

TFT LCD Approval Specification

MODEL NO.: V185B1-P02

Customer:	
Approved by: _	
Note:	

Approved By	TV Head Division
Approved By	Chao-Chun Chung

- CONTENTS -

REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON 2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL 2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)	CMO MODULE M185B1-L01)	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD OPEN CELL 3.2 Vcc POWER DIP CONDITION		7
4. BLOCK DIAGRAM 4.1 TFT LCD OPEN CELL		9
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 LVDS DATA MAPPING TABLE 5.3 COLOR DATA INPUT ASSIGNMENT		10
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		12
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS 7.3 FLICKER ADJUSTMENT		15
8. PACKAGING 8.1 PACKING SPECIFICATIONS 8.2 PACKING METHOD		20
9. DEFINITION OF LABELS 9.1 OPEN CELL LABEL		21
10. RELIABILITY TEST		22
11. PRECAUTIONS 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 11.2 SAFETY PRECAUTIONS 11.3 OTHERS		23
12. MECHANICAL DRAWING		24

REVISION HISTORY

Version	Date	Section	Description
Ver 2.0	Mar, 23, 10'	All	V185B1-P01 Approval Specification was first issued.

Issued Date: Mar.23, 2010 Model No.: V185B1-P02

Approval

1. GENERAL DESCRIPTION

Global LCD Panel Exchange Center

1.1 OVERVIEW

The V185B1-P01 is a 18.5" TFT LCD cell with driver ICs and a 30-pins-1ch-LVDS circuit board.

The product supports 1366 x 768 WXGA mode and can display up to 16.7M colors. The backlight unit is not built in.

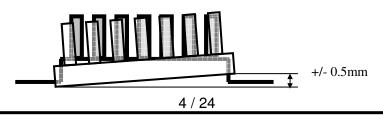
1.2 FEATURES

- Contrast ratio 1000:1
- Response time 5ms.
- WXGA (1366 x 768 pixels) resolution.
- DE (Data Enable) only mode.
- LVDS (Low Voltage Differential Signaling) interface.
- RoHS compliance.

1.3 APPLICATION

- TFT LCD Monitor
- TFT LCD TV

1.4 GENERAL SPECIFICATIONS


Item	Specification	Unit	Note
Diagonal Size	18.5	inch	-
Active Area	409.8 (H) x 230.4 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1366 x R.G.B. x 768	pixel	-
Pixel Pitch	0.3 (H) x 0.3 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Transmissive Mode	Normally White	-	-
Surface Treatment	Hard coating (3H), Anti-glare (Haze 25%)	-	-
Power Consumption	3.0	Watt	(3)

1.5 MECHANICAL SPECIFICATIONS

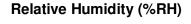
Item	Min.	Тур.	Max.	Unit	Note
Weight	-	415	435	g	-
I/F connector mounting position	The mounting in the screen center		connector makes as the horizontal.	1	(2)

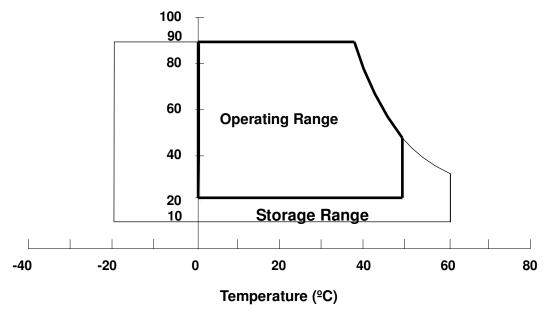
Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

- (2) Connector mounting position
- (3) Please refer to sec.3.1 for more information of power consumption.

Issued Date: Mar.23, 2010 Model No.: V185B1-P02

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMO MODULE M185B1-L01)


Item	Symbol	Val	lue	Unit	Note
Item	Cyllibol	Min.	Max.	Offic	NOLE
Storage Temperature	T _{ST}	-20	+60	ōC	(1)
Operating Ambient Temperature	T _{OP}	0	+50	∘C	(1), (2)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 $^{\circ}$ C).
- (b) Wet-bulb temperature should be 39 $^{\circ}$ C Max. (Ta > 40 $^{\circ}$ C).
- (c) No condensation.

Note (2) The temperature of panel display surface area should be 0 $^{\circ}$ C Min. and 60 $^{\circ}$ C Max.

Issued Date: Mar.23, 2010 Model No.: V185B1-P02 **Approval**

2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

High temperature or humidity may reduce the performance of panel. Please store LCD panel within the specified storage conditions.

Storage Condition: With packing. Storage temperature range: 25±5 °C. Storage humidity range: 50±10%RH.

Shelf life: 30days

2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

Item	Symbol	Value	9	Unit	Note
Itom	Cyrribor	Min	Max	Offic	Note
Power Supply Voltage	V _{CC}	-0.3	+6.0	V	(1)
Logic Input Voltage	Vlogic	-0.3	2.7	V	-

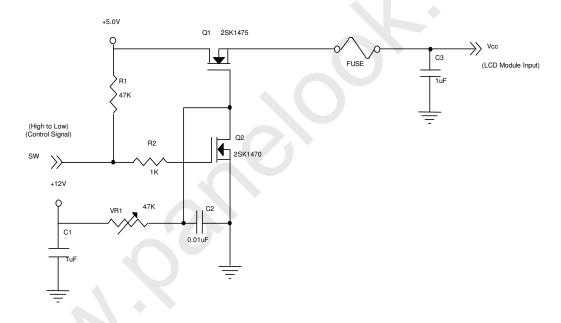
Note (1) Permanent damage might occur if the module is operated at conditions exceeding the maximum values.

Model No.: V185B1-P02

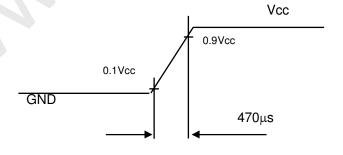
Approval

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD OPEN CELL

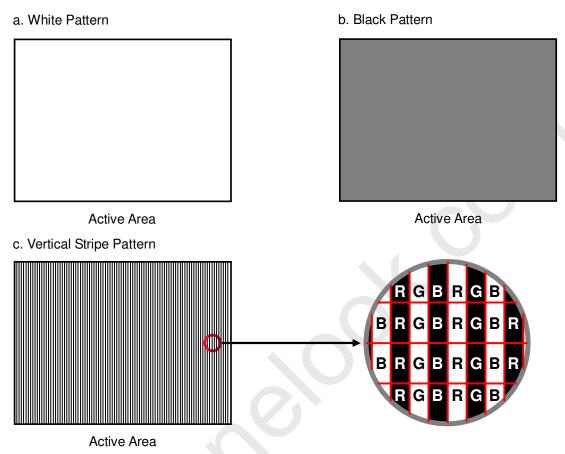

Ta = 25 ± 2 °C

Issued Date: Mar.23, 2010

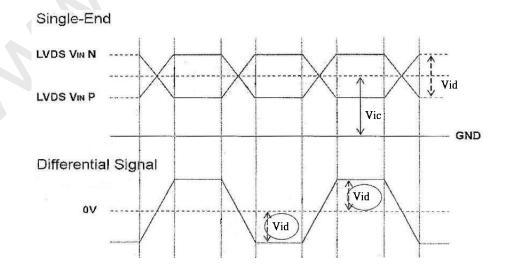

Parame	ater .	Symbol		Value		Unit	Note
i didilik	o to i	Cymbol	Min.	Тур.	Max.	Offic	NOIC
Power Supply Voltage	Vcc	4.5	5.0	5.5	٧	-	
Ripple Voltage	V_{RP}	-	-	300	mV	-	
Power On Rush Current			-	-	3	Α	(2)
	White		-	0.44	0.6	Α	(3)a
Power Supply Current	Black	-	-	0.58	0.9	Α	(3)b
	Vertical Stripe		-	0.6	0.9	Α	(3)c
Power Consumption		P_{LCD}	-	3.0	4.5	Watt	(4)
LVDS differential input ve	oltage	Vid	200	-	600	mV	-
LVDS common input vol	tage	Vic	-	1.2	-	V	-
Logic High Input Voltage	VIH	2.0	-	2.7	V	-	
Logic Low Input Voltage		VIL	-	-	0.5	V	-

Note (1) The module should be always operated within above ranges.

Note (2) Power On Rush Current Measurement Conditions: (must follow power sequence)

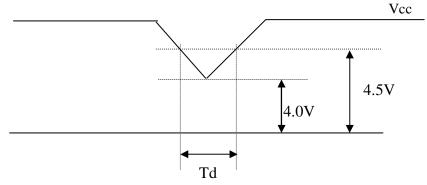


Vcc rising time is 470μs

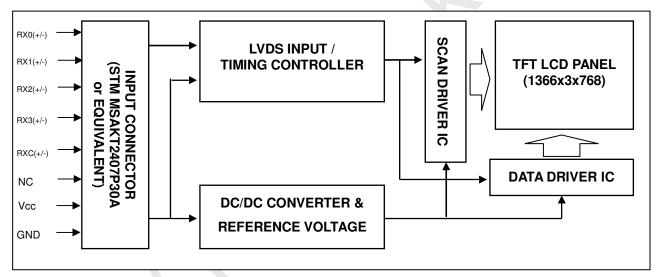


Note (3) The specified power supply current is under the conditions at Vcc = 5.0 V, Ta = 25 ± 2 °C, Fv = 60 Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The power consumption is specified at the pattern with the maximum current.


Note (5) VID waveform condition

8 / 24


3.2 Vcc POWER DIP CONDITION:

Dip condition: $4.0V \le Vcc \le 4.5V, Td \le 20ms$

4. BLOCK DIAGRAM

4.1 TFT LCD OPEN CELL

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Name	Description
1	NC	Not connection, this pin should be open.
2	NC	Not connection, this pin should be open.
3	NC	Not connection, this pin should be open.
4	GND	Ground
5	RX0-	Negative LVDS differential data input. Channel 0
6	RX0+	Positive LVDS differential data input. Channel 0
7	GND	Ground
8	RX1-	Negative LVDS differential data input. Channel 1
9	RX1+	Positive LVDS differential data input. Channel 1
10	GND	Ground
11	RX2-	Negative LVDS differential data input. Channel 2
12	RX2+	Positive LVDS differential data input. Channel 2
13	GND	Ground
14	RXCLK-	Negative LVDS differential clock input.
15	RXCLK+	Positive LVDS differential clock input.
16	GND	Ground
17	RX3-	Negative LVDS differential data input. Channel 3
18	RX3+	Positive LVDS differential data input. Channel 3
19	GND	Ground
20	NC	Not connection, this pin should be open.
21	NC	Not connection, this pin should be open.
22	NC	Not connection, this pin should be open.
23	GND	Ground
24	GND	Ground
25	GND	Ground
26	Vcc	+5.0V power supply
27	Vcc	+5.0V power supply
28	Vcc	+5.0V power supply
29	Vcc	+5.0V power supply
30	Vcc	+5.0V power supply

Note (1) Connector Part No.: STM MSAKT2407P30A or equivalent.

5.2 LVDS DATA MAPPING TABLE

LVDS Channel 0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Chamiler 0	Data order	G0	R5	R4	R3	R2	R1	R0
LVDS Channel 1	LVDS output	D18	D15	D14	D13	D12	D9	D8
	Data order	B1	B0	G5	G4	G3	G2	G1
LVDS Channel 2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Charmer 2	Data order	DE	NA	NA	B5	B4	B3	B2
LVDS Channel 3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Charliner 3	Data order	NA	B7	B6	G7	G6	R7	R6

Issued Date: Mar.23, 2010 Model No.: V185B1-P02 Approval

5.3 COLOR DATA INPUT ASSIGNMENT

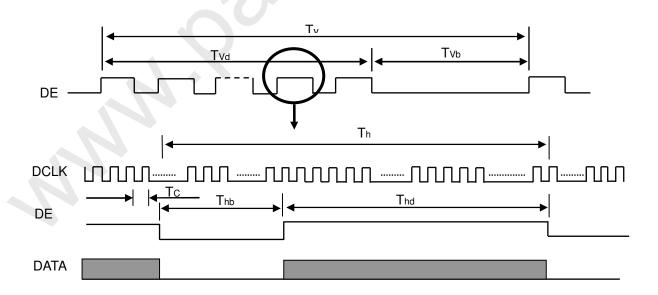
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

												Da	ata	Sigr	nal										
	Color		Red						Green								Blue								
		R7	R6	R5	R4	R3	R2	R1	R0	R7	R6	G5	G4	G3	G2	G1	G0	R7	R6	B5	B4		B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	•	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	, 1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:			:	•	:	:	:	:	:	:	:	:
Of	<u> </u>	:	:	:	:	:	:	:	:	:	:	:	:			\cdot	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.00	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:			-		:	:	:	:	:	:	:	:	:	:	:	:	:	-
Of	:	:	:		:	:	:	:		÷	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
-	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale				:		:				:	:	:	:	:			:	:			:		:	:	
Of	Blue(253)			0	·	0	0	0	•	0	0	:	:	•	0	•	0	1	1	: 1	1	1	1		1
Blue	Blue(253)	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
<u> </u>	Diue(200)	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		ı	ı	ı	ı	ı	ı	ı

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Issued Date: Mar.23, 2010 Model No.: V185B1-P02 **Approval**

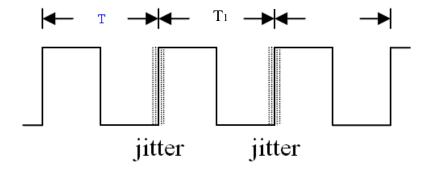
6. INTERFACE TIMING

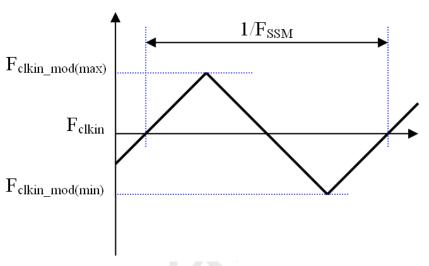

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

			_				
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	60	76	96	MHz	-
	Period	Tc	-	13.0	-	ns	-
	Input cycle to cycle jitter	T _{rcl}	-	-	200	ps	(1)
LVDS Clock	Spread spectrum modulation range	Fclkin_mod	Fc*98%	-	Fc*102%	MHz	(0)
	Spread spectrum modulation frequency	F _{SSM}	-	-	200	KHz	(2)
	High Time	Tch	-	4/7	-	Tc	-
	Low Time	Tcl	-	3/7	-	MHz - ns - ns - ns (1) // MHz (2) KHz (2) KHz Tc - ns (3) ps (3) ps (3) Hz - Th Tv=Tvd+Tvb Th - Tc Tc Tc Tc Tc Tc The Trust Tru	
LVDC Data	Setup Time	Tlvs	600	-	-		(0)
LVDS Data	Hold Time	Tlvh	600	-	-	•	(3)
	Frame Rate	Fv	50	60	75	Hz	-
Vertical Active Display Term	Total	Tv	800	806	815	Th	Tv=Tvd+Tvb
vertical Active Display Term	Display	Tvd	768	768	768	Th	-
	Blank	Tvb	Tv-Tvd	38	Tv-Tvd	Th	-
	Total	Th	1500	1560	1570	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1366	1366	1366	Tc	-
	Blank	Thb	Th-Thd	194	Th-Thd	Tc	-

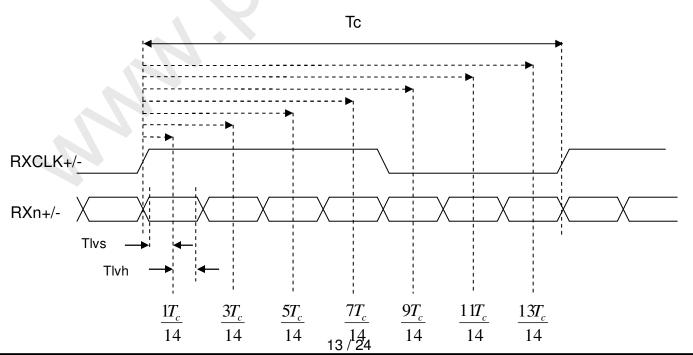
Note: Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.


INPUT SIGNAL TIMING DIAGRAM



Issued Date: Mar.23, 2010 Model No.: V185B1-P02 **Approval**

Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

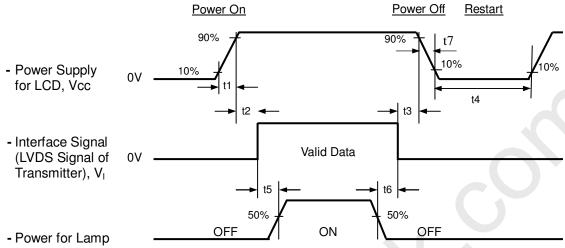


Note (2) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (3) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Version 2.0


Issued Date: Mar.23, 2010

Model No.: V185B1-P02 **Approva**l

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Timing Specifications:

0.5< t1 \leq 5 msec

 $0 < t2 \le 50 \text{ msec}$

 $0 < t3 \le 50 \text{ msec}$

 $t4 \ge 500 \text{ msec}$

t5 ≥ 450 msec

 $t6 \ge 90 \text{ msec}$

 $5 \le t7 \le 100 \, \text{msec}$

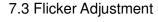
Note.

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) The company will not guarantee or compensate for the product damage caused by not following the Power Sequence.

Issued Date: Mar.23, 2010 Model No.: V185B1-P02 Approval

7. OPTICAL CHARACTERISTICS

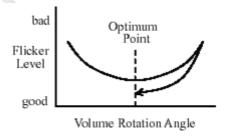
7.1 TEST CONDITIONS


Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V_{CC}	5.0	V
Input Signal	According to typical value	alue in "3. ELECTRICAL (CHARACTERISTICS"
Inverter Current	IL	7.0±0.5	mA
Inverter Driving Frequency	F_L	55±5	KHz
Inverter		Darfon VK.13165.101	

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

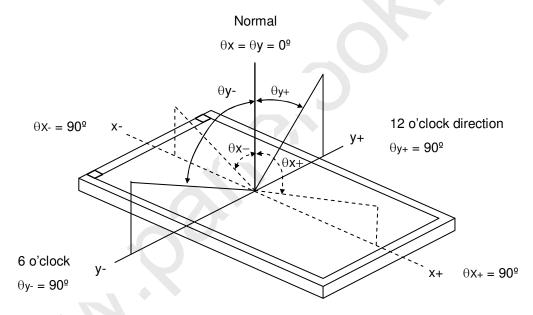
Iten	า	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rcx			0.652		-	
	neu	Rcy			0.330		- - - - - - - - - - - - - - - - - - -	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-					
Color	Green	Gcy		0.652 0.330 0.275 T Typ - 0.03 0.148 0.107 0.320 0.360 - 0.360	(0) (6)			
Chromaticity	Rluo	Всх			0.148		-	(0),(6)
	Dide	Всу	Standard light Source C		0.107		-	
	White	Wcx			0.320		- (0),(6) - (0),(6) - (1), (5) - (1), (3) ms (4) - (1), (8) Deg. (1), (2) (6)	
	VVIIILE	Wcy			0.360		-	
Center Transmit	tance	T%	$\theta_x=0^\circ$, $\theta_Y=0^\circ$	5.4	6.0	-	%	(1), (5)
Contrast Ratio		CR	CS-1000T, CMO BLU	630	1000	-	-	(1), (3)
Response Time	Posnonso Timo		$\theta_x=0^\circ, \theta_Y=0^\circ$	-	1.3	3.2	ms	(4)
Ticsponse Time		T _F	0_{χ} =0, 0_{γ} =0	-	3.7	6.8	- - - - - - - - - ms ms - -	(4)
Transmittance u	tance uniformity δ^{-}		θ_x =0°, θ_Y =0° CS-1000T	-	1.3	1.42	-	(1), (8)
	Horizontal	$\theta_{x} + \theta_{x}$	CR>10	150	170	1.148 0.03 - 1	(1), (2)	
Viouing Angle	Vertical	$\theta_{Y} + \Phi_{Y}$	USB-2000	140	160	-	ъeg.	
Viewing Angle	Horizontal	$\theta_x + \Phi_x$	CR>5	160	178	-	Dog	(1), (2)
	Vertical	$\theta_{Y} + \Phi_{Y}$	USB-2000	150	170	-	Deg.	(6)


(1) Adjustment Pattern: 2H1V checker pattern as follows.

R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В

(2) Adjustment Method:

Flicker should be adjusted by turning the volume for flicker adjustment by the ceramic driver. It is adjusted to the point with least flickering of the whole screen. After making it surely overrun at once, it should be adjusted to the optimum point.



Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages. The calculating method is as following:

- Measure Module's and BLU's spectrums. White is without signal input and R, G, B are with signal input. BLU(for M185B1-L01) is supplied by CMO.
- 2. Calculate cell's spectrum.
- 3. Calculate cell's chromaticity by using the spectrum of standard light source "C"

Note (1) Light source is the BLU which is supplied by CMO and driving voltages are based on suitable gamma voltages.

Note (2) Definition of Viewing Angle (θx , θy):

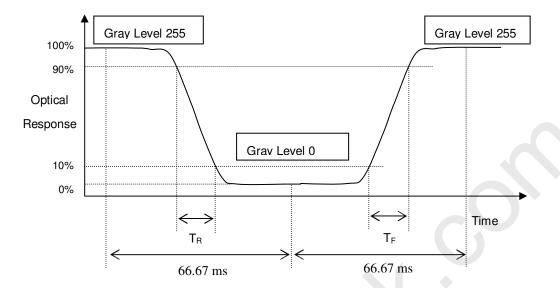
Note (3): Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

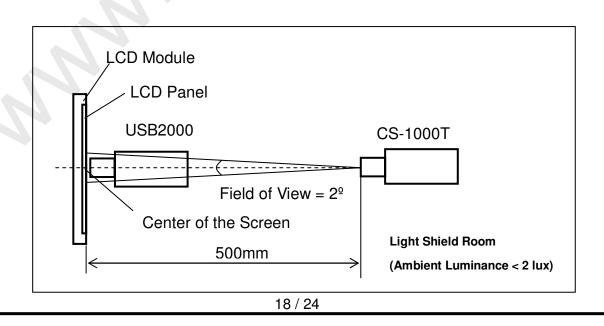
L 0: Luminance of gray level 0


CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (7).

Issued Date: Mar.23, 2010 Model No.: V185B1-P02 **Approva**l

Note (4) Definition of Response Time (T_R, T_F):

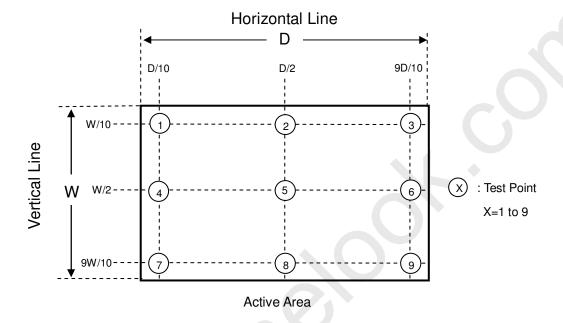

Note (5) Definition of Transmittance (T%):

Module is without signal input.

L (X) and Lblu(X) is corresponding to the luminance of the point X at Figure in Note (7).

Note (6) Measurement Setup:

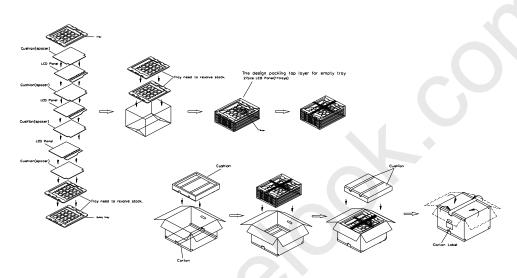
The LCD module should be stabilized at given temperature for 30minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30minutes in a windless room.



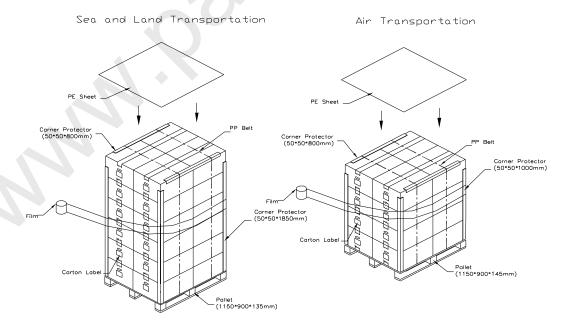
Issued Date: Mar.23, 2010 Model No.: V185B1-P02 **Approval**

Note (7): Definition of Transmittance Variation ($\delta T\%$): Measure the transmittance at 9 points

$$\delta \text{ T%} = \frac{\text{Maximum } [\text{T\%(1)}, \text{T\%(2)}, \dots \text{T\%(9)}]}{\text{Minimum } [\text{T\%(1)}, \text{T\%(2)}, \dots \text{T\%(9)}]}$$



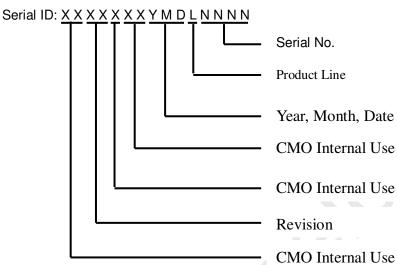
8. PACKAGING


8.1 PACKING SPECIFICATIONS

- (1) 27 open cells / 1 Box
- (2) Box dimensions: 570 (L) X 450 (W) X 320 (H) mm
- (3) Weight: approximately 19.1Kg (27 open cells per box)

8.2 PACKING METHOD

- (1) 27 LCD Cells+PCB/1 box
- (2) Carton dimensions: 570(L)x450(W)x320(H)mm
 (3) Weight range virginately 19 1kg(27 Cells per Carto
- (3) Weight :approximately 19.1kg(27 Cells per Carton).


9. DEFINITION OF LABELS

9.1 CMO OPEN CELL LABEL

The barcode nameplate is pasted on each OPEN CELL as illustration for CMO internal control.

Barcode definition:

Serial ID includes the information as below:

Manufactured Date:

Year: 2001=1,2002=2,2003=3,2004=4...2010=0,2011=1,2012=2...

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

Serial No.: Manufacturing sequence of product Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

Issued Date: Mar.23, 2010 Model No.: V185B1-P02 **Approval**

10. RELIABILITY TEST

Environment test conditions are listed as following table.

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50°C, 80%RH, 240hours	
High Temperature Operation (HTO)	Ta= 50°C, 50%RH , 240hours	
Low Temperature Operation (LTO)	Ta= 0°C, 240hours	(1)
High Temperature Storage (HTS)	Ta= 60°C, 240hours	
Low Temperature Storage (LTS)	Ta= -20°C, 240hours	
Package Vibration Test	ISTA STANDARD 1.14Grms Random, Frequency Range: 1 ~ 200 Hz Top & Bottom: 30 minutes (+Z), 10 min (-Z), Right & Left: 10 minutes (X) Back & Forth 10 minutes (Y)	(2)
Thermal Shock Test (TST)	-20°C/30min, 60°C / 30min, 100 cycles	
On/Off Test	25°C, On/10sec, Off /10sec, 30000 cycles	(1)
Altitude Test	Operation: 10000 ft / 24hours Non-Operation: 30000 ft / 24hours	

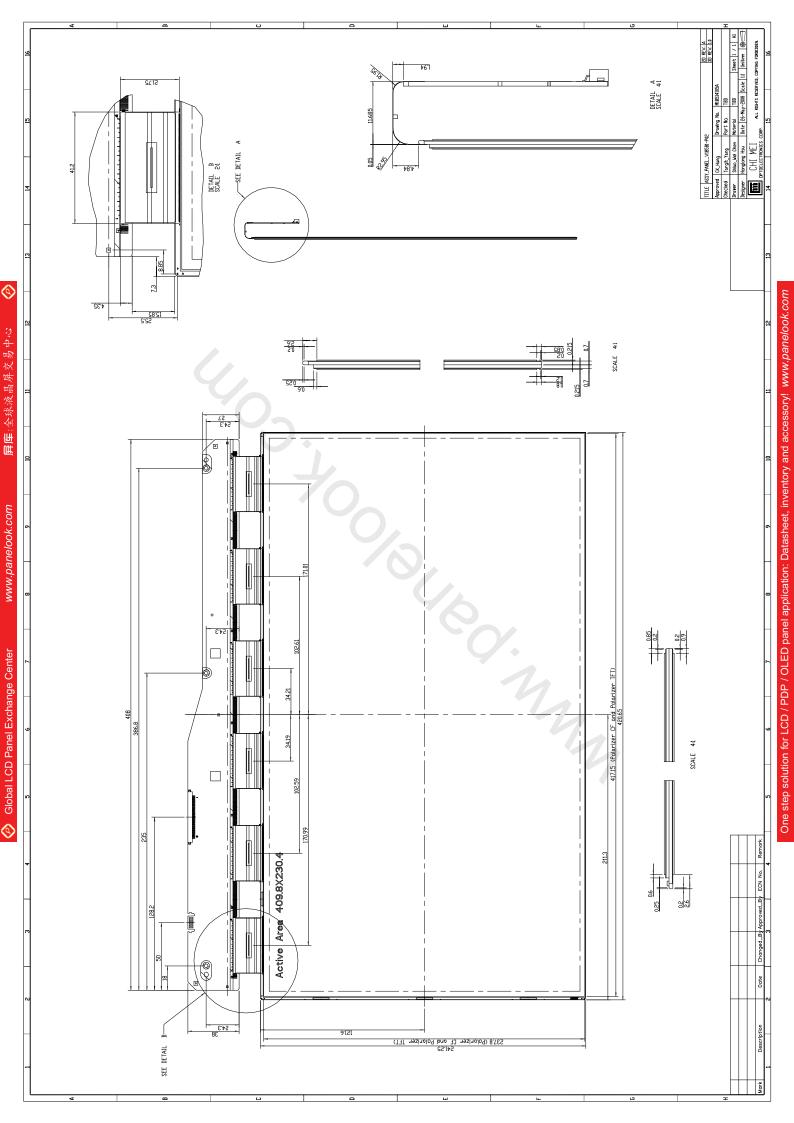
Note (1) The tests are done with LCD modules (M185B1-L01).

Note (2) The test is done with a package shown in Section 8.

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble backlight or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It is not permitted to have pressure or impulse on the module because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture come into or contacted the product, because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.


11.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.

11.3 OTHER

(1) When fixed patterns are displayed for a long time, remnant image is likely to occur.

12. MECHANICAL DRAWING

