m

OP'

屏库:全球液晶屏交易中心

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2 Approval

TFT LCD Approval Specification

MODEL NO.: V185B1-PE2

Customer:	Orion
Approved	by:
Note:	
Approved By	TV Head Division

Approved Dy	TV Head Division
Approved By	Chao-Chun Chung

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2 Approval

- CONTENTS -

REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON 2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL 2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)		5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD OPEN CELL 3.2 Vcc POWER DIP CONDITION		7
4. BLOCK DIAGRAM 4.1 TFT LCD OPEN CELL		9
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 LVDS DATA MAPPING TABLE 5.3 COLOR DATA INPUT ASSIGNMENT	0	10
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		12
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS 7.3 FLICKER ADJUSTMENT		15
8. PACKAGING 8.1 PACKING SPECIFICATIONS 8.2 PACKING METHOD		20
9. DEFINITION OF LABELS 9.1 OPEN CELL LABEL		21
10. RELIABILITY TEST		22
11. PRECAUTIONS 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 11.2 SAFETY PRECAUTIONS 11.3 OTHERS		23
12. MECHANICAL DRAWING		24

www.panelook.com

屏库:全球液晶屏交易中心

 \bigotimes

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2 Approval

REVISION HISTORY

Version	Date	Section	Description
Ver 2.0	Mar, 23, 10'	All	V185B1-PE2 Approval Specification was first issued.

CHIMEI OPTOELECTRONICS CORP. Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The V185B1-PE2 is a 18.5" TFT LCD cell with driver ICs and a 30-pins-1ch-LVDS circuit board. The product supports 1366 x 768 WXGA mode and can display up to 16.7M colors. The backlight unit is not built in.

1.2 FEATURES

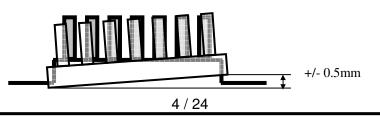
- Contrast ratio 1000:1
- Response time 5ms.
- WXGA (1366 x 768 pixels) resolution.
- DE (Data Enable) only mode.
- LVDS (Low Voltage Differential Signaling) interface.
- RoHS compliance.

1.3 APPLICATION

- TFT LCD Monitor
- TFT LCD TV

1.4 GENERAL SPECIFICATIONS

ltem	Specification	Unit	Note
Diagonal Size	18.5	inch	-
Active Area	409.8 (H) x 230.4 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1366 x R.G.B. x 768	pixel	-
Pixel Pitch	0.3 (H) x 0.3 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Transmissive Mode	Normally White	-	-
Surface Treatment	Hard coating (3H), Anti-glare (Haze 25%)	-	-
Power Consumption	3.0	Watt	(3)


1.5 MECHANICAL SPECIFICATIONS

Item	Min.	Тур.	Max.	Unit	Note
Weight	-	415	435	g	-
I/F connector mounting		(2)			
position	-	(2)			

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) Connector mounting position

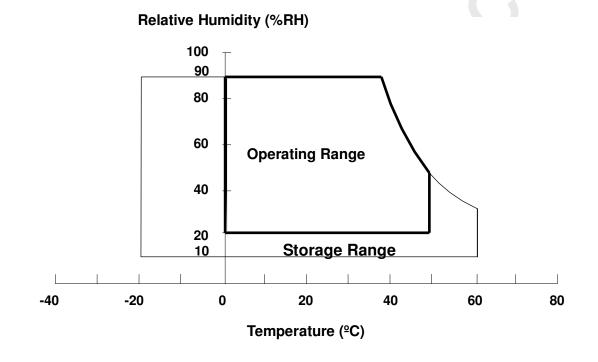
(3) Please refer to sec.3.1 for more information of power consumption.

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2 Approva

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMO MODULE M185B3-LA1)

ltem	Symbol	Va	Unit	Note			
liem	Symbol	Min.	Max.	Unit	NOLE		
Storage Temperature	T _{ST}	-20	+60	°C	(1)		
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)		


Note (1) Temperature and relative humidity range is shown in the figure below.

(a) 90 %RH Max. (Ta \leq 40 °C).

(b) Wet-bulb temperature should be 39 $^{\circ}$ C Max. (Ta > 40 $^{\circ}$ C).

(c) No condensation.

Note (2) The temperature of panel display surface area should be 0 °C Min. and 60 °C Max.

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2

2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

High temperature or humidity may reduce the performance of panel. Please store LCD panel within the specified storage conditions.

Storage Condition: With packing.

Storage temperature range: 25±5 °C.

Storage humidity range: 50±10%RH.

Shelf life: 30days

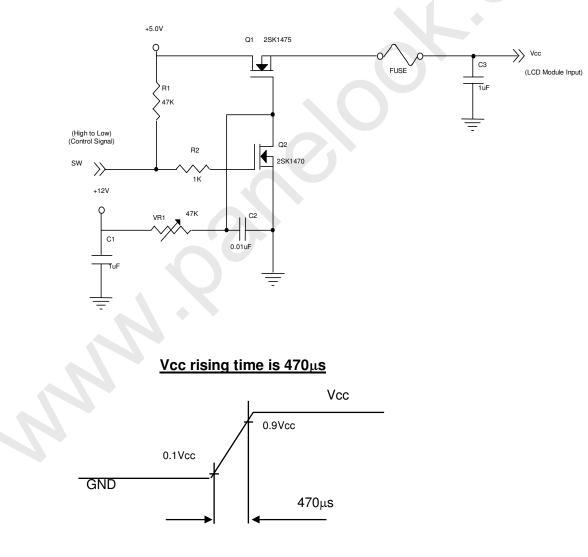
2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

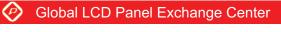
Item	Symbol	Value	Э	Unit	Note
	Symbol	Min	Max		Note
Power Supply Voltage	V _{CC}	-0.3	+6.0	V	(1)
Logic Input Voltage	Vlogic	-0.3	2.7	V	-

Note (1) Permanent damage might occur if the module is operated at conditions exceeding the maximum values.

 \Diamond

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2 Approval


3. ELECTRICAL CHARACTERISTICS

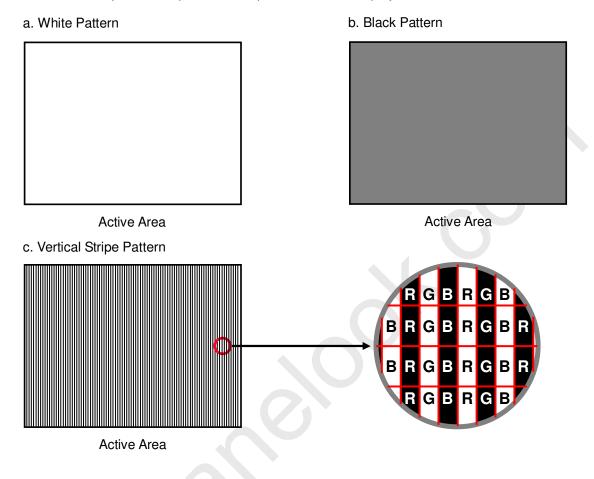

3.1 TFT LCD OPEN CELL

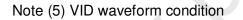
.1 TFT LCD OPEN CEL	I TFT LCD OPEN CELL									
Param	eter	Symbol		Value		Unit	Note			
i aram	0.01	Cymbol	Min.	Тур.	Max.		Note			
Power Supply Voltage				5.0	5.5	V	-			
Ripple Voltage	V_{RP}	-	-	300	mV	-				
Power On Rush Current	I _{RUSH}	-	-	3	A	(2)				
	White		-	0.41	0.54	A	(3)a			
Power Supply Current	Black	-	-	0.57	0.76	A	(3)b			
	Vertical Stripe		-	0.6	0.8	А	(3)c			
Power Consumption		P _{LCD}	-	3.0	4.0	Watt	(4)			
LVDS differential input v	oltage	Vid	200	-	600	mV	(5)			
LVDS common input vol	tage	Vic	-	1.2	-	V				
Logic High Input Voltage	Logic High Input Voltage			-	2.7	V	-			
Logic Low Input Voltage		VIL	-	-	0.5	V	-			

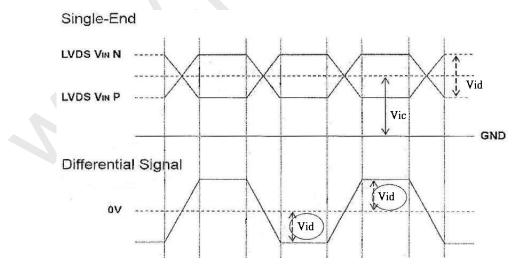
Note (1) The module should be always operated within above ranges.

Note (2) Power On Rush Current Measurement Conditions: (must follow power sequence)

www.panelook.com

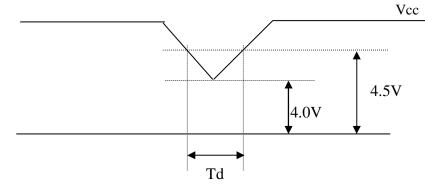

屏库:全球液晶屏交易中心



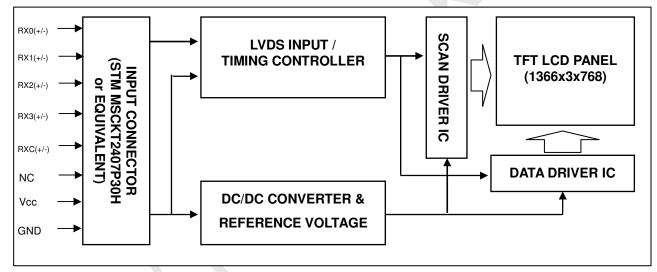

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2 Approval

Note (3) The specified power supply current is under the conditions at Vcc = 5.0 V, Ta = $25 \pm 2 \ ^{\circ}C$, Fv = 60 Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The power consumption is specified at the pattern with the maximum current.



Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2


3.2 Vcc POWER DIP CONDITION:

Dip condition: $4.0V \le Vcc \le 4.5V, Td \le 20ms$

4. BLOCK DIAGRAM

4.1 TFT LCD OPEN CELL

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2

Approval

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Name	Description
1	NC	Not connection, this pin should be open.
2	NC	Not connection, this pin should be open.
3	NC	Not connection, this pin should be open.
4	GND	Ground
5	RX0-	Negative LVDS differential data input. Channel 0
6	RX0+	Positive LVDS differential data input. Channel 0
7	GND	Ground
8	RX1-	Negative LVDS differential data input. Channel 1
9	RX1+	Positive LVDS differential data input. Channel 1
10	GND	Ground
11	RX2-	Negative LVDS differential data input. Channel 2
12	RX2+	Positive LVDS differential data input. Channel 2
13	GND	Ground
14	RXCLK-	Negative LVDS differential clock input.
15	RXCLK+	Positive LVDS differential clock input.
16	GND	Ground
17	RX3-	Negative LVDS differential data input. Channel 3
18	RX3+	Positive LVDS differential data input. Channel 3
19	GND	Ground
20	NC	Not connection, this pin should be open.
21	NC	Not connection, this pin should be open.
22	NC	For LCD internal use only, Do not connect
23	GND	Ground
24	GND	Ground
25	GND	Ground
26	Vcc	+5.0V power supply
27	Vcc	+5.0V power supply
28	Vcc	+5.0V power supply
29	Vcc	+5.0V power supply
30	Vcc	+5.0V power supply

Note (1) Connector Part No.: STM MSCKT2407P30H or equivalent.

5.2 LVDS DATA MAPPING TABLE

LVDS Channel 0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVDS Ghannel 0	Data order	G0	R5	R4	R3	R2	R1	R0
LVDS Channel 1	LVDS output	D18	D15	D14	D13	D12	D9	D8
	Data order	B1	B0	G5	G4	G3	G2	G1
LVDS Channel 2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVDS Channel 2	Data order	DE	NA	NA	B5	B4	B3	B2
LVDS Channel 3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVDS Channel S	Data order	NA	B7	B6	G7	G6	R7	R6

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2

5.3 COLOR DATA INPUT ASSIGNMENT

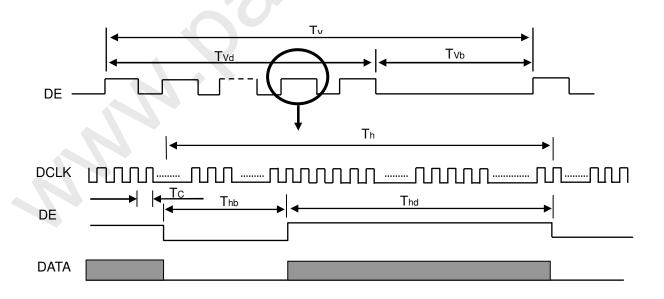
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

										Data Signal Green Blue															
	Color		_	_	Re		_		_	_	_	_							_	_			_	_	_
	Dissi	R7	R6	R5	R4	R3	R2	R1	R0	R7	R6	G5	G4	G3	G2	G1	G0	R7	R6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Basic	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:			:	•	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	1	:	0:0		:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
neu	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:				:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	1	:	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Crav	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray	:	:		:		:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Blue	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2

6. INTERFACE TIMING

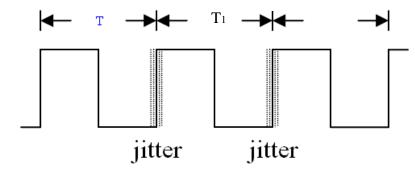

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

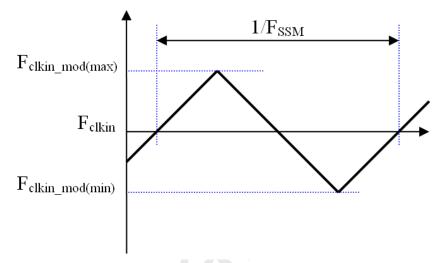
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	60	76	96	MHz	-
	Period	Tc	-	13.0	-	ns	-
	Input cycle to cycle jitter	T _{rcl}	-	-	200	ps	(1)
LVDS Clock	Spread spectrum modulation range	Fclkin_mod	Fc*98%	-	Fc*102%	MHz	
	Spread spectrum modulation frequency	F _{SSM}	-	-	200	KHz	(2)
	High Time	Tch	-	4/7	-	Tc	-
	Low Time	Tcl	-	3/7		Tc	-
	Setup Time	Tlvs	600	-	-	ps	(2)
LVDS Data	Hold Time	Tlvh	600		-	ps	(3)
	Frame Rate	Fv	50	60	75	Hz	-
Vartical Active Display Tarm	Total	Τv	790	806	850	Th	Tv=Tvd+Tvb
Vertical Active Display Term	Display	Tvd	768	768	768	Th	-
	Blank	Tvb	Tv-Tvd	38	Tv-Tvd	Th	-
	Total	Th	1490	1560	1580	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1366	1366	1366	Tc	-
	Blank	Thb	Th-Thd	194	Th-Thd	Tc	-

Note: Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.

INPUT SIGNAL TIMING DIAGRAM

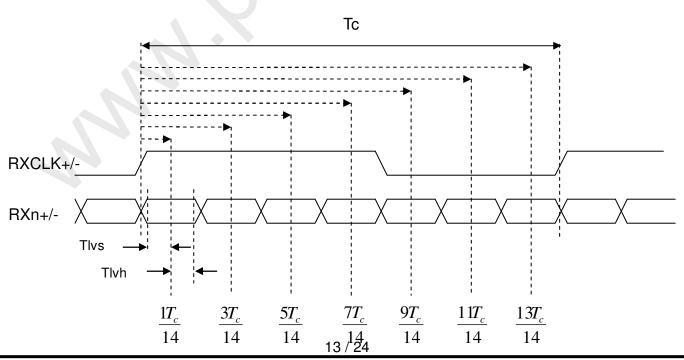


Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2



Approva

Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $I T_1 - TI$

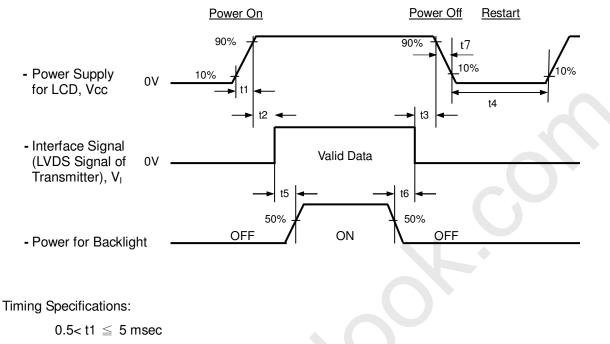


Note (2) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (3) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2


6.2 POWER ON/OFF SEQUENCE

 $\begin{array}{rrrr} 0 \ < \ t2 \ \leq \ 50 \ msec \\ 0 \ < \ t3 \ \leq \ 50 \ msec \end{array}$

 $5 \leq t7 \leq 100 \text{ msec}$

t4 \geq 500 msec t5 \geq 450 msec t6 \geq 90 msec

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Note.

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) It is not guaranteed that products are damaged which is caused by not following the Power Sequence.

(7) It is suggested that Vcc falling time follows t7 specification, else slight noise is likely to occur when LCD is turned off (even backlight is already off).

OP

屏库:全球液晶屏交易中心

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2 $\langle \mathcal{P} \rangle$

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Та	25±2	O°			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V _{CC}	5.0	V			
Input Signal	According to typical v	alue in "3. ELECTRICAL	CHARACTERISTICS"			
Inverter Current	IL I	7.0±0.5	mA			
Inverter Driving Frequency	FL	55±5	KHz			

7.2 OPTICAL SPECIFICATIONS

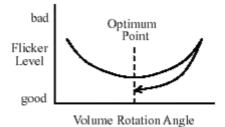
The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Iten	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rcx			0.645		-	
	neu	Rcy			0.328	Typ + 0.03	-	
	Green	Gcx			0.275		-	
Color	Green	Gcy	θ _x =0°, θ _Y =0°	Тур -	0.580		-	(0) (7)
Chromaticity	Blue	Bcx	DMS 803	-0.03	0.148		-	(0),(7)
	Dide	Всу			0.105		-	
	White	Wcx			0.322		-	
	VVIIILE	Wcy			0.351		-	
Center Transmit	tance	T%	θ _x =0°, θ _Y =0°	5.4	6.0	-	%	(1), (5)
Contrast Ratio		CR	CS-2000, CMO BLU	700	1000	-	-	(1), (3)
Response Time		T _R	θ _x =0°, θ _Y =0°	-	1.3	2.2 ms		(4)
		T _F		-	3.7	5.8	ms	(-)
Transmittance u	niformity	δΤ	θ _x =0°, θ _Y =0° USB-2000	-		1.42	-	(1), (8)
	Horizontal	$\theta_x + + \theta_x$ -	CR>10	150	170	-	Dea	(1), (2)
Viewing Angle	Vertical	θ_{Y} ++ θ_{Y} -	USB-2000	140	160	-	Deg.	(6)
	Horizontal	$\theta_x + + \theta_x$ -	CR>5	160	178	-	Dog	(1), (2)
	Vertical	θ_{Y} ++ θ_{Y} -	USB-2000	150	170	- Deg.		(6)

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2

7.3 Flicker Adjustment

Flicker must be finely adjusted after module assembling and aging. Please follow the instructions below.

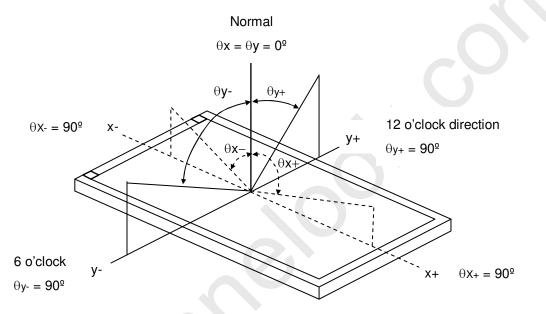

(1) Adjustment Pattern: 2H1V checker pattern as follows.

R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	
R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	
R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	
R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	
R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	
R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	
R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	
R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	R	G	в	

L128 L0

(2) Adjustment Method:

Flicker should be adjusted by turning the volume for flicker adjustment by the ceramic driver. It is adjusted to the point with least flickering of the whole screen. After making it surely overrun at once, it should be adjusted to the optimum point.



Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2

- Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages
- Note (1) Light source is the BLU, which is supplied by CMO, and driving voltages are based on suitable gamma voltages. White is without signal input and R, G, B are with signal input. SPEC is judged by CMO's golden sample
- Note (2) Definition of Viewing Angle $(\theta x, \theta y)$:

Note (3) : Definition of Contrast Ratio (CR):

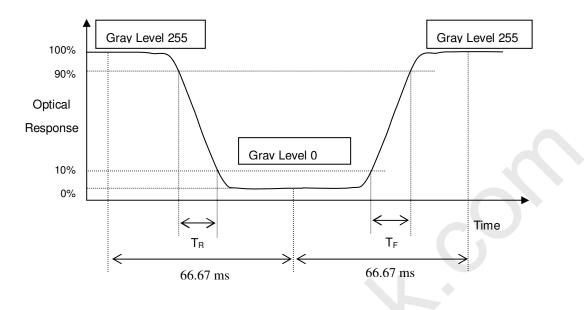
The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

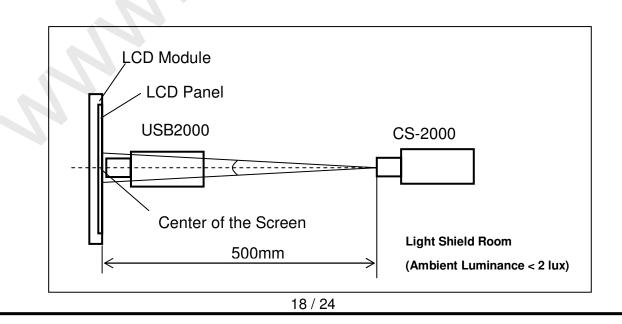
CR = CR(5)


CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (8).

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2

Note (4) Definition of Response Time (T_R, T_F) :

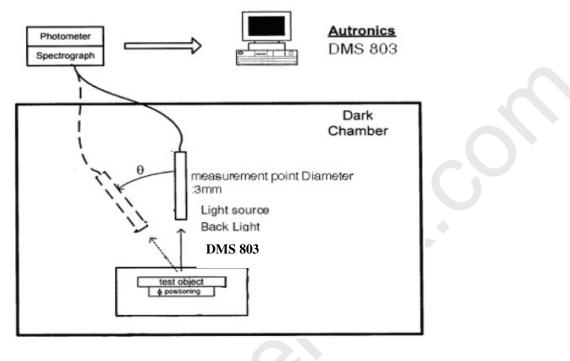
Note (5) Definition of Transmittance (T%):


Module is without signal input.

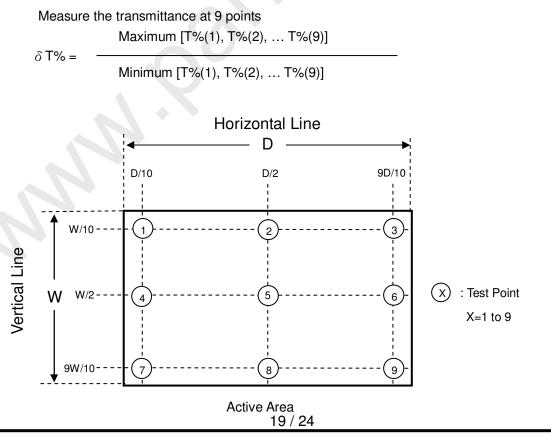
Transmittance = $\frac{\text{Luminance of LCD module L(5)}}{\text{Luminance of backlight LBLU(5)}} * 100\%$

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 20minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20minutes in a windless room.



Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2

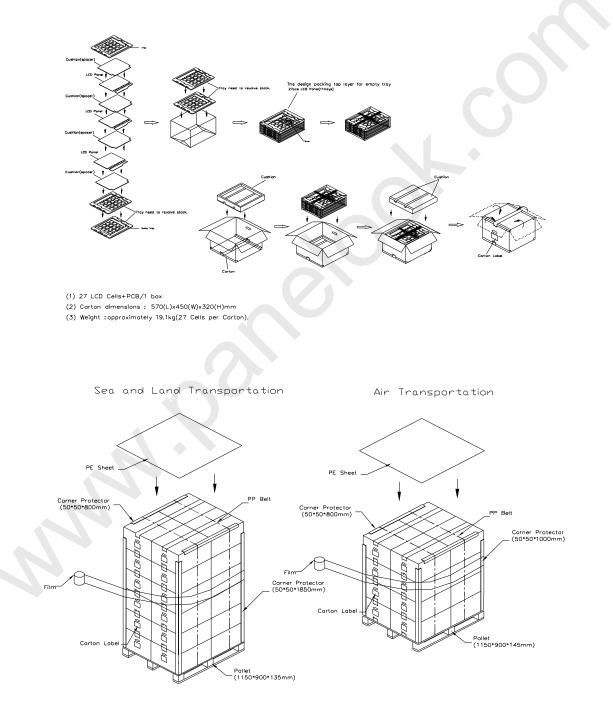


Note (7) : Measurement Setup:

The LCD Panel should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after light source "C" for 30 minutes in a windless room.

Note (8) : Definition of Transmittance Variation (δT %):

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2



Model No

8. PACKAGING

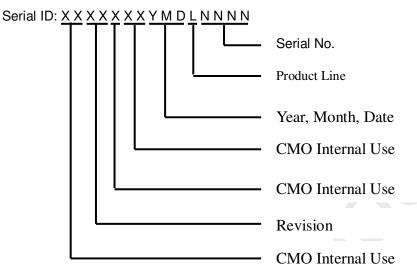
- 8.1 PACKING SPECIFICATIONS
- (1) 27 open cells / 1 Box
- (2) Box dimensions: 570 (L) X 450 (W) X 320 (H) mm
- (3) Weight: approximately 19.1Kg (27 open cells per box)

8.2 PACKING METHOD

20 / 24

CHINE OPTOELECTRONICS CORP.

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2


9. DEFINITION OF LABELS

9.1 CMO OPEN CELL LABEL

The barcode nameplate is pasted on each OPEN CELL as illustration for CMO internal control.

Barcode definition:

Serial ID includes the information as below:

Manufactured Date:

Year: 2001=1,2002=2,2003=3,2004=4...2010=0,2011=1,2012=2..

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

Serial No.: Manufacturing sequence of product

Product Line: 1 -> Line1, 2 -> Line 2, ... etc.

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2

Approval

10. RELIABILITY TEST

Environment test conditions are listed as following table.

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50℃, 80%RH, 240hours	
High Temperature Operation (HTO)	Ta= 50℃, 50%RH , 240hours	
Low Temperature Operation (LTO)	Ta= 0°C, 240hours	(1)
High Temperature Storage (HTS)	Ta= 60℃, 240hours	
Low Temperature Storage (LTS)	Ta= -20°C, 240hours	
Package Vibration Test	ISTA STANDARD 1.14Grms Random, Frequency Range: 1 ~ 200 Hz Top & Bottom: 30 minutes (+Z), 10 min (-Z), Right & Left: 10 minutes (X) Back & Forth 10 minutes (Y)	(2)
Thermal Shock Test (TST)	-20°C/30min, 60°C / 30min, 100 cycles	
On/Off Test	25℃, On/10sec, Off /10sec, 30000 cycles	(1)
Altitude Test	Operation: 10000 ft / 24hours Non-Operation: 30000 ft / 24hours	-

Note (1) The tests are done with LCD modules (M185B3-LA1).

Note (2) The test is done with a package shown in Section 8.

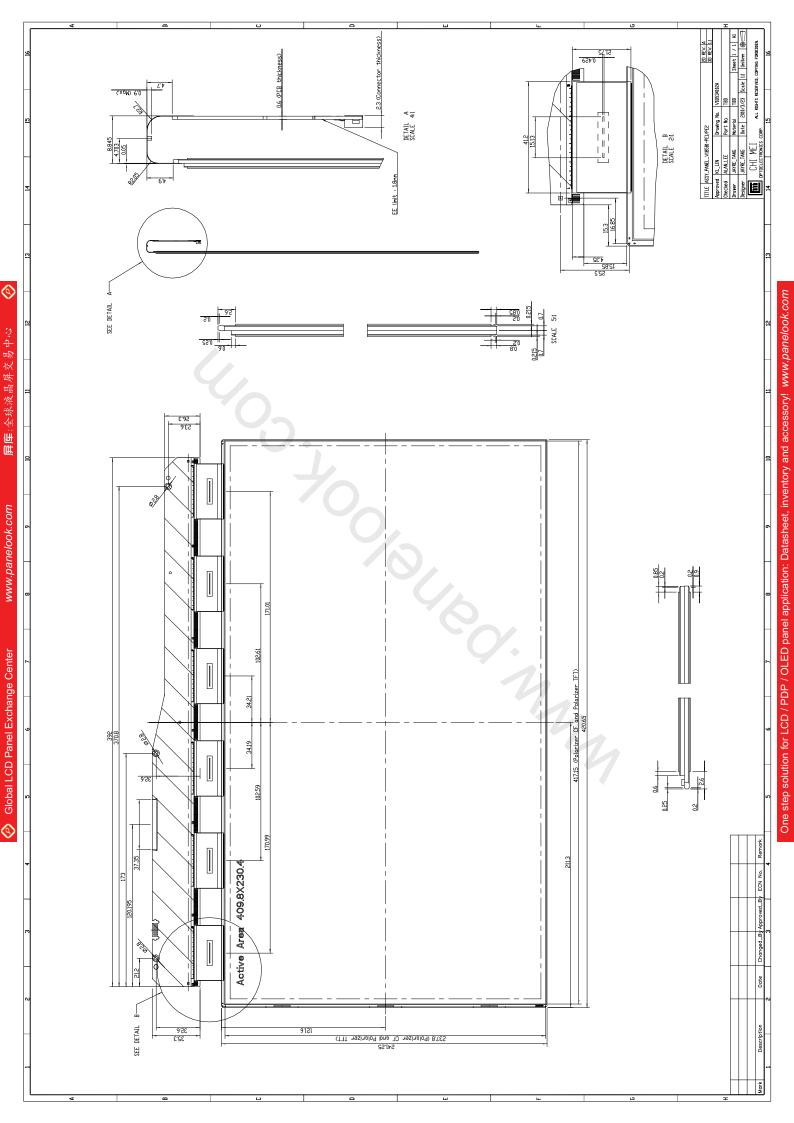
CHIME OPTOELECTRONICS CORP.

Issued Date: Mar, 23, 2010 Model No.: V185B1-PE2

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble backlight or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It is not permitted to have pressure or impulse on the module because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture come into or contacted the product, because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.


11.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.

11.3 OTHER

(1) When fixed patterns are displayed for a long time, remnant image is likely to occur.

12. MECHANICAL DRAWING

