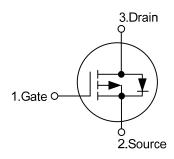

UNISONIC TECHNOLOGIES CO., LTD

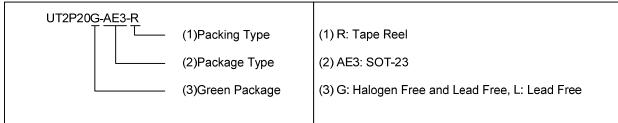
UT2P20 Preliminary Power MOSFET

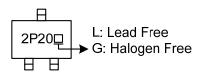
-2.0A, -200V P-CHANNEL POWER MOSFET


■ DESCRIPTION

The UTC **UT2P20** is a P-channel mode power MOSFET using UTC's advanced technology process to minimize on state resistance and yet maintain low gate charge for superior switching performance. Applicable at portable electronics, load switching, power management, battery charging circuits and DC to DC conversion.

■ FEATURES


■ SYMBOL


■ ORDERING INFORMATION

Ordering	Daalaaaa	Pin	Da alda a				
Lead Free	Halogen Free	Package	1	2	3	Packing	
UT2P20L-AE3-R	UT2P20G-AE3-R	SOT-23	G	S	D	Tape Reel	

Note: Pin Assignment: G: Gate S: Source D: Drain

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 5

^{*} $R_{DS(ON)} \le 3.0 \Omega$ @ V_{GS} =-10V, I_{D} =-1.0A $R_{DS(ON)} \le 4.0 \Omega$ @ V_{GS} =-4.5V, I_{D} =-1.0A

^{*} Low gate charge

■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	-200	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Davis O soul	Continuous	I_{D}	-2	Α	
Drain Current	Pulsed	Pulsed I _{DM} -4		Α	
Peak Diode Recovery dv/dt (Note 3)		dv/dt	8.2	V/ns	
Power Dissipation (Note 1, 2)		P_{D}	0.35	W	
Junction Temperature		T_J	+150	°C	
Storage Temperature		T_{STG}	-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

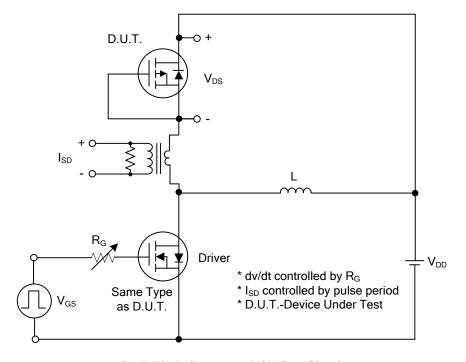
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. $I_{SD} \le -2.0A$, $di/dt \le 200A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J = 25$ °C.

■ THERMAL DATA

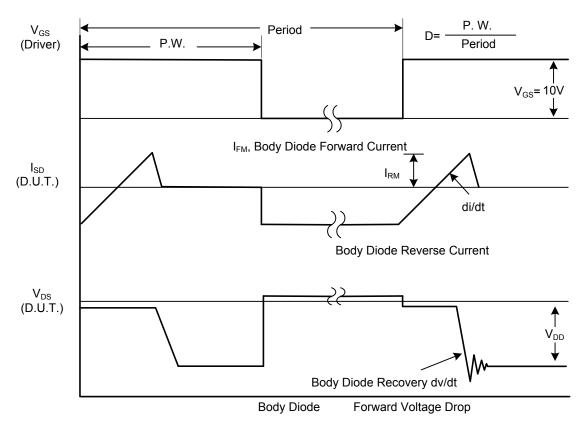
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	350	°C/W

Note: Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

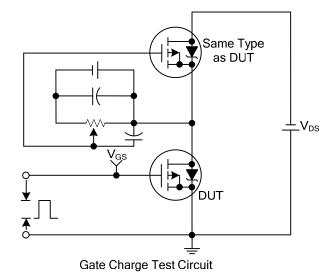
■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C unless otherwise specified)

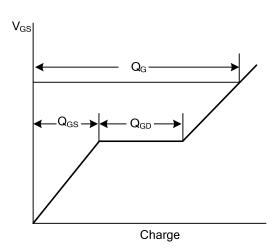

PARAMETER		SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV_{DSS}	V _{GS} =0V, I _D =-250μA				V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =-200V, V _{GS} =0V			-1	μA
Gate-Source Leakage Current	Forward		V _{GS} =+20V, V _{DS} =0V			+100	nA
	Reverse	I_{GSS}	V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$			-3.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	$V_{GS} = -10V$, $I_D = -1.0A$			3.0	Ω
			V_{GS} =-4.5V, I_{D} =-1.0A			4.0	Ω
DYNAMIC PARAMETERS							
Input Capacitance	put Capacitance		V _{GS} =0V, V _{DS} =-25V, f=1.0MHz		262		pF
Output Capacitance		Coss			24		pF
Reverse Transfer Capacitance		C_{RSS}			10		pF
SWITCHING PARAMETERS							
Total Gate Charge		Q_G	V _{DS} =-100V, V _{GS} =-10V, I _D =-2A , I _G =-1mA (Note 1, 2)		11		nC
Gate to Source Charge		Q_GS			3		nC
Gate to Drain Charge		Q_GD	IG IIIIA (Note 1, 2)		1.9		nC
Turn-ON Delay Time		$t_{D(ON)}$	V_{DD} =-100V, V_{GS} =-10V, I_{D} =-2A, R_{G} =6 Ω (Note 1, 2)		4.8		ns
Rise Time		t_R			17		ns
Turn-OFF Delay Time		$t_{D(OFF)}$			14		ns
Fall-Time		t_{F}			19		ns
SOURCE-DRAIN DIODE RATIN	IGS AND	CHARACTER	ISTICS				
Maximum Continuous Drain-Source Diode Forward Current		Is				-2	Α
						-2	^
Maximum Pulsed Drain-Source Diode		I _{SM}				-4	Α
Forward Current						-⊤	^
Diode Forward Voltage		V_{SD}	I _F =-2.0A, V _{GS} =0V			-1.4	V
Reverse Recovery Time		t _{rr}	I _S =-2.0A, V _{GS} =0V		64		ns
Reverse Recovery Charge		Q_{rr}	dI _F /dt=-100A/μs (Note 1)		149		nC

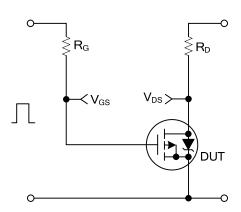
Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%.


^{2.} Essentially independent of operating temperature.

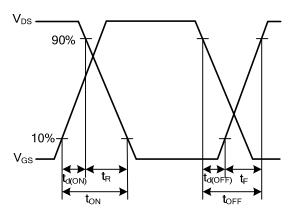
■ TEST CIRCUITS AND WAVEFORMS

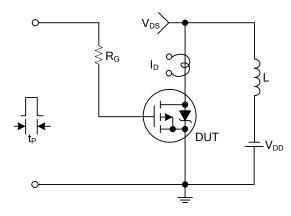


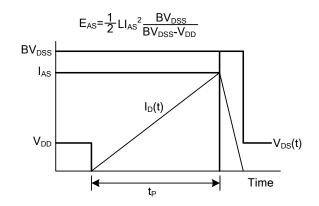

Peak Diode Recovery dv/dt Test Circuit


Peak Diode Recovery dv/dt Waveforms

■ TEST CIRCUITS AND WAVEFORMS




Gate Charge Waveforms


Resistive Switching Test Circuit

Resistive Switching Waveforms

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

