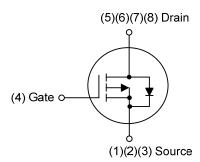


UNISONIC TECHNOLOGIES CO., LTD

UT35P02 Preliminary POWER MOSFET

-35A, -20V P-CHANNEL POWER MOSFET

■ DESCRIPTION


The UTC **UT35P02** is P-channel enhancement mode power MOSFET using UTC's advanced technology to provide customers with ideal for low voltage inverter applications.

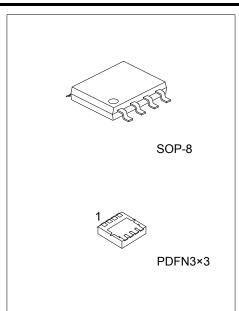
The UTC **UT35P02** is suitable for high efficiency synchronous rectification in SMPS, UPS, hard switched and high frequency circuits.

■ FEATURES

- * $R_{DS(ON)} \le 16 \text{ m}\Omega$ @ V_{GS} =-4.5V, I_D =-10A $R_{DS(ON)} \le 25 \text{ m}\Omega$ @ V_{GS} =-2.5V, I_D =-8.8A
- * High Cell Density Trench Technology
- * High Power and Current Handling Capability

ORDERING INFORMATION

Note: Pin Assignment: G: Gate


Ordering Number		Dookogo	Pin Assignment							Dooking	
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing
UT35P02L-S08-R	UT35P02G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel
UT35P02L-P3030-R	UT35P02G-P3030-R	PDFN3×3	S	S	S	G	D	D	D	D	Tape Reel

S: Source

D: Drain

UT35P02G-S08-R

(1)Packing Type
(2)Package Type
(3)Green Package
(1) R: Tape Reel
(2) S08: SOP-8, P3030: PDFN3×3
(3) G: Halogen Free and Lead Free, L: Lead Free

<u>www.unisonic.com.tw</u> 1 of 7

■ MARKING

SOP-8	PDFN3×3					
B 7 6 5 UTC DDD L: Lead Free UT35P02 G: Halogen Free Lot Code	UT 35P02 • □□□□ Date Code					

■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	-20	V
Gate-Source Voltage		V_{GSS}	±12	V
Continuous Drain Current	Continuous	I_D	-35	Α
Pulsed Drain Current Pulsed (Note 2)		I_{DM}	-70	Α
Single Pulsed Avalanche Energy		E _{AS}	97.7	mJ
Power Dissipation	SOP-8	7	1.8	W
	PDFN3×3	P _D	26	W
Junction Temperature		TJ	+150	°C
Storage Temperature Range		T _{STG}	-55 ~ + 150	°C

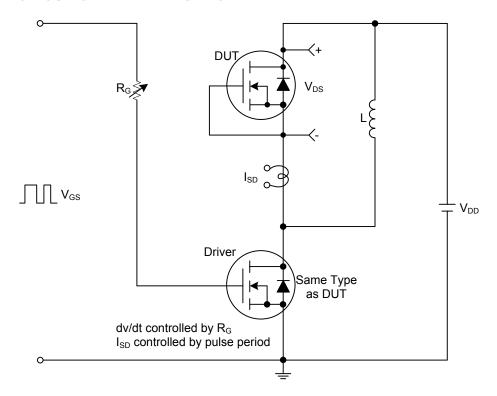
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L=0.1mH, I_{AS} =-44.2A, V_{DD} =-10V, R_{G} =25 Ω , Starting T_{J} = 25 $^{\circ}$ C

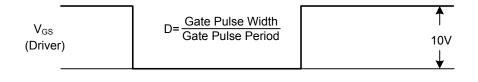
■ THERMAL DATA

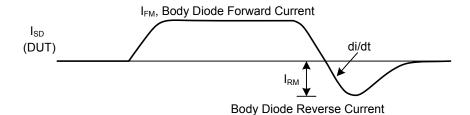
PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	SOP-8	0	90	°C/W
	PDFN3×3	θ_{JA}	60	°C/W
l	SOP-8	0	69	°C/W
Junction to Case	PDFN3×3	θιс	4.8	°C/W

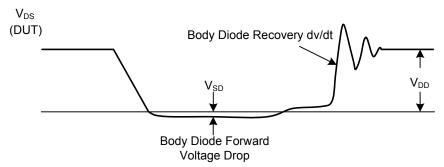
Note: Device mounted on FR-4 substrate Pc board, 2oz copper, with 1inch square copper plate.


■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)

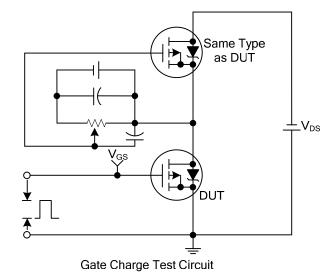
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage		BV_{DSS}	I _D =-250μA, V _{GS} =0V	-20			V	
Drain-Source Leakage Current		I _{DSS}	V_{DS} =-20V, V_{GS} =0V, T_J =25°C			-1	μΑ	
Gate-Source Leakage Current	Forward		V_{GS} =+12V, V_{DS} =0V			+100	nA	
	Reverse	I _{GSS}	V _{GS} =-12V, V _{DS} =0V			-100	nA	
ON CHARACTERISTICS								
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-0.5		-2.5	V	
Static Drain-Source On-State Resistance		В	V _{GS} =-4.5V, I _D =-10A			16	mΩ	
		$R_{DS(ON)}$	V _{GS} =-2.5V, I _D =-8.8A			25	mΩ	
DYNAMIC PARAMETERS								
Input Capacitance		C _{ISS}			3849		pF	
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =-10V, f=1.0MHz		580		pF	
Reverse Transfer Capacitance		C_{RSS}			545		pF	
SWITCHING PARAMETERS								
Total Gate Charge (Note 1)		Q_G	V _{DS} =-16V, V _{GS} =-10V, I _D =-35A,		75		nC	
Gate to Source Charge		Q_GS	I_D =1mA (Note 1, 2)		9		nC	
Gate to Drain Charge		Q_GD	ID-TITIA (NOTE 1, 2)		10		nC	
Turn-on Delay Time (Note 1)		$t_{D(ON)}$			12		ns	
Rise Time		t_R	V_{DS} =-10V, V_{GS} =-10V, I_{D} =-35A,		18		ns	
Turn-off Delay Time		$t_{D(OFF)}$	R _G =6Ω (Note 1, 2)		82		ns	
Fall-Time		t_{F}			45		ns	
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS								
Maximum Body-Diode Continuous Current		Is				-35	Α	
Maximum Body-Diode Pulsed Current		I _{SM}				-70	Α	
Drain-Source Diode Forward Voltage		V_{SD}	I _S =-2.1A, V _{GS} =0V			-1.4	V	
(Note 1)		V SD	152.1A, VGS-UV			-1.4	V	
Body Diode Reverse Recovery T	ime	t _{rr}	I _S =-30A, V _{GS} =0V,		7.4		ns	
Reverse Recovery Charge		Q_{rr}	dI _F /dt=100A/μs (Note 1) 3.9				ns	

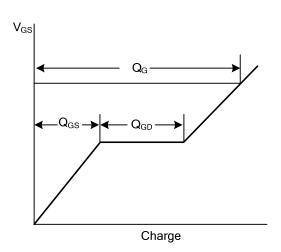

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle≤2%.


^{2.} Essentially independent of operating temperature.

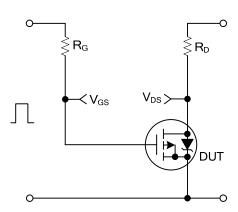

TEST CIRCUITS AND WAVEFORMS

Peak Diode Recovery dv/dt Test Circuit

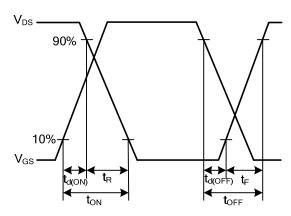


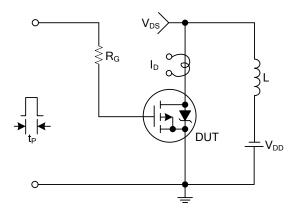


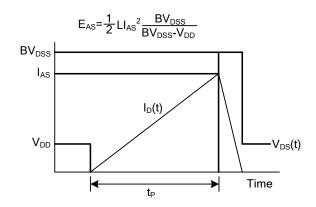
Peak Diode Recovery dv/dt Test Circuit and Waveforms


Peak Diode Recovery dv/dt Waveforms

TEST CIRCUITS AND WAVEFORMS




Gate Charge Waveforms


Resistive Switching Test Circuit

Resistive Switching Waveforms

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

