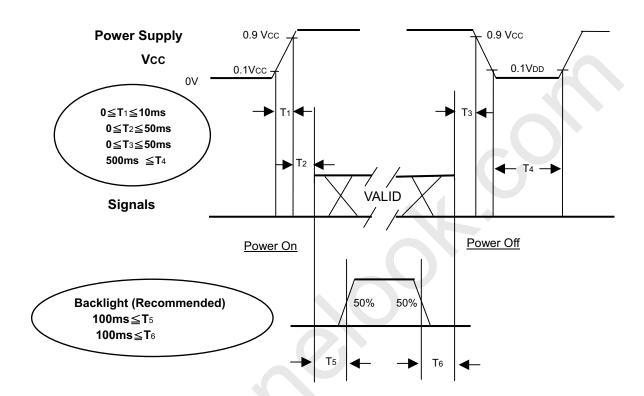
Note: Because of this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM



Version1.0

LVDS INPUT INTERFACE TIMING DIAGRAM



Issued Date: June 15, 2004 Model No.: V230W-L01 Preliminary

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

Preliminary

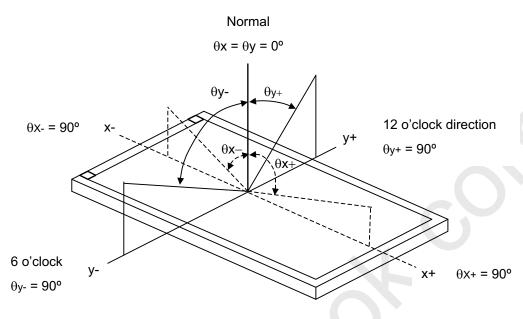
7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Ta	25±2	°C				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	V_{CC}	5.0	V				
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"						
Lamp Current	l _L	(4.8±0.3)	mA				
Oscillating Frequency (Inverter)	F_L	(56±2)	KHz				

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).


Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR	θ _x =0°, θ _Y =0°		(600)	_	-	Note(2)
Response Time		T_R		-	(15)	-	ms	Note(3)
		T_F		-	(10)	-	ms	
		Gray to gray(average)			(12)		ms	Note(4)
Center Luminance of White		L _C			(500)	-	cd/m ²	Note(5)
White Variation		δW		_	-	(1.3)	-	Note(8)
Cross Talk		CT		-	-	(4)	%	Note(6)
Color Chromaticity	Red	Rx	Viewing Normal Angle		(0.647)		-	Note(7)
		Ry			(0.331)		-	
	Green	Gx			(0.271)		-	
		Gy			(0.597)		-	
	Blue	Bx			(0.142)		-	
		Ву			(0.072)		-	
	White	Wx			(0.285)		-	
		Wy			(0.293)		-	
	Color Gamut			(72)	(75)	-	%	
Viewing Angle	Horizontal	θ_x +	CR≥20	(80)	(88)	-	Deg.	Note(1)
		θ_{x} -		(80)	(88)	-		
	Vertical	θ _Y +		(80)	(88)	-		
		θ _Y -		(80)	(88)	-		

Issued Date: June 15, 2004 Model No.: V230W-L01 Preliminary

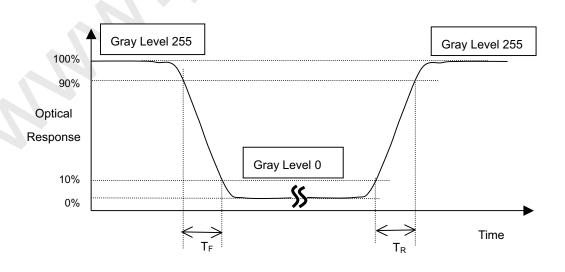
Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Eldim EZ-Contrast 160R

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

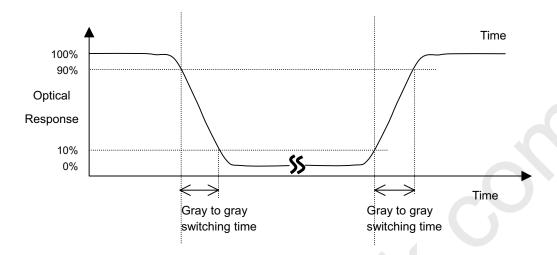
Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).



Issued Date: June 15, 2004 Model No.: V230W-L01 Preliminary

Note (4) Definition of Gray to Gray average Switching Time:

The driving signal means the signal of gray level 0, 63, 127, 191, 255.

Gray to gray average time means the average switching time of gray level 0 ,63,127,191,255.

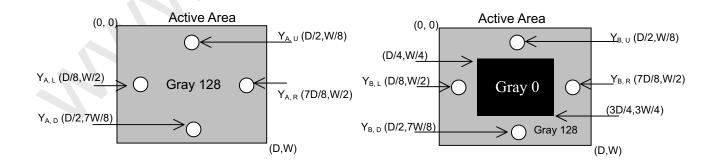
Note (5) Definition of Luminance of White (L_C, L_{AVE}):

Measure the luminance of gray level 255 at center point and 5 points

$$L_{C} = L(5)$$

$$L_{AVE} = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$$

L (x) is corresponding to the luminance of the point X at the figure in Note (7).

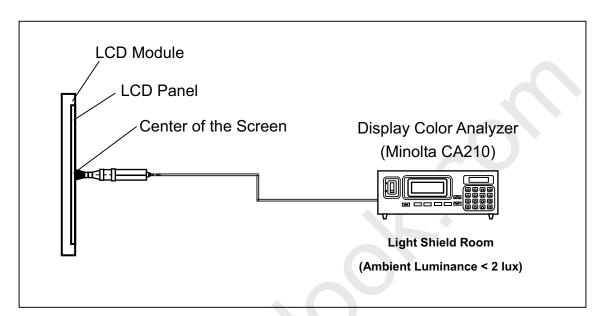

Note (6) Definition of Cross Talk (CT):

$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

Where:

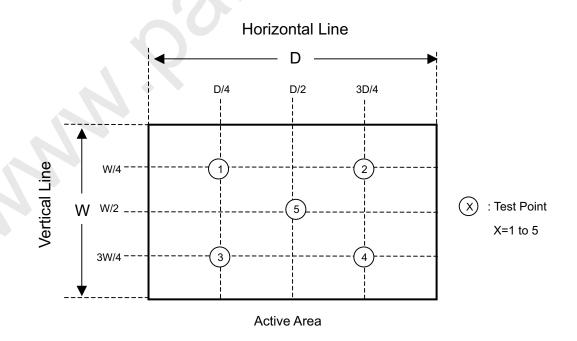
 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)



Issued Date: June 15, 2004 Model No.: V230W-L01 Preliminary

Note (7) Measurement Setup:


The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

Note (8) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Issued Date: June 15, 2004 Model No.: V230W-L01 Preliminary

8. PACKAGING

8.1 PACKING SPECIFICATIONS

- (1) 5 LCD TV modules / 1 Box
- (2) Box dimensions: 662(L) X 407 (W) X 443 (H)
- (3) Weight: approximately 16Kg (5 modules per box)

8.2 PACKING METHOD

Figures 8-1 and 8-2 are the packing method

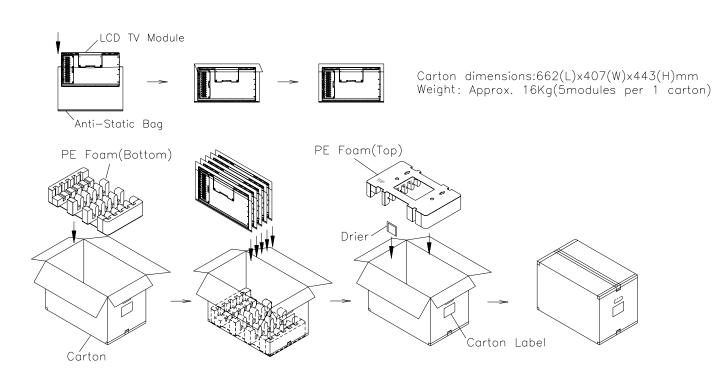


Figure.8-1 packing method

Preliminary

Corner Protector:L1250*50mm*50mm

Pallet:L1100*W1100*H135mm

Bottom Cap:L1100*W1100*H120mm Pallet Stack:L1100*W1100*H1474mm

Gross:210kg

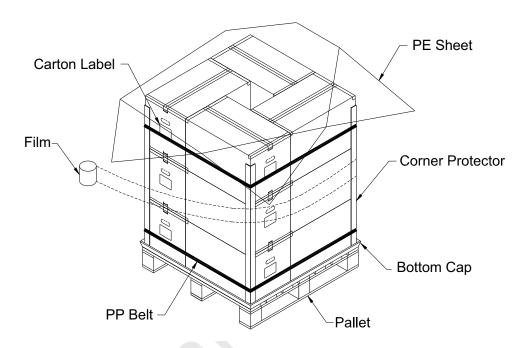
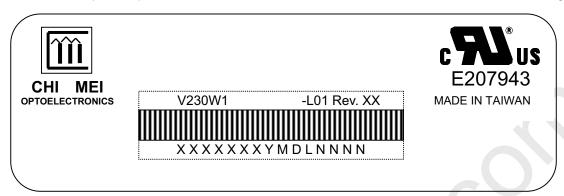
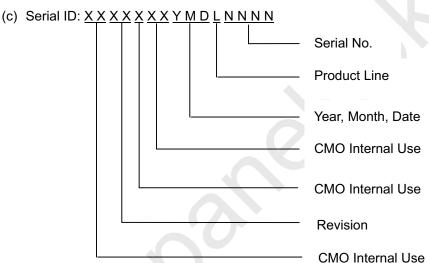


Figure. 8-2 Packing method



Preliminary


9. DEFINITION OF LABELS

9.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V230W1-L01
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2000~2009

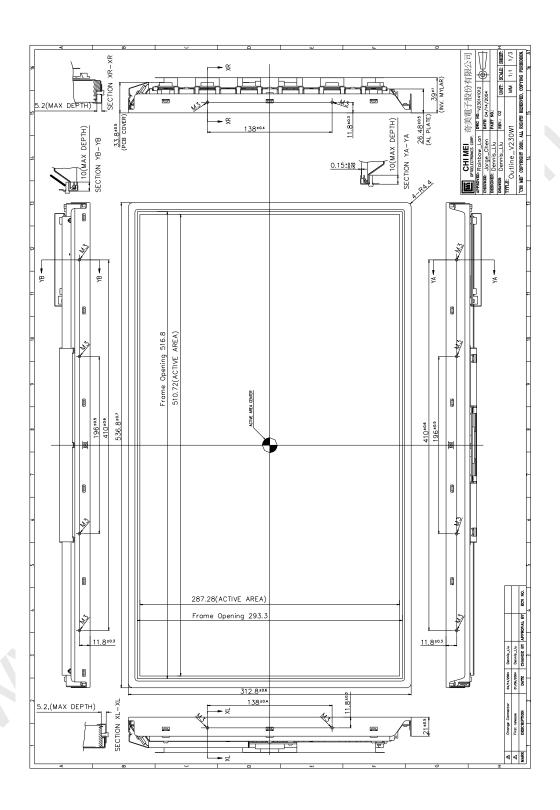
Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

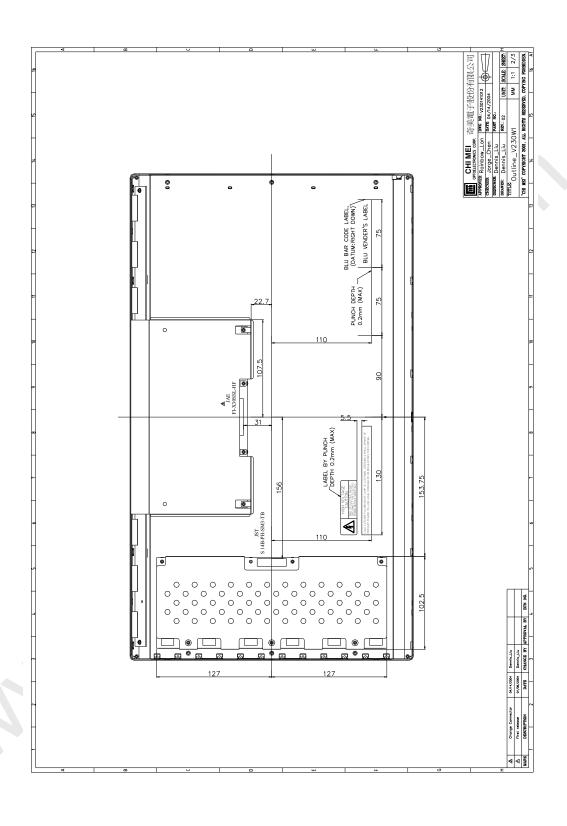
- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

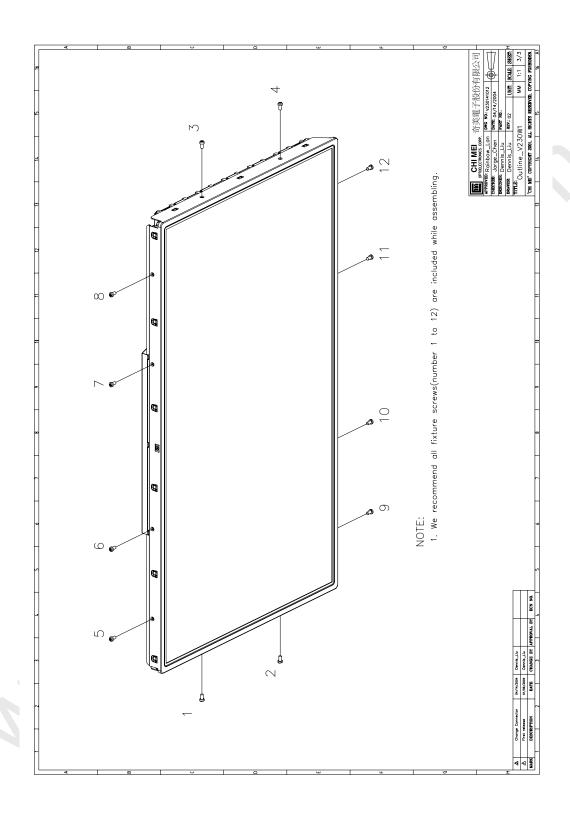
10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS


- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

10.2 SAFETY PRECAUTIONS


- (1) The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.


11. MECHANICAL CHARACTERISTIC

