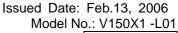


TFT LCD Approval Specification

MODEL NO.: V150X1 - L01

LCD TV Head Division		
AVP	郭振隆	


OP A Dont	TVHD / PDD				
QRA Dept.	DDIII	DDII	DDI		
Approval	Approval	Approval	Approval		
陳永一	李汪洋	藍文錦	林文聰		

LCD TV Marketing and Product Management Division				
Product Manager	羅仲良			

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	 5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT	 7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT	 10
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 COLOR DATA INPUT ASSIGNMENT 5.4 LVDS INTERFACE	 11
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	 14
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 17
8. PRECAUTIONS 8.1 HANDLING PRECAUTIONS 8.2 STORAGE PRECAUTIONS 8.3 OPERATION PRECAUTIONS	 20
9. DEFINITION OF LABELS 9.1 CMO MODULE LABEL	 21
10. PACKAGING 10.1 PACKING SPECIFICATIONS 10.2 PACKING METHOD	 22
11. MECHANICAL CHARACTERISTIC	 24

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 2.0	Feb .13'2006		All	Approval Specification was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V150X1 -L01 is a 15.0" TFT Liquid Crystal Display module with 4 CCFL Backlight units and 20 pins LVDS interface. This module supports 1024 x 768 XGA format and displays 16.2M. The optimum viewing angle is at 6 o'clock direction. The inverter module for Backlight is not built in.

1.2 FEATURES

- XGA (1024 x 768 pixels) resolution
- DE (Data Enable) only mode
- LVDS Interface with 1pixel/clock
- Fast Response
- High Brightness (400 nits)

1.3 APPLICATION

- TFT LCD TVS

1.4 GENERAL SPECIFICATIONS

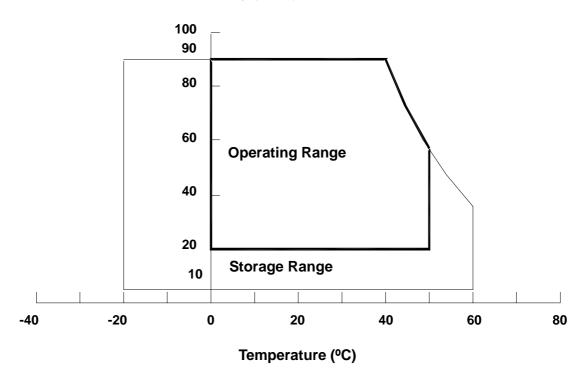
Item	Specification	Unit	Note
Active Area	304.13 (H) x 228.1 (V)	mm	(1)
Bezel Opening Area	307.4 (H) x 231.3(V)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	1024 x R.G.B. x 768	pixel	-
Pixel Pitch (Sub Pixel)	0.099 (H) x 0.297(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	ı
Display Colors	16.2M	color	ı
Transmissive Mode	Normally white	-	ı

1.5 MECHANICAL SPECIFICATIONS

It	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	331.2	331.6	332	mm	
Module Size	Vertical(V)	254.36	254.76	255.16	mm	(1)
	Depth(D)	12.7	13	13.3	mm	
W	eight	1000	1200	1400	g	-

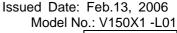
Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note		
item	Symbol	Min.	Max.	Offic	Note	
Storage Temperature	T _{ST}	-20	+60	٥C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	٥C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.


- (a) 90 %RH Max. (Ta 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Relative Humidity (%RH)

Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 60 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 60 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.

- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 500 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

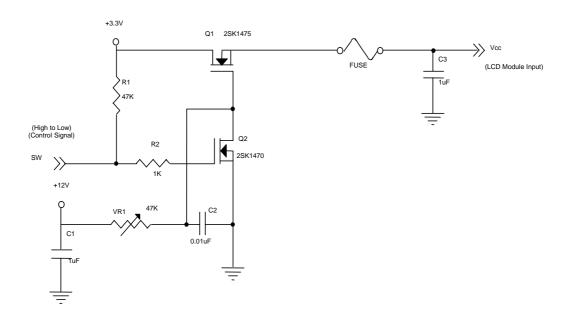
Itom	Symbol	Value		Linit	Note
Item	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	V_{DD}	-0.3	4.0	V	

2.2.2 BACKLIGHT UNIT

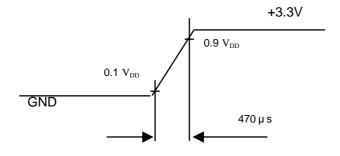
Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Lamp Voltage	V_L	576	704	V_{RMS}	$(1), (2), I_L = 6.0 \text{ mA}$
Lamp Current	ΙL	2	7	mA_RMS	(1), (2)
Lamp Frequency	FL	30	80	KHz	(1), (2)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to Section 3.2 for further information).

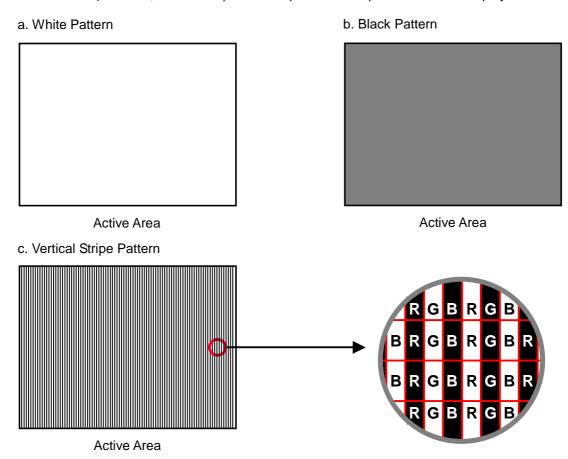

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE


	Daramat	-0.5	Cymphol	Value			Unit	Note
	Paramet	er	Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage		V _{cc}	3.0	3.3	3.6	V	(1)	
Power Su	pply Ripple Vo	ltage	V_{RP}	-	•	150	mV	
Rush Curi	rent		I _{RUSH}	-	•	1.5	Α	(2)
		White		-	0.50	ı	Α	
Power Su	pply Current	Black	I _{cc}	-	0.70	0.82	Α	(3)
Vertical Stripe		1	-	0.70	ı	Α		
LV/DC	Differential Input High Threshold Voltage		V_{LVTH}	-	-	+100	mV	
LVDS Interface	Differential In Threshold Vo		V_{LVTL}	-100	-	-	mV	
Common Input		ut Voltage	V_{LVC}	1.125	1.25	1.375	V	
	Terminating Resistor		R _T		100		ohm	
CMOS	Input High Threshold Voltage		V _H	2.7	-	3.3	V	
interface	Input Low Thr	eshold Voltage	V_{IL}	0	-	0.7	V	

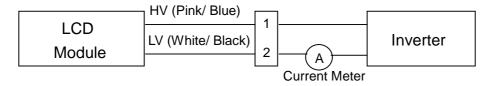
Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:



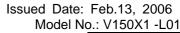
Vcc rising time is 470μs

Note (3) The specified power supply current is under the conditions at Vcc =3.3V, Ta = 25 \pm 2 °C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.



3.2 BACKLIGHT UNIT

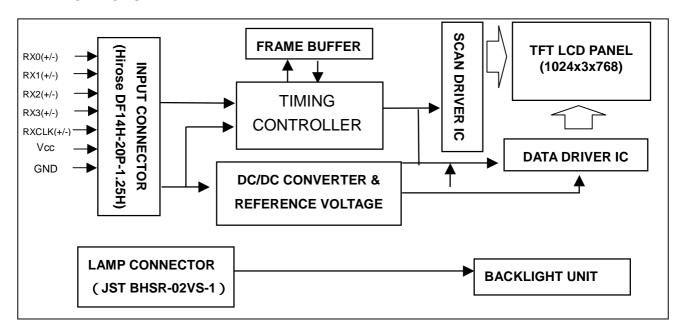
Ta = 25 ± 2 °C


			Value			
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Lamp Input Voltage	V_L	576	640	704	V_{RMS}	$I_L = 6.0 \text{mA}$
Lamp Current	ΙL	2.0	6.0	7.0	mA_RMS	(1)
Lamp Turn On Voltage	Vs	-	-	1150 (25 °C)	V_{RMS}	(2)
Lamp rum on voltage		-	-	1370 (0 °C)	V_{RMS}	(2)
Operating Frequency	F_L	30	45	80	KHz	(3)
Lamp Life Time	L_BL	50000	50,000	-	Hrs	(5)
Power Consumption	P_{L}	-	15360	-	mW	$(4), I_L = 6.0 \text{ mA}$

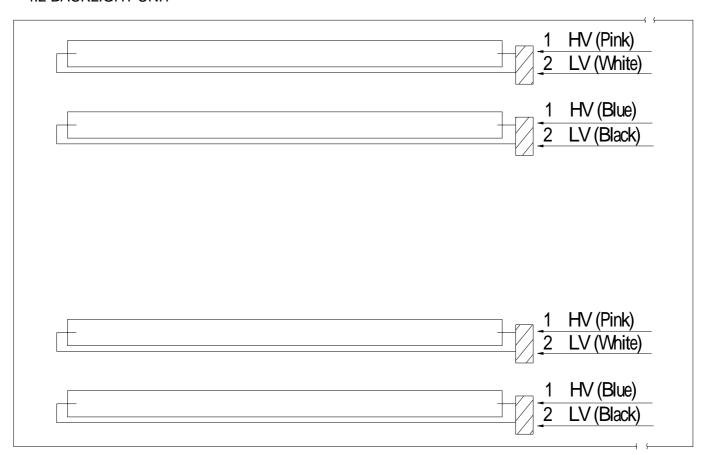
Note (1) Lamp current is measured by utilizing a high frequency current meter as shown below:

Note (2) The voltage shown above should be applied to the lamp for more than 1 second after startup.

Otherwise the lamp may not be turned on.


Approval

- Note (3) The lamp frequency may generate interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) $P_L = I_L \times V_L$
- Note (5) The lifetime of lamp is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and I_L =6.5mA_{RMS} until one of the following events occurs:
 - (a) When the brightness becomes 50% of its original value.
 - (b) When the effective ignition length becomes 80% of its original value. (Effective ignition length is defined as an area that the brightness is less than 70% compared to the center point.)
- Note (6) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid generating too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.



4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

CNF1 Connector Pin Assignment

Pin No.	Symbol	Function	Note
1	VCC	Power Supply +3.3V(typical)	
2	VCC	Power Supply +3.3V(typical)	
3	GND	Ground	
4	GND	Ground	
5	RX0-	Negative transmission data of pixel 0	
6	RX0+	Positive transmission data of pixel 0	
7	GND	Ground	
8	RX1-	Negative transmission data of pixel 1	
9	RX1+	Positive transmission data of pixel 1	
10	GND	Ground	
11	RX2-	Negative transmission data of pixel 2	
12	RX2+	Positive transmission data of pixel 2	
13	GND	Ground	
14	RXCLK-	Negative of clock	
15	RXCLK+	positive of clock	
16	GND	Ground	
17	RX3-	Negative transmission data of pixel 3	
18	RX3+	Positive transmission data of pixel 3	
19	GND	GND	
20	NC	agmode	(3)

Note (1) Connector Part No.: [Hirose] DF14H-20P-1.25H(56)

Note (2) Matching socket Part No.: [Hirose] DF14-20S-1.25C

Note (3) Reserved for internal use. Left it open.

5.2 BACKLIGHT UNIT

Pin	Symbol	Description	Color
1	HV1	High Voltage	Pink/ Blue
2	LV	Ground	White/ Black

Note (1) Connector Part No.: BHSR-02VS-1 (JST) or equivalent

Note (2) Matching Connector Part No.: SM02B-BHSS-1-TB (JST) or equivalent

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

												D	ata	_	nal										
	Color				Re								Gre									ue			
	le	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2		G0	B7	B6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	•	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	:	l :	:	:	:	:	:	:	l :	l :	:	:	l :	:	l :	:	:
Scale	:	:	:	:	:	:	:	:	:	l :	:	:	:	:	:	l :	:	l :	:	:	l :	:	l :	:	:
Of	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray Scale	:	:	:	:	:	:	:	:	:	l :	:	:	:	:	:	l :	l :	l :	:	:	:	:	l :	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	l :	:	:	:	:	:	:	:
Of	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Blue	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

5.4 LVDS INTERFACE

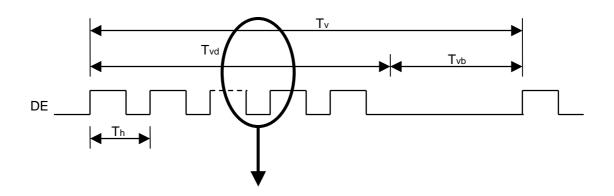
	SIGNAL		SMITTER BLVDM83A	INTERFACE CO	ONNECTOR	-	RECEIVER THC63LVDF84A	TFT CONTROL
	0.0.0	PIN	INPUT	Host	TFT-LCD	PIN	OUTPUT	INPUT
	R0	51	TxIN0			27	Rx OUT0	R0
	R1	52	TxIN1			29	Rx OUT1	R1
	R2	54	TxIN2	TA OUT0+	Rx 0+	30	Rx OUT2	R2
	R3	55	TxIN3			32	Rx OUT3	R3
	R4	56	TxIN4			33	Rx OUT4	R4
	R5	3	TxIN6	TA OUT0-	Rx 0-	35	Rx OUT6	R5
	G0	4	TxIN7			37	Rx OUT7	G0
	G1	6	TxIN8			38	Rx OUT8	G1
	G2	7	TxIN9			39	Rx OUT9	G2
	G3	11	TxIN12	TA OUT1+	Rx 1+	43	Rx OUT12	G3
	G4	12	TxIN13			45	Rx OUT13	G4
	G5	14	TxIN14			46	Rx OUT14	G5
	В0	15	TxIN15	TA OUT1-	Rx 1-	47	Rx OUT15	В0
	B1	19	TxIN18			51	Rx OUT18	B1
24bit	B2	20	TxIN19			53	Rx OUT19	B2
24011	В3	22	TxIN20			54	Rx OUT20	В3
	B4	23	TxIN21	TA OUT2+	Rx 2+	55	Rx OUT21	B4
	B5	24	TxIN22			1	Rx OUT22	B5
	DE	30	TxIN26			6	Rx OUT26	DE
	R6	50	TxIN27	TA OUT2-	Rx 2-	7	Rx OUT27	R6
	R7	2	TxIN5			34	Rx OUT5	R7
	G6	8	TxIN10			41	Rx OUT10	G6
	G7	10	TxIN11			42	Rx OUT11	G7
	В6	16	TxIN16	TA OUT3+	Rx 3+	49	Rx OUT16	В6
	B7	18	TxIN17			50	Rx OUT17	В7
	RSVD 1	25	TxIN23			2	Rx OUT23	Not connect
	RSVD 2	27	TxIN24	TA OUT3-	Rx 3-	3	Rx OUT24	Not connect
	RSVD 3	28	TxIN25			5	Rx OUT25	Not connect
	DCLK	31	TxCLK IN	TxCLK OUT+	RxCLK IN+	26	RxCLK OUT	DCLK
				TxCLK OUT-	RxCLK IN-			

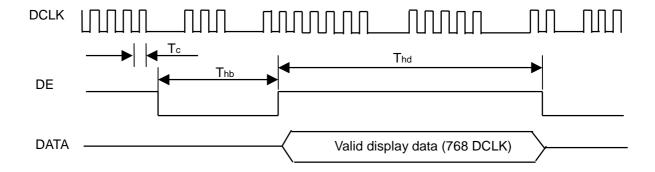
R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal

Notes(1) RSVD(reserved)pins on the transmitter shall be "H" or "L".

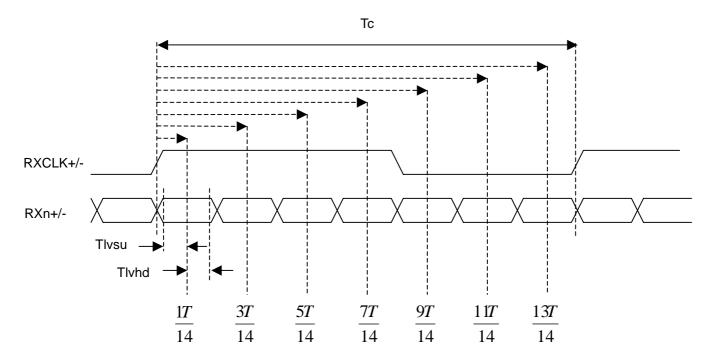
6. INTERFACE TIMING

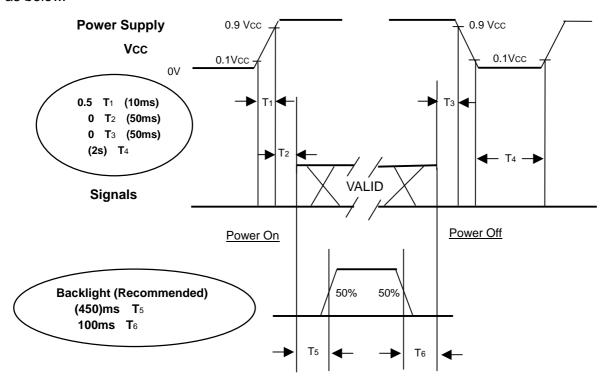

6.1 INPUT SIGNAL TIMING SPECIFICATIONS


The input signal timing specifications are shown as the following table and timing diagram.

			0		0 0		
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
IVDC Danair on Clark	Frequency	1/Tc	55	65	75	MHz	
LVDS Receiver Clock	Input cycle to cycle Jitter	Tc	-	-	200	ps	
LVDS Receiver Data	Setup Time	Tlvsu	600	ı	•	ps	
LVD3 Receiver Data	Hold Time	Tlvhd	600	-	-	ps	
	Frame Rate	Fv	50	60	70	Hz	
Vertical Active Display Term	Total	Τv	770	806	950	Th	Tv=Tvd+Tvb
Vertical Metro Biopiay Term	Display	Tvd	768	768	768	Th	-
	Blank	Tvb	2	38	182	Th	-
	Total	Th	1100	1344	1800	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1024	1024	1024	Tc	-
	Blank	Thb	76	320	776	Tc	-

Note (1) Since this module is operated in DE only mode. Hsync and Vsync input signal should be set to low logic level. Otherwise, this module would operate abnormally.


INPUT SIGNAL TIMING DIAGRAM


LVDS RECEIVER INTERFACE TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be the diagram as below.

Power ON/OFF Sequence

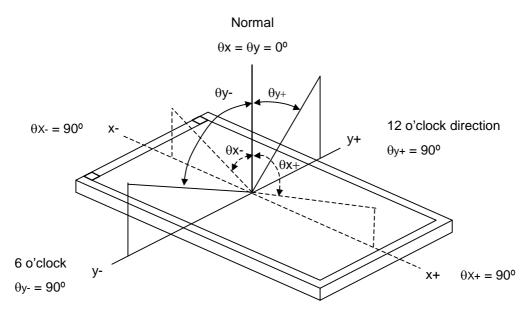
- Note (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- Note (4) T4 should be measured after the module has been fully discharged between power of and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Ta	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	$V_{ m DD}$	3.3	V			
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTI					
Inverter Current	IL	6.0	mA			
Frame Rate	Fr	60	Hz			

The measurement methods of optical characteristics are shown in Section 7.2. The following items should be measured under the test conditions described in Section 7.1 and stable environment shown in Note (5).


7.2 OPTICAL SPECIFICATIONS

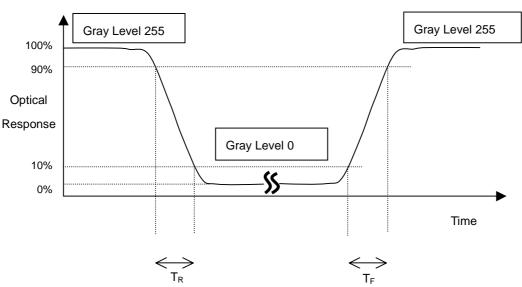
Iten	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		500	700	-	-	(2)
Boonanaa Tima		T_R		-	2	5	ms	(2)
Response Time		T_F		-	6	11	ms	(3)
Center Luminan	ce of White	Lc		330	400	-	cd/m ²	(4)
White Uniformity	/	δW		-	1.2	1.5	%	(6)
	Pod	Rx	0 _00 0 _00		0.628		-	(5)
	Red	Ry	θ_x =0°, θ_Y =0° Viewing Normal Angle		0.349	Тур.	-	
	Green	Gx	viewing Normal Angle	Тур.	0.293		-	
		Gy			0.563		-	
	Pluo	Bx		-0.03	0.145	+0.03	-	(3)
	Ву			0.088		-		
	White	Wx			0.313		-	
	vviiite	Wy			0.329		- (2) ms (3) cd/m² (4) % (6) (5) (5)	
	Harizantal	θ_{x} +		50	60	-		
Viewing Angle	rionzoniai	θ_{x} -	OD>40	50	60	(2 5 ms (3 11 ms (3 11 s) (4 1.5 % (6 1.5 % (6 1.5 % (5 1.5 %	(1)	
viewing Angle	Vartical	θ _Y +	CR≥10	30	40	-	Deg.	(1)
	verticai	θ _Y -		50	60	-		

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Eldim EZ-Contrast 160R

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

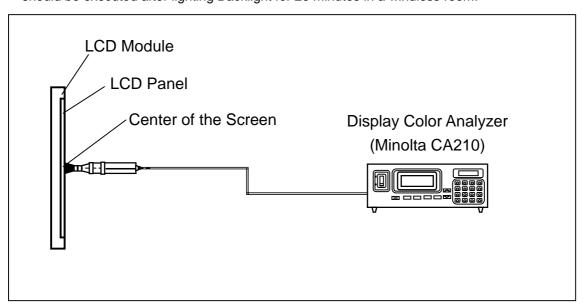
L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

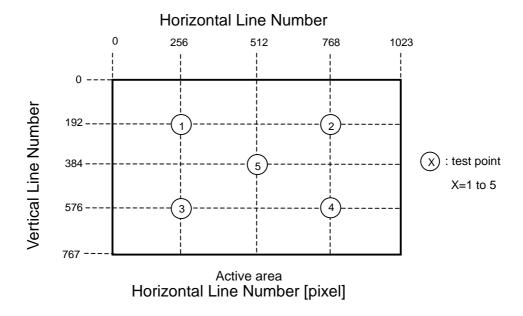
Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):


18 / 25

Measure the luminance of gray level 255 at center point $L_C = L(5)$, where L(x) is corresponding to the luminance of the point X at the figure in Note (6).

Note (5) Measurement Setup:


The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of White Uniformity (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)] * 100%$

CHIMEI OPTOELECTRONICS CORP.

Issued Date: Feb.13, 2006 Model No.: V150X1 -L01

Approva

8. PRECAUTIONS

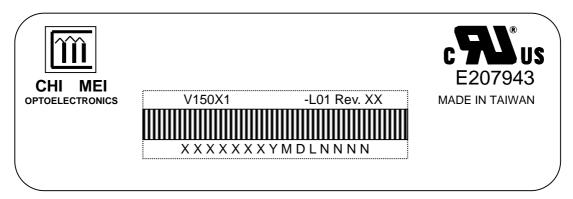
8.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

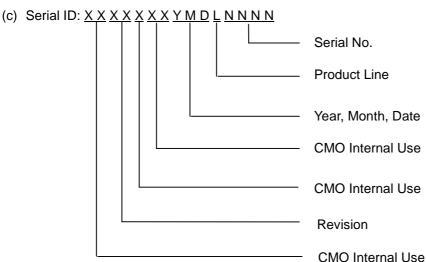
8.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

8.3 OPERATION PRECAUTIONS


- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.

9. DEFINITION OF LABELS


9.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: V150X1-L01

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2000~2009

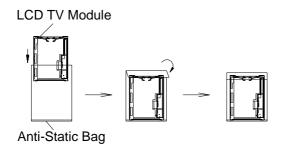
Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

(b) Revision Code: Cover all the change

(c) Serial No.: Manufacturing sequence of product

(d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.


10. PACKAGING

10.1 PACKING SPECIFICATIONS

- (1) 5 LCD TV modules / 1 Box
- (2) Box dimensions :356(L) X 271 (W) X 463 (H) mm
- (3) Weight: approximately 7.5Kg(5 modules per box)

10.2 PACKING METHOD

Figures 10-1 and 10-2 are the packing method

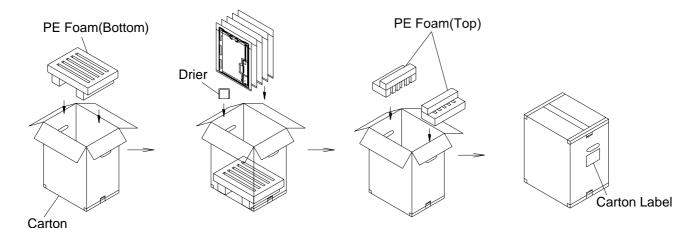
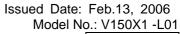



Figure. 10-1Packing method

Corner Protector:L1350*50*50mm L 800*50*50mm Pallet:L960*W960*H140mm Corrugated Fiberboard:L960*W960mm Pallet Stack:L960*W960*H1530mm Gross:195kg

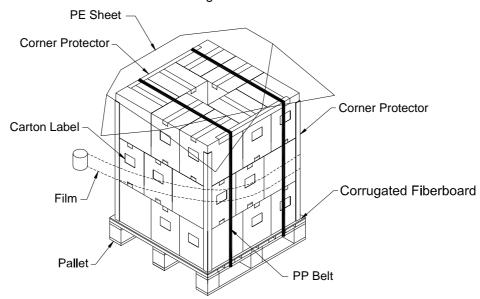
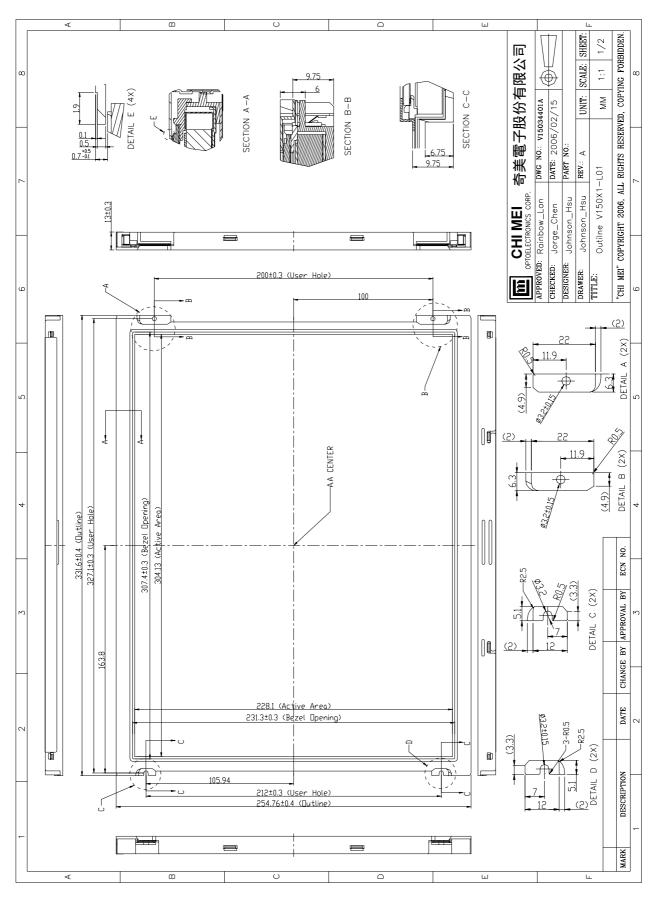



Figure. 10-2 Packing method

11. MECHANICAL CHARACTERISTIC

