

TFT LCD Approval Specification

MODEL NO.: V190C1 - L01

Customer:
Approved by:
Note:
www.jxlcd.com

LCD TV Head Division				
AVP	郭振隆			

QRA Dept.		TVHD / PDD				
QNA Dept.	DDIII	DDII	DDI			
Approval	Approval	Approval	Approval			
陳永一	李汪洋	藍文錦	林文聰			

LCD TV Marketing and Product Management Division				
Product Manager	廖曉菁			

- CONTENTS -

REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT		5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT		7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT		11
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 COLOR DATA INPUT ASSIGNMENT 5.4 LVDS INTERFACE 6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS	cd.com	12
6.2 POWER ON/OFF SEQUENCE 7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		18
8. DEFINITION OF LABELS 8.1 CMO MODULE LABEL		21
9.PACKING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		22
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS		24
11. MECHANICAL CHARACTERISTIC		25

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 2.0	Jan .18,'06	All	All	Approval Specification was first issued.
				-jxlcd-com

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V190C1-L01 is a 19" TFT Liquid Crystal Display module with 4 CCFL Backlight units and 30 pins 2ch-LVDS interface. This module supports 1440 x 900 WXGA+ mode and can display 16.2M colors. The inverter module for Backlight is not built in.

1.2 FEATURES

- Wide viewing angle.
- High contrast ratio
- Super fast response time
- High color saturation
- WXGA+ (1440 x 900 pixels) resolution
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- RoHS Compliance

1.3 APPLICATION

- TFT LCD TV
- TFT LCD Multi Function Monitor

1.4 GENERAL SPECIFICATIONS - XICO-COM

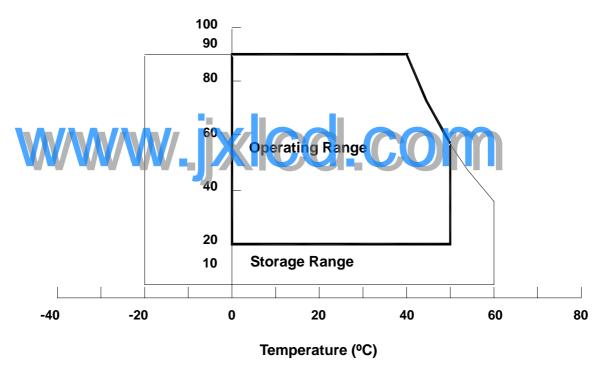
Item	Specification	Unit	Note
Active Area	410.4 (H) x 256.5 (V)	mm	(1)
Bezel Opening Area	414.36 x 260.45	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1440 x R.G.B. x 900	pixel	-
Pixel Pitch (Sub Pixel)	0.285 (H) x 0.285 (V)	mm	1
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.2M	color	-
Transmissive Mode	Normally white	-	-
Surface Treatment	Hard coating (3H), Anti-glare (Haze 25)		

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
Horizontal(H)		426.7	427.2	427.7	mm	
Module Size	Vertical(V)	276.9	277.4	277.9	mm	(1)
	Depth(D)	16.5	17	17.5	mm	
We	Weight		2400	2500	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic		
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	٥C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Relative Humidity (%RH)

Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 60 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 60 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.

- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 500 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

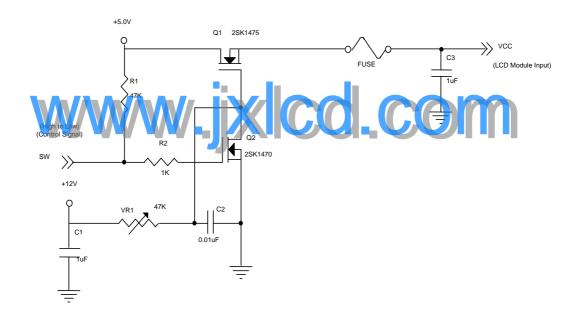
Itom	Symbol	Va	lue	Unit	Note	
Item	Symbol	Min.	Max.	Offic	Note	
Power Supply Voltage	Vcc	-0.3	+6.0	V	(1)	
Logic Input Voltage	V_{IN}	-0.3	4.3	V	(1)	

2.2.2 BACKLIGHT UNIT

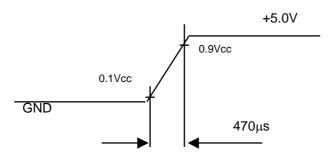
Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic		
Lamp Voltage	V_L	-	2.5K	V_{RMS}	$(1), (2), I_L = 7.0 \text{mA}$	
Lamp Current	ΙL	-	7.5	mA_RMS	(1), (2)	
Lamp Frequency	F∟	-	80	KHz	(1), (2)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to Section 3.2 for further information).

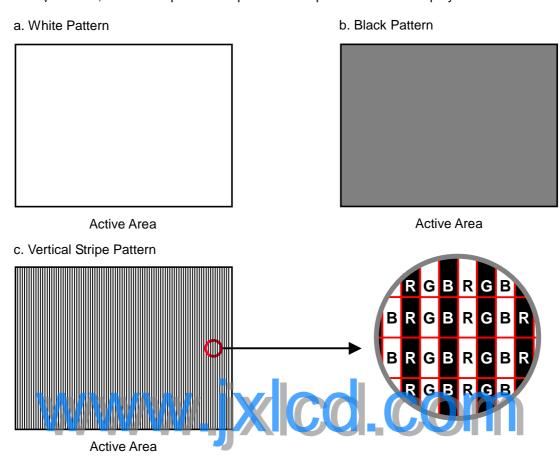

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

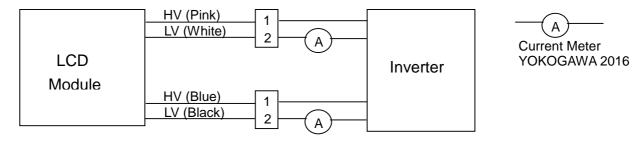

	Doromoi	cor	Cumbal		Value		Unit	Note
Parameter		Symbol	Min.	Тур.	Max.	Ullit	note	
Power Su	pply Voltage		V _{cc}	4.5	5.0	5.5	V	(1)
Power Su	pply Ripple Vo	ltage	V_{RP}	-	-	100	mV	
Rush Curre	ent		I_{RUSH}	-	1.6	3	A	(2)
		White		-	0.5	-	A	
Power Su	pply Current	Black	I _{cc}	-	0.7	0.82	A	(3)
	Vertical Stripe			-	0.7	-	A	
	Differential In	put High	\/			+100	mV	
LVDS	Threshold Vo	ltage	V_{LVTH}	-	-	+100	IIIV	
Interface	Differential In	put Low	\/	-100			mV	
IIIIeiiace	Threshold Vo	ltage	V_{LVTL}	-100	-	-	IIIV	
Common Input Vo		ut Voltage	V_{LVC}	1.125	1.25	1.375	V	
	Terminating Resistor		R⊤		100		ohm	
CMOS	Input High Threshold Voltage		V_{IH}	2.7	-	3.3	V	
interface	Input Low Thi	eshold Voltage	V_{IL}	0	-	0.7	V	

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:


Vcc rising time is 470μs

Note (3) The specified power supply current is under the conditions at V_{CC} =5V, Ta = 25 ± 2 °C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.



3.2 BACKLIGHT UNIT

_				_		ı
Tа	_	25	+	2	υſ	1

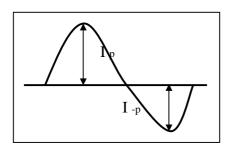
Parameter	Symbol		Value	Unit	Note	
raiaillelei	Syllibol	Min.	Тур.	Max.	Offic	Note
Lamp Input Voltage	$V_{\rm L}$	697	775	853	V_{RMS}	$I_L = 7.0 \text{ mA}$
Lamp Current	I_{L}	6.5	7.0	7.5	mA_{RMS}	(1)
Lamp Turn On Voltage	V_{S}			1500(25)	V_{RMS}	(2)
Lamp Turn On Voltage	V S			1710(0)	V_{RMS}	(2)
Operating Frequency	F_L	40		80	KHz	(3)
Lamp Life Time	L_{BL}	40000			Hrs	(5)
Power Consumption	P_{L}		27		W	$(4), I_L = 7.0 \text{ mA}$

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:

- Note (2) The voltage shown above should be applied to the lamp for more than 1 second after startup.

 Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) $P_L = I_L \times V_L \times 4 \text{ CCFLs}$
- Note (5) The lifetime of lamp can be defined as the time in which it continues to operate under the condition $Ta = 25 \pm 2$ °C and $I_L = 7.0$ mA rms until one of the following events occurs:
 - (a) When the brightness becomes or lower than 50% of its original value.
 - (b) When the effective ignition length becomes or lower than 80% of its original value. (Effective ignition length is defined as an area that has less than 70% brightness compared to the brightness in the center point.)
- Note (6) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

The output of the inverter must have symmetrical (negative and positive) voltage waveform and symmetrical current waveform.(Unsymmetrical ratio is less than 10%) Please do not use the



inverter which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.

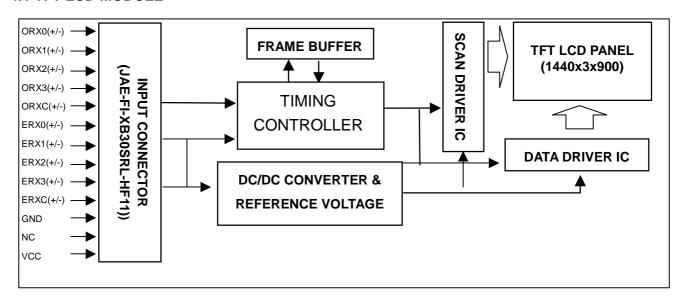
Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It shall help increase the lamp lifetime and reduce its leakage current.

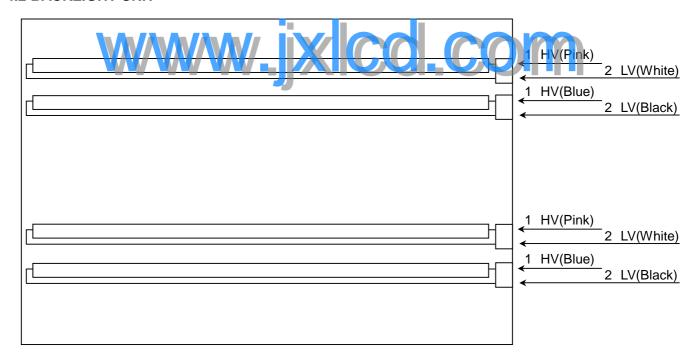
- a. The asymmetry rate of the inverter waveform should be 10% below;
- b. The distortion rate of the waveform should be within $2 \pm 10\%$;
 - c. The ideal sine wave form shall be symmetric in positive and negative polarities.

* Asymmetry rate:

$$|I_p - I_{-p}| / I_{rms} * 100\%$$

* Distortion rate


$$I_p$$
 (or I_{-p}) / I_{rms}



4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

CNF1 Connector Pin Assignment

Pin No.	Name	Description	Note
1	ORX0-	Negative transmission data of Odd pixel 0.	
2	ORX0+	Positive transmission data of Odd pixel 0.	
3	ORX1-	Negative transmission data of Odd pixel 1.	
4	ORX1+	Positive transmission data of Odd pixel 1.	
5	ORX2-	Negative transmission data of Odd pixel 2.	
6	ORX2+	Positive transmission data of Odd pixel 2.	
7	GND	Ground	
8	OCLK-	Negative of Odd clock.	
9	OCLK +	Positive of Odd clock.	
10	ORX3-	Negative transmission data of Odd pixel 3.	
11	ORX3+	Positive transmission data of Odd pixel 3.	
12	ERX0-	Negative transmission data of Even pixel 0.	
13	ERX0+	Positive transmission data of Even pixel 0.	
14	GND	Ground	
15	ERX1-	Negative transmission data of Even pixel 1.	
16	ERX1+	Positive transmission data of Even pixel 1.	
17	GND	Ground	
18	ERX2-	Negative transmission data of Even pixel 2.	
19	ERX2+	Positive transmission data of Even pixel 2.	
20	ECLK-	Negative of Even clock.	
21	ECLK+	Positive of Even clock.	
22	ERX3-	Negative transmission data of Even pixel 3.	
23	ERX3+	Positive transmission data of Even pixel 3.	
24	GND	Ground	
25	NC	Not connection.	
26	NC	Not connection.	(4)
27	NC	Not connection.	
28	VCC	+5.0V power supply	
29	VCC	+5.0V power supply	
30	VCC	+5.0V power supply	

Note (1) Connector Part No.: JAE-FI-XB30SRL-HF11 or equivalent.

Note (2) The first pixel is odd.

Note (3) Input signal of even and odd clock should be the same timing.

Note (4) Reserved for internal use. Left it open.

5.2 BACKLIGHT UNIT

Pin	Symbol	Description	Remark
1	HV	High Voltage	Pink
2	LV	Low Voltage	White
1	HV	High Voltage	Blue
2	LV	Low Voltage	Black

Note (1) Connector Part No.: BHSR-02VS-1 (JST) or equivalent

Note (2) Matching Connector Part No.: SM02B-BHSS-1-TB (JST) or equivalent

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

			Data Signal																						
	Color				Re									een							Bl				
	T= -	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	9	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	01	0	0	0	0	0	17	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0
Gray	:	:	:	:	:	:	: -	-	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	: D - 1/050)	:	:	:	:	:	:	:	•	:	:	:	:	-	:	:	:	:	:	:	:	:	:	:	:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0	0	1	0	0	0	0	0	0	0	0
	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:		:	:		:	:	:	:
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Cross	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
blue	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

5.4 LVDS INTERFACE

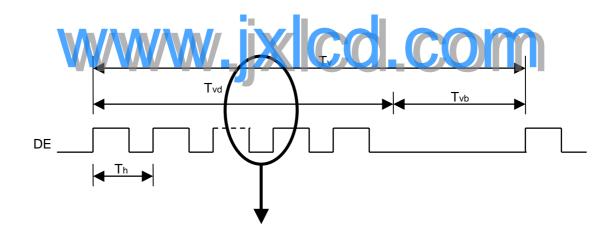
	TRANSMITTER THC63LVDM83A		INTERFACE CO	ONNECTOR	_	RECEIVER THC63LVDF84A	TFT CONTROL	
	0.0.0.	PIN	INPUT	Host	TFT-LCD	PIN	OUTPUT	INPUT
	R0	51	TxIN0			27	Rx OUT0	R0
	R1	52	TxIN1			29	Rx OUT1	R1
	R2	54	TxIN2	TA OUT0+	Rx 0+	30	Rx OUT2	R2
	R3	55	TxIN3			32	Rx OUT3	R3
	R4	56	TxIN4			33	Rx OUT4	R4
	R5	3	TxIN6	TA OUT0-	Rx 0-	35	Rx OUT6	R5
	G0	4	TxIN7			37	Rx OUT7	G0
	G1	6	TxIN8			38	Rx OUT8	G1
	G2	7	TxIN9			39	Rx OUT9	G2
	G3	11	TxIN12	TA OUT1+	Rx 1+	43	Rx OUT12	G3
	G4	12	TxIN13			45	Rx OUT13	G4
	G5	14	TxIN14			46	Rx OUT14	G5
	B0	15	TxIN15	TA OUT1-	Rx 1-	47	Rx OUT15	B0
	B1	19	TxIN18			51	Rx OUT18	B1
	B2	20	TxIN19			53	Rx OUT19	B2
24bit	B3	22	TxIN20			54	Rx OUT20	B3
	B4	23	TxIN21	TA OUT2+	Rx 2+	55	Rx OUT21	B4
	B5	24	TxIN22			1	Rx OUT22	B5
	DE	30	TxIN26			6	Rx OUT26	DE
	R6	50	TxIN27	TA OUT2-	Rx 2-	7	Rx OUT27	R6
	R7	2	TxIN5			34	Rx OUT5	R7
	G6	8	TxIN10	_		41	Rx OUT10	G6
	G7 _	_10	TxIN11			42	Rx OUT11	G7
	B6	16	TXIN16	TA OUT3+	Rx 3+	49	Rx OUT16	B 6
	B7	18	TxIN17			50	Rx OUT17	B7
	RSVD 1	25	TxIN23			2	Rx OUT23	Not connect
	RSVD 2	27	TxIN24	TA OUT3-	Rx 3-	3	Rx OUT24	Not connect
	RSVD 3	28	TxIN25			5	Rx OUT25	Not connect
	DCLK	31	TxCLK IN	TxCLK OUT+ TxCLK OUT-	RxCLK IN+ RxCLK IN-	26	RxCLK OUT	DCLK

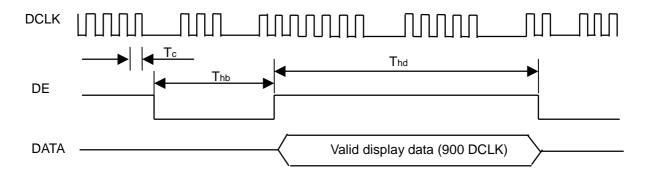
R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal DCLK: Data clock signal

Notes (1) RSVD(reserved)pins on the transmitter shall be "H" or "L".

6. INTERFACE TIMING

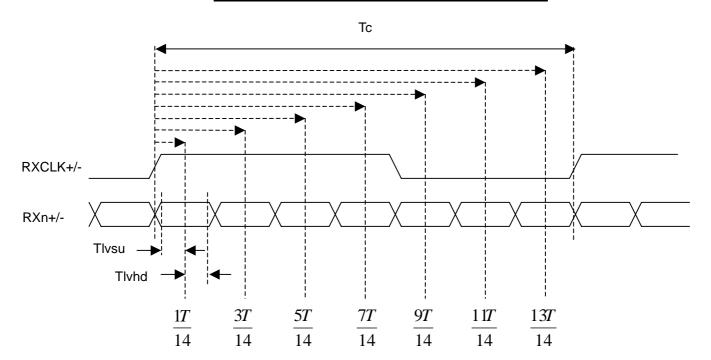

6.1 INPUT SIGNAL TIMING SPECIFICATIONS


The input signal timing specifications are shown as the following table and timing diagram.

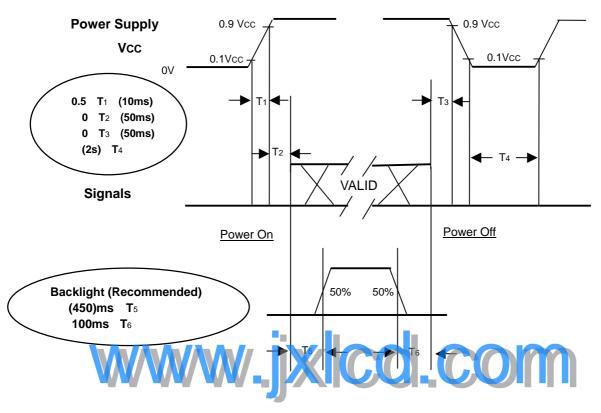
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	1/Tc	•	44	56	MHz	-
LVDS Receiver Clock	Input cycle to cycle Jitter	Тс	-	-	200	ps	-
LVDC Beceiver Dete	Setup Time	Tlvs	600	-	-	ps	-
LVDS Receiver Data	Hold Time	Tlvh	600	-	-	ps	-
	Frame Rate	Fr	-	60	75	Hz	Tv=Tvd+Tvb
Vertical Active Display Term	Total	Tv	907	926	1050	Th	-
Vertical Active Display Term	Display	Tvd	900	900	900	Th	-
	Blank	Tvb	7	26	105	Th	-
	Total	Th	750	800	960	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	720	720	720	Tc	-
	Blank	Thb	30	80	240	Tc	-

Note: Since this module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM



LVDS RECEIVER INTERFACE TIMING DIAGRAM



6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

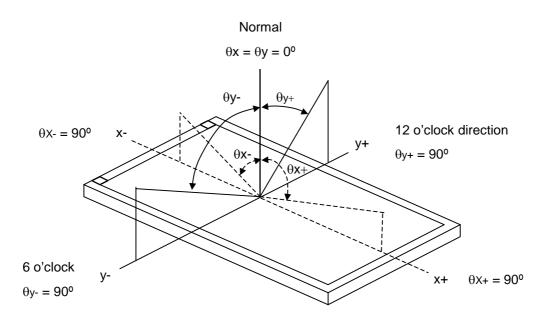
- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Ta	25±2	°C				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	V_{CC}	5.0	V				
Input Signal	According to typical va	alue in "3. ELECTRICAL	CHARACTERISTICS"				
Lamp Current	IL	7.0	mA				
Inverter Operating Frequency	FL	61	KHz				
Inverter	SUMIDA H05-5307						

7.2 OPTICAL SPECIFICATIONS


The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

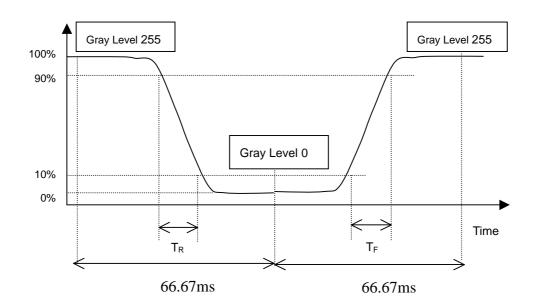
Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx			0.636			
	Red	Ry			0.348			
	Green	Gx			0.289			
Color Chromaticity	Green	Gy		Тур –	0.587	Тур +		(1)
	Blue	Bx	$\theta_x=0^\circ$, $\theta_Y=0^\circ$	0.03	0.143	0.03		(1)
	blue	_By_	θ_x =0°, θ_Y =0° CS-1000T		0.079			
	White	Wx/			0.313			
<u> </u>	Ville	Wy -			0.329			
Center Luminan	ce of White	L _C	4)	330	400		cd/m ²	(4)
Contrast Ratio		CR		350	500		-	(2)
Response Time		T _R	$\theta_x=0^\circ, \ \theta_Y=0^\circ$		2	7	ms	(3)
response fille		T_F	0χ=0 , 0γ =0		6	11	ms	(3)
White Variation		δW	$\theta_x=0^\circ$, $\theta_Y=0^\circ$		1.2	1.5	-	(6)
	Horizontal	θ_x +		70	80			
Viowing Anglo	Tionzontai	θ_{x} -	CR 10	70	80		Dog	(1)
Viewing Angle	Vertical	θ_{Y} +	OK 10	65	75		Deg.	
	vertical	θ _Y -		50	60			

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by EZ-Contrast 160R (Eldim)

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

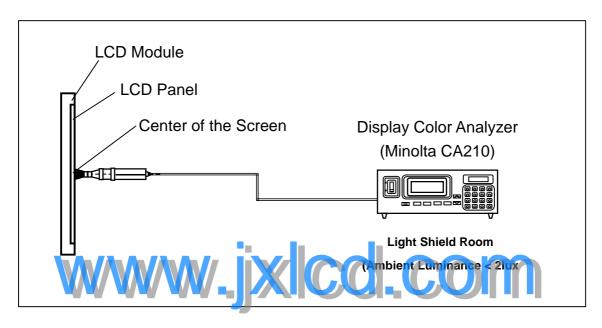
L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3)Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):

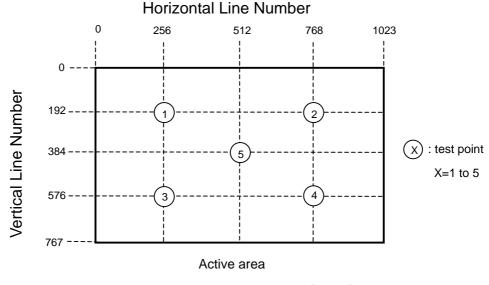

Measure the luminance of gray level 255 at center point

$$L_{C} = L(5)$$

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

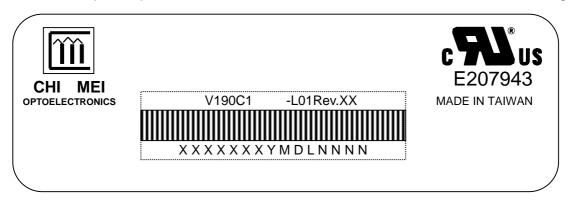


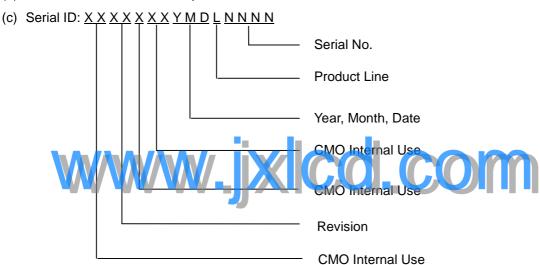
Note (6)

Definition of White Uniformity (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)] * 100%$


Horizontal Line Number [pixel]


8.DEFINTION OF LABELS

8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V190C1-L01
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2000~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

9.PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 5 LCD modules / 1 Box
- (2) Box dimensions: 545(L) X 320 (W) X 360 (H) mm
- (3) Weight: approximately 13.87 Kg (5 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method.

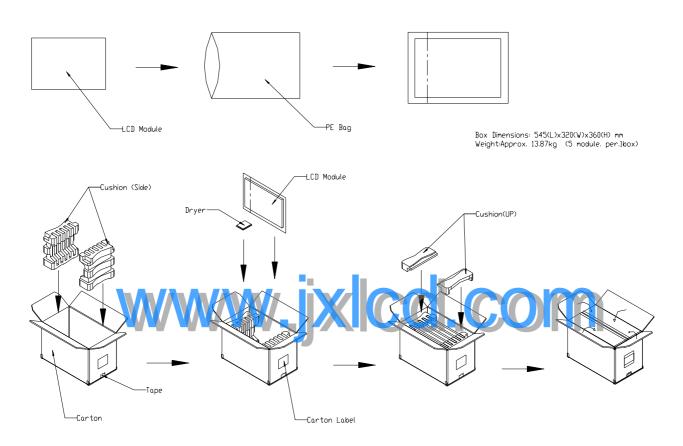
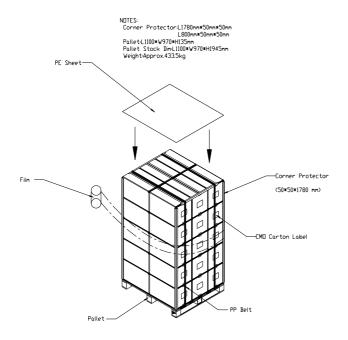



Figure. 9-1 Packing method

For ocean shipping

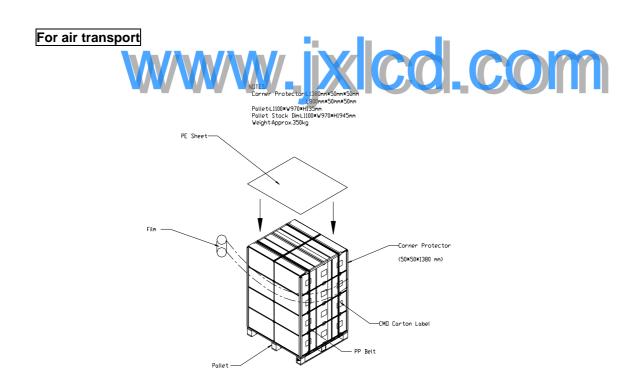
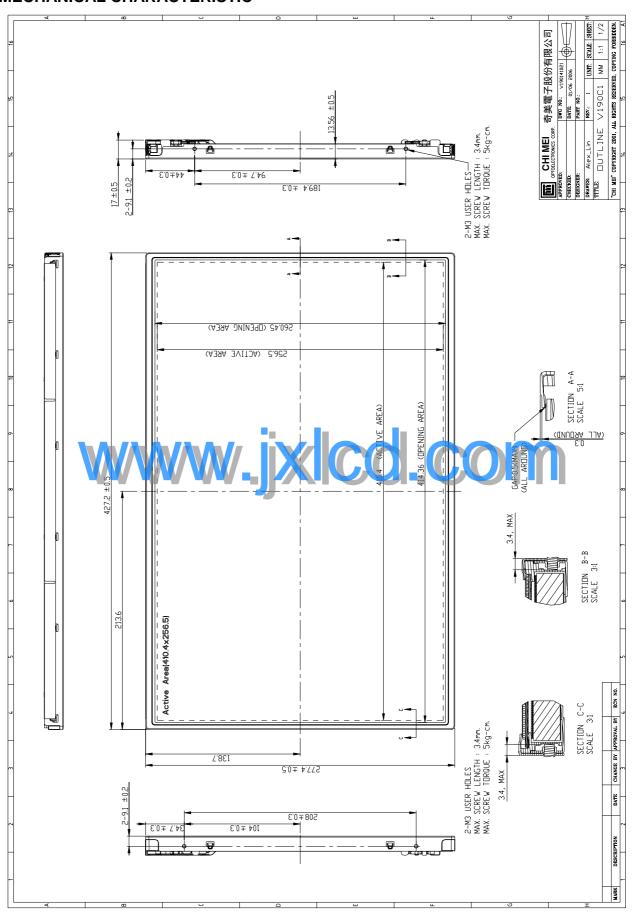


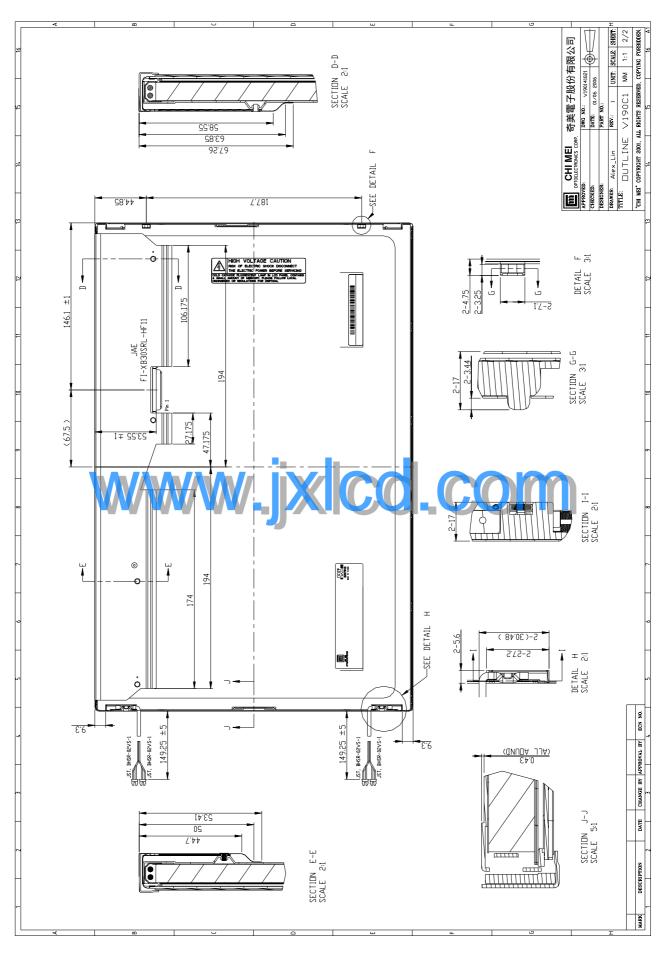
Figure. 9-2Packing method

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.


10.2 SAFETY PRECAUTIONS


- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

11. MECHANICAL CHARACTERISTIC

